

The Art of Assembly Language

Page i

The Art of Assembly Language
(Brief Contents)

Forward Why Would Anyone Learn This Stuff? .. 1

 Section One: .. 9

Chapter One Data Representation ... 11

Chapter Two Boolean Algebra .. 43

Chapter Three System Organization .. 83

Chapter Four Memory Layout and Access ... 145

 Section Two: .. 193

Chapter Five Variables and Data Structures .. 195

Chapter Six The 80x86 Instruction Set ... 243

Chapter Seven The UCR Standard Library ... 333

Chapter Eight MASM: Directives & Pseudo-Opcodes ... 355

Chapter Nine Arithmetic and Logical Operations ... 459

Chapter 10 Control Structures .. 521

Chapter 11 Procedures and Functions ... 565

 Section Three: .. 637

Chapter 12 Procedures: Advanced Topics ... 639

Chapter 13 MS-DOS, PC-BIOS, and File I/O ... 699

Chapter 14 Floating Point Arithmetic ... 771

Chapter 15 Strings and Character Sets ... 819

Chapter 16 Pattern Matching .. 883

 Section Four: .. 993

Chapter 17 Interrupts, Traps, and Exceptions ... 995

Chapter 18 Resident Programs ... 1025

Chapter 19 Processes, Coroutines, and Concurrency ... 1065

 Section Five: .. 1151

Chapter 20 The PC Keyboard ... 1153

Chapter 21 The PC Parallel Ports ... 1199

Chapter 22 The PC Serial Ports .. 1223

Chapter 23 The PC Video Display ... 1247

Chapter 24 The PC Game Adapter ... 1255

 Section Six: .. 1309

Chapter 25 Optimizing Your Programs ... 1311

 Section Seven: ... 1343

Appendix A: ASCII/IBM Character Set ... 1345

Appendix B: Annotated Bibliography ... 1347

Thi d t t d ith F M k 4 0 2

Page ii

Appendix C: Keyboard Scan Codes ... 1351

Appendix D: Instruction Set Reference .. 1361

The Art of Assembly Language

Page iii

The Art of Assembly Language
(Full Contents)

Forward Why Would Anyone Learn This Stuff? .. 1

1 What’s Wrong With Assembly Language .. 1

2 What’s Right With Assembly Language? ... 4

3 Organization of This Text and Pedagogical Concerns ... 5

4 Obtaining Program Source Listings and Other Materials in This Text 7

 Section One: ... 9

 Machine Organization ... 9

Chapter One Data Representation .. 11

1.0 Chapter Overview .. 11

1.1 Numbering Systems .. 11
1.1.1 A Review of the Decimal System ... 11
1.1.2 The Binary Numbering System ... 12
1.1.3 Binary Formats ... 13

1.2 Data Organization .. 13
1.2.1 Bits .. 14
1.2.2 Nibbles ... 14
1.2.3 Bytes ... 14
1.2.4 Words ... 15
1.2.5 Double Words .. 16

1.3 The Hexadecimal Numbering System .. 17

1.4 Arithmetic Operations on Binary and Hexadecimal Numbers .. 19

1.5 Logical Operations on Bits ... 20

1.6 Logical Operations on Binary Numbers and Bit Strings ... 22

1.7 Signed and Unsigned Numbers .. 23

1.8 Sign and Zero Extension .. 25

1.9 Shifts and Rotates .. 26

1.10 Bit Fields and Packed Data ... 28

1.11 The ASCII Character Set .. 28

1.12 Summary ... 31

1.13 Laboratory Exercises ... 33
1.13.1 Installing the Software ... 33
1.13.2 Data Conversion Exercises .. 34
1.13.3 Logical Operations Exercises ... 35
1.13.4 Sign and Zero Extension Exercises ... 36
1.13.5 Packed Data Exercises ... 37

1.14 Questions .. 38

1.15 Programming Projects .. 41

Chapter Two Boolean Algebra .. 43

2.0 Chapter Overview .. 43

2.1 Boolean Algebra ... 43

Thi d t t d ith F M k 4 0 2

Page iv

2.2 Boolean Functions and Truth Tables ..45

2.3 Algebraic Manipulation of Boolean Expressions ...48

2.4 Canonical Forms ..49

2.5 Simplification of Boolean Functions ...52

2.6 What Does This Have To Do With Computers, Anyway? ..59
2.6.1 Correspondence Between Electronic Circuits and Boolean Functions 59
2.6.2 Combinatorial Circuits ..60
2.6.3 Sequential and Clocked Logic ..62

2.7 Okay, What Does It Have To Do With Programming, Then? ..64

2.8 Generic Boolean Functions ..65

2.9 Laboratory Exercises ...69
2.9.1 Truth Tables and Logic Equations Exercises ...70
2.9.2 Canonical Logic Equations Exercises ...71
2.9.3 Optimization Exercises ...72
2.9.4 Logic Evaluation Exercises ...72

