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Applied
2 rounds of AES 
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DC – the setting

First published by Biham and Shamir in 1991

Goal: Determine the secret key

DC is a chosen plaintext attack

“Exploits mapping properties of differences within DES”
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Notation

Bj, Bj
* … Inputs to Sbox j

Cj, Cj
* … Outputs of Sbox j

The differences are denoted by Bj’ and Cj’
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The DES “F” function

C B E
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The set of possible inputs to an Sbox

Important observation: Not every input difference can be 
mapped to every output difference

The set of possible inputs for given input- and output 
differences for Sbox j:
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The set of possible inputs to an Sbox
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Example: 
IN(110100,0100) = {010011 (19),100111 (39)}

39 19
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The key XOR

The input difference of the Sboxes of a round does not depend 
on the round key

Important observation:

),( ''
jjjjj CEINKE ∈⊕

'***' )()( EEEKEKEBBB =⊕=⊕⊕⊕=⊕=

9IAIK Krypto Group, Graz University of Technology

The set of all keys that are possible

The set of possible input values

The set of possible keys:
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Summary

Given E, E* und C’, we can start to narrow down the key space
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Attack on 3 rounds of DES

L0 R0

L1 R1

f

L2 R2

f

L3 R3

f
The important question is: What is C´?

E and E* of the last round are known!
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Attack on 3 rounds of DES

L0 R0

L1 R1

f

L2 R2
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L3 R3

f

),(),( 321003 KRfKRfLR ⊕⊕=

K1

K2

K3

),(),( 3
*
232

'
0

'
3 KRfKRfLR ⊕⊕=

The differences can be expressed 
as follows, if R’

0= 0:
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The set of possible values for K3
can be determined:

C’
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Attack on 3 rounds of DES

Last round key can be determined by using several pairs of 
plaintexts with R’

0 =0

The remaining 8 (= 56 – 48) key bits can be determined easily 
by a brute-force search
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Attack on 6 rounds of DES

C’ cannot be calculated as easily 
as before

Hence, a probabilistic approach is 
pursued

L0 R0

L1 R1

f K1

L2 R2

f K2

L3 R3

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6

What is C´?
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Attack on 6 rounds of DES

Definition of a characteristic:

L’
0, R’

0

L’
1, R’

1, p1

L’
2, R’

2, p2

…
L’

n, R’
n, pn

pi is the probability that L’
i-1, R’

i-1 is 
mapped to L’

i, R’
i

L0 R0

L1 R1

f K1

L2 R2

f K2

L3 R3

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6
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Attack on 6 rounds of DES

L0 R0

L1 R1

f K1

L2 R2

f K2

L3 R3

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6

1-round characteristic:

L’
0 = anything R’

0 = 00000000
L’

1 = 0000000 R’
1 = L’

0

p1 = 1
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Attack on 6 rounds of DES

3-round characteristic:

L’
0 = 4008000 R’

0 = 04000000
L’

1 = 0400000 R’
1 = 00000000

L’
2 = 0000000 R’

2 = 04000000
L’

3 = 0400000 R’
3 = 04008000

p1 = 0.25
p2 = 1
p3 = 0.25

L0 R0

L1 R1

f K1

L2 R2

f K2

L3 R3

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6
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Attack on 6 rounds of DES

L0 R0

L1 R1

f K1

L2 R2

f K2

L‘3=04000000 R‘3= 040080000

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6

Input and Output difference 
for S2,S5,S6,S7 and S8 = 0
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R‘4=04000000

L‘5=04000000
The keys J2,J5,J6,J7 and J8 can be determined!
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Attack on 6 rounds of DES

L0 R0

L1 R1

f K1

L2 R2

f K2

L‘3=04000000 R‘3= 040080000

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6
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E1-8 and E*
1-8 are known from the ciphertext

Apply test function for j=2,5,6,7,8

Only works for 1/16 of the plaintext pairs!

Empty sets of testj filter 2/3 of the wrong plaintext 
pairs
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Determining the secret key

We get wrong key suggestions, because not all bad pairs are 
filtered

Tabulating all suggested key strings J2J5J6J7J8 would require a 
lot of memory

Use several pairs of plaintexts to reduce the set of possible 
values to one element for J2,J5,J6,J7, and J8 before combining 
the parts to a key string
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Summary of the attack

It is necessary to determine the 
output differences of the 
Sboxes in the last round

A “good” characteristic needs to 
be found in order to get there

L0 R0

L1 R1

f K1

L2 R2

f K2

L3 R3

f K3

L4 R4

f K4

L5 R5

f K5

L6 R6

f K6
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Security against differential attacks

Make prediction of differences difficult
Ensure that there are no good characteristics

Compute bounds for existing ciphers
Design ciphers with low bounds on the probability 
Design ciphers with easily computable bounds

23IAIK Krypto Group, Graz University of Technology

Predicting a difference

A’

B’

C’

D’

p1

p2

p3

Pr(A’ → B’) = p1p2p3   ???
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Technical problems

Computing the probability
1. Characteristics and differentials
2. Independence of rounds
3. Key-averaging
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Characteristics and differentials

A’

B’

C’

D’

Pr(A’ → B’) = 

Pr(A’ → B’ → C’ → D’)

+ Pr(A’ → B1’ → C1’ → D’)

+ …

= ΣB’ΣC’ Pr(A’ → B’ → C’ → D’)

(A’,D’): differential 

(A’,B’,C’,D’): characteristic (trail)
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Characteristic and differential probabilities

Pr(A’,D’) ≥ Pr(A’,B’,C’,D’)

Computing Pr(A’,D’) is much more difficult than computing 
Pr(A’,B’,C’,D’) (folk lore)

Both are difficult  

In a `weak’ cipher, one characteristic dominates the 
probability: Pr(A’,D’) ≈ Pr(A’,B’,C’,D’)

In `strong’ ciphers: open problem

27IAIK Krypto Group, Graz University of Technology

Independence of rounds

Computing Pr(A’,B’,C’,D’)

Pr(A’,B’) * Pr(B’,C’) * Pr(C’,D’) ??

