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The problem of distinguishing prime numbers
from composites, and of resolving composite
numbers into their prime factors, is one of the
most important and useful in all arithmetic.

C. F. Gauss, Disquisitiones Arithmeticae (1801)

■ Cryptographic applications
■ Groups/fields: algebraic structure linked to

factorization of order
■ Number theory: Chinese Remainder Theorem,

primality proving, factoring (!)
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■ Notation: n composite, p prime factor of n
■ Trial division: divide by 2, 3, 5, 7, 11, . . . , p;

# divisions ≈ p/ log p
■ Pollard rho: perform random walk mod n and detect

cycle mod p; cycle length
√

p due to birthday paradox
■ Pollard p − 1: ap−1 ≡ 1 (mod p), hence

gcd(ap−1 − 1, n) = p; try exponents of the form
250332522718 · · · ; can use other grups (ECM)

■ Congruence of squares (CFRAC, MPQS, NFS)



Factoring by congruence of squares

Introduction
Importance of
factoring

Some factoring
algorithms

Factoring by
congruence of
squares

Sieves

Strategy of NFS

Overview of
algebraic number
theory

Special NFS

General NFS

Complexity sketch

6 / 52

■ Squares in (Z/nZ)∗ (quadratic residues)
■ If n has k prime factors then

√
a (mod n) has 2k

solutions
■ Suppose x2 ≡ y2 (mod n) but x 6≡ ±y (mod n)
■ Then n | (x + y)(x − y) but n ∤ x ± y (factors of n

factors split between x + y and x − y)
■ So: gcd(x ± y, n) is nontrivial factor of n
■ How to construct congruences of squares?
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■ Let x >
√

n, so x2 6= x2 mod n
■ Find set X such that

∏

x∈X(x2 mod n) is a square
■ This is a congruence of squares:

∏

x∈X

x2 ≡
∏

x∈X

(x2 mod n) (mod n)

■ How to find set X?
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■ Try ⌈√n⌉, ⌈√n + 1⌉, . . . Example (n = 2041):

462 mod 2041 = 75 = 3 × 52,

472 mod 2041 = 168 = 23 × 3 × 7,

482 mod 2041 = 263 is prime,

492 mod 2041 = 360 = 23 × 32 × 5,

502 mod 2041 = 459 = 33 × 17,

512 mod 2041 = 560 = 24 × 5 × 7, . . .
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■ Let X = {46, 47, 49, 51}, so

462 × 472 × 492 × 512 ≡ 210 × 34 × 54 × 72 (mod n),

yet

x = 46×47×49×51 6≡ 25×32×52×7 = y (mod n).

■ Thus gcd(x + y, n) = 157 and gcd(x − y, n) = 13, so
2041 = 13 × 157.

■ Highly heuristic procedure
■ How to build an algorithm out of this?
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■ Build factor base of small primes, discard values with
factors not in factor base

■ Smooth values are rare; avoid small factor bases
■ Write factorization as vector of exponents:

(e1, e2, . . . , ek) = pe1
1 pe2

2 · · · pek

k

■ Squares have (e1, e2, . . . , ek) ≡ (0, 0, . . . , 0) (mod 2)
■ Build matrix of exponent vectors mod 2 and find

vector in null space (i.e. linear dependence)
■ LA algorithms formalize, speed up search for squares
■ LA thm: linear dependence exists if # vectors > k
■ Build exponent vectors from continued fractions

(CFRAC) or by sieving quadratic polynomials (QS)
■ Dense methods don’t meet complexity bound; must

use fast sparse methods (block Lanczos/Wiedemann)
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■ Matrix for example factorization
■ Factor base: 2, 3, 5, 7
■ Relations:

462 mod 2041 = 75 = 3 × 52,

472 mod 2041 = 168 = 23 × 3 × 7,

492 mod 2041 = 360 = 23 × 32 × 5,

512 mod 2041 = 560 = 24 × 5 × 7

■ Matrix:








0 1 2 0
3 1 0 1
3 2 1 0
4 0 1 1









≡









0 1 0 0
1 1 0 1
1 0 1 0
0 0 1 1
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■ Number-theoretical algorithms on regularly spaced
blocks of integers

■ Cost of sieve amortized among integers in block
■ Idea: consider N = 1, 2, 3, . . . Multiples of 2 spaced by

2, multiples of 3 spaced by 3, etc.
■ Costs to find factors < p for integers n + 1, . . . , n + j:

◆ Trial division: cost of division by each prime < p
(about p/ log p divisions), times j

◆ Sieving: for each prime x < p, find first multiple
of x in list (cost: division by x) then mark every
x-th element of list

◆ Cost of sieve per element is O(log log p). Sketch:

∑

x<p
x prime

1

x
= log log p.