2.10 Programming Projects ...77

2.11 Summary ..78

2.12 Questions ...80

Chapter Three System Organization .. 83

3.0 Chapter Overview ...83

3.1 The Basic System Components ...83
3.1.1 The System Bus ..84

3.1.1.1 The Data Bus .. 84
3.1.1.2 The Address Bus ... 86
3.1.1.3 The Control Bus .. 86

3.1.2 The Memory Subsystem ...87
3.1.3 The I/O Subsystem ...92

3.2 System Timing ...92
3.2.1 The System Clock ...92
3.2.2 Memory Access and the System Clock ...93
3.2.3 Wait States ...95
3.2.4 Cache Memory ..96

3.3 The 886, 8286, 8486, and 8686 “Hypothetical” Processors ..99
3.3.1 CPU Registers ..99
3.3.2 The Arithmetic & Logical Unit ..100
3.3.3 The Bus Interface Unit ..100
3.3.4 The Control Unit and Instruction Sets ..100
3.3.5 The x86 Instruction Set ...102
3.3.6 Addressing Modes on the x86 ..103
3.3.7 Encoding x86 Instructions ..104
3.3.8 Step-by-Step Instruction Execution ..107
3.3.9 The Differences Between the x86 Processors ...109
3.3.10 The 886 Processor ..110
3.3.11 The 8286 Processor ...110
3.3.12 The 8486 Processor ...116

3.3.12.1 The 8486 Pipeline ... 117
3.3.12.2 Stalls in a Pipeline ... 118
3.3.12.3 Cache, the Prefetch Queue, and the 8486 .. 119

The Art of Assembly Language

Page v

3.3.12.4 Hazards on the 8486 .. 122
3.3.13 The 8686 Processor .. 123

3.4 I/O (Input/Output) ... 124

3.5 Interrupts and Polled I/O ... 126

3.6 Laboratory Exercises ... 128
3.6.1 The SIMx86 Program – Some Simple x86 Programs ... 128
3.6.2 Simple I/O-Mapped Input/Output Operations ... 131
3.6.3 Memory Mapped I/O ... 132
3.6.4 DMA Exercises ... 133
3.6.5 Interrupt Driven I/O Exercises .. 134
3.6.6 Machine Language Programming & Instruction Encoding Exercises 135
3.6.7 Self Modifying Code Exercises .. 136

3.7 Programming Projects .. 138

3.8 Summary ... 139

3.9 Questions .. 142

Chapter Four Memory Layout and Access .. 145

4.0 Chapter Overview .. 145

4.1 The 80x86 CPUs:A Programmer’s View ... 145
4.1.1 8086 General Purpose Registers .. 146
4.1.2 8086 Segment Registers ... 147
4.1.3 8086 Special Purpose Registers ... 148
4.1.4 80286 Registers .. 148
4.1.5 80386/80486 Registers ... 149

4.2 80x86 Physical Memory Organization ... 150

4.3 Segments on the 80x86 ... 151

4.4 Normalized Addresses on the 80x86 .. 154

4.5 Segment Registers on the 80x86 ... 155

4.6 The 80x86 Addressing Modes .. 155
4.6.1 8086 Register Addressing Modes ... 156
4.6.2 8086 Memory Addressing Modes .. 156

4.6.2.1 The Displacement Only Addressing Mode ... 156
4.6.2.2 The Register Indirect Addressing Modes ... 158
4.6.2.3 Indexed Addressing Modes ... 159
4.6.2.4 Based Indexed Addressing Modes .. 160
4.6.2.5 Based Indexed Plus Displacement Addressing Mode 160
4.6.2.6 An Easy Way to Remember the 8086 Memory Addressing Modes 162
4.6.2.7 Some Final Comments About 8086 Addressing Modes 162

4.6.3 80386 Register Addressing Modes ... 163
4.6.4 80386 Memory Addressing Modes .. 163

4.6.4.1 Register Indirect Addressing Modes .. 163
4.6.4.2 80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing Modes 164
4.6.4.3 80386 Scaled Indexed Addressing Modes ... 165
4.6.4.4 Some Final Notes About the 80386 Memory Addressing Modes 165

4.7 The 80x86 MOV Instruction ... 166

4.8 Some Final Comments on the MOV Instructions ... 169

4.9 Laboratory Exercises ... 169
4.9.1 The UCR Standard Library for 80x86 Assembly Language Programmers 169
4.9.2 Editing Your Source Files .. 170

Page vi

4.9.3 The SHELL.ASM File ...170
4.9.4 Assembling Your Code with MASM ...172
4.9.5 Debuggers and CodeView

 ..173
4.9.5.1 A Quick Look at CodeView .. 173
4.9.5.2 The Source Window ... 174
4.9.5.3 The Memory Window ... 175
4.9.5.4 The Register Window ... 176
4.9.5.5 The Command Window ... 176
4.9.5.6 The Output Menu Item ... 177
4.9.5.7 The CodeView Command Window ... 177