Pr(A’,B’) * Pr(B’,C’ | A’) * Pr(C’,D’ | A’, B’)

Theory of Markov ciphers [Lai,Massey,Murphy]
First deal with the key-averaging problem 
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Key averaging

What `probability’ do we want?
Over all possible plaintext pairs with the given input difference
And what about the key?

1. For the 1 key we are attacking
2. Over all keys (→ averaging)
3. Over all possible independent round keys (→ averaging): known as 

Expected Differential Probability (EDP)
Note that EDP is not the expected value of (1)
EDP of a characteristic is easy to compute in Markov ciphers 
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Markov cipher

Definition: cipher such that over one round:
EDP(A’,B’ | X) = EDP(A’,B’)

With:
X: input value

Fundamental Theorem:
EDP(A’,B’,C’,D’) = EDP(A’,B’) * EDP(B’,C’) * EDP(C’,D’) 
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Hypothesis of stochastic equivalence

[Lai,Massey,Murphy]
For almost all keys k, 

Pr[k](A’,B’,C’,D’) ≈ EDP(A’,B’,C’,D’) 

We now denote Pr[k] with DP (differential probability)
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Problems with the hypothesis of s.e.

For the flagship cipher IDEA, the hypothesis is wrong [Dae94]
In the limit, it never holds

Example: 8-round AES: 
all characteristics have EDP < 2-300

2127 pairs with given input difference → DP is multiple of 2-127

Computing EDP of a differential remains a problem
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Exhaustive approach

Keliher, Meijer, Tavares; Hong, Lee, Lim, Sung, Cheon, Park

Compute/bound EDP of a differential by going through all 
characteristics

Exhaustive analysis
Some structure based speedups for up to 4 rounds
Some programming speedups
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Provable security in the sense of 
Knudsen/Nyberg

Developed for Feistel ciphers by Knudsen, Nyberg
Extended by Matsui and others

Prove upper bounds on the EDP of a differential through the 
cipher (minus ε rounds)

Examples: Misty, KASUMI
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Decorrelation theory

Developed by Vaudenay
Borrows techniques from universal hash function design

Example: F(X,K) = K1× X + K2
DP(A’ → B’) = 1 if B’ = A’ × K1

= 0 otherwise
EDP(A’ → B’) = (# of keys K1)-1

Hypothesis of stochastic equivalence ?
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Decorrelation theory relevance

AES submission DFC was a decorrelated cipher `pur sang’
Criticised by Knudsen & Rijmen

Decorrelation new style: decorrelation modules, to plug in into 
other ciphers
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Daemen-Rijmen approach

ePrint report 2005/212 (submitted to the Journal of Cryptology)
Stronger restrictions than Markov ciphers
Look at distribution (mean, variance) of DP
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Poisson distribution

Ps(i;λ) = λi e-λ /i!
Mean: λ

Variance: λ

38IAIK Krypto Group, Graz University of Technology

Poisson distribution

Arises as limit for the binomial distribution B(n,p) 
When n goes to infinity, 
While np (=λ) stays constant 

Very good approximation for B(n,p) if np2 is small

Discrete distribution for events with low probability
For instance: pairs following a characteristic
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Key-alternating cipher

round

round

round

round

.....K
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p: plaintext

Interm. result

c: ciphertext

round

.....

round

round

round

Iterative cipher Key-alternating cipher
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Theorem 1

In a key-alternating cipher, the DP of a characteristic 
(A’,B’,C’,D’) is a stochastic variable with:

Pr(DP(A’,B’,C’,D’) = i*21-n) = Ps(i;EDP(A’,B’,C’,D’)*2n-1)
where probability is over all keys and over all key schedules

Proof sketch:
With uniform, independent round keys: 

number of pairs following Q = EDP(Q)*total number of pairs
Key schedule defines sampling in the population of pairs
Sampling in a large set → approximated by Poisson distribution
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Theorem 2

In a key-alternating cipher, the DP of a differential (A’,D’) is a 
stochastic variable with:

Pr(DP(A’,D’) = i*21-n) = Ps(i;EDP(A’,D’)*2n-1)
where probability is over all keys and over all key schedules 

Proof sketch:
Sum of Poisson distributions is again a Poisson distribution
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Advantages of the approach 
(for key-alternating ciphers)

Hypothesis of s.e. replaced by statistical distribution
No problem if EDP smaller than the smallest possible DP

Remaining problem: computing/bounding EDP of a differential
Proposal: do this also by studying statistical distributions
Some claims in the paper
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Conclusions

Differential cryptanalysis 
Practice is easy
Theory is difficult

For some simple cipher structures, a kind of theory is 
emerging

Theory is good!  