Sieving polynomials

Introduction
Importance of
factoring

Some factoring
algorithms

Factoring by
congruence of
squares

Sieves

Strategy of NFS

Overview of
algebraic number
theory

Special NFS

General NFS

Complexity sketch

13 / 52

■ Let f(x) = adx
d + . . . + a1x + a0 and x1, . . . , xk

roots of f(x) mod p (i.e. f(xi) ≡ 0 (mod p))
■ Theorem: f(x) ≡ f(x + p) (mod p)
■ Arithmetic progressions of multiples of p

f(x1), f(x1 + p), f(x1 + 2p), . . .

...

f(xk), f(xk + p), f(xk + 2p), . . .
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■ Initialize vn = n, vn+1 = n + 1, . . .
■ ‘Mark’ entries by dividing by current prime
■ At end of sieve, entries with vi = 1 are p-smooth
■ Multiprecision operations too costly, so use

approximate logarithms
■ Can trade off sieve accuracy for performance
■ Fact: if i not p-smooth then vi > p
■ Use crude approximations for logarithms since error

margin is log p (most QS/NFS implementations use
8-bit integers)

■ Sieving with small primes (< 30) costly yet doesn’t
influence much: usually not done, add ‘fudge factor’

■ Must trial divide reports to assert smoothness
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■ Z[α1], Z[α2] algebraic number rings, φ1, φ2

homomorphisms φi : Z[αi] → Z/nZ
■ Find elements β2

i ∈ Z[αi] such that β2
i is a square and

φ1(β1) ≡ φ2(β2) (mod n)
■ Compute square roots βi in number ring, hope for

φ1(β1) 6≡ ±φ2(β2) (mod n)
■ gcd(φ1(β1) ± φ2(β2), n) non-trivial factors of n
■ Use techniques of previous slides (factor bases, etc.)
■ Main feature: φi ‘look like’ polynomials; can use

sieving techniques
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■ Let Ln[u, v] = exp
(

(v + o(1))(log n)u(log log n)1−u
)

■ MPQS cost: Ln[1/2, 1]; GNFS cost: Ln[1/3, 1.923]
■ Source of difference?
■ Performance of congruence-of-squares algorithms

depends on size of integers examined for smoothness
■ If relations behave like x(n) then cost is Lx[1/2,

√
2]

■ MPQS: x(n) = n1/2 (so half the digits of n)
■ If x(n) = n1/k for fixed k, cost is Ln[1/2,

√

2/k]
■ NFS: x(n, d, M) = 2dn2/dMd+1, d degree of

algebraic extension and M size of sieving region
■ For optimal choice of d, M , x(n) = no(1) as n → ∞;

is asymptotically better than any fixed k, hence
improved running time
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Overview of algebraic number theory
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■ Fix irreducible polynomial f(x) = adx
d + . . . + a0,

ai ∈ Z and α an irrational (R or C) root of f(x)
■ Extend Q by adjoining α: Q(α) is a number field

■ Add/multiply as polynomials in α and reduce using

αd = −ad−1α
d−1 + . . . + a0

ad

■ Elements of the form β = c0 + . . .+ cd−1α
d−1, ci ∈ Q

■ For each β there is a unique irreducible least-degree
f(x) with root β (the minimal polynomial)

■ Canonical example: f(x) = x2 + 1, α = i =
√
−1

(Gaussian integers)
■ Also −i, but conjugates are indistinguishable
■ Algebraic number theory : study of arithmetical

properties of algebraic number fields
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■ How to define analogue of integers in a number field?
■ Must have familiar properties (β ∈ Q(α))

1. Must form a ring (as Z is subring of Q)
2. β ∈ Q ⇒ β ∈ Z
3. nβ algebraic integer for some n ∈ Z

■ Ring of integers: elements with monic minimal
polynomials (leading coefficient 1)

■ Z[α] = c0 + . . . + cd−1α
d−1, ci ∈ Z subring of full ring

of integers
■ Example: φ = (1 +

√
5)/2 root of f(x) = x2 − x − 1;