4.9.5.7.1 The Radix Command (N) ..177
4.9.5.7.2 The Assemble Command ..178
4.9.5.7.3 The Compare Memory Command ..178
4.9.5.7.4 The Dump Memory Command ..180
4.9.5.7.5 The Enter Command ...181
4.9.5.7.6 The Fill Memory Command ..182
4.9.5.7.7 The Move Memory Command ..182
4.9.5.7.8 The Input Command ...183
4.9.5.7.9 The Output Command ..183
4.9.5.7.10 The Quit Command ..183
4.9.5.7.11 The Register Command ..183
4.9.5.7.12 The Unassemble Command ..184

4.9.5.8 CodeView Function Keys ... 184
4.9.5.9 Some Comments on CodeView Addresses .. 185
4.9.5.10 A Wrap on CodeView ... 186

4.9.6 Laboratory Tasks ..186

4.10 Programming Projects ...187

4.11 Summary ..188

4.12 Questions ...190

 Section Two: .. 193

 Basic Assembly Language ..193

Chapter Five Variables and Data Structures .. 195

5.0 Chapter Overview ...195

5.1 Some Additional Instructions: LEA, LES, ADD, and MUL ...195

5.2 Declaring Variables in an Assembly Language Program ..196

5.3 Declaring and Accessing Scalar Variables ..197
5.3.1 Declaring and using BYTE Variables ...198
5.3.2 Declaring and using WORD Variables ...200
5.3.3 Declaring and using DWORD Variables ..201
5.3.4 Declaring and using FWORD, QWORD, and TBYTE Variables 202
5.3.5 Declaring Floating Point Variables with REAL4, REAL8, and REAL10 202

5.4 Creating Your Own Type Names with TYPEDEF ..203

5.5 Pointer Data Types ..203

5.6 Composite Data Types ..206
5.6.1 Arrays ..206

5.6.1.1 Declaring Arrays in Your Data Segment .. 207
5.6.1.2 Accessing Elements of a Single Dimension Array .. 209

5.6.2 Multidimensional Arrays ...210
5.6.2.1 Row Major Ordering ... 211

The Art of Assembly Language

Page vii

5.6.2.2 Column Major Ordering ... 215
5.6.2.3 Allocating Storage for Multidimensional Arrays .. 216
5.6.2.4 Accessing Multidimensional Array Elements in Assembly Language 217

5.6.3 Structures ... 218
5.6.4 Arrays of Structures and Arrays/Structures as Structure Fields 220
5.6.5 Pointers to Structures ... 221

5.7 Sample Programs .. 222
5.7.1 Simple Variable Declarations .. 222
5.7.2 Using Pointer Variables ... 224
5.7.3 Single Dimension Array Access ... 226
5.7.4 Multidimensional Array Access ... 227
5.7.5 Simple Structure Access ... 229
5.7.6 Arrays of Structures .. 231
5.7.7 Structures and Arrays as Fields of Another Structure .. 233
5.7.8 Pointers to Structures and Arrays of Structures ... 235

5.8 Laboratory Exercises ... 237

5.9 Programming Projects .. 238

5.10 Summary ... 239

5.11 Questions .. 241

Chapter Six The 80x86 Instruction Set .. 243

6.0 Chapter Overview .. 243

6.1 The Processor Status Register (Flags) ... 244

6.2 Instruction Encodings ... 245

6.3 Data Movement Instructions .. 246
6.3.1 The MOV Instruction ... 246
6.3.2 The XCHG Instruction ... 247
6.3.3 The LDS, LES, LFS, LGS, and LSS Instructions ... 248
6.3.4 The LEA Instruction ... 248
6.3.5 The PUSH and POP Instructions ... 249
6.3.6 The LAHF and SAHF Instructions .. 252

6.4 Conversions .. 252
6.4.1 The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions 252
6.4.2 The BSWAP Instruction ... 254
6.4.3 The XLAT Instruction ... 255

6.5 Arithmetic Instructions ... 255
6.5.1 The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA 256

6.5.1.1 The ADD and ADC Instructions .. 256
6.5.1.2 The INC Instruction .. 258
6.5.1.3 The XADD Instruction ... 258
6.5.1.4 The AAA and DAA Instructions ... 258

6.5.2 The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS 259
6.5.3 The CMP Instruction .. 261
6.5.4 The CMPXCHG, and CMPXCHG8B Instructions .. 263
6.5.5 The NEG Instruction .. 263
6.5.6 The Multiplication Instructions: MUL, IMUL, and AAM .. 264
6.5.7 The Division Instructions: DIV, IDIV, and AAD ... 267

6.6 Logical, Shift, Rotate and Bit Instructions .. 269
6.6.1 The Logical Instructions: AND, OR, XOR, and NOT ... 269
6.6.2 The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD 270

Page viii

6.6.2.1 SHL/SAL .. 271
6.6.2.2 SAR .. 272
6.6.2.3 SHR .. 273
6.6.2.4 The SHLD and SHRD Instructions .. 274

6.6.3 The Rotate Instructions: RCL, RCR, ROL, and ROR ..276
6.6.3.1 RCL .. 277
6.6.3.2 RCR .. 277
6.6.3.3 ROL ... 278
6.6.3.4 ROR ... 278

