
—Research Proposal—

Game-Theoretic Analysis of Transportation
Problems

Student: Francisco Jhonatas Melo da Silva
Advisor: Flávio Keidi Miyazawa

Co-advisor: Rafael Crivellari Saliba Schouery

Institute of Computing - UNICAMP

Abstract

Traffic congestion and CO2 emissions are major issues in today’s society, and

it is mostly related with transportation system. As a class of resource alloca-

tion games, transportation games models those situations, and through them

we can analyze how the selfish behavior of agents can impact on the social

optimal outcome. We will consider some possible extensions of these games

and will study the existence and properties of pure Nash equilibrium on the

cases admitting it. Furthermore, we aim to give bounds on two measures of

inefficiency of equilibrium, price of anarchy and price of stability respectively,

for those extensions.
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1 Introduction and Justification

John von Neumann and Oskar Morgenstern published in 1944 the book Theory of Games

and Economic Behavior [1], which is considered the pioneer book in Game Theory, and

since then this field has been developed by scientists ranging from economy to biology

and more recently computer science. The first Nobel Prize given to a Game Theory

researcher was awarded, in 1994, to John Harsanyi, John Nash, and Reinhard Selten

“for their pioneering analysis of equilibria in the theory of non-cooperative games” [2].

Moreover, in the past years the number of nobel prizes has increased with the last one

given to Jean Tirole in 2014 “for his analysis of market power and regulation” [2].

The studying of how rational agents behave when dealing with situations of conflict

and cooperation is the main objective of Game Theory. Those agents, usually called

players, want to maximize their utilities as much as possible, and in order to do that,

they may act selfishly. A game is defined as the environment where those players choose

one strategy from a set of strategies aiming to achieve their own interest. For example,

we can imagine an auction of rare goods where the winner of one specific object will be

the one which gives the higher bid. Here, each participant (player) can choose to bid a

value (strategy), this value can be chosen from the set of positive real numbers (set of

strategies), to try to get the object (interest).

It is not difficult to see that, as the number of players and the set of strategies grows,

a game can have an exponential number of possibilities to be evaluated. Therefore,

questions that commonly emerged are: is it possible to, given a game, calculate the best

strategy for a player? If so, can it be done efficiently?

In this aspect, Computer Science brings tools to help the analysis of issues that arise in

Game Theory. For instance, computational complexity can help to prove if a problem can

be solved in polynomial time, and for problems that cannot be computed in polynomial

time, it may provide ways of finding good solutions efficiently. Thus, analyzing problems

of Game Theory from the point of view of Computer Science characterizes the field called

Algorithmic Game Theory.

In this proposal, we aim to investigate the environment where players are competing
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against each other for the use of shared resources, commonly called as Resource Allocation

Games. Ideally, it would be optimal if each player were assigned to a single resource, but

this is often not the case because usually it has a cost associated and it can become very

expensive to maintain the system working. More specifically, we are going to study a

family of resource allocation games called transportation games.

This class of games were recently introduced by Fotakis et al. [3], and they model

situations motivated by ride sharing systems like Uber, Dial-a-ride or Blablacar. Those

systems are also important because of their direct impact on the environment in general

as they can induce less pollutant gas emisson and the reduction of traffic congestion.

Problems which are related with transportation commonly appear in the combinatorial

optimization area such as the Traveling Salesman Problem [4] and the Vehicle Routing

Problem [5] because of their practical applications and theoretical challenges.

Our research will focus on the existence of pure Nash equilibrium and also the prop-

erties of these equilibria if it exists. Moreover, for the analysis of the inefficiency of

equilibrium we will use the concepts of the price of anarchy and the price of stability.

2 Literature Review

In this section, we present the general concepts from Game Theory, including the basic

definitions as well as the class of problems of our interest. Most of these definitions are

somehow related with the definitions given by Nisan et al. [6]. As we exhibit the concepts,

we will give throughout this section some aspects of the bibliographic history.

