Block ciphers

Diego F. Aranha

Institute of Computing UNICAMP

Introduction

Objectives:

- Visit theoretical formulation of modern block ciphers.
- Discuss attacks on this formulation.

Introduction

Objectives:

- Visit theoretical formulation of modern block ciphers.
- Discuss attacks on this formulation.

Hidden intentions:

- Detect in practice what is **not** a secure block cipher.

Computational security

Kerckhoffs Principle

A cipher should be unbreakable both in theory than in practice.

Example: A cipher should not be breakable with probability lower than 10^{-30} in 200 years in the best computer available.

Computational security

Kerckhoffs Principle

A cipher should be unbreakable both in theory than in practice.

Example: A cipher should not be breakable with probability lower than 10^{-30} in 200 years in the best computer available.

Relaxing perfect secrecy:

- Security is preserved only against *efficient* attacks with a feasible execution time.
- Attacks can have success with small probability.

Concrete approach

A cipher is (t, ϵ) -secure if every adversary with execution time t has success probability upper bounded by ϵ .

Example: Adversary has success $\frac{t}{2^n}$ to break an *n*-bit key cipher in time *t*. Time $t = 2^{60}$ in an 1 GHz processor requires 35 years. Using several computers in parallel should reduce this to a few years. Insufficient to many applications.

Concrete approach

A cipher is (t, ϵ) -secure if every adversary with execution time t has success probability upper bounded by ϵ .

Example: Adversary has success $\frac{t}{2^n}$ to break an *n*-bit key cipher in time *t*. Time $t = 2^{60}$ in an 1 GHz processor requires 35 years. Using several computers in parallel should reduce this to a few years. Insufficient to many applications.

An event with probability 2^{-60} should occur only once every 100 billions of years (age of the universe is 2^{58} seconds). Hence, a reasonable choice of parameters is $t = 2^{80}$ and $\epsilon = 2^{-48}$, implying n = 128.

Concrete approach

A cipher is (t, ϵ) -secure if every adversary with execution time t has success probability upper bounded by ϵ .

Example: Adversary has success $\frac{t}{2^n}$ to break an *n*-bit key cipher in time *t*. Time $t = 2^{60}$ in an 1 GHz processor requires 35 years. Using several computers in parallel should reduce this to a few years. Insufficient to many applications.

An event with probability 2^{-60} should occur only once every 100 billions of years (age of the universe is 2^{58} seconds). Hence, a reasonable choice of parameters is $t = 2^{80}$ and $\epsilon = 2^{-48}$, implying n = 128.

Limitations: What is the exact computational power of the adversary? What is the implementation? What happens with bigger *t*?

Alternate relaxations:

- Security parameter n.
- Efficient adversary has computational power polynomial in n, executed in time $O(n^c)$, with $c \in \mathbb{Z}$.
- Honest entities can have polynomial computational power and superpolynomial strategies are ignored.
- Success probability is lower than the *inverse of all polynomials in n*. (negligible).

Asymtoptic approach

A cipher is secure if every PPT adversary (*probabilistic polynomial-time*) has negligible probability.

Need of relaxation

We have that $|\mathcal{K}| < |\mathcal{M}|$, thus perfect secrecy is *impossible* to achieve:

- Given ciphertext c, decrypt c with every possible key $k \in \mathcal{K}$;
- Given ciphertexts c_i from messages m_i , decrypt c_i until you find k such that $\forall i, m_i = Dec_k(c_i)$.
- Given ciphertexts c_i from messages m_i , guess value of k such that $\forall i, m_i = Dec_k(c_i)$.

Brute-force or exhaustive search attack

Adversary has probability of success 1 in time linear to $|\mathcal{K}|$ (exponential in *n*).

Lucky attack

Adversary has probability of success $1/|\mathcal{K}|$ (negligible in *n*) with constant execution time.

Need of relaxation

We have that $|\mathcal{K}| < |\mathcal{M}|$, thus perfect secrecy is *impossible* to achieve:

- Given ciphertext c, decrypt c with every possible key $k \in \mathcal{K}$;
- Given ciphertexts c_i from messages m_i , decrypt c_i until you find k such that $\forall i, m_i = Dec_k(c_i)$.
- Given ciphertexts c_i from messages m_i , guess value of k such that $\forall i, m_i = Dec_k(c_i)$.

