Classical Cryptology

Diego F. Aranha
Institute of Computing UNICAMP

Introduction

Objectives:

- Revisit classical cryptosystems.
- Analyze their resistance against simple attacks.

Introduction

Objectives:

- Revisit classical cryptosystems.
- Analyze their resistance against simple attacks.

Hidden intentions:

- Detect and justify what not to use in practice.
- Construct a preliminary model of a secure cryptosystem.

Notation

Sets:

- Alphabet of definition \mathcal{A}.
- Plaintext space \mathcal{M}.
- Ciphertext space \mathcal{C}.
- Key space \mathcal{K}.

Algorithms:

- Bijection $E_{e}: \mathcal{M} \rightarrow \mathcal{C}$ parameterized by key $e \in \mathcal{K}$.
- Bijection $D_{d}: \mathcal{C} \rightarrow \mathcal{M}$ parameterized by key $d \in \mathcal{K}$.

Cryptosystem

A cryptosystem is given by $\left\{\left\{E_{e}: e \in \mathcal{K}\right\},\left\{D_{d}: d \in \mathcal{K}\right\} \mid \forall e \in \mathcal{K}, \exists d \in \mathcal{K}, D_{d}=E_{e}^{-1}\right\}$.

Consistency: $\forall m \in \mathcal{M}, D_{d}\left(E_{e}(m)\right)=m$.

Cryptosystem

Symmetric block cipher:

- Encryption: $y_{i}=\operatorname{Enc}_{k}\left(x_{i}\right), 1 \leq i \leq n$
- Decryption: $x_{i}=\operatorname{Dec}_{k}\left(y_{i}\right), 1 \leq i \leq n$

Modular arithmetic

Let a, b integers and m a positive integer:

- $a \equiv b(\bmod m)$ iff $m \mid(b-a)$, that is, $a \bmod m=b \bmod m$.
- We say that a is congruent to b with relation to modulo m.
- The notation $(a \bmod m)>0$ is used to denote the remainder of the division of a by m.
- We say that $(a \bmod m)$ is the value of a reduced modulo m.

Example:

- $101 \bmod 7=3$.
$--101 \bmod 7=4$.

Important: Notice that not all programming languages use this convention!

Modular arithmetic

Define $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ equipped with the operations $(+, \times)$ modulo m :

- $\left(\mathbb{Z}_{m},+\right)$ is an Abelian group.
- $\left(\mathbb{Z}_{m},+, \times\right)$ is a ring.
- Addition is closed, associative, has identity and inverse.
- Multiplication is closed, commutative, associative, distributive and has identity.

Shift cipher (Caesar's cipher)

Definition

It is a block cipher where each letter is replaced by the letter after k positions.

Formalization:

- The key is the number k.
- The permutation is given by $\pi\left(m_{i}\right)=\left(m_{i}+k\right) \bmod |\mathcal{A}|$.

Observations:

- What is the key size?

Shift cipher

Criptanalysis: exhaustive search of the m keys! In average, test only $\frac{m}{2}$ keys.

Desirable properties for a block cipher:

- Functions for encryption $E n c_{k}$ and decryption $D e c_{k}$ should be computable in polynomial time.
- An attacker who captures ciphertext should not be able to systematically recover plaintext in reasonable time.
- Key space should resist exhaustive search of an attacker with polynomial computational power.

Monoalphabetic substitution ciphers

Definition

A monoalphabetic cipher $E_{\pi}: \mathcal{M} \rightarrow \mathcal{C}$ is a rule to replace each letter x_{i} from message x with $\pi\left(x_{i}\right)$, where π defines a permutation in the alphabet of definition.

Formalization:

- The key is the permutation $\pi: \mathcal{A} \rightarrow \mathcal{A}$.
- The encryption function is $E_{\pi}(m)=\left(\pi\left(x_{1}\right), \pi\left(x_{2}\right), \ldots, \pi\left(x_{|x|}\right)\right.$.
- The decryption function is $D_{\pi}(y)=\left(\pi^{-1}\left(y_{1}\right), \pi^{-1}\left(y_{2}\right), \ldots, \pi^{-1}\left(y_{|y|}\right)\right.$

Observations:

- The key space has size $(|\mathcal{A}|$!).
- In general, the key has size $|\mathcal{A}|$.

Monoalphabetic substitution ciphers

Cryptanalysis: Frequency analysis!

Note: Shift cipher is a special case of a monoalphabetic substitution that uses only m from the m ! possible keys.

Introduction to Number Theory

1 The congruence $a x \equiv b(\bmod m)$ has a single solution $x \in \mathbb{Z}_{m}$ for any $b \in \mathbb{Z}_{m}$ iff $\operatorname{gcd}(a, m)=1$.

2 Let $a \in \mathbb{Z}_{m}$ with $\operatorname{gcd}(a, m)=1$. Then there is a single element a^{-1} such that $a a^{-1} \equiv a^{-1} a \equiv 1(\bmod m)$. This element is called multiplicative inverse.