2.1 Basic Definitions from Game Theory

Definition 1 A game G is defined by a tuple (N,S, u), where N is the finite set of

players, and S = ×i∈NSi is the finite set of strategy profiles, with Si being the strategy

set of player i. u = (ui)i∈N is a vector with ui : si ∈ S → R being a cost function which

maps into a real value a strategy chosen by a player i.

We assume that the players are both rational and selfish. By this, we mean that

3



players will always choose a strategy that maximizes their utilities or minimizes their costs

according to the game regardless the outcome of the other players. Let us suppose we

are dealing with a game where players want to maximize their utilities. If a player i ∈ N

chooses a strategy si ∈ Si, then we use ui(si) to represent the value incurred to i when

choosing strategy si. We also use s−i to denote the vector representing the strategies

played by others players excluding player i. Using this notation, we present the next

definition.

Definition 2 We say that a strategy s ∈ S is a dominant strategy, if for every player

i ∈ N , and each alternate strategy s′ ∈ S, we have

ui(si, s
′
−i) ≥ ui(s

′
i, s
′
−i).

According to [6], not all the games possess dominant strategies as it is a very hard

requirement to satisfy. Because of this, we need a less stringent concept to help us in

analyzing them. One important notion that captures the property of a stable solution

is the Nash Equilibrium which will be defined next. Stable solutions are those where all

players are playing their best strategy against the strategies chosen by the others.

Definition 3 We say that a strategy s ∈ S is a (Nash) Equilibrium, if for every

player i ∈ N , and each alternate strategy s′ ∈ S, we have

ui(si, s−i) ≥ ui(s
′
i, s−i).

Putting this in words, in an equilibrium, a player i does not want to change unilaterally

from her strategy si to s′i since it would not benefit her, supposing all the others players

still playing their strategies in s−i. Hence, all the players in an equilibrium are satisfied

with their choices. On the one hand, if within a game an equilibrium is reached by the

players choosing their strategy deterministically, then this equilibrium is called Pure Nash

Equilibrium - PNE. On the other hand, if this outcome is achieved by players’ choices in

a randomized way over the set of theirs strategies, then this equilibrium is called Mixed
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Nash Equilibrium - MNE. MNE is an important concept because of the following theorem

proved by Nash [7], one of the most relevant result of Game Theory.

Theorem 2.1 Every game with a finite set of players and strategies has a Mixed Nash

Equilibrium.

It is worth to note that both the assumptions in the previous theorem are important

because games with an infinite set of players or games with a finite set of players having

access to an infinite set of strategies, may not have a MNE.

While in an equilibrium we are only concerned about individual deviations, there

are some refinements of equilibrium which deals with group deviations. One of them is

the concept of Strong Equilibrium (SE) where given an outcome of a game, no group

of players C can jointly deviate such that all players in C improve their cost. Another

one is the Super Strong Equilibrium (SSE) which instead of all players in C have an

improvement as in SE, in a SSE outcome it cannot exist a joint deviation of C in such

a way that at least one player of C improves her utility while all others do not have a

decrease in their utilities.

Next, we introduce the problem called Selfish Load Balancing Games, and we give an

example adapted from Nisan et al. [6] of this game to show the application of some of

those definitions seen until now.

Game 1 A Load Balancing Game J is defined by a tuple (N,M,w), where

N = {1, · · · , n} is the set of tasks, and M = {1, · · · ,m} is the set of machines. The

vector w = (wij)i∈N,j∈M represents the values of processing time of task i in machine j.

