Classical Cryptology

Diego F. Aranha

Institute of Computing UNICAMP

Introduction

Objectives:

- Revisit classical cryptosystems.
- Analyze their resistance against simple attacks.

Introduction

Objectives:

- Revisit classical cryptosystems.
- Analyze their resistance against simple attacks.

Hidden intentions:

- Detect and justify what **not** to use in practice.
- Construct a preliminary model of a secure cryptosystem.

Notation

Sets:

- Alphabet of definition \mathcal{A} .
- Plaintext space \mathcal{M} .
- Ciphertext space \mathcal{C} .
- Key space \mathcal{K} .

Algorithms:

- Bijection $E_e: \mathcal{M} \to \mathcal{C}$ parameterized by key $e \in \mathcal{K}$.
- Bijection $D_d: \mathcal{C} \to \mathcal{M}$ parameterized by key $d \in \mathcal{K}$.

Cryptosystem

A cryptosystem is given by $\{\{E_e : e \in \mathcal{K}\}, \{D_d : d \in \mathcal{K}\} | \forall e \in \mathcal{K}, \exists d \in \mathcal{K}, D_d = E_e^{-1}\}.$

Consistency: $\forall m \in \mathcal{M}, D_d(E_e(m)) = m$.

Cryptosystem

Symmetric block cipher:

- Encryption: $y_i = Enc_k(x_i), 1 \le i \le n$
- Decryption: $x_i = Dec_k(y_i), 1 \le i \le n$

Modular arithmetic

Let a, b integers and m a positive integer:

- $a \equiv b \pmod{m}$ iff m | (b a), that is, $a \mod m = b \mod m$.
- We say that *a* is **congruent** to *b* with relation to modulo *m*.
- The notation (*a* mod *m*) > 0 is used to denote the **remainder** of the division of *a* by *m*.
- We say that $(a \mod m)$ is the value of a reduced modulo m.

Example:

- $101 \mod 7 = 3$.
- $-101 \mod 7 = 4$.

Important: Notice that not all programming languages use this convention!

Modular arithmetic

Define $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ equipped with the operations $(+, \times)$ modulo m:

- $(\mathbb{Z}_m, +)$ is an **Abelian** group.
- $(\mathbb{Z}_m, +, \times)$ is a **ring**.
- Addition is closed, associative, has identity and inverse.
- Multiplication is closed, commutative, associative, distributive and has identity.

Shift cipher (Caesar's cipher)

Definition

It is a block cipher where each letter is replaced by the letter after k positions.

Formalization:

- The key is the number k.

- The permutation is given by $\pi(m_i) = (m_i + k) \mod |\mathcal{A}|$.

Observations:

- What is the key size?

Classical Cryptology

Shift cipher

Criptanalysis: exhaustive search of the *m* keys! In average, test only $\frac{m}{2}$ keys.

Desirable properties for a block cipher:

- Functions for encryption Enc_k and decryption Dec_k should be computable in polynomial time.
- An attacker who captures ciphertext should not be able to systematically recover plaintext in reasonable time.
- Key space should resist exhaustive search of an attacker with polynomial computational power.

Monoalphabetic substitution ciphers

Definition

A monoalphabetic cipher $E_{\pi} : \mathcal{M} \to \mathcal{C}$ is a rule to replace each letter x_i from message x with $\pi(x_i)$, where π defines a permutation in the alphabet of definition.

Formalization:

- The key is the permutation $\pi:\mathcal{A}\to\mathcal{A}.$
- The encryption function is $E_{\pi}(m) = (\pi(x_1), \pi(x_2), \dots, \pi(x_{|x|}))$.
- The decryption function is $D_{\pi}(y) = (\pi^{-1}(y_1), \pi^{-1}(y_2), \dots, \pi^{-1}(y_{|y|}))$

Observations:

- The key space has size $(|\mathcal{A}|!)$.
- In general, the key has size $|\mathcal{A}|$.

Monoalphabetic substitution ciphers

Cryptanalysis: Frequency analysis!

Note: Shift cipher is a special case of a monoalphabetic substitution that uses only m from the m! possible keys.

dfaranha (IC)

Classical Cryptology

Introduction to Number Theory

- 1 The **congruence** $ax \equiv b \pmod{m}$ has a single solution $x \in \mathbb{Z}_m$ for any $b \in \mathbb{Z}_m$ iff gcd(a, m) = 1.
- 2 Let a ∈ Z_m with gcd(a, m) = 1. Then there is a single element a⁻¹ such that aa⁻¹ ≡ a⁻¹a ≡ 1 (mod m). This element is called multiplicative inverse.
- 3 When gcd(a, m) = 1, integers a and m are called **relatively prime** or **co-prime**. The number of integers co-prime to m in \mathbb{Z}_m is denoted by Euler's **totient function** $\phi(m)$.