Brute-force or exhaustive search attack

Adversary has probability of success 1 in time linear to $|\mathcal{K}|$ (exponential in *n*).

Lucky attack

Adversary has probability of success $1/|\mathcal{K}|$ (negligible in *n*) with constant execution time.

Conclusion: Computational security limits both attacks.

dfaranha (IC)

Composition or product of ciphers

Composition $S_1 \times S_2$ can be classified as follows:

- **Commutative**: $S_1 \times S_2 \equiv S_2 \times S_1$.
- **Idempotent**: $S_1 \times S_1 \equiv S_1$. Examples: Shift, Vigenére.
- **Non-idempotent**: $S_1 \times S_2 \equiv S_3$. Example: Substitution + transposition.

Security:

- Keys chosen independently!
- Iterating an idempotent system does not add security.

Iterated cipher

Definition

An **iterated cipher** is a cipher represented through the repetition of a composition of elementary ciphers. In other words, $\forall Nr \in \mathbb{N}, S^{Nr}$ is an iterated cipher built from the cryptosystem S.

Formalization:

- Nr is the number of rounds.
- The key schedule is $\langle K^1, K^2, \dots, K^{Nr} \rangle$.
- K^i is the *round key* for round $1 \le i \le Nr$.
- Each round is described by invertible round function $g: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}.$
- Useful only when S is non-idempotent.

Important: Key $\langle K^1, K^2, \dots, K^{Nr} \rangle$ is usually derived from key K through a *known* algorithm.

dfaranha (IC)

Iterated cipher

Encryption

$$w^{1} \leftarrow g(x, K^{1})$$

$$w^{2} \leftarrow g(w^{1}, K^{2})$$

$$\dots$$

$$w^{Nr-1} \leftarrow g(w^{Nr-2}, K^{Nr-1})$$

$$y \leftarrow g(w^{Nr-1}, K^{Nr})$$

Decryption

$$w^{Nr-1} \leftarrow g^{-1}(y, K^{Nr})$$

....
 $w^1 \leftarrow g^{-1}(w^2, K^2)$
 $x \leftarrow g^{-1}(w^1, K^1)$

Substitution-permutation network

Definition

A substitution-permutation network (SPN) is a special case of iterated cipher where $g : \mathcal{M} \times \mathcal{K} \to \mathcal{C}$ is represented by the composition of substitution and transposition ciphers.

Formalization:

- The quantity $Im \text{ com } I, m \in \mathbb{N}$ is called *block size*.
- $\mathcal{C} = \mathcal{M} = (\mathbb{Z}_2)^{lm}$.
- $\mathcal{K} \subseteq ((\mathbb{Z}_2)^{lm})^{Nr+1}$.
- Substitution of I bits given by $\pi_S : (\mathbb{Z}_2)^I \to (\mathbb{Z}_2)^I$.
- Transposition of *Im* bits given by $\pi_P : \{1, \ldots, Im\} \rightarrow \{1, \ldots, Im\}$.

Important: π_S adds confusion, π_P adds diffusion.

Substitution-permutation network Encryption algorithm

Input:
$$x, \pi_S, \pi_P, \langle K^1, K^2, \dots, K^{Nr}, K^{Nr+1} \rangle$$
.
1 $w^0 \leftarrow x$
2 for $r \leftarrow 1$ to $Nr - 1$ do
2.1 $u^r \leftarrow w^{r-1} \oplus K^r$
2.2 for $i \leftarrow 1$ to m do $v_{\langle i \rangle}^r \leftarrow \pi_S(u_{\langle i \rangle}^r)$
2.3 $w^r \leftarrow (v_{\pi_P(1)}^r, \dots, v_{\pi_P(lm)}^r)$
3 $u^{Nr} \leftarrow w^{Nr-1} \oplus K^{Nr}$
4 for $i \leftarrow 1$ to m do $v_{\langle i \rangle}^{Nr} \leftarrow \pi_S(u_{\langle i \rangle}^{Nr})$
5 $w^{Nr} \leftarrow (v_1^{Nr}, \dots, v_{lm}^{Nr})$ (no permutation!)
6 return $y \leftarrow w^{Nr} \oplus K^{Nr+1}$

