
ISA Aging: A X86 case study
Bruno Lopes, Rafael Auler, Rodolfo Azevedo, Edson Borin

University of Campinas
Institute of Computing

{blopes,rauler,rodolfo,edson}@ic.unicamp.br

Abstract—

Microprocessor designers such as Intel and AMD implement
old instruction sets at their modern processors to ensure back-
ward compatibility with legacy code. In addition to old back-
ward compatibility instructions, new extensions are constantly
introduced to add functionalities. In this way, the size of the
IA-32 ISA is growing at a fast pace, reaching almost 1300
different instructions in 2013 with the introduction of AVX2 and
FMA3 by Haswell. Increasing the size of the ISA impacts both
hardware and software: it costs a complex microprocessor front-
end design, which requires more silicon area, consumes more
energy and demands more hardware debugging efforts; it also
hinders software performance, since in IA-32 newer instructions
are bigger and take up more space in the instruction cache. In
this work, after analyzing x86 code from 3 different Windows
versions and its respective contemporary applications plus 3
Linux distributions, from 1995 to 2012, we found that up to
30 classes of instructions get unused with time in these software.
Should modern x86 processors sacrifice efficiency to provide strict
conformance with old software from 30 years ago? Our results
show that many old instructions may be truly retired.

I. INTRODUCTION

Nowadays, the importance of code compaction is still high,
despite the current large amount of available main memory.
This happens because computer systems are designed with
an ever increasing gap of speed between processor and main
memory, a problem handled by size-constrained intermediate
level caches. Failure to fit the program working set in the
instruction cache can severely impact performance. Similarly,
in shared-memory multiprocessor systems, memory bandwidth
reduction is crucial to overall system performance. Neverthe-
less, thanks to the previous efforts of compacting instruction
format in the CISC IA-32 and its variable-length encoding,
the x86 processor software base shows good code compaction
that leverages the processor with better code organization to
address these problems, when compared to RISC code.

Despite good code compaction, old CISC ISAs like the IA-
32 [5] suffer from the ISA aging problem: as the interface
matures, it is necessary to add new instructions in the already
occupied opcode space, and eventually the ISA runs out
of space for new opcodes. CISCs handle this problem by
increasing instruction length, and even recent RISC ISAs such
as ARM [1] may run into this problem as well, in which
case they handle opcode space shortage by adding another
processor mode – one in which the opcode space is interpreted
differently. For instance, modern x86 uses both approaches: it
introduces additional instruction prefixes to expand the opcode

space and also uses another mode, the IA-32e [5], to interpret
instructions differently in the context of 64-bit programs.

When expanding CISC ISAs, increasing instruction length
harms code compaction because instructions introduced later
have larger sizes and are not necessarily the least used ones.
A size-efficient approach for CISC ISA organization would
assign the most frequent instructions to the smallest opcode
encodings. Nevertheless, in the current approach, as newer
extensions begin to be adopted by compilers, larger instruc-
tions are used and programs decrease its space efficiency. For
example, our experiments detected that the IA-32 ISA AAA
instruction (ASCII adjust after addition)1 is never found in
recent software but still occupies a noble area in the opcode
space, the category of instructions encoded in 1 byte. In
contrast, the vcmpsd instruction, introduced with the AVX
IA-32 extension [6], needs 5 bytes for opcode and is frequently
generated by modern compilers when compiling applications
that rely on floating-point computations.

On the other hand, increasing the number of processor oper-
ating modes increases the hardware complexity. For example,
the ARM Thumb approach requires two different decoders,
one for the 32-bit ARM mode and another for the 16-bit
Thumb mode. It is also difficult for the compiler to support
mode switching, since the use of heuristics [11] is necessary
to determine if a program fragment is better represented using
the normal instruction set or the reduced instruction set.

Therefore, in general, we can expect that the processor
front-end decoder becomes increasingly more complex and
more power-demanding as the ISA expands, regardless of
whether it uses a CISC or RISC ISA. In order to partially
mitigate the problem, Intel microprocessor designers have re-
linquished the hardware decoding of complex and seldom used
instructions and handed them over to a microcode ROM [10].
Even though this simplifies the decoding logic, it only transfers
the aforementioned issues to the microcode ROM. In fact,
Borin et al. [2] state that an estimation for an Intel low power
design concluded that up to 20% of the die area would be
used solely by the microcode ROM.

In this paper, we study the IA-32 evolution over time and
present data showing how opcode usage of programs released
from 1995 to 2012 evolved and how many instructions stopped
being used. We suggest that some opcodes are, in fact, never
used in recent software, despite using the shortest encodings
because of the time when these operations were introduced.