Z[φ] ⊃ Z[
√

5]
■ Z[α] may be full ring of integers (e.g. Z[i])
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■ Division algorithm (a = qb + r, 0 ≤ r < b)
■ Existence of GCDs
■ Units (invertible elements): only ±1
■ Existence, uniqueness of factorization into primes
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■ Z[i] = {a + bi, a, b ∈ Z, i =
√
−1}

■ Similar properties to rational integers
■ Norm: N(a + bi) = a2 + b2

■ Division algorithm: a = bq + r, 0 ≤ N(r) < N(b)
■ Units: ±1,±i
■ Unique Factorization Domain (UFD)
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■ No division algorithm (can’t ensure r < N(b))
■ Hence, no GCDs
■ If division algorithm exists: Euclidean domain
■ Units: infinite unless imaginary quadratic field
■ Example (Z[

√
2]): (1 +

√
2)n, n ∈ Z

■ 1
1+

√
2

1−
√

2
1−

√
2

= 1−
√

2

12−
√

2
2 = 1 −

√
2

■ Theorem (Dirichlet): group of units is abelian, finitely
generated of rank rR + rC/2 − 1

■ Existence of primes and factorization
■ However: may not be unique
■ Consider Z[(1 +

√
−5)/2] and primes 3, 7, 1 ± 2

√
−5

■ 21 = 3 · 7 = (1 + 2
√
−5)(1 − 2

√
−5)

■ Unique factorization restored by use of ideals
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■ Number field K = Q(α), number ring ZK , algebraic
number β = b0 + b1α + . . . + bd−1α

d−1

■ Minimal polynomial: unique irreducible least-degree
polynomial f(x) with Z coefficients and f(α) = 0

■ α1, . . . , αd all roots of f(x), α = α1 (arbitrarily)
■ Degree of K: d
■ Index of α: [ZK : Z[α]]
■ Conjugates of β: b0 + b1αi + . . . + bd−1α

d−1
i

■ Trace of β (Tr(β)): sum of all conjugates
■ Norm of β (N (β)): product of all conjugates
■ Is a multiplicative function
■ Is a rational fraction (integer if β algebraic integer)
■ Example: i root of x2 + 1, so −i also root; norm is

N (a + bi) = N (a − bi) = (a + bi)(a − bi) = a2 + b2

■ Basis: d-tuple of elements that generate K
■ Integral basis: d-tuple of elements that generate ZK



Definitions (cont.)

Introduction

Overview of
algebraic number
theory

What is a number
field?
Some properties of
rational integers

Gaussian integers

‘Badly behaved’
number fields

Definitions

Digression on ideals

Arithmetic of ideals
Decomposition of
prime numbers

Ideal classes
Computational
algebraic number
theory

Special NFS

General NFS

Complexity sketch

24 / 52

■ Discriminant of set of algebraic numbers γ1, . . . , γd:
determinant of Tr(γiγj)

■ Discriminant of an integral basis independent of
choice of basis: discriminant of K

■ Discriminant of f(x): square times discriminant of K
■ Ideal: J ideal if closed under addition and, for

a ∈ K, b ∈ J , ab ∈ J
■ In particular, is subring of K
■ Informally: set of multiples of some element(s)
■ Example: ideals of Z: nZ = {0,±n,±2n, . . .}
■ Gives rise to ring K/J : an element α of K is

congruent to β if α − β ∈ J
■ Norm of ideal: cardinality of K/J
■ Principal ideal (α): ideal generated by α only
■ Principal Ideal Domain (PID): all ideals principal
■ Theorem: PID ⇔ UFD
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■ Again consider ZK = Z[(1 +
√
−5)/2] and

factorizations 21 = 3 · 7 = (1 + 2
√
−5)(1 − 2

√
−5)