6.6.4 The Bit Operations ...279
6.6.4.1 TEST .. 280
6.6.4.2 The Bit Test Instructions: BT, BTS, BTR, and BTC 280
6.6.4.3 Bit Scanning: BSF and BSR ... 281

6.6.5 The “Set on Condition” Instructions ...281

6.7 I/O Instructions ...284

6.8 String Instructions ..284

6.9 Program Flow Control Instructions ...286
6.9.1 Unconditional Jumps ...286
6.9.2 The CALL and RET Instructions ..289
6.9.3 The INT, INTO, BOUND, and IRET Instructions ...292
6.9.4 The Conditional Jump Instructions ..296
6.9.5 The JCXZ/JECXZ Instructions ..299
6.9.6 The LOOP Instruction ..300
6.9.7 The LOOPE/LOOPZ Instruction ...300
6.9.8 The LOOPNE/LOOPNZ Instruction ..301

6.10 Miscellaneous Instructions ...302

6.11 Sample Programs ...303
6.11.1 Simple Arithmetic I ...303
6.11.2 Simple Arithmetic II ..305
6.11.3 Logical Operations ..306
6.11.4 Shift and Rotate Operations ...308
6.11.5 Bit Operations and SETcc Instructions ...310
6.11.6 String Operations ..312
6.11.7 Conditional Jumps ..313
6.11.8 CALL and INT Instructions ...315
6.11.9 Conditional Jumps I ..317
6.11.10 Conditional Jump Instructions II ..318

6.12 Laboratory Exercises ...320
6.12.1 The IBM/L System ..320
6.12.2 IBM/L Exercises ..327

6.13 Programming Projects ...327

6.14 Summary ..328

6.15 Questions ...331

Chapter Seven The UCR Standard Library ... 333

7.0 Chapter Overview ...333

7.1 An Introduction to the UCR Standard Library ...333
7.1.1 Memory Management Routines: MEMINIT, MALLOC, and FREE 334
7.1.2 The Standard Input Routines: GETC, GETS, GETSM ...334
7.1.3 The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT, and PRINTF 336

The Art of Assembly Language

Page ix

7.1.4 Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize 340
7.1.5 Output Field Size Routines: Isize, Usize, and Lsize .. 340
7.1.6 Conversion Routines: ATOx, and xTOA ... 341
7.1.7 Routines that Test Characters for Set Membership ... 342
7.1.8 Character Conversion Routines: ToUpper, ToLower .. 343
7.1.9 Random Number Generation: Random, Randomize .. 343
7.1.10 Constants, Macros, and other Miscellany .. 344
7.1.11 Plus more! .. 344

7.2 Sample Programs .. 344
7.2.1 Stripped SHELL.ASM File ... 345
7.2.2 Numeric I/O ... 345

7.3 Laboratory Exercises ... 348
7.3.1 Obtaining the UCR Standard Library ... 348
7.3.2 Unpacking the Standard Library .. 349
7.3.3 Using the Standard Library .. 349
7.3.4 The Standard Library Documentation Files ... 350

7.4 Programming Projects .. 351

7.5 Summary ... 351

7.6 Questions .. 353

Chapter Eight MASM: Directives & Pseudo-Opcodes .. 355

8.0 Chapter Overview .. 355

8.1 Assembly Language Statements ... 355

8.2 The Location Counter .. 357

8.3 Symbols ... 358

8.4 Literal Constants .. 359
8.4.1 Integer Constants ... 360
8.4.2 String Constants ... 361
8.4.3 Real Constants .. 361
8.4.4 Text Constants ... 362

8.5 Declaring Manifest Constants Using Equates ... 362

8.6 Processor Directives ... 364

8.7 Procedures .. 365

8.8 Segments ... 366
8.8.1 Segment Names ... 367
8.8.2 Segment Loading Order ... 368
8.8.3 Segment Operands .. 369

8.8.3.1 The ALIGN Type .. 369
8.8.3.2 The COMBINE Type .. 373

8.8.4 The CLASS Type ... 374
8.8.5 The Read-only Operand .. 375
8.8.6 The USE16, USE32, and FLAT Options ... 375
8.8.7 Typical Segment Definitions ... 376
8.8.8 Why You Would Want to Control the Loading Order .. 376
8.8.9 Segment Prefixes ... 377
8.8.10 Controlling Segments with the ASSUME Directive ... 377
8.8.11 Combining Segments: The GROUP Directive ... 380
8.8.12 Why Even Bother With Segments? .. 383

8.9 The END Directive .. 384

Page x

8.10 Variables ..384

8.11 Label Types ..385
8.11.1 How to Give a Symbol a Particular Type ...385
8.11.2 Label Values ..386
8.11.3 Type Conflicts ...386