Let us say each player is responsible for one of the tasks, and their goal is to have their

tasks processed as fast as possible. Here, we have the vector of strategies meaning an

attribution of tasks into machines, A : N → M , and A(i) shows the machine where task

i will be processed. Let Aj be the set of tasks allocated in machine j. Then, the load of a

machine j, lj(A), is calculated as lj(A) =
∑

i∈Aj
wij. The cost associated with each player

i is the load of the machine A(i). Finally, we have the social cost under attribution A

as represented by the maximum load over all machines, also called makespan, denoted by

c(A) = max{lj(A) : j ∈M}.
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Example 2.1 Consider an instance of the load balancing game with two identical ma-

chines and four tasks, with two of them have processing time of 2 and the others two have

processing time 4. Figure 1 shows the only two attributions of this instance in equilibrium.

Figure 1: Two assignments in equilibrium for the instance in Example 2.1

In Figure 1-(a), it shows an optimal assignment A with c(A) = 3. It is clear here

that A is an equilibrium since any task cannot improve her cost by changing to another

machine (e.g., if one of the tasks with processing time 1 changes to another machine, it

will have a cost worst than its current value, 4 instead of 3.). The other equilibrium of this

instance is showed in Figure 1-(b) where here, under attribution A′, it has a makespan

of c(A′) = 4. Note that these both assignments are SE and SSE since it does not exist a

coalition of players that can benefit with they jointly deviate from their current strategies.

From Example 2.1, we can see that different equilibria can have different values.

Because of it, we need tools for evaluating inefficiency of equilibria. Koutsoupias and

Papadimitriou [8] introduced the term Price of Anarchy, which will be defined next,

as being the the largest worst-ratio among all instances of a game between the worst

equilibrium and the optimal social outcome of it.

Definition 4 Given a function f representing the social function of a game G. The Price

of Anarchy (PoA) is defined as

PoA(f,G) = sup
G

maxA∈PNE(G) f(A)

minA∗∈S f(A∗)
.
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Another relevant measure of inefficiency of equilibria is the Price of Stability (PoS).

It was proposed by Anshelevich et al. [9], and unlike PoA, it evaluates the largest best-

ratio among all instances of a game between the best equilibrium and the optimal social

outcome of it. As a consequence, we have that PoA ≥ PoS ≥ 1.

Definition 5 Given a function f representing the social function of a game G. The Price

of Stability (PoS) is defined as

PoS(f,G) = sup
G

minA∈PNE(G) f(A)

minA∗∈S f(A∗)
.

Back to Example 2.1, it is clear to see that this instance presents PoS = 1 and

PoA = 4
3
.

Even though every finite game has a MNE, there exists finite games without any PNE.

Therefore, existence of PNE is an interesting issue when analyzing games. Indeed, an

important tool for this purpose is the exact potential function because games possessing

it, called potential games, has two main properties: they always have a PNE and converge

to a PNE through better response dynamics. Theorem 2.2 was proved by Tardos and

Wexler [10].

Definition 6 An exact potential function Φ is a function which maps into a real

value every strategy vector s ∈ S for all players i ∈ N , such that:

Φ(si, s−i)− Φ(s′i, s−i) = ci(si, s−i)− ci(s′i, s−i),∀s′i ∈ Si. (1)

Theorem 2.2 Finite potential games always converge to an equilibrium through better

response dynamics.

Proof. Let us consider a strategy vector s. If s is not in equilibrium, then there exists a

player i which is not satisfied and desires to change her strategy si to another strategy

s′i. By definition 6, a potential game has an exact potential function Φ that satisfies
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equation (1). Because player i decreased her cost, we have that Φ(si, s−i) > Φ(s′i, s−i)

and hence the deviation done by player i has made the potential of the new strategy

vector (s′i) be strictly smaller than the previous one. In each iteration, an improving

move is played and therefore a strategy vector is not evaluated more than once. As a

result, since the set of strategies of the game is finite, this sequence of better response

dynamics will reach an equilibrium eventually.

Moreover, using the method of providing potential functions for games has been used

to show the existence of PNE in the literature, such as Congestion Games [11], Global

Connection Games [9], Cost-Sharing Scheduling Games [12], and so forth. Another use

of potential functions is that they can be used to give bounds on the PoS as showed in

the next theorem [10].