3 When $\operatorname{gcd}(a, m)=1$, integers a and m are called relatively prime or co-prime. The number of integers co-prime to m in \mathbb{Z}_{m} is denoted by Euler's totient function $\phi(m)$.

Affine cipher

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $E n c_{k=(a, b)}(x)=(a x+b) \bmod m$.

Example: For $m=26=2 \cdot 13$, values a such that $\operatorname{gcd}(a, m)=1$ are $\{1,3,5,7,9,11,15,17,19,21,23,25\}$.

Parameter b can be any element from \mathbb{Z}_{m}. In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Affine cipher

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $E n c_{k=(a, b)}(x)=(a x+b) \bmod m$.

Example: For $m=26=2 \cdot 13$, values a such that $\operatorname{gcd}(a, m)=1$ are $\{1,3,5,7,9,11,15,17,19,21,23,25\}$.

Parameter b can be any element from \mathbb{Z}_{m}. In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Formalization:

- The key is the pair of integers (a, b).
- Encryption is given by $y_{i}=E n c_{a, b}\left(x_{i}\right)=\left(a x_{i}+b\right) \bmod m$.
- Decryption?

Affine cipher

Definition

It is a special case of a monoalphabetic substitution that applied a linear function such that $E n c_{k=(a, b)}(x)=(a x+b) \bmod m$.

Example: For $m=26=2 \cdot 13$, values a such that $\operatorname{gcd}(a, m)=1$ are $\{1,3,5,7,9,11,15,17,19,21,23,25\}$.

Parameter b can be any element from \mathbb{Z}_{m}. In this case, the affine cipher has only $12 \cdot 26$ valid keys.

Formalization:

- The key is the pair of integers (a, b).
- Encryption is given by $y_{i}=E n c_{a, b}\left(x_{i}\right)=\left(a x_{i}+b\right) \bmod m$.
- Decryption is given by $x_{i}=\operatorname{Dec}_{k}\left(y_{i}\right)=a^{-1}\left(y_{i}-b\right) \bmod m$.

Affine cipher

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_{m}$?

Affine cipher

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_{m}$? Answer: The number of valid keys is $m \cdot \phi(m)$.

Let

$$
m=\prod_{i=1}^{n} p_{i}^{e_{i}}
$$

where primes p_{i} are pairwise distinct with $e_{i}>0$. Then

$$
\phi(m)=\prod_{i=1}^{n}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right)
$$

Example: If $60=2^{2} \cdot 3 \cdot 5, \phi(60)=(4-2) \cdot(3-1) \cdot(5-1)=16$.
Let n be the product of two primes p, q. What is the value of $\phi(n)$?

Affine cipher

How many keys are valid for a generic affine cipher where $a, b \in \mathbb{Z}_{m}$? Answer: The number of valid keys is $m \cdot \phi(m)$.

Let

$$
m=\prod_{i=1}^{n} p_{i}^{e_{i}}
$$

where primes p_{i} are pairwise distinct with $e_{i}>0$. Then

$$
\phi(m)=\prod_{i=1}^{n}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right)
$$

Example: If $60=2^{2} \cdot 3 \cdot 5, \phi(60)=(4-2) \cdot(3-1) \cdot(5-1)=16$.
Let n be the product of two primes p, q. What is the value of $\phi(n)$? Answer: $\phi(n)=(p-1)(q-1)$.

Polyalphabetic substitution cipher

Definition

A polyalphabetic substitution maps disjoint sets of letter with different permutations π_{i}.

Formalization:

- The key is the set of permutatons $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{t}\right)$.
- Encryption is given by $E n c_{\Pi}(x)=\left(\pi_{1}\left(x_{1}\right), \pi_{2}\left(x_{2}\right), \ldots, \pi_{t}\left(x_{t}\right)\right)$.
- Decryption is analogous.

Observation: The frequency of symbols is distorted!

Polyalphabetic shift cipher (Vigenère)

Definition

A polyalphabetic shift cipher is a special case of a polyalphabetic substitution cipher where each permutation is a shift cipher.

Formalization:

- Define $\mathcal{M}=\mathcal{C}=\mathcal{K}=\left(\mathbb{Z}_{m}\right)^{t}$.
- The key is the set $k=\left(k_{1}, k_{2}, \ldots, k_{t}\right)$.
- Encryption is given by $y=\operatorname{Enc}_{k}(x)=\left(x_{1}+k_{1}, x_{2}+k_{2}, \ldots, x_{t}+k_{t}\right)$.
- Decryption is given by $x=\operatorname{Dec}_{k}(y)=\left(y_{1}-k_{1}, y_{2}-k_{2}, \ldots, y_{t}-k_{t}\right)$.

Note: How big is the key space?

Polyalphabetic shift cipher (Vigenère)

Definition

A polyalphabetic shift cipher is a special case of a polyalphabetic substitution cipher where each permutation is a shift cipher.