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $Enc_{k=(a,b)}(x) = (ax + b) \mod m$.

Example: For $m = 26 = 2 \cdot 13$, values a such that gcd(a, m) = 1 are $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$.

Parameter *b* can be any element from \mathbb{Z}_m . In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $Enc_{k=(a,b)}(x) = (ax + b) \mod m$.

Example: For $m = 26 = 2 \cdot 13$, values a such that gcd(a, m) = 1 are $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$.

Parameter *b* can be any element from \mathbb{Z}_m . In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Formalization:

- The key is the pair of integers (a, b).
- Encryption is given by $y_i = Enc_{a,b}(x_i) = (ax_i + b) \mod m$.
- Decryption?

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $Enc_{k=(a,b)}(x) = (ax + b) \mod m$.

Example: For $m = 26 = 2 \cdot 13$, values a such that gcd(a, m) = 1 are $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$.

Parameter *b* can be any element from \mathbb{Z}_m . In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Formalization:

- The key is the pair of integers (a, b).
- Encryption is given by $y_i = Enc_{a,b}(x_i) = (ax_i + b) \mod m$.
- Decryption is given by $x_i = Dec_k(y_i) = a^{-1}(y_i b) \mod m$.

Classical Cryptology

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_m$?

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_m$? Answer: The number of valid keys is $m \cdot \phi(m)$.

Let

$$m=\prod_{i=1}^n p_i^{\mathbf{e}_i},$$

where primes p_i are pairwise distinct with $e_i > 0$. Then

$$\phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

Example: If $60 = 2^2 \cdot 3 \cdot 5$, $\phi(60) = (4 - 2) \cdot (3 - 1) \cdot (5 - 1) = 16$. Let *n* be the product of two primes *p*, *q*. What is the value of $\phi(n)$?

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_m$? Answer: The number of valid keys is $m \cdot \phi(m)$.

Let

$$m=\prod_{i=1}^n p_i^{\mathbf{e}_i},$$

where primes p_i are pairwise distinct with $e_i > 0$. Then

$$\phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

Example: If $60 = 2^2 \cdot 3 \cdot 5$, $\phi(60) = (4-2) \cdot (3-1) \cdot (5-1) = 16$.

Let *n* be the product of two primes *p*, *q*. What is the value of $\phi(n)$? Answer: $\phi(n) = (p-1)(q-1)$.

dfaranha (IC)

Classical Cryptology

Polyalphabetic substitution cipher

Definition

A **polyalphabetic substitution** maps disjoint sets of letter with different permutations π_i .

Formalization:

- The key is the set of permutatons $\Pi = (\pi_1, \pi_2, \dots, \pi_t)$.
- Encryption is given by $Enc_{\Pi}(x) = (\pi_1(x_1), \pi_2(x_2), \dots, \pi_t(x_t)).$
- Decryption is analogous.

Observation: The frequency of symbols is distorted!

Polyalphabetic shift cipher (Vigenère)

Definition

A **polyalphabetic shift cipher** is a special case of a polyalphabetic substitution cipher where each permutation is a shift cipher.

Formalization:

- Define $\mathcal{M} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_m)^t$.
- The key is the set $k = (k_1, k_2, \ldots, k_t)$.
- Encryption is given by $y = Enc_k(x) = (x_1 + k_1, x_2 + k_2, ..., x_t + k_t)$.
- Decryption is given by $x = Dec_k(y) = (y_1 k_1, y_2 k_2, ..., y_t k_t).$

Note: How big is the key space?

Polyalphabetic shift cipher (Vigenère)

Definition

A **polyalphabetic shift cipher** is a special case of a polyalphabetic substitution cipher where each permutation is a shift cipher.

Formalization:

- Define $\mathcal{M} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_m)^t$.
- The key is the set $k = (k_1, k_2, \ldots, k_t)$.
- Encryption is given by $y = Enc_k(x) = (x_1 + k_1, x_2 + k_2, ..., x_t + k_t)$.
- Decryption is given by $x = Dec_k(y) = (y_1 k_1, y_2 k_2, ..., y_t k_t).$

Note: The key space is m^t .

Hill cipher (1929)

Definition

It is a polyalphabetic substitution cipher that divides the characters in blocks of t letters and applies t linear combinations of the t letters.