1AAA was removed in the IA-32e 64 bit mode.



We argue that these lost opportunities are inefficiencies caused
by the immutable x86 ISA and its over-conservative role to
preserve backward compatibility down to its first release. We
intend to discuss what is the future of the x86 ISA and if it
is reasonable to pay the price of hardware and software added
complexity for backward compatibility, while showing how
the bloat of opcode space can make old ISAs like the x86
significantly less attractive.

This paper is organized as follows. Section II gives a brief
summary of the x86 ISA, Section III shows the x86 case study,
and Section IV concludes the paper.

II. THE X86 INSTRUCTION SET

The x86 instruction set family is the collection of all
machine instructions derived from the Intel 8086 family of
processors. The architecture evolved to support floating point
operations, 32-bit and 64-bit addressing modes and SIMD
instructions [5]. The ISA is backwards compatible for all
processor families, and recent machines are able to run old
programs and libraries assembled more than 30 years ago!

Each instruction in the x86 ISA has a variable-length format,
and the basic encoding to represent a single instruction is
usually determined via the opcode and prefix fields. Some
instructions further require the use of the ModR/M field to
be decoded. The layout is given in Figure 1.

Instruction
Prefixes

(Optional)
Opcode ModR/M

(Optional)
SIB

(Optional)
Operands
(Optional)

1–4 Bytes 1–3 Bytes 1 Byte 1 Byte

Total size cannot exceed 15 bytes

Figure 1: Intel IA-32e and IA-32 instruction formats. Prefix
and Opcode fields need to be decoded in order to correctly
identify the instructions.

For example, a logic or instruction between a 16-bit imme-
diate and a 16-bit value held in memory that is indexed by
the register rcx may be represented by the assembly text form
orw $12804, (%rcx). Table I depicts its equivalent encoding
in machine language.

Prefix Opcode ModR/M SIB Operands

Mod Reg/Opc R/M

66h 81h 00b 001b 001b N/A 04h 32h

Table I: x86 instruction encoding example

The ModR/M byte is part of the opcode encoding in this
instruction because its subfield Reg/Opc is used as an opcode
extension. Hence the instruction has 5 bytes: 3 bytes are used
for opcode and prefix and 2-bytes for immediate.

For the purposes of the x86 instruction set analysis, we
do not solely use the opcode bytes described in Figure 1 to
identify an instruction, but we identify instructions using the
combination of the regular opcode plus the necessary bytes to
make its identity unique in the representation used throughout
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Figure 2: x86 ISA growth over the years

this paper. We chose an identification granularity level similar
to a RISC ISA: instructions with different operands using the
same main opcode are considered distinct.

The Bochs [9] disassembler library contains an instruction
description with this desired granularity level and, for this rea-
son, was adopted in this work. For example addl_Ed_Id is
the instruction that adds a double word (32-bits) immediate to
a general-purpose double word register, while addl_Ed_Gd
is an instruction that adds the value in a double word general-
purpose register to another general-purpose register. In fact the
mnemonic addl may correspond to 5 different instructions,
depending on the operands used. To uniquely identify each
one of these instructions, the prefix bytes, the opcode bytes,
and, in some cases, the ModR/M byte must be used.

To easily refer to the necessary bits required to uniquely
identify our definition of x86 instructions and to avoid confu-
sion with the x86 Opcode byte, these bits will be henceforth
referred as the operation code. For example when it is
said that an operation code has 5 bytes, it means that the
minimum number of bytes necessary to uniquely identify the
instruction and its particular operand addressing mode is a
5 byte combination of prefix, opcode and, if necessary, a
ModR/M byte.

Figure 2 presents an overview of the increasing number of
x86 instructions over the years. The 16-bit 8086 processor,
released in 1978 and the first in the family, had little more
than 400 instructions – a number that has grown twice by
1999 with the release of Pentium III and the introduction of the
SSE multimedia processing instructions [8]. By today, x86 has
about 1200 instructions and will grow to 1300 with the release
of the new Haswell architecture [7]. The overall introduction
of multimedia instructions from MMX to AVX2 has about the
same number of x86 instructions accumulated from 8086 up
to Pentium Pro and therefore has the complexity and size of

2This instruction count does not include all the re-encoded versions of all
SSE instructions which are present in AVX, but only instructions with new
functionality.



