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Overview

e Properties of pairings
e Boneh-Franklin Identity-Based Encryption (IBE)
- Description, model, proof

- IBE and signatures
- Hierarchical IBE

e IBE schemes in the standard model
- Boneh-Boyen
- Waters

e CCA-secure public key encryption from IBE:

- Canetti-Halevi-Katz, Boneh-Katz, Boyen-Mei-Waters, ...



1 Properties of pairings

Basic properties:
e Triple of groups G1, Gg, Gp, all of prime order p.
e A mapping e : G; X Gy — G such that:
—e(g-g',h)=e(g,h)-e(g’ h)
—e(g,h-1') =e(g,h)-e(g,h)
— Hence, for any a,b € Z,

e(g®, h’) =e(g,h)™ =e(g", h*) = ...

e Non-degeneracy: e(g,h) # 1g, if g # 1g, and h # 1g,.

e Computability: e(g,h) can be efficiently computed.



Pairings

e Typically, G1, Gy are subgroups of the group of p-torsion
points on an elliptic curve £ defined over a field F,.

e More precisely, G; C E(IF,)[p|] and Gy C E(Fx)|p].

e Then G is a subgroup of F(’;k where k is the least integer with
plg" — 1.

e £ is called the embedding degree.



Pairings

e If F is supersingular, then we can arrange G; = Gy = G.
e Simplifies presentation of schemes and security analyzes.

e Allows “small” representations of group elements in both G4

and GQ .

e But then we are limited to k < 6 with consequences for

efficiency at higher security levels.

e Even generation of parameters may become difficult.



Pairings

e If F is ordinary, then a variety of constructions for
pairing-friendly curves are known.

e But then certain trade-offs are involved:
— Only elements of G; may have short representations.
— Although elements from G5 and G can be compressed.

e Most of the protocols discussed here are re-writable in the

asymmetric setting.



Constructive Applications of Pairings

e At SCIS2000, Sakai, Ohgishi and Kasahara used pairings to

construct:
- An identity-based signature scheme (IBS); and
- An identity-based non-interactive key sharing (NIKS).

e Tripartite Diffie-Hellman Key agreement (Joux, ANTS 2000).

e At SCIS2001, Sakai-Kasahara also used pairings to construct
an efficient identity-based encryption scheme.



2 Boneh-Franklin IBE

e First practical IBE scheme with a security proof (Crypto 2001).

e (SK scheme at SCIS 2001, but no security proof, published in

Japanese).
e Boneh-Franklin also give security model for IBE.

e Basic version provides CPA security, enhanced version gives
CCA security.

e This paper was the main trigger for the flood of research in

pairing-based cryptography.



Boneh-Franklin IBE

Setup:

1. On input a security parameter k, generate parameters
(G, Gr,e,p) where e : G x G — G is a pairing on groups of

prime order p.

2. Select two hash functions Hy : {0,1}* — G, Hs : Gy — {0,1}",

where n is the length of plaintexts.
3. Choose an arbitrary generator g € G.
4. Select a master-key s <~ Z* and set g; = g°.

5. Return the public system parameters
params = (G, G, e, p, g, 91, H1, H>) and the master-key s.



Boneh-Franklin IBE

Extract: Given an identity ID € {0,1}*, set dip = H1(ID)?® as the
private decryption key.

Encrypt: Inputs are message M and an identity ID.

1. Choose random t & Lopy.

2. Compute the ciphertext C' = (¢*, M @ Ha(e(g1, H1(ID))")).

Decrypt: Given a ciphertext {c1,co) and a private key d\p,

compute:

M = co @& Ha(e(c1,dp)).



Boneh-Franklin IBE — What Makes it Tick?

e Can be seen as an extension of ElGamal where the sender uses

the public key g, g1 = g° to compute
(c1,c2) = (9", M & H(g}))

e Here, both sender (who has t) and receiver (who has dip) can
compute e(g, H1(ID))*%*:

e(g, Hi(ID))** = e(g9°,Hi(ID))" = e(g1, H1(ID))’
e(g, Hi(ID))** = e(g", Hi(ID)*) = e(c1, dip)
e Security relies on the hardness of computing e(g, g)%*¢ given

(g,9%, ¢°, ¢°) (Bilinear Diffie-Hellman assumption).