8.12 Address Expressions ..387
8.12.1 Symbol Types and Addressing Modes ...387
8.12.2 Arithmetic and Logical Operators ..388
8.12.3 Coercion ..390
8.12.4 Type Operators ..392
8.12.5 Operator Precedence ..396

8.13 Conditional Assembly ...397
8.13.1 IF Directive ...398
8.13.2 IFE directive ..399
8.13.3 IFDEF and IFNDEF ...399
8.13.4 IFB, IFNB ..399
8.13.5 IFIDN, IFDIF, IFIDNI, and IFDIFI ..400

8.14 Macros ..400
8.14.1 Procedural Macros ..400
8.14.2 Macros vs. 80x86 Procedures ...404
8.14.3 The LOCAL Directive ..406
8.14.4 The EXITM Directive ..406
8.14.5 Macro Parameter Expansion and Macro Operators ...407
8.14.6 A Sample Macro to Implement For Loops ...409
8.14.7 Macro Functions ...413
8.14.8 Predefined Macros, Macro Functions, and Symbols ..414
8.14.9 Macros vs. Text Equates ...418
8.14.10 Macros: Good and Bad News ...419

8.15 Repeat Operations ...420

8.16 The FOR and FORC Macro Operations ..421

8.17 The WHILE Macro Operation ...422

8.18 Macro Parameters ..422

8.19 Controlling the Listing ...424
8.19.1 The ECHO and %OUT Directives ..424
8.19.2 The TITLE Directive ..424
8.19.3 The SUBTTL Directive ..424
8.19.4 The PAGE Directive ..424
8.19.5 The .LIST, .NOLIST, and .XLIST Directives ..425
8.19.6 Other Listing Directives ..425

8.20 Managing Large Programs ...425
8.20.1 The INCLUDE Directive ...426
8.20.2 The PUBLIC, EXTERN, and EXTRN Directives ..427
8.20.3 The EXTERNDEF Directive ..428

8.21 Make Files ..429

8.22 Sample Program ..432
8.22.1 EX8.MAK ...432
8.22.2 Matrix.A ...432
8.22.3 EX8.ASM ...433
8.22.4 GETI.ASM ..442

The Art of Assembly Language

Page xi

8.22.5 GetArray.ASM ... 443
8.22.6 XProduct.ASM .. 445

8.23 Laboratory Exercises ... 447
8.23.1 Near vs. Far Procedures ... 447
8.23.2 Data Alignment Exercises .. 448
8.23.3 Equate Exercise .. 449
8.23.4 IFDEF Exercise ... 450
8.23.5 Make File Exercise ... 451

8.24 Programming Projects .. 453

8.25 Summary ... 453

8.26 Questions .. 456

Chapter Nine Arithmetic and Logical Operations .. 459

9.0 Chapter Overview .. 459

9.1 Arithmetic Expressions ... 460
9.1.1 Simple Assignments ... 460
9.1.2 Simple Expressions .. 460
9.1.3 Complex Expressions .. 462
9.1.4 Commutative Operators .. 466

9.2 Logical (Boolean) Expressions ... 467

9.3 Multiprecision Operations .. 470
9.3.1 Multiprecision Addition Operations .. 470
9.3.2 Multiprecision Subtraction Operations ... 472
9.3.3 Extended Precision Comparisons .. 473
9.3.4 Extended Precision Multiplication .. 475
9.3.5 Extended Precision Division ... 477
9.3.6 Extended Precision NEG Operations .. 480
9.3.7 Extended Precision AND Operations .. 481
9.3.8 Extended Precision OR Operations ... 482
9.3.9 Extended Precision XOR Operations .. 482
9.3.10 Extended Precision NOT Operations .. 482
9.3.11 Extended Precision Shift Operations ... 482
9.3.12 Extended Precision Rotate Operations .. 484

9.4 Operating on Different Sized Operands .. 485

9.5 Machine and Arithmetic Idioms ... 486
9.5.1 Multiplying Without MUL and IMUL ... 487
9.5.2 Division Without DIV and IDIV .. 488
9.5.3 Using AND to Compute Remainders ... 488
9.5.4 Implementing Modulo-n Counters with AND ... 489
9.5.5 Testing an Extended Precision Value for 0FFFF..FFh ... 489
9.5.6 TEST Operations ... 489
9.5.7 Testing Signs with the XOR Instruction .. 490

9.6 Masking Operations ... 490
9.6.1 Masking Operations with the AND Instruction ... 490
9.6.2 Masking Operations with the OR Instruction ... 491

9.7 Packing and Unpacking Data Types .. 491

9.8 Tables .. 493
9.8.1 Function Computation via Table Look Up .. 493
9.8.2 Domain Conditioning .. 496

Page xii

9.8.3 Generating Tables ..497

9.9 Sample Programs ...498
9.9.1 Converting Arithmetic Expressions to Assembly Language 498
9.9.2 Boolean Operations Example ..500
9.9.3 64-bit Integer I/O ..503
9.9.4 Packing and Unpacking Date Data Types ...506