Formalization:

- Define $\mathcal{M}=\mathcal{C}=\mathcal{K}=\left(\mathbb{Z}_{m}\right)^{t}$.
- The key is the set $k=\left(k_{1}, k_{2}, \ldots, k_{t}\right)$.
- Encryption is given by $y=\operatorname{Enc}_{k}(x)=\left(x_{1}+k_{1}, x_{2}+k_{2}, \ldots, x_{t}+k_{t}\right)$.
- Decryption is given by $x=\operatorname{Dec}_{k}(y)=\left(y_{1}-k_{1}, y_{2}-k_{2}, \ldots, y_{t}-k_{t}\right)$.

Note: The key space is m^{t}.

Hill cipher (1929)

Definition

It is a polyalphabetic substitution cipher that divides the characters in blocks of t letters and applies t linear combinations of the t letters.

Example: If $t=2$, a plaintext element can be written as $\left(x_{1}, x_{2}\right)$ and a ciphertext element as $\left(y_{1}=11 x_{1}+3 x_{2} \bmod m, y_{2}=8 x_{1}+7 x_{2} \bmod m\right)$.

Formalization:

- The key $k=K$ is the matrix of linear combinations.
- Encryption is given by $y=E n c_{k}(x)=x K$.
- Decryption?

Important: What is the restriction on matrix K ?

Hill cipher (1929)

Definition

It is a polyalphabetic substitution cipher that divides the characters in blocks of t letters and applies t linear combinations of the t letters.

Example: If $t=2$, a plaintext element can be written as $\left(x_{1}, x_{2}\right)$ and a ciphertext element as $\left(y_{1}=11 x_{1}+3 x_{2} \bmod m, y_{2}=8 x_{1}+7 x_{2} \bmod m\right)$.

Formalization:

- The key $k=K$ is the matrix of linear combinations.
- Encryption is given by $y=E n c_{k}(x)=x K$.
- Decryption is given by $x=\operatorname{Dec}_{k}(y)=y K^{-1}$. Important: Matrix K needs to be invertible in \mathbb{Z}_{m}.

Transposition cipher

Definition

A transposition $E n c_{\theta}: \mathcal{M} \rightarrow \mathcal{C}$ changes the position i of each letter x_{i} in message x by $\theta(i)$, where θ defines a permutation in the set $\{1,2, \ldots, n\}, n=|x|$.

Formalization:

- The key is the permutation $\theta:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.
- Encryption is given by $E n c_{\theta}(x)=\left(x_{\theta(1)}, x_{\theta(2)}, \ldots, x_{\theta(n)}\right)$.
- Decryption is given by $\operatorname{Dec}_{\theta}(y)=\left(y_{\theta^{-1}(1)}, y_{\theta^{-1}(2)}, \ldots, y_{\theta^{-1}(n)}\right)$.

Observations:

- The key space has size $n!$ and the key in general is smaller than n.

Important: The transposition cipher is a special case of the Hill cipher!

Stream cipher (Vernam, 1919)

Definition

A stream cipher is a polyalphabetic shift cipher where the number of shifts is identical to the plaintext length.

Formalization:

- The key is the string $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$.
- Each letter defines a different shift.

Classification:

- Periodic: se $k_{i+d}=k_{i}$ para $d<n, i \geq 1$.
- Synchronous: the key stream is constructed independently from the plaintext.
- Asynchronous: the key stream is derived from the plaintext and ciphertext.

Stream cipher

Comments:

- A block cipher can be seen as a stream cipher with constant key stream!
- The Vigenère cipher is periodic with period t.
- Stream ciphers are usually instantiated in the binary case $\left(\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{2}\right)$.

Stream cipher

Synchronous example: Linear Feedback Shift Register

Asynchronous example: Auto-key cipher

- The key stream k is $k_{1}=r, k_{i}=x_{i-1}, i \geq 2$.
- Encryption is given by $y_{i}=E n c_{k}\left(x_{i}\right)=x_{i}+k_{i} \bmod m$.
- Decryption is given by $x_{i}=\operatorname{Dec}_{k}\left(y_{i}\right)=y_{i}-k_{i} \bmod m$.
- Key space again has size m.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.
5 Polyalphabetic shift cipher: index of coincidences and frequency analysis.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.
5 Polyalphabetic shift cipher: index of coincidences and frequency analysis.
6 Hill cipher: known-plaintext attack.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.
5 Polyalphabetic shift cipher: index of coincidences and frequency analysis.
6 Hill cipher: known-plaintext attack.
7 Transposition cipher: solution of anagram, known-plaintext attack.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.
5 Polyalphabetic shift cipher: index of coincidences and frequency analysis.
6 Hill cipher: known-plaintext attack.
7 Transposition cipher: solution of anagram, known-plaintext attack.
8 LFSR: solution of linear equations.

Cryptanalysis

1 Shift cipher: exhaustive search in \mathcal{K}.
2 Monoalphabetic substitution cipher: frequency analysis.
3 Affine cipher: frequency analysis and linear equations.
4 Polyalphabetic substitution: partition and frequency analysis.
5 Polyalphabetic shift cipher: index of coincidences and frequency analysis.
6 Hill cipher: known-plaintext attack.
7 Transposition cipher: solution of anagram, known-plaintext attack.
8 LFSR: solution of linear equations.
9 Auto-key cipher: exhaustive search in \mathcal{K}.

