
Applications of hash functions

Diego F. Aranha

Institute of Computing
UNICAMP

dfaranha (IC) Applications of hash functions 1/6

Iterated hash functions (Merkle-Damg̊ard)

Definition

It is a technique that allows constructing a hash function with infinte
domain H : {0, 1}∗ → {0, 1}m through consecutive applications of a
compression function h : {0, 1}m+t → {0, 1}m. Padding is needed for
adding block xB+1 to an input x with B blocks.

Important: Collision resistance for S is given by collision resistance for h.

dfaranha (IC) Applications of hash functions 2/6

Message Authentication Codes (MACs)

Construction

A MAC y can be constructed by incorporating a cryptographic key K in
an iterated hash function H.

First attempt:

- Assign z0 = K and compute MAC as y = HK (x).

- Suppose there is no pre- or postprocessing of message x .

- It is possible to forge a MAC y ′ = HK (x ||x ′).

Second attempt:

- Suppose that the message x is now padded.

- Define x ′ = x ||pad(x)||w , with arbitrary w .

- Still possible to forge MAC y ′ = HK (x ′||pad(x ′)).

dfaranha (IC) Applications of hash functions 3/6

Message Authentication Codes (MACs)

Construction

A MAC y can be constructed by incorporating a cryptographic key K in
an iterated hash function H.

First attempt:

- Assign z0 = K and compute MAC as y = HK (x).

- Suppose there is no pre- or postprocessing of message x .

- It is possible to forge a MAC y ′ = HK (x ||x ′).

Second attempt:

- Suppose that the message x is now padded.

- Define x ′ = x ||pad(x)||w , with arbitrary w .

- Still possible to forge MAC y ′ = HK (x ′||pad(x ′)).

dfaranha (IC) Applications of hash functions 3/6

Message Authentication Codes (MACs)

Construction

A MAC y can be constructed by incorporating a cryptographic key K in
an iterated hash function H.

First attempt:

- Assign z0 = K and compute MAC as y = HK (x).

- Suppose there is no pre- or postprocessing of message x .

- It is possible to forge a MAC y ′ = HK (x ||x ′).

Second attempt:

- Suppose that the message x is now padded.

- Define x ′ = x ||pad(x)||w , with arbitrary w .

- Still possible to forge MAC y ′ = HK (x ′||pad(x ′)).

dfaranha (IC) Applications of hash functions 3/6

Message Authentication Codes (MACs)

Construction

A MAC y can be constructed by incorporating a cryptographic key K in
an iterated hash function H.

First attempt:

- Assign z0 = K and compute MAC as y = HK (x).

- Suppose there is no pre- or postprocessing of message x .

- It is possible to forge a MAC y ′ = HK (x ||x ′).

Second attempt:

- Suppose that the message x is now padded.

- Define x ′ = x ||pad(x)||w , with arbitrary w .

- Still possible to forge MAC y ′ = HK (x ′||pad(x ′)).

dfaranha (IC) Applications of hash functions 3/6

Message Authentication Codes (MACs)

Construction

A MAC y can be constructed by incorporating a cryptographic key K in
an iterated hash function H.

First attempt:

- Assign z0 = K and compute MAC as y = HK (x).

- Suppose there is no pre- or postprocessing of message x .

- It is possible to forge a MAC y ′ = HK (x ||x ′).

Second attempt:

- Suppose that the message x is now padded.

- Define x ′ = x ||pad(x)||w , with arbitrary w .

- Still possible to forge MAC y ′ = HK (x ′||pad(x ′)).

dfaranha (IC) Applications of hash functions 3/6

Nested MACs

Definition

A nested MAC is a composition of two cryptographic hash functions
with key of the form hL(gK (x)), where K , L are cryptographic keys and
x ∈ X .

Intuition: Combine short MAC with secure hash function!

Important: This construction is secure if h is a secure MAC and g is
collision-resistant.

dfaranha (IC) Applications of hash functions 4/6

Nested MACs

Definition

A nested MAC is a composition of two cryptographic hash functions
with key of the form hL(gK (x)), where K , L are cryptographic keys and
x ∈ X .

Intuition: Combine short MAC with secure hash function!

Important: This construction is secure if h is a secure MAC and g is
collision-resistant.

dfaranha (IC) Applications of hash functions 4/6

HMAC

Definition

ipad = 0x3636· · · 36
opad = 0x5C5C· · · 5C
y ′ = gK (x) = h(K ||x)
y = hL(x) = h(L||y ′)

HMACK : H((K ⊕ opad)||H((K ⊕ ipad)||x))

Important: Secure if NMAC is secure. Still secure if SHA-1 is not
collision resistant anymore?

Important: Can be combined with a secure block cipher for
authenticated encryption!

dfaranha (IC) Applications of hash functions 5/6

HMAC

Definition

ipad = 0x3636· · · 36
opad = 0x5C5C· · · 5C
y ′ = gK (x) = h(K ||x)
y = hL(x) = h(L||y ′)

HMACK : H((K ⊕ opad)||H((K ⊕ ipad)||x))

Important: Secure if pseudo-random function.

Important: Can be combined with a secure block cipher for
authenticated encryption!

dfaranha (IC) Applications of hash functions 5/6

Password storage

A classical application of cryptographic hash functions is to store H(s)
instead of password s!

Problem: Users tend to use the same passwords. Adversary with idle
computing power can iterate lots of candidates for s and “invert” H from
a large table of common inputs.

Solution: “Salt” cryptographic hashes with random bit strings (salts).

Problem: Compuational power provided by GPUs, FPGAs and ASICs!

Solution: Use sequential key derivation keys (PBKDF2, bcrypt) and/or
high memory requirements (scrypt). If it is possible to store a key K
securely even in case of intrusion, compute HMACK instead of H.

dfaranha (IC) Applications of hash functions 6/6

Password storage

A classical application of cryptographic hash functions is to store H(s)
instead of password s!

Problem: Users tend to use the same passwords. Adversary with idle
computing power can iterate lots of candidates for s and “invert” H from
a large table of common inputs.

Solution: “Salt” cryptographic hashes with random bit strings (salts).

Problem: Compuational power provided by GPUs, FPGAs and ASICs!

Solution: Use sequential key derivation keys (PBKDF2, bcrypt) and/or
high memory requirements (scrypt). If it is possible to store a key K
securely even in case of intrusion, compute HMACK instead of H.

dfaranha (IC) Applications of hash functions 6/6