Security of Boneh-Franklin IBE

Informally:
e Adversary sees message XORed with hash of e(gy, H1(ID))".
o Adversary also sees g; = ¢° and ¢; = ¢'.
e Write H1(ID) = ¢* for some (unknown) z.
e Then e(g1, H(ID))'= e(g, g)%**.

e Hence, an adversary needs to compute e(g, g)5**

inputs ¢°, ¢, g*.

when given as

e This is an instance of the Bilinear Diffie-Hellman problem.



Security Model for IBE

Reminder: IND-CCA security for public key encryption

e Challenger C generates (sk, pk) and gives pk to adversary A.
e A accesses a Decrypt oracle.

e A outputs two messages mqg, ms.

o C selects b <~ {0,1} and gives A an encryption c¢* of my,.

e A has further oracle access to Decrypt and finally outputs a
guess b’ for b.

A wins the game if b = b. Define

Adv(A) = |Pr[b =b] —1/2|.



Security Model for IBE

Similar game to standard security game for PKE:

e Challenger C runs Setup and adversary A is given the public

parameters.
e A accesses Extract and Decrypt oracles.
e A outputs two messages mg, m; and a challenge identity ID*.

e C selects b <~ {0,1} and gives A an encryption of m; under
identity ID*, denoted c*.

e A has further oracle access and finally outputs a guess b’ for b.

A wins the game if b’ = b. Define

Adv(A) = |Pr[b =b] —1/2|.



Security Model for IBE

Natural limitations on oracle access and selection of ID*:
e No Extract query on ID".
e No Decrypt query on c*, ID".
An IBE scheme is said to be IND-ID-CCA secure if there is no

poly-time adversary A which wins the above game with

non-negligible advantage.

An IBE scheme is said to be IND-ID-CPA secure if there is no
poly-time adversary A having access only to the Extract oracle

which wins the above game with non-negligible advantage.



Security of Boneh-Franklin IBE
e Boneh and Franklin prove that their encryption scheme is
IND-ID-CPA secure, provided the BDH assumption holds.
e The proof is in the random oracle model.

e “Standard” techniques can be used to transform
Boneh-Franklin IBE into an IND-ID-CCA secure scheme.

e These generally add complexity, require random oracles, and

result in inefficient security reductions.



Security of Boneh-Franklin IBE (cont.)

Idea of the proof: use Coron’s trick (Crypto’00) to answer

random oracle queries and solve a BDH instance (g%, ¢°, g¢).
Set g1 = ¢® as a master public key.

For each random oracle query H(ID;):
- set Hy(ID;) = ¢g* with w < Z% with probability 0 = qe/(ge + 1).

w

= Private keys are computable dip, = (¢%)“ = (¢*)°

- return Hy(ID;) = (¢°)* where w < Z* with probability 1 — .

Set the challenge as C* = (¢¢, R) with R <~ {0, 1}".
If H,(ID*) = (¢*)*", A must query e(g1, H1(ID*))¢ = e(g, g)®“" to
random oracle Hy(+).



IBE and pairing-based signatures

e Naor: any IBE implies a signature.
Keygen: Let (PK,SK) = (PKgg, mkjgg) be the TA’s key pair

Signgy (M): return dy; = Extract'>c (M)

mkigg

Verify pr (M, dyr):  choose Mygng & M'BE, encrypt it as
C = EnC::BpEBE(and, M), accept if Myqnq = Dec'BE (C,dr)

mksg

e But not all signatures imply an IBE, only a handful of schemes.
In all known IBE, a private key for ID is a signature on it.

e.g. Boneh-Franklin :  e(d\p,g) = e(H1(ID), g1)



Hierarchical IBE

e Extension of IBE to provide hierarchy of TAs, each generating
private keys for TA in level below.

root TA

a

IDg

/\

(ID5,1Ds,) (IDg,ID5,)

e Encryption needs root’s parameters and a vector of identities.
e First secure, multi-level scheme due to Gentry and Silverberg.

e Also an important theoretical tool (forward-secure encryption,
CCA-secure IBE in the standard model,...).



