Bilinear Pairings

Diego F. Aranha \& Ricardo Dahab

Institute of Computing
UNICAMP

Introduction

Pairing-Based Cryptography (PBC):

- Initially destructive
- Allows innovative protocols
- Flexibilizes curve-based cryptography

Bilinear pairings

Let $\mathbb{G}_{1}=\langle P\rangle$ and $\mathbb{G}_{2}=\langle Q\rangle$ be additive groups and \mathbb{G}_{T} be a multiplicative group such that $\left|\mathbb{G}_{1}\right|=\left|\mathbb{G}_{2}\right|=\left|\mathbb{G}_{T}\right|=$ prime n.

An efficiently-computable map $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is an admissible bilinear map if the following properties are satisfied:

1 Bilinearity: given $(V, W) \in \mathbb{G}_{1} \times \mathbb{G}_{2}$ and $(a, b) \in \mathbb{Z}_{q}^{*}$: $e(a V, b W)=e(V, W)^{a b}=e(a b V, W)=e(V, a b W)$.

2 Non-degeneracy: $e(P, Q) \neq 1_{\mathbb{G}_{T}}$, where $1_{\mathbb{G}_{T}}$ is the identity of the group \mathbb{G}_{T}.

Bilinear pairings

[Picture: Avanzi, Cesena 2009]

Bilinear pairings

If $\mathbb{G}_{1}=\mathbb{G}_{2}$, the pairing is symmetric.

Example of protocol

Joux's tripartite Diffie-Hellman:
1 Define an elliptic curve E with generator G and order n
2 Parties A, B, C generate short-lived secrets a, b, c from \mathbb{Z}_{n}^{*} respectively
3 Parties A, B, C broadcast $a G, b G, c G$ to the other parties, respectively
$4 A$ computes $K_{A}=e(b G, c G)^{a}$
$5 B$ computes $K_{B}=e(a G, c G)^{b}$
$6 C$ computes $K_{C}=e(b G, c G)^{c}$
7 Shared key is $K=K_{A}=K_{B}=K_{C}=e(G, G)^{a b c}$.

Example of protocol

Joux's tripartite Diffie-Hellman:
1 Define an elliptic curve E with generator G and order n
2 Parties A, B, C generate short-lived secrets a, b, c from \mathbb{Z}_{n}^{*} respectively
3 Parties A, B, C broadcast $a G, b G, c G$ to the other parties, respectively
$4 A$ computes $K_{A}=e(b G, c G)^{a}$
$5 B$ computes $K_{B}=e(a G, c G)^{b}$
$6 C$ computes $K_{C}=e(b G, c G)^{c}$
7 Shared key is $K=K_{A}=K_{B}=K_{C}=e(G, G)^{a b c}$.

Bilinear Diffie Hellman Problem (BDHP)

Compute $e(P, Q)^{a b c}$ from $\langle P, a P, b P, c P, Q, a Q, b Q, c Q\rangle$.