9.10 Laboratory Exercises ...509
9.10.1 Debugging Programs with CodeView ...509
9.10.2 Debugging Strategies ..511

9.10.2.1 Locating Infinite Loops ... 511
9.10.2.2 Incorrect Computations .. 512
9.10.2.3 Illegal Instructions/Infinite Loops Part II ... 513

9.10.3 Debug Exercise I: Using CodeView to Find Bugs in a Calculation 513
9.10.4 Software Delay Loop Exercises ..515

9.11 Programming Projects ...516

9.12 Summary ..516

9.13 Questions ...518

Chapter 10 Control Structures .. 521

10.0 Chapter Overview ...521

10.1 Introduction to Decisions ..521

10.2 IF..THEN..ELSE Sequences ..522

10.3 CASE Statements ..525

10.4 State Machines and Indirect Jumps ...529

10.5 Spaghetti Code ..531

10.6 Loops ...531
10.6.1 While Loops ..532
10.6.2 Repeat..Until Loops ..532
10.6.3 LOOP..ENDLOOP Loops ..533
10.6.4 FOR Loops ..533

10.7 Register Usage and Loops ...534

10.8 Performance Improvements ..535
10.8.1 Moving the Termination Condition to the End of a Loop 535
10.8.2 Executing the Loop Backwards ..537
10.8.3 Loop Invariant Computations ...538
10.8.4 Unraveling Loops ...539
10.8.5 Induction Variables ..540
10.8.6 Other Performance Improvements ..541

10.9 Nested Statements ...542

10.10 Timing Delay Loops ..544

10.11 Sample Program ..547

10.12 Laboratory Exercises ...552
10.12.1 The Physics of Sound ...552
10.12.2 The Fundamentals of Music ...553
10.12.3 The Physics of Music ..554
10.12.4 The 8253/8254 Timer Chip ...555
10.12.5 Programming the Timer Chip to Produce Musical Tones 555
10.12.6 Putting it All Together ...556

The Art of Assembly Language

Page xiii

10.12.7 Amazing Grace Exercise .. 557

10.13 Programming Projects ... 558

10.14 Summary ... 559

10.15 Questions .. 561

Chapter 11 Procedures and Functions .. 565

11.0 Chapter Overview ... 565

11.1 Procedures .. 566

11.2 Near and Far Procedures .. 568
11.2.1 Forcing NEAR or FAR CALLs and Returns ... 568
11.2.2 Nested Procedures ... 569

11.3 Functions .. 572

11.4 Saving the State of the Machine ... 572

11.5 Parameters .. 574
11.5.1 Pass by Value ... 574
11.5.2 Pass by Reference .. 575
11.5.3 Pass by Value-Returned ... 575
11.5.4 Pass by Result ... 576
11.5.5 Pass by Name ... 576
11.5.6 Pass by Lazy-Evaluation ... 577
11.5.7 Passing Parameters in Registers ... 578
11.5.8 Passing Parameters in Global Variables .. 580
11.5.9 Passing Parameters on the Stack ... 581
11.5.10 Passing Parameters in the Code Stream .. 590
11.5.11 Passing Parameters via a Parameter Block .. 598

11.6 Function Results .. 600
11.6.1 Returning Function Results in a Register ... 601
11.6.2 Returning Function Results on the Stack ... 601
11.6.3 Returning Function Results in Memory Locations .. 602

11.7 Side Effects .. 602

11.8 Local Variable Storage .. 604

11.9 Recursion .. 606

11.10 Sample Program .. 610

11.11 Laboratory Exercises ... 618
11.11.1 Ex11_1.cpp ... 619
11.11.2 Ex11_1.asm .. 621
11.11.3 EX11_1a.asm .. 625

11.12 Programming Projects ... 632

11.13 Summary ... 633

11.14 Questions .. 635

 Section Three: ... 637

 Intermediate Level Assembly Language Programming .. 637

Chapter 12 Procedures: Advanced Topics .. 639

12.0 Chapter Overview ... 639

12.1 Lexical Nesting, Static Links, and Displays .. 639
12.1.1 Scope .. 640

Page xiv

12.1.2 Unit Activation, Address Binding, and Variable Lifetime 642
12.1.3 Static Links ..642
12.1.4 Accessing Non-Local Variables Using Static Links ...647
12.1.5 The Display ...648
12.1.6 The 80286 ENTER and LEAVE Instructions ..650

12.2 Passing Variables at Different Lex Levels as Parameters. ...652
12.2.1 Passing Parameters by Value in a Block Structured Language 652
12.2.2 Passing Parameters by Reference, Result, and Value-Result in a Block Structured Language 653
12.2.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language 654

12.3 Passing Parameters as Parameters to Another Procedure ..655
12.3.1 Passing Reference Parameters to Other Procedures ..656
12.3.2 Passing Value-Result and Result Parameters as Parameters 657
12.3.3 Passing Name Parameters to Other Procedures ..657
12.3.4 Passing Lazy Evaluation Parameters as Parameters ...658
12.3.5 Parameter Passing Summary ..658

