Bilinear Pairings

Diego F. Aranha & Ricardo Dahab

Institute of Computing UNICAMP

Introduction

Pairing-Based Cryptography (PBC):

- Initially destructive
- Allows innovative protocols
- Flexibilizes curve-based cryptography

Bilinear pairings

Let $\mathbb{G}_1 = \langle P \rangle$ and $\mathbb{G}_2 = \langle Q \rangle$ be additive groups and \mathbb{G}_T be a multiplicative group such that $|\mathbb{G}_1| = |\mathbb{G}_2| = |\mathbb{G}_T| = \text{prime } n$.

An efficiently-computable map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is an **admissible bilinear map** if the following properties are satisfied:

- 1 Bilinearity: given $(V, W) \in \mathbb{G}_1 \times \mathbb{G}_2$ and $(a, b) \in \mathbb{Z}_q^*$: $e(aV, bW) = e(V, W)^{ab} = e(abV, W) = e(V, abW).$
- 2 Non-degeneracy: $e(P, Q) \neq 1_{\mathbb{G}_T}$, where $1_{\mathbb{G}_T}$ is the identity of the group \mathbb{G}_T .

Bilinear pairings

[Picture: Avanzi, Cesena 2009]

Bilinear pairings

If $\mathbb{G}_1 = \mathbb{G}_2$, the pairing is symmetric.

Example of protocol

Joux's tripartite Diffie-Hellman:

- 1 Define an elliptic curve E with generator G and order n
- 2 Parties A, B, C generate short-lived secrets a, b, c from \mathbb{Z}_n^* respectively
- 3 Parties *A*, *B*, *C* broadcast *aG*, *bG*, *cG* to the other parties, respectively
- 4 A computes $K_A = e(bG, cG)^a$
- 5 B computes $K_B = e(aG, cG)^b$
- 6 C computes $K_C = e(bG, cG)^c$
- 7 Shared key is $K = K_A = K_B = K_C = e(G, G)^{abc}$.

Example of protocol

Joux's tripartite Diffie-Hellman:

- 1 Define an elliptic curve E with generator G and order n
- 2 Parties A, B, C generate short-lived secrets a, b, c from \mathbb{Z}_n^* respectively
- 3 Parties *A*, *B*, *C* broadcast *aG*, *bG*, *cG* to the other parties, respectively
- 4 A computes $K_A = e(bG, cG)^a$
- 5 B computes $K_B = e(aG, cG)^b$
- 6 C computes $K_C = e(bG, cG)^c$
- 7 Shared key is $K = K_A = K_B = K_C = e(G, G)^{abc}$.

Bilinear Diffie Hellman Problem (BDHP)

Compute $e(P, Q)^{abc}$ from $\langle P, aP, bP, cP, Q, aQ, bQ, cQ \rangle$.