Release Operating System Additional Software
1996-1997 Slackware Linux 3 Netscape 4.0.1, StarOffice 3.1
2007-2008 Ubuntu 8.10 Firefox 3.0.3, OpenOffice 2.4
2011-2012 Ubuntu 12.04 Firefox 11, LibreOffice 3.5
1995-1996 Windows 95 I.E. 3, Office 95
2001-2004 Windows XP SP2 I.E. 6, Office 2003
2010-2012 Windows 7 SP1 I.E. 8, Office 2010

Table II: Software systems analyzed, each with its own virtual machine

an entire new instruction set by itself.
To expand the instruction set to support new instructions

without breaking backward compatibility, vendors create new
operation codes to hold new functionality. The growth of the
x86 ISA is followed by a subsequent increase in the average
instruction size. Figure 3 shows that for each Intel x86 ISA
variant released over the years, the average operation code
size increases – operands are ignored. For example, 308 new
instructions were introduced between MMX and SSE 4.2 as
shown by Table 2, and to represent this additional amount
of instructions, more than 1 operation code byte is needed.
Therefore the average number of operation code bytes has
grown from 2.7 to 4 bytes (Figure 3).
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Figure 3: Average instruction operation code size for each x86
feature

III. LEGACY CODE ANALYSIS

This section presents a study of instructions that stopped
being used over time. We measured and generated all of the
x86 static analysis of this section and for Section II using two
different disassembler tools: Agner’s object file converter [3]
tool and the disassembler library present in Bochs virtual
machine [9]. Both tools are open source under the GPL version
2 license [4] and are interchangeably used as libraries to a
higher level tool designed for these measurements.

We organized a number of virtual machines containing a
complete 32-bit x86 software environment of a specific year.
Table II shows the age of the software systems analyzed
and their software contents. For example, our first Windows-
based environment uses the Windows 95 operating system, the
Internet Explorer 3 browser, and the Office 95 productivity
suite to represent how x86 software from 1995 to 1996 used
the IA-32 instruction set. To improve coverage, we include
common software used by people in home or office. We
studied static frequencies of x86 instructions of different types

and their evolution in time both in Windows and Linux
desktops.

The static analysis uses a crawler that analyzes the entire
virtual machine disk for executable files. When x86 instruc-
tions are found, their type is catalogued using a disassembler
library and the frequency count for the types found are
updated. Both per-program and per-virtual machines static
frequency histograms were extracted to show how different
x86 operation codes are being used in programs over time.
The static analysis is broad because single instructions are
catalogued even though they may never execute.

A. Total Opcodes Recorded in All Disks

The total number of unused operation codes in all disks
is 505. This means that considering all the 1646 x86 prefix
plus operation code combinations, about 30% of them were
never found in any virtual machine disk that we scanned. From
this count, we excluded 149 combinations that use the 0x48
prefix, which requires the 64-bit mode, because our analysis
focus on 32-bits virtual machines.

Type Number of unused operation codes
3 Bytes 4 Bytes 5 Bytes 6 Bytes

AVX 3 61 5 0
SSE 74 238 7 1
Other 40 76 0 0
Total 117 375 12 1

Table III: Number of unused operation codes by size. There
were no unused 1 and 2 bytes operation codes.

Table III shows the number of unused instruction operation
codes by size. This table also shows the number of these
instructions that belongs to vector extensions, because albeit
unused, there is a high chance these operation codes may be
used in the future – they are still in adoption. SSE category
includes all Intel SSE extensions and AMD SIMD extensions.
AVX considers AVX and AVX2 extensions. The others include
the MMX extension.

B. Aging Effect

The aging analysis shows whether an instruction appears in
the disk or not with respect to a given year. In this analysis,
vector extensions were not considered because they belong to
a large category of instructions that are still in adoption, and
we need to present a separated analysis for them. We also
skipped privileged and 64-bit only instructions.

Figure 4a shows a two y-axis graph whose Used Instructions
ordinate axis depicts the number of different operation codes
used in Linux systems through time. As expected, the number
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Figure 4: Static instruction usage patterns for Windows and Linux systems.

of used operation codes increases because software is absorb-
ing new instructions. Examples of instructions that were not
used before but started to appear in the disk at this time scale
include: vmclear and vmptrld virtualization instructions,
xadd exchange and add instructions, which had its usage
increased thanks to the rise of multiprocessing systems, xchg,
for the same reason, and several cmov, conditional move,
variants, which were first introduced in Pentium Pro.