3 IBE in the Standard Model

e Prior to 2004, most applications of pairings use the Random
Oracle Model (Bellare-Rogaway, CCS’93) in security proofs.

e ROM provides a powerful and convenient tool for modeling
hash functions in security proofs.

e But concern has been shed on how ROM accurately models the

behavior of hash functions.

e Several examples in the literature of schemes secure in the

ROM but insecure for every family of hash functions.

e General move towards “proofs in the standard model” in

cryptography.



CHK, BB, and Waters

IBE in the standard model:

Eurocrypt’03: Canetti-Halevi-Katz provide (fairly inefficient)
selective-ID secure IBE scheme.

FEurocrypt’04: Boneh-Boyen present efficient selective-ID secure
(H)IBE scheme.

Crypto’04: Boneh-Boyen present inefficient, but adaptive-1D

secure IBE scheme.

Eurocrypt’05: Waters presents efficient, adaptive-ID secure
IBE by “tweaking” Boneh-Boyen the construction from
Eurocrypt’04.



The Boneh-Boyen IBE

Setup:

1. On input a security parameter k, generate parameters
(G, Gr,e,p) where e : G x G — G is a pairing on groups of

prime order p.
2. Select generators g, h < G.

Choose s <~ Z,. Set g1 = ¢g° and pick g5 <~ G.

> W

The master-key is g5.

5. Output params = (G, Gr,e,p, g, 91, 92, h).



The Boneh-Boyen IBE

The Boneh-Boyen "Hash”: Given an identity string ID € Z;, define

Hpp(ID) = ¢\° - h.
Extract: given an identity ID € Z, select r & 7, and set
dip = (d1,da) = (g5 - Hgp(ID)",g") € G*

— randomized private key extraction.
— private key (dy, ds) satisfies e(dy,g) = e(g1,92) - e(Hpp(ID), ds).



The Boneh-Boyen IBE

Encrypt: Inputs are a message m € G and an identity ID.
1. Choose random t <= Z,,.

2. Compute the ciphertext
c=(m-elg1,92)", ¢", Her(ID)") € Gr x G*.
Decrypt: Given a ciphertext ¢ = {c1, c2, c3) and a private key
dip = (d1,d2), compute:

6(d27 C3)
6(d17 CQ) .

m = Cy -



Correctness of the Boneh-Boyen IBE

Private keys (di,ds) = (g5 - Hgp(ID)", g") satisfy:

e(d1,9) B
e(ds, Hgp(ID)) e(g1,92)-

If we raise both members to the power ¢t € Z,:

e(dlag)t
e(dg, HBB(I

D))t = 6(91,92)t

which yields
e(dlagt) L t
€(d2, HBB(ID)t) - 6(91792) .

Hence

€(d17 62)

_ t




Security for the Boneh-Boyen IBE

The scheme is IND-sID-CPA secure assuming the hardness of the
decisional BDH problem:

Given (g, 9%, ¢°, g%, Z) for a,b,c < Z,, and Z € G, decide
if Z = e(g, g)*%c.

c.f.. Proof of security for Boneh-Franklin IBE based on hardness of
the computational BDH problem n the Random Oracle Model.



Sketch of Security Proof
e Assume A is an adversary against BB-IBE, and B is faced with
a DBDH instance (g, g%, ¢°, g%, Z).
e B simulates a challenger in A’s security game.

o Bsets g1 = g%, g» = g° and will put ¢g* = ¢° in the generation
of the challenge ciphertext c*.

e BB also uses Z in place of e(g1, g2)* when creating c¢j from my,.

o If Z = e(g, g)?% then the challenge ciphertext will be a correct
encryption of my. If Z # e(g, g)**° then the challenge
ciphertext will be unrelated to my.

e From this, B can convert a successful A into an algorithm for
solving DBDHP.