■ Let α = 1 + 2
√
−5, λ = 2 +

√
−5

■ Then α2/λ = −2 + 3
√
−5, 32/λ = 2 −

√
−5 are

integers of ZK

■ If p(x) = 0 for x = λ, then p(x2) = 0 for x =
√

λ, so
λ is integer in some other number field K ′

■ Hence α/
√

λ, 3/
√

λ also integers in K ′, so
√

λ is
common divisor of α, 3 in K ′

■ In fact,
√

λ = α(−2α/
√

λ)− 3((12− 3
√
−5)/

√
λ), so√

λ is GCD of α, 3 in K ′

■ Similarly,
√

κ GCD of 7, 1− 2
√
−5 for κ = 2 + 3

√
−5

■ In K ′, 21 =
√

λ
√

λ
√−κ

√
−κ

■ Factorizations in K from pairings of factors in K ′

■ Non-principal ideals: multiples of element not in K
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■ Addition: I + J = {x + y, x ∈ I, y ∈ J}
■ Informally: GCD
■ Example: 6Z + 10Z = 2Z since n(2 · 6 − 10) = 2n
■ Multiplication: IJ = {∑i xiyi, x ∈ I, y ∈ J}
■ IJ ⊆ I ∩ J , and if I, J coprime = IJ = I ∩ J
■ 6Z · 10Z = 60Z since 6m · 10n = 60mn, while

6Z ∩ 10Z = 30Z
■ Divisibility (in ZK): I | J if J ⊂ I
■ I is prime ideal of K if, for a, b ∈ K, ab ∈ I implies

a ∈ I or b ∈ I (similar property for prime numbers: if
p | ab then p | a or p | b)

■ Prime ideals of Z: pZ for p prime
■ Unique factorization into prime ideals in NFs
■ Example: 30Z = 2Z · 3Z · 5Z
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■ pZK =
∏g

i=1 p
ei

i

■ ei: ramification index
■ fi = [Zk/pi : Z/pZ]: degree
■

∑g
i=1 eifi = deg(K)

■ If g = 1, e1 = 1, then p is inert (i.e. pZK = pZ)
■ If g = deg(K), then p splits completely
■ If ei ≥ 2 for some i, then p ramifies
■ Ramified primes those that divide discriminant of K
■ Algorithm for case p ∤ f (f index of α):

◆ Minimal poly. T (x) ≡ ∏g
i=1 Ti(x)ei (mod p)

◆ Then pi = (p, Ti(α)) = pZK + Ti(α)ZK

◆ fi = deg(Ti)
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■ Consider ideals modulo principal ideals
■ Equivalence relation: I ∼ J if there exists α, β ∈ K

such that αI = βJ
■ Gives rise to classes of equivalent ideals, which form

the class group Cl(K)
■ Class number h = #Cl(K) is finite, measures extent

of failure of unique factorization
■ All principal ideals equivalent, so h = 1 in a PID
■ Non-principal ideals: multiples of element in extension

of K of degree at most h
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■ Tasks of computational algebraic number theory

◆ Compute integral basis of ZK

◆ Find decomposition of prime numbers
◆ Compute a system of fundamental units
◆ Compute the class number and class group
◆ Determine if an ideal I ∈ ZK is principal; if it is,

find a generator α ∈ K such that i = αZK

■ Efficient algorithms exist for simple fields (small
discriminant, class number, etc.)

■ Special NFS: simple fields
■ General NFS: complicated number field, must avoid

many tasks above
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Special NFS
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■ Let n = re + s with r, |s| small
■ Find polynomial and root mod n
■ Degree chosen by complexity analysis (currently

d = 5, 6)
■ Example: 3239 − 1
■ f(x) = x5 − 3, m = 348: f(m) = 3n
■ Will work in number field Z[α], with α complex root

of f(x)
■ Field is likely to be simple (UFD, etc.)
■ Need second number field for NFS
■ Hard to find other polynomial, so use g(x) = x − m
■ Build factor base of prime ideals of Z[α] and rational

primes (for g(x))
■ Search for a − bα, a − bm simultaneously smooth
■ Homomorphism: φ : α 7→ m (mod n)
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■ Norm encodes ideal factorization of a − bα
■ So: sieve norms
■ Consider homogenous polynomial

F (x, y) = a0y
d + a1xyd−1 + . . . + adx

d = ydf(x/y)
■ Norm of a − bα is F (a, b)
■ Fix b, sieve over a, change b, repeat (line sieving)
■ Theorem: every ideal that contains a − bα is first

degree (f = [ZK/p : Z/pZ] = 1)
■ There could be multiple ideals of same norm
■ Find linear factors of f(x) mod p, associate each

factor x − ci with an ideal of norm p
■ Ideal is (p, ci − α)
■ To find which ideal divides a − bα: if a − bci ≡ 0

(mod p), then divisor is (p, ci − α)
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■ Example: α root of f(x) = x5 − 3
■ Norm of a − bα is x5 − 3y5