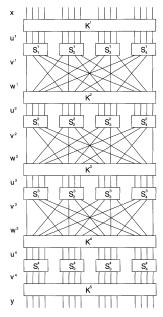
Substitution-permutation network Encryption algorithm

Input:
$$x, \pi_S, \pi_P, \langle K^1, K^2, \dots, K^{Nr}, K^{Nr+1} \rangle$$
.
1 $w^0 \leftarrow x$
2 for $r \leftarrow 1$ to $Nr - 1$ do
2.1 $u^r \leftarrow w^{r-1} \oplus K^r$
2.2 for $i \leftarrow 1$ to m do $v_{}^r \leftarrow \pi_S(u_{}^r)$
2.3 $w^r \leftarrow (v_{\pi_P(1)}^r, \dots, v_{\pi_P(lm)}^r)$
3 $u^{Nr} \leftarrow w^{Nr-1} \oplus K^{Nr}$
4 for $i \leftarrow 1$ to m do $v_{}^{Nr} \leftarrow \pi_S(u_{}^{Nr})$
5 $w^{Nr} \leftarrow (v_1^{Nr}, \dots, v_{lm}^{Nr})$ (no permutation!)
6 return $y \leftarrow w^{Nr} \oplus K^{Nr+1}$

Important:

- First and last operations are for whitening.
- What is the objective of these operations?
- What are the advantages in the decryption algorithm?

Substitution-permutation network



Substitution-permutation network

Characteristics:

- Efficient both in software and hardware.
- Memory requirements for substitution boxes π_S is 2¹ bits.
- Data Encryption Standard: different π_S for each round.
- Advanced Encryption Standard: $I = 8, r \ge 10, Im = 128$.

Definition

Linear cryptanalysis is a known-plaintext attack with the objective of recovering bits from the key.

Objective: Find linear approximation of a cipher.

Definition

Linear cryptanalysis is a known-plaintext attack with the objective of recovering bits from the key.

Objective: Find linear approximation of a cipher.

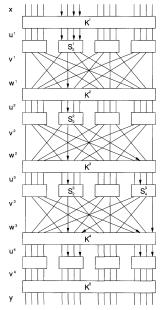
Assumptions:

- Possible to find a probabilistic linear relation between plaintext bits and bits in the state immediately before the last round.
- There is a subset of bits such that their addition is biased.
- Attacker knows a large quantity of pairs (x, y) under the key K.

Algorithm

- 1 Choose a small subset of k bits from K^{Nr+1} .
- 2 Decrypt each $(x \in \mathcal{M}, y \in \mathcal{C})$ using all 2^k combinations of the subset in \mathcal{K}^{Nr+1} .
- 3 For each subkey, compute the state bit and verify if linear relation is still valid.
- 4 If the relation is valid, increment the frequency counter for that subkey.
- 5 At the end, the most probable subkey should contain k bits of the key.

Important: In an SPN, approximate substitution boxes and extend to complete cipher!



Definition

Differential cryptanalysis is a chosen-plaintext attack with the objective of recovering bits from the key.

Objective: Find differences in the input that produce differences in the output.

Definition

Differential cryptanalysis is a chosen-plaintext attack with the objective of recovering bits from the key.

Objective: Find differences in the input that produce differences in the output.

Assumptions:

- Possible to find an expected difference in the bits of the state immediately before the last substitution.
- There is a subset of bits which are biased.
- Attacker has a large quantity of (x, x^*, y, y^*) with a chosen difference $x' = x \oplus x^*$ under the same key K.

Algorithm

- 1 Find a small subset of k bits from K^{Nr+1} .
- 2 Decrypt each (x, x^*, y, y^*) , using all 2^k combinations in the subset of bits from K^{Nr+1} .
- 3 For each subkey, compute k bits of state and verify if difference holds.
- 4 If the different is valid, increment frequency counter for that subkey.
- 5 At the end, the most probable subkey should contain the key bits.

Important: In an SPN, find a *differential trail* propagated by the network!