Sketch of Security Proof (ctd.)

How to handle private key extraction queries?

ID*

o Bsetsh=g1""" -g%, for arandom w < Z%, so that

HBB(ID) _ 9|1D Ch = gllD—ID* . gw.

e Provided ID # ID*, B can construct a private key (dy, ds) for ID
via:

1

di = gl—ﬁ .HBB(|D)7“’ dy = g1 ©-D% . g",

It can be checked that (dy,ds) = (g5 - Hgp(ID)", ¢g") with

S e a
r=T=—1p-D*"



Sketch of Security Proof (concluded)

Challenge ciphertext should be an encryption of my:

ClL =My - 6(91792)t Co = gt C3 = HBB(|D*)t
| | |

clzmb-Z nggc C3:HBB(|D*)C

Problem: how to compute c3 knowing only g¢ but not c¢?

Solution: in the selective-ID model, A can be chosen so as to

“program” Hgp as Hgp(ID*) = ¢“. So,

Hpp(ID") = (¢°)



The Waters IBE

Setup:

1.

On input a security parameter k, generate parameters
(G, Gr,e,p) where e : G x G — G is a pairing on groups of

prime order p.

. Select v/, uy,...,u, <& G"L. Here n is the length of (hashed)

identities.

. Choose an arbitrary generator g € G and s <~ Z,. Set g1 = g°,

g2 < G.

The master-key is g5.

. Output params = (G, Gr,e,p, 9,91, g2, U, U1, ..., Up).



The Waters IBE

The Waters Hash: Given an n-bit string ID = 4115 .. .14,, define

Hy (ID) =o' - u’ - uin =/ - Huz

Extract: Given an identity ID € {0,1}*, select r <~ Z,, and set

dip = (d1,d2) = (g5 - Hw (ID)",g") € G

— similar private key extraction to Boneh-Boyen.

— private key again satisfies e(dy, g) = e(g1, g2) - e(Hw (ID), d2).



The Waters IBE

Encrypt: Inputs are a message m € G and an identity ID.
1. Choose random t <= Z,,.

2. Compute the ciphertext
c=(m-e(g1,92)", g", Hy (ID)") € Gy x G*.
Decrypt: Given a ciphertext ¢ = {c1, c2, c3) and a private key
dip = (d1,d2), compute:

6(d27 C3)
6(d17 CQ) .

m = Cy -



Sketch of Security Proof

: s abc a b .c
To decide whether Z = e(g, g)**° given (g%, g°, g°),

e Choose u/,uq,...,u, so as to have
n .
Hw (ID) =’ - H uy = (g?)F (D) . gK(ID)
j=1

for some functions K (.) and F(.) where F' is relatively small

(i.e. < p) in absolute value.

e Handle private key extraction queries as in Boneh-Boyen
whenever F(ID) # 0 mod p.

e With non-negligible probability F'(ID*) = 0 and thus
¢k = Hy (ID*)¢ = (¢¢)XUPY) is computable.



Efficiency of Waters’ IBE

e Large public parameters: dominated by n 4+ 1 group elements.

e Small private keys (2 group elements) and ciphertexts (3 group
elements).

e Encryption: on average n/2 + 1 group operations in G, two
exponentiations in G, one exponentiation in G (assuming

e(g1, g2) is pre-computed).
e Decryption: dominated by cost of two pairing computations.

e Size of public parameters can be reduced at the cost of a looser
security reduction using ideas of Chatterjee-Sarkar/Naccache.



A Hierarchical Version of Waters’ IBE

e A simple generalization of Waters’ IBE yields a HIBE scheme
that is IND-ID-CPA secure assuming DBDHP is hard.

e IND-ID-CCA security for (¢ — 1)-level HIBE can be attained by
applying CHK/BK/BMW ideas to the ¢-level IND-ID-CPA

secure scheme.

e Quality of the security reduction declines exponentially with /.