■ Consider 7 − 4α: N (7 − 4α) = 13735 = 5 · 41 · 67
■ f(x) has linear factors:

◆ x − 3 mod 5
◆ x − 11, x − 12, x − 28, x − 34, x − 38 mod 41
◆ x − 52 mod 67

■ Solve a − bc ≡ 0 (mod pi) for c

◆ p1 = 5: c = 5
◆ p2 = 41: c = 12
◆ p3 = 67: c = 52

■ Hence: 7 − 4α = (5, 3 − α)(41, 12 − α)(67, 52 − α)
■ As principal ideals:

(2 − α + α3 − α4)(2 + α + α2 + α3)(1 + α2 + α3)
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■ Suppose enough (a, b) pairs were found such that
a − bα and a − bm are simultaneously smooth

■ Use linear algebra to find set S of relations with even
exponents

■ Then φ(
∏

a − bα) ≡ ∏

(a − bm) (mod n) and both
sides are squares, right?

■ Problem: 4 is a square but -4 isn’t
■ Must find unit contribution (easy in simple fields)
■ Square root: just divide exponents by 2
■ How to write out the square root?
■ Must find generators of prime ideals in the factor base

(must exist as the number field is a PID)
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■ If n not of special form, still possible to find
polynomial, but number field will no longer be simple

■ Assume degree d; expand n in base ⌊m = n1/d⌋, so
that n = c0 + c1m + . . . + cd−1m

d−1 + md

■ Polynomial is xd + cd−1x
d−1 + . . . + c1x + c0 and root

m mod n
■ Much bigger coefficients (O(n1/d instead of ǫ), so

values sieved will be larger and density of smooth
numbers will decrease

■ Can use different values of m (some polynomials have
better properties)

■ No longer possible to find fundamental units,
generators of prime ideals, etc.
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■ Two main problems:

◆ Z[α] likely not the full ring of integers ZK

◆ Most likely not a PID

■ Let β =
∏

a − bα, such that exponents of prime
ideals are all even

■ May not be a square
■ Four obstructions

◆ β may not be the square of an ideal, since we use
the primes of Z[α], not ZK

◆ Even if β is the square of an ideal, may not be a
principal ideal

◆ Unit contribution
◆ Square root of β may be in ZK \ Z[α]

■ Solution: quadratic characters
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■ Adleman, 1991
■ Probabilistic method to identify squares
■ Squareness test using quadratic residues
■ Example: ( 7

11) = -1, so 7 not a square
■ 1, 4, 9, 16, 25, . . . always quadratic residues
■ As in a pseudoprimality test, if quadratic residue

modulo sufficiently many primes, likely to be a square
■ If quadratic residues are ‘random’, then chance of

non-square being quadratic residue for a given prime
is 1/2

■ For k tests, chance of failure is 2−k

■ Density of n-bit squares is n/2 bits, so a bit more
than n/2 tests should suffice
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■ Can construct squares
■ Example: (3·5

11 ) = 1, (5·7
11 ) = −1, (3·7

11 ) = −1, so
(3·5

11 )(5·7
11 )(3·7

11 ) = 1 ×−1 ×−1 looks like (and indeed
is) a square

■ Append quadratic characters to relation vectors (with
1 7→ 0,−1 7→ 1) and search for linear dependence (all
characters 1)

■ Squareness testing in number fields: (a−bm
q ) for q not

in the factor base
■ Can estimate ‘dimension’ of obstructions (as a vector

base over GF(2))
■ Use more characters than dimension of obstructions
■ Result is likely to be a square
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■ Must compute s = φ(
√

∏

a − bα)
■ Trivial in SNFS: if s = φ(

√

p
e1
1 · · · peB

B ), then

s = φ(p
e1/2
1 · · · peB/2

B ) = φ(p1
e1/2) · · ·φ(pB

eB/2)
■ Since φ is computed mod n, no size explosion
■ Unable to compute square root directly in GNFS
■ Arithmetic with expanded s extremely expensive
■ Must use fast multiplication methods (FFT, etc.)
■ Initially: find minimal polynomial mod q (q not in

factor base), Hensel lift up to a certain bound
■ Couveignes: use CRT instead; ‘explicit’ CRT allows

reduction of (c1 mod q1, . . . , ck mod qk) mod n
■ Problem: two square roots modulo each prime; must

find correct combination of signs
■ If extension degree odd, N (−α) = −N (α); compute

norm of
∏

a − bα and compare signs
■ Heuristic method of Montgomery solved the problem
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{nfs(n)=l=lo g(n);d=(3 *l/log(l))^(1/3)\1;k=3*l \log(2);m=n^(1/d)\1;t=d;s=n