Example: If t = 2, a plaintext element can be written as (x_1, x_2) and a ciphertext element as $(y_1 = 11x_1 + 3x_2 \mod m, y_2 = 8x_1 + 7x_2 \mod m)$.

Formalization:

- The key k = K is the matrix of linear combinations.
- Encryption is given by $y = Enc_k(x) = xK$.
- Decryption?

Important: What is the restriction on matrix K?

Hill cipher (1929)

Definition

It is a polyalphabetic substitution cipher that divides the characters in blocks of t letters and applies t linear combinations of the t letters.

Example: If t = 2, a plaintext element can be written as (x_1, x_2) and a ciphertext element as $(y_1 = 11x_1 + 3x_2 \mod m, y_2 = 8x_1 + 7x_2 \mod m)$.

Formalization:

- The key k = K is the matrix of linear combinations.
- Encryption is given by $y = Enc_k(x) = xK$.
- Decryption is given by $x = Dec_k(y) = yK^{-1}$.

Important: Matrix K needs to be invertible in \mathbb{Z}_m .

Transposition cipher

Definition

A **transposition** $Enc_{\theta} : \mathcal{M} \to \mathcal{C}$ changes the position *i* of each letter x_i in message x by $\theta(i)$, where θ defines a permutation in the set $\{1, 2, \ldots, n\}, n = |x|$.

Formalization:

- The key is the permutation $heta: \{1,2,\ldots,n\} o \{1,2,\ldots,n\}.$
- Encryption is given by $Enc_{\theta}(x) = (x_{\theta(1)}, x_{\theta(2)}, \dots, x_{\theta(n)}).$
- Decryption is given by $Dec_{\theta}(y) = (y_{\theta^{-1}(1)}, y_{\theta^{-1}(2)}, \dots, y_{\theta^{-1}(n)}).$

Observations:

- The key space has size n! and the key in general is smaller than n.

Important: The transposition cipher is a special case of the Hill cipher!

dfaranha (IC)

Classical Cryptology

Stream cipher (Vernam, 1919)

Definition

A **stream cipher** is a polyalphabetic shift cipher where the number of shifts is identical to the plaintext length.

Formalization:

- The key is the string (k_1, k_2, \ldots, k_n) .
- Each letter defines a different shift.

Classification:

- **Periodic**: se $k_{i+d} = k_i$ para $d < n, i \ge 1$.
- **Synchronous**: the key stream is constructed independently from the plaintext.
- **Asynchronous**: the key stream is derived from the plaintext and ciphertext.

Stream cipher

Comments:

- A block cipher can be seen as a stream cipher with constant key stream!
- The Vigenère cipher is periodic with period *t*.
- Stream ciphers are usually instantiated in the binary case $(\mathcal{M} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_2).$

Stream cipher

Synchronous example: Linear Feedback Shift Register

Asynchronous example: Auto-key cipher

- The key stream k is $k_1 = r, k_i = x_{i-1}, i \ge 2$.
- Encryption is given by $y_i = Enc_k(x_i) = x_i + k_i \mod m$.
- Decryption is given by $x_i = Dec_k(y_i) = y_i k_i \mod m$.
- Key space again has size *m*.

1 Shift cipher: exhaustive search in \mathcal{K} .

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.
- 5 **Polyalphabetic shift cipher**: index of coincidences and frequency analysis.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.
- 5 **Polyalphabetic shift cipher**: index of coincidences and frequency analysis.
- 6 Hill cipher: known-plaintext attack.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.
- 5 **Polyalphabetic shift cipher**: index of coincidences and frequency analysis.
- 6 Hill cipher: known-plaintext attack.
- 7 **Transposition cipher**: solution of anagram, known-plaintext attack.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.
- 5 **Polyalphabetic shift cipher**: index of coincidences and frequency analysis.
- 6 Hill cipher: known-plaintext attack.
- 7 Transposition cipher: solution of anagram, known-plaintext attack.
- 8 LFSR: solution of linear equations.

- 1 Shift cipher: exhaustive search in \mathcal{K} .
- 2 Monoalphabetic substitution cipher: frequency analysis.
- 3 Affine cipher: frequency analysis and linear equations.
- 4 Polyalphabetic substitution: partition and frequency analysis.
- 5 **Polyalphabetic shift cipher**: index of coincidences and frequency analysis.
- 6 Hill cipher: known-plaintext attack.
- 7 Transposition cipher: solution of anagram, known-plaintext attack.
- 8 LFSR: solution of linear equations.
- 9 Auto-key cipher: exhaustive search in \mathcal{K} .