12.4 Passing Procedures as Parameters ..659

12.5 Iterators ..663
12.5.1 Implementing Iterators Using In-Line Expansion ..664
12.5.2 Implementing Iterators with Resume Frames ..666

12.6 Sample Programs ...669
12.6.1 An Example of an Iterator ..669
12.6.2 Another Iterator Example ...673

12.7 Laboratory Exercises ...678
12.7.1 Iterator Exercise ..678
12.7.2 The 80x86 Enter and Leave Instructions ..684
12.7.3 Parameter Passing Exercises ..690

12.8 Programming Projects ...695

12.9 Summary ..697

12.10 Questions ...698

Chapter 13 MS-DOS, PC-BIOS, and File I/O ... 699

13.0 Chapter Overview ...700

13.1 The IBM PC BIOS ..701

13.2 An Introduction to the BIOS’ Services ..701
13.2.1 INT 5- Print Screen ...702
13.2.2 INT 10h - Video Services ..702
13.2.3 INT 11h - Equipment Installed ...704
13.2.4 INT 12h - Memory Available ..704
13.2.5 INT 13h - Low Level Disk Services ...704
13.2.6 INT 14h - Serial I/O ..706

13.2.6.1 AH=0: Serial Port Initialization ... 706
13.2.6.2 AH=1: Transmit a Character to the Serial Port ... 707
13.2.6.3 AH=2: Receive a Character from the Serial Port .. 707
13.2.6.4 AH=3: Serial Port Status ... 707

13.2.7 INT 15h - Miscellaneous Services ...708
13.2.8 INT 16h - Keyboard Services ..708

13.2.8.1 AH=0: Read a Key From the Keyboard .. 709
13.2.8.2 AH=1: See if a Key is Available at the Keyboard 709
13.2.8.3 AH=2: Return Keyboard Shift Key Status ... 710

13.2.9 INT 17h - Printer Services ...710

The Art of Assembly Language

Page xv

13.2.9.1 AH=0: Print a Character ... 711
13.2.9.2 AH=1: Initialize Printer ... 711
13.2.9.3 AH=2: Return Printer Status ... 711

13.2.10 INT 18h - Run BASIC ... 712
13.2.11 INT 19h - Reboot Computer .. 712
13.2.12 INT 1Ah - Real Time Clock .. 712

13.2.12.1 AH=0: Read the Real Time Clock ... 712
13.2.12.2 AH=1: Setting the Real Time Clock .. 713

13.3 An Introduction to MS-DOS

 .. 713
13.3.1 MS-DOS Calling Sequence ... 714
13.3.2 MS-DOS Character Oriented Functions ... 714
13.3.3 MS-DOS Drive Commands .. 716
13.3.4 MS-DOS “Obsolete” Filing Calls .. 717
13.3.5 MS-DOS Date and Time Functions .. 718
13.3.6 MS-DOS Memory Management Functions .. 718

13.3.6.1 Allocate Memory .. 719
13.3.6.2 Deallocate Memory .. 719
13.3.6.3 Modify Memory Allocation .. 719
13.3.6.4 Advanced Memory Management Functions .. 720

13.3.7 MS-DOS Process Control Functions .. 721
13.3.7.1 Terminate Program Execution ... 721
13.3.7.2 Terminate, but Stay Resident ... 721
13.3.7.3 Execute a Program ... 722

13.3.8 MS-DOS “New” Filing Calls ... 725
13.3.8.1 Open File .. 725
13.3.8.2 Create File .. 726
13.3.8.3 Close File .. 727
13.3.8.4 Read From a File .. 727
13.3.8.5 Write to a File ... 728
13.3.8.6 Seek (Move File Pointer) .. 728
13.3.8.7 Set Disk Transfer Address (DTA) ... 729
13.3.8.8 Find First File .. 729
13.3.8.9 Find Next File ... 730
13.3.8.10 Delete File .. 730
13.3.8.11 Rename File .. 730
13.3.8.12 Change/Get File Attributes ... 731
13.3.8.13 Get/Set File Date and Time .. 731
13.3.8.14 Other DOS Calls ... 732

13.3.9 File I/O Examples .. 734
13.3.9.1 Example #1: A Hex Dump Utility .. 734
13.3.9.2 Example #2: Upper Case Conversion .. 735

13.3.10 Blocked File I/O .. 737
13.3.11 The Program Segment Prefix (PSP) ... 739
13.3.12 Accessing Command Line Parameters ... 742
13.3.13 ARGC and ARGV .. 750

13.4 UCR Standard Library File I/O Routines .. 751
13.4.1 Fopen ... 751
13.4.2 Fcreate .. 752
13.4.3 Fclose ... 752
13.4.4 Fflush .. 752
13.4.5 Fgetc ... 752
13.4.6 Fread .. 753
13.4.7 Fputc .. 753