;H=vector(d+1 ,i,1);(p( i)=prime(i));for(i=1,d,s -=H[i]*m^t;H[i+1]=s\m^t--);

(f(x)=eval(Po l(H)));(F (x,y)=y^d*f(x/y));(G(x,y )=x-m*y;);(h(x)=eval(deriv(

Pol(H))));t=B= precprime (2*exp((l*log(l)^2)^(1/3 )));(z(i)=primepi(i));P=z(B

);R=vector(P,i ,lift(pol rootsmod(f(x),p(i))));q= vector(k,i,while(!r=polroot

smod(f(x),t=nex tprime(t+ 2)),);[t,l ift(r[1])])

;K=exp(log(n)/2 00);(L(B) =log(B)/lo g(K)\/1);w=

vectorsmall(P,i, L(p(i))); b=r=0;A=ve ctor(P);for

(i=2,P,A[i]=A[i- 1]+#R[i]) ;o=A[P]+#R [P];s=o+P+k

+1;M=matrix(s,s); N=vector( s);while(1 ,b++;e=vect

orsmall(8*B+1,a,L (abs(F(a- 4*B,b)*G(a-4*B,b))+1));f or(i=1,P,t=p(i);for(j=1,#R[

i],forstep(k=-4*B+1+b*R[i][ j]%t,4*B,t,e[k+4*B]-=w[i ]));for(j=1,if(t<sqrt(B),lo

g(B)/log(t),1),forstep(k=-4 *B+1+(-m*b)%t^j,4*B,t^j, e[k+4*B]-=w[i])));for(t=1,8

*B+1,if(e[t]<L(B^2)&&gcd(a= t-4*B,b)==1,C=factorint( abs(F(a,b)));D=if(G(a,b),fa

ctorint(abs(G(a,b))),[]);if (C&&D&&C[#C~,1]<=B&&D[#D ~,1]<=B,if(r++==s+1,break(2

));N[r]=[a ,b];for(i=1,#C~, c=z(C[i,1] );for(j=1,

#R[c],if(( a-b*R[c][j])%C[i ,1]==0,M[r ,A[c]+j]=C

[i,2])));f or(i=1,#D~,M[r, o+z(D[i,1] )]=D[i,2])

;for(i=1,k ,M[r,o+P+i]=kro necker(a-b *q[i][2],q

[i][1])<0; M[r,s]=G(a,b)< 0);))));S= lift(matker(Mod(M~,2)));for

(i=1,#S,V= M~*S[,i];v=lif t(prod(j=1 ,P,Mod(p(j),n)^(V[o+j]/2)))

;if(#(U=nf factor(nfinit (f(y)),x^2 -h(y)^2*prod(j=1,#S~,Mod((N

[j][1]-N[j ][2]*y)^S[j,i ],f(y))))) ~>1,(u(y,x=0)=eval(lift(U[1

,1])));g=g cd(u(m)-h(m) *v,n);if(g >1&g<n,break)));return(g);}
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Complexity sketch
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■ L(X) = LX [1/2, 1] = exp(
√

2 log X log log X)
■ Theorem: sequence of integers < X and B-smooth

(B = L(X)1/
√

2); after about L(X)
√

2 elements,
some subset of them is a square

■ Need F (a, b), G(a, b) = a − bm smooth: require
F (a, b)G(a, b) smooth

■ Coefficients of F (a, b) and m bounded by n1/d

■ Region of sieving is |a|, |b| ≤ M
■ |F (a, b)G(a, b)| bounded by 2(d + 1)n2/dMd+1

■ Using theorem: M2 = L(X)
√

2

■ We have

log X ∼ log(2(d+1))+
2

d
log n+(d+1)

√

1

2
log X log log X
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■ Term log(2(d + 1)) too small, discarded

log X ∼ 2/d log n + d
√

1/2 log X log log X

■ Find minimum (using derivatives)

X ′

X
= −2/d2 log n +

√

1/2 log X log log X+

+
dX ′(1 + log log X)