Theorem 2.3 If we have a finite potential game and assuming that for any outcome S,

such that

c(S)

A
≤ Φ(S) ≤ B · c(S), (2)

for some constants A,B > 0. Then the PoS of this game is at most AB.

Proof. Let Smin be the strategy vector that minimizes the potential function Φ of this

game. By Theorem 2.2, we have that Smin is an equilibrium, and then Φ(Smin) ≤ Φ(S∗)

where S∗ is the optimal social outcome of this game. By assumption, we have that

c(Smin)
A

≤ Φ(Smin). Now, following our assumption, the second inequality give us that

Φ(S∗) ≤ B · c(S∗). Combining those inequalities we get that c(Smin) ≤ ABc(S∗). Hence,

we have that PoS ≤ AB.

2.2 Transportation Games

One example of transportation game, which will be the base of our research, was recently

introduced by Fotakis et al. [3] and its model is given as follows. Given an undirected

graph G = (V,E) with a source node s and a destination node t where each edge e ∈ E

has a distance de ∈ R+. All players have as a goal to be transported from their location

to t with lowest cost.
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Game 2 A transportation game Γ is a tuple (N,M,G), where N is the set of n

players with each of them located on a vertex of G. M is the set of m ≥ 2 resources, also

called buses, where each of them follows a path from s to t through some intermediate

vertices in V . In order to determine the paths, we suppose each bus j ∈ M has an

algorithm Aj, which, given V ′ ⊆ V , calculates its route which starts on s, goes through

vertices of V ′, and finishes its route on node t. In their paper, Fotakis et al. [3] consider

that each algorithm Aj, for j ∈ M , is just based on a permutation πj : {1, . . . , n} → N ,

which is independent of any profile σ ∈ S. Also, those permutations πj represents the

reverse order in which the players are picked up. Moreover, it is assumed that a bus

follows the shortest path between two vertices.

The set of strategies S of Γ is an assignment S : N →M in which a player i chooses

one bus j that will pick her up. Considering a strategy profile σ ∈ S, player’s cost under

this profile ci(σ) is defined as the distance traveled by σi, the bus chosen by player i in

profile σ, between the location of i and the destination t.

Example 2.2 Consider the instance depicted in Figure 2. In this instance we have

N = {1, . . . , 5} and M = {a, b} as the set of available resources. Let πj, for j ∈ M ,

be the identity permutation, i.e. πj = (1, 2, 3, 4, 5). Clearly, both players 1 and 2 choose

different buses because otherwise one of them would has a cost bigger than 3. Let us

analyze the profile σ = (a, b, a, a, a). Here, we have the following costs: c1(σ) = 3,

c2(σ) = 3, c3(σ) = 6, c4(σ) = 8, and c5(σ) = 12. Under σ, just player 5 is willing to

deviate and does so. Now, with this changing, we have the profile σ′ = (a, b, a, a, b), and

the improved cost of player 5 is c5(σ
′) = 4. Since under profile σ′ no one wants to do an

unilateral deviation, this is an equilibrium.

The main results from [3] are divided into two cases: (1) existence and computation

of an equilibrium and (2) its quality measured by PoA and PoS. For the former, we have

that a SE exists and can be computed in polynomial time if all the resources have the

same permutation. Moreover, if distances are metric and there are only two resources,

then better response dynamics converge to an equilibrium and it can be computed in
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Figure 2: Instance with five players and their distances

polynomial time. Finally, for the special metric case where all distances are either 1 or

2, it is presented an algorithm that finds an equilibrium in O(nm).