— Recent scheme by Gentry (Eurocrypt’06) has a tight
reduction, but under a less natural hardness assumption

and does not scale into a HIBE.

— A “million dollar problem”: HIBE with polynomial security
degradation in the depth of the hierarchy.



Other HIBE constructions and extensions

e With constant-size ciphertexts (Boneh-Boyen-Goh,
Eurocrypt’05).

- Provides selective-1D security.

- Adaptive-ID security possible using the Waters “hashing”

(again with exponential degradation of security bounds).
e With anonymous ciphertexts (Boyen-Waters, Crypto’06).
e IBE with “wildcards” (Abdalla et al. — ICALP’06).

e Attribute-based encryption (Sahai-Waters, Eurocrypt’05).



4 Applications of Secure IBE in the
Standard Model

e A new paradigm of CCA-secure public key encryption:

- Canetti-Halevi-Katz (Eurocrypt’04): IND-CCA secure
public key encryption from any IND-ID-CPA selective-ID

secure IBE scheme.
- Improvement by Boneh-Katz (RSA-CT’05).

- Can be applied to selective-ID secure IBE scheme of
Boneh-Boyen scheme (don’t need fully secure IBE).

- Direct non-generic constructions by Boyen-Mei-Waters

(ACM-CCS’05).



The CHK construction: PKE from IBE

Key generation: Public key of PKE set to params of IBE;
private key is set to master-key.

Encrypt:

1. Generate a key-pair (vk, sk) for a strong one-time signature

scheme;

2. IBE-encrypt m using as the identity the verification key vk to

obtain c;
3. Sign c using signature key sk to obtain o;

4. Output C = (vk,c,o) as the encryption of m.



The CHK construction: PKE from IBE

Decrypt:
1. Check that o is a valid signature on c given vk;
2. Generate the IBE private key for identity vk;
3. IBE-decrypt c to obtain m.

Informally: a decryption oracle is of no use to an attacker faced
with (vk*, c*,0*) :
e If oracle queried on (vk,c, o) with vk = vk*, then o will be

incorrect (unforgeability).

o If query with vk # vk™*, then IBE decryption will be done with
a different “identity” so result won’t help (IBE security).



Improvement on CHK

e Drawback of CHK: use of one-time signatures that imply long

ciphertexts.

e Boneh-Katz (RSA-CT’05) replace the one-time signature with
a MAC/commitment combination.

- Significantly shorter ciphertexts.

- But the “well-formedness” of ciphertexts is not publicly

verifiable anymore (not suitable for threshold decryption).



The BMW construction: PKE from Waters’ IBE

Boyen-Mei-Waters (ACM-CCS 2005) used a direct approach to
produce an efficient PKE scheme from Waters’ IBE (and from
Boneh-Boyen).

Key generation:

e Public key:
<Ga GT7€7p797917927H7u/ — gy , Ul — gy17 ceey Unp — gyn>

with H is a collision-resistant hash function
H:GrxG—{0,1}" and v/, y1,...,Yn < Zyp.

e Private key:
(95,9 Y15+ Yn)



The BMW construction: PKE from Waters’ IBE

Encrypt: Given a message m € G,
1. Choose random t & Lopy.

2. Compute the ciphertext
C= <m ) e(glagQ)tvgthW(w)t> S GT X GQ

where
w = H(cy,c2).



The BMW construction: PKE from Waters’ IBE

Decrypt: Given a ciphertext ¢ = {c1, c2, c3) and the private key
1. Compute w = H(c1,¢2);

2. Test if (g, co, Hw(w), c3) is a DH quadruple by using the
pairing (or more efficiently using knowledge of the values ¥/, y;).

3. Calculate

m = c1/e(ca, gs).