4X
√

1/2 log X log log X

■ Setting X ′ = 0:

d = (2 log n)1/2(1/2 log X log log X)−1/4
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■ Replacing d in the original expression:

log X = 2(2 log n)1/2(1/2 log X log log X)1/4

(log X)3/4 = 2(2 log n)1/2(1/2 log log X)1/4

■ Taking logs again: 3
4 log log X = 1

2 log log n

(log X)3/4 = 2(2 log n)1/2(1/2 log log X)1/4

log X =
4

31/3
(log n)2/3(log log n)1/3

■ Complexity of NFS is

L(X)
√

2 = exp
(

(64/9)1/3(log n)1/3(log log n)1/3
)
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Improvements and variants
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■ Initially consider only a − bm values
■ Allow partial relations: after removing factors up to p,

have remainder < p2 (or smaller bound)
■ Fact: remainder is prime (the large prime)
■ Dramatic increase in relations found
■ Can’t enlarge factor base
■ Instead, pair up relations with same large prime:

pe1
1 · · · pek

k P × p
e′1
1 · · · pe′

k

k P = p
e1+e′1
1 · · · pek+e′

k

k P 2

■ Paired partial relations behave as full relations: if
∏

xi is a square then so is
∏

xiP
2
i

■ Large prime collisions easy to find after collecting
many relations, due to birthday paradox
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■ Allow reports with two large primes (or a large prime
and a large prime ideal)

■ If two large primes, remainder in range [p2, p3] may be
prime or product of two primes

■ Apply cheap compositeness test (say base-3 SPRP)
and throw away if probable prime

■ Pairing up no longer enough:
x1P1P2 × x2P1P3 = x1x2P

2
1 P2P3. Instead, find

cycles among relations using graph algorithms
■ What about three large primes?
■ Reports may have 1, 2 or 3 large prime factors:

compositeness test can’t tell apart 2nd and 3rd case
■ NFSNET using 2 large primes and 2 large prime ideals
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■ Must solve sparse linear systems over GF(2) for
congruence-of-squares methods

■ Dense methods wasteful, don’t meet time bound
■ Structured Gaussian elimination acceptable for small

factorizations
■ Later, sparse methods (Lanczos, conjugate gradient)

modified for GF(2)
■ Problem: half of GF(2) vectors self-orthogonal
■ Use extensions (LaMacchia and Odlyzko) or subspaces

(Montgomery) of GF(2)
■ Blocking to take advantage of bitwise operations
■ Also: Wiedemann’s method
■ Research problem: large-scale distributed algorithm
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■ Brian Murphy’s PhD thesis
■ RSA-155: ‘the yield (. . . ) is approximately 13.5 times

that of a skewed pair of average yield’
■ Search time only 100 (out of 8400) MIPS-years
■ Numerical optimization problem
■ Main techniques:

◆ Skewed polynomials (|ad| < |ad−1| < . . . < |a0|)
◆ Force many roots mod small p
◆ Leading coefficient product of small primes to add

projective roots
◆ Reduce size of relations (reduced coefficients,

choice of sieving region, location of real roots)

■ Research problem: find good degree-d (d > 2)
polynomial pairs
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■ Split factor base in two, bounds B0 and B1

■ Fix a prime B0 < q < B1 (the special-q)
■ Compute lattice of (a, b) pairs such that q | a − bm
■ Sieve points of this lattice, change q and repeat
■ Pollard on F9: ‘An Infinitely Skilful Programmer can

get 83% of the solutions for 8.6% of the work.’ Why?
■ LS relations are B0-smooth with 1 factor in [B0, B1]
■ Most B1-smooth relations of this form
■ Most candidate relations not of this form
■ % integers sieved: W =

∑

1/q, % solutions lost:
L = ρ(log(a + bm)/ log B1)/ρ(log(a + bm)/ log B0)

B0/B1 W L

0.3 0.0855 0.167
0.2 0.1143 0.083
0.1 0.1636 0.022
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■ Multiple polynomial variant of QS much faster
■ How about multiple polynomial NFS?
■ Problem: distinct ideals for each number field
■ Must enlarge factor base
■ Coppersmith: use k polynomials and bound B/k
■ Sieve a − bm then ECM each polynomial (sieving

inefficient due to irregular spacing)
■ Complexity lowered to Ln[1/3, 1.902]
■ Pomerance: ‘crossover point (. . . ) in the thousands

of digits’
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