When the crawler sees an operation code in a given year,
for example, 2004, and no longer can find it in any other
subsequent year (2007 up to 2012), we mark this operation
code as unused or outdated. The other y-axis of Figure 4a
shows the number of outdated operation codes in time and also
their size, and Figure 4b shows the same study to Windows
systems. In Figure 4a, the Slackware bar shows that 20 2-
byte operation codes were last seen in 1996. This means that
future software releases stopped using these instructions. Not
surprisingly, some outdated operation codes discovered by our
static analysis were also deprecated in Intel IA-32e 64-bit
mode, including les, load far pointer using ES, push and
pop using ES or CS. They were all outdated starting with
Ubuntu 8.

As the chart shows, Slackware Linux was the last release
to use an 1-byte operation code instruction, which is the les
instruction. In a scenario where the operation code space could
be reused, it is specially important to pick a 1-byte instruction,
because we may use this opcode as an escape code to encode
256 new 2-byte instructions. It is also possible to use escape
codes to encode 3-byte or bigger instructions, but the benefits
for code compaction are reduced.

C. Vector Extensions

The IA-32 ISA recently had almost all extensions focused
in adding vector instructions that explore data parallelism.
The first extensions to address floating-point calculations were
8087 and 80387, but their operand addressing is stack-based,
a rather old and inconvenient addressing method for modern
compilers. Newer vector instructions, starting with the MMX
extension, have register operands, which allow the compiler to
easily control register usage with established register allocation
algorithms, and are able to perform multiple floating-point
calculations on the same cycle. For these reasons, vector
instructions naturally supersede the old x87 instructions.

Our analysis indicates that the older IA-x87 floating-point
extensions are still widely present in modern software, show-
ing no signs that it can be outdated. It is possible to see how
newer extensions like SSE and SSE2 began to be adopted. It
is possible to conclude that IA-x87 extensions did not stop
being used over time, albeit being functionally superseded by
newer extensions. In fact, it has increased its participation on
the total instruction count over time in Windows systems. For
this reason, the ISA is forced to be redundant: it is possible
to add two floating point data using either IA-x87 or vector
extensions, a suboptimal operation code organization.
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Figure 5: Percentage of the code size growth of SPEC floating
point programs when compiled with SSE and AVX relative to
a IA-x87 baseline.

Figure 5 shows that for 7 SPEC CPU2006 floating-point
programs, the usage of vector extensions yields larger ex-
ecutable binaries than the x87 ones. In this analysis, we
compiled the programs using gcc version 4.7 with the -
O2 optimization flag and the -march=corei7-avx architec-
ture tuning. To generate x87 instructions, we used the -
mfpmath=387 option, while to generate the SSE ones, we
used the -mfpmath=sse option, and finally we added the -mavx
option when testing the AVX encoding for SSE instructions.
No vectorization optimizations were used, but the compiler
was tuned to use AVX for floating point arithmetic.

Notice that the AVX introduced not only a new set of
256-bit vector instructions, but also new encodings for all
previous SSE instructions. A program compiled using AVX
will have SSE instructions encoded using the new operation
codes provided by AVX.

Figure 3 points out that vector extension instructions may



have 1 to 2 extra bytes for operation code in comparison with
the old IA-x87 extension. The increased code size may explain
why compilers still generate old IA-x87 instructions in favor
of newer SSE or AVX instructions when there is no data
parallelism. It is also known that IA-x87 is still nowadays
the default floating point instruction choice for widely used
compilers, such as gcc.

This suggests that compilers may explore old encodings
because they have better compaction rates. On the other
hand, many other operation codes are being deprecated,
leaving, in terms of compaction rate, valuable encodings
unused. Furthermore, it is also important to note that merely
removing unused instructions and leaving their operation
codes unused will be enough to be profitable, since it reduces
hardware complexity.

IV. CONCLUSIONS

In this paper, we analyze how some instructions from x86,
an old but very popular CISC ISA, stopped being used with
time. The experimental analysis used a file system crawler to
search several disk images of systems from different years for
programs to disassemble. In Linux systems, the total number
of instructions that disappeared in the time frame from the
1996 Slackware to the last Ubuntu release from 2012 was
30, and for Windows this number was 10, identifying many
opcodes that are no longer used.

Despite the opcode space abuse in x86 due to its age and
the constant introduction of newer extensions, there is a signif-
icant amount of instructions becoming obsolete. It should be
profitable to redesign an x86 without old instructions because
it would have a simpler hardware. If the old instructions
encodings are left unused, they could be further modified to
bear different operations, assigning the most frequently used
ones to the smallest encodings and therefore foster modern
software efficiency. Even though it is not clear whether this
backward compatibility disruption in favor of ISA evolution
would negatively impact systems that depend on legacy code,
in practice, our Windows and Linux-based benchmarks show
that many instructions were definitely retired by the software
industry.
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