Idea of the Proof

: ? .
To decide whether Z = ¢e(g, g)abc given (ga,gb,gc),

e Choose v, uq,...,u, so as to have
mn
F K
_ H () K (w)

for some functions K (.) and F(.) where |F(.)| < p.

e Any valid ciphertext (c1,c2) satisfies

=gy 5= (o] gK )"

K(w))l/J(w)

and ¢t = (03 c is computable and yields e(g1, g2)?.

e With non-negligible probability F'(w*) = 0 and thus
= Hyy (w*)¢ = (¢¢)%@") is computable.



The BMW construction: PKE from Waters’ IBE

e Scheme is similar to Waters’ IBE, but with “identity” in c3

being computed from components ci, cs.

e Scheme is more efficient than CHK /BK approach — no external

one-time signature/MAC involved.

e A specific rather than generic transform from IBE to PKE (c.f.
CHK approach).

e Security proof needs full security model for IBE (selective-ID

security not enough).

e Specific selective-ID secure schemes yield CCA-secure hybrid
encryption (via the KEM-DEM framework).



A relative of IBE-2-PKE transforms:

e At TCC’04, McKenzie-Reiter-Yang consider tag-based

encryption.

e Kiltz (TCC’06) shows that selective-tag weakly CCA-secure
tag-based encryption suffices to give CCA-security for public
key encryption via CHK.

e Gives an efficient hybrid scheme based on the Decision

Linear Assumption in the same vein as BMW:

Given (g1, g2, h, g%, g5, T), decide whether T = h*?,

e Must be implemented in pairing groups but does not require

pairing operations to encrypt or decrypt.



Hybrid Encryption from the DLIN assumption

Key generation: pick SK = (z,y) < Z. Choose h,u,v < G
and set g1 = h*, go = hY. Define

Fi(t) = h'u, Fy(t) = h'v.
Let PK = (91, 92, h, u,v).
Encrypt: pick 7, s <~ Z, and set
A=g], B=g;, C=F(t)", D= Fyt)®

where t = H(A, B). Use K = h"* to perform a symmetric
encryption of M.

Decrypt: check whether (g1, A, F1(t),C) and (g2, B, F»(t), D)
form DH-tuples. If yes, let K = A” - BY and use it to decrypt.



Other Pairing-Based PKE schemes
e Key-updating cryptography (Anderson, ACM-CCS’97):

- Canetti-Halevi-Katz (Eurocrypt’03): forward-secure public
key encryption from selective-ID secure HIBE.

= Boneh-Boyen-Goh gives fs-PKE with constant-size

ciphertexts.

- Key-insulated encryption (Dodis-Katz-Xu-Yung,
Eurocrypt’02).
— Generic construction from IBE (Bellare-Palacio).
— “Parallel” extensions with multiple secure devices
(Hanaoka-Hanaoka-Imai, Libert-Quisquater-Yung,
PKC’06 and ’07).

- Intrusion-resilient PKE (Dodis et al. — RSA-CT’04).



Other Pairing-Based PKE schemes (ctd.)

e Public key encryption with keyword search (Boneh et al. —
Eurocrypt’04).

- Connection with anonymous IBE (Abdalla et al. —
Crypto’05).

- Efficient searchable PKE in the standard model thanks to
Gentry (Eurocrypt’06) and Boyen-Waters (Crypto’06) IBE

schemes.



Other Pairing-Based PKE schemes (ctd.)

e Certificate-Based Encryption (Gentry, Eurocrypt’03) (CBE)
removes key escrow from IBE.

- Standard model realizations using Dodis-Katz (TCC’05).
e Certificateless Encryption (Al-Riyami-Paterson, Asiacrypt’03)
independently achieves the same goal.

- Dent-Libert-Paterson (2006): CCA-secure CLE in standard
model using full security definitions of Al-Riyami-Paterson.



Conclusions
e Pairings definitely enlarge the cryptographer’s toolbox for
public key encryption.
e Theoretical applications far beyond IBE.

e Recent focus on removing reliance on random oracle model —

sometimes at the expense of less natural hardness assumptions.

e Open problems remain.