In order to analyse the PoA and PoS of transportation games, the authors considered

two different social functions. The first one is described as Vehicle Kilometers Travelled

which reflects the environmental impact of the game’s outcome. It is defined as given a

strategy profile σ and for j ∈M , let (j1, · · · , jnj
) be the ordering that players are picked

up by bus j. Then,

D(σ) =
∑
j≤m

nj∑
i=1

d(ji, ji+1),

where jnj
+ 1 = t for all buses. Indeed, function D(σ) represents the total distance

travelled by the buses when taking to destination t at least one player. Egalitarian cost

E(σ) is the second social function which is defined as

E(σ) = max
i∈N

ci(σ).

This function represents the maximum distance travelled by a single bus, which is also

called as the makespan. Both functions neglects the distance between s and the first

client.

Next, we list the major results referring to the inefficiency of equilibrium with respect

to social functions D and E. First, PoS is unbounded for D and E, for every n ≥ 3, if

the distance is not metric, even if all the permutations are identical. Second, considering

function D and metric distances, we have that PoA = Θ(n) and there are instances of

this game with n ≥ 2 players and m ≥ 2 resources where the PoS = Ω(n). Finally, with
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respect to function E, the PoS of the transportation game is O( n
m

) and we have that

PoA = 2d n
m
e − 1 for n > m and PoA = 1 if n ≤ m.

Some open questions and possible extensions of transportation games are also left by

the authors:

1. One of the results is that for m = 2 resources and metric distances, better response

dynamics always converge to an equilibrium. Because of this result, the authors

suggest the existence of an exact potential function for this particular case. Finding

it and if Nash dynamics converge in polynomial time are open questions.

2. Defining different kinds of ci(σ) and analyzing the existence and properties of equi-

librium, if it exists.

3. Proposing other way of how the routes are defined and how this modification im-

pacts the PoA and PoS, under the assumption that the pure equilibrium exists.

4. Possible extensions: each bus having a capacity, its own speed and dedicated routes;

different weights for the players.

3 Objectives

The main goal of this project is the investigation of theoretical aspects of transporta-

tion games. More specifically, the following objectives are aimed to be accomplished

throughout the research:

• Investigation of transportation games’ properties.

• Studies on the equilibrium convergence.

• Development or improvement of bounds on the inefficiency of equilibrium measured

by PoA and PoS.

• Investigation of different social functions and their impact on equilibrium quality.

• Studies on the impact of cooperation in the game.
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• Studies of others extensions of the problem such as each player having her own

destination or each player being allowed to take more than one bus in order to

reach her destination;

• Seeking for answering some of the open questions discussed on the previous section.

As we will be monitoring the literature about transportation games throughout this

research, we will be open to adapt our research to new variations that can appear or

we can even develop a new variant of transportation problem to be analyzed in the

perspective of game theory.

4 Material and Methods

Initially, in order to learn the concepts of game theory, this research will be mainly

conducted by consulting specific chapters of the book Algorithmic Game Theory [6].

Also, the student is taking the course of Game Theory in the Institute of Computing on

this first semester of 2017.

Other sources of research will be articles related with transportation games and our

objectives, specially articles in the line of coordination mechanisms.

5 Schedule

Table 1 shows the estimated time of each activity described bellow.

1. Studies of basic concepts of game theory;

2. Courses in the Institute of Computing;

3. Bibliographic review and bibliographic monitoring;

4. Working with the analysis of different social functions for the original version of the

problem;

5. Working on different ways of computing the routes and its impact on equilibrium;
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6. Working on one extension of the problem;

7. Thesis writing;

8. Thesis defense and review.

Table 1: Timetable

First Year Second Year
Activities 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
1 X X X X X
2 X X X X X X X • • • • •
3 X X X • • • • • • • • • • • • • • • •
4 • • • •
5 • • • • •
6 • • • • • • • •
7 • • • •
8 •

6 How the Results will be Analyzed

Since the nature of this research is theoretical, our discoveries will be reported in papers

submitted to national/international conferences and/or journals. By doing this, we will

have a peer review by the scientific community. Indeed, our mathematical rigor will

ensure that our results are accurate in all the analysis done by our research.
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