Page xvi

13.4.8 Fwrite ..753
13.4.9 Redirecting I/O Through the StdLib File I/O Routines ..753
13.4.10 A File I/O Example ...755

13.5 Sample Program ..758

13.6 Laboratory Exercises ...763

13.7 Programming Projects ...768

13.8 Summary ..768

13.9 Questions ...770

Chapter 14 Floating Point Arithmetic .. 771

14.0 Chapter Overview ...771

14.1 The Mathematics of Floating Point Arithmetic ...771

14.2 IEEE Floating Point Formats ..774

14.3 The UCR Standard Library Floating Point Routines ..777
14.3.1 Load and Store Routines ...778
14.3.2 Integer/Floating Point Conversion ...779
14.3.3 Floating Point Arithmetic ..780
14.3.4 Float/Text Conversion and Printff ..780

14.4 The 80x87 Floating Point Coprocessors ...781
14.4.1 FPU Registers ..781

14.4.1.1 The FPU Data Registers .. 782
14.4.1.2 The FPU Control Register ... 782
14.4.1.3 The FPU Status Register .. 785

14.4.2 FPU Data Types ..788
14.4.3 The FPU Instruction Set ..789
14.4.4 FPU Data Movement Instructions ..789

14.4.4.1 The FLD Instruction .. 789
14.4.4.2 The FST and FSTP Instructions ... 790
14.4.4.3 The FXCH Instruction ... 790

14.4.5 Conversions ..791
14.4.5.1 The FILD Instruction ... 791
14.4.5.2 The FIST and FISTP Instructions .. 791
14.4.5.3 The FBLD and FBSTP Instructions ... 792

14.4.6 Arithmetic Instructions ...792
14.4.6.1 The FADD and FADDP Instructions .. 792
14.4.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions 793
14.4.6.3 The FMUL and FMULP Instructions .. 794
14.4.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions 794
14.4.6.5 The FSQRT Instruction ... 795
14.4.6.6 The FSCALE Instruction .. 795
14.4.6.7 The FPREM and FPREM1 Instructions .. 795
14.4.6.8 The FRNDINT Instruction ... 796
14.4.6.9 The FXTRACT Instruction ... 796
14.4.6.10 The FABS Instruction .. 796
14.4.6.11 The FCHS Instruction .. 797

14.4.7 Comparison Instructions ..797
14.4.7.1 The FCOM, FCOMP, and FCOMPP Instructions .. 797
14.4.7.2 The FUCOM, FUCOMP, and FUCOMPP Instructions 798
14.4.7.3 The FTST Instruction .. 798
14.4.7.4 The FXAM Instruction ... 798

14.4.8 Constant Instructions ..798

The Art of Assembly Language

Page xvii

14.4.9 Transcendental Instructions .. 799
14.4.9.1 The F2XM1 Instruction ... 799
14.4.9.2 The FSIN, FCOS, and FSINCOS Instructions ... 799
14.4.9.3 The FPTAN Instruction .. 799
14.4.9.4 The FPATAN Instruction .. 800
14.4.9.5 The FYL2X and FYL2XP1 Instructions ... 800

14.4.10 Miscellaneous instructions ... 800
14.4.10.1 The FINIT and FNINIT Instructions ... 800
14.4.10.2 The FWAIT Instruction ... 801
14.4.10.3 The FLDCW and FSTCW Instructions .. 801
14.4.10.4 The FCLEX and FNCLEX Instructions .. 801
14.4.10.5 The FLDENV, FSTENV, and FNSTENV Instructions 801
14.4.10.6 The FSAVE, FNSAVE, and FRSTOR Instructions 802
14.4.10.7 The FSTSW and FNSTSW Instructions ... 803
14.4.10.8 The FINCSTP and FDECSTP Instructions .. 803
14.4.10.9 The FNOP Instruction .. 803
14.4.10.10 The FFREE Instruction .. 803

14.4.11 Integer Operations ... 803

14.5 Sample Program: Additional Trigonometric Functions ... 804

14.6 Laboratory Exercises ... 810
14.6.1 FPU vs StdLib Accuracy ... 811

14.7 Programming Projects .. 814

14.8 Summary ... 814

14.9 Questions .. 817

Chapter 15 Strings and Character Sets ... 819

15.0 Chapter Overview ... 819

15.1 The 80x86 String Instructions ... 819
15.1.1 How the String Instructions Operate ... 819
15.1.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes ... 820
15.1.3 The Direction Flag ... 821
15.1.4 The MOVS Instruction ... 822
15.1.5 The CMPS Instruction .. 826
15.1.6 The SCAS Instruction ... 828
15.1.7 The STOS Instruction ... 828
15.1.8 The LODS Instruction .. 829
15.1.9 Building Complex String Functions from LODS and STOS 830
15.1.10 Prefixes and the String Instructions ... 830

15.2 Character Strings ... 831
15.2.1 Types of Strings .. 831
15.2.2 String Assignment .. 832
15.2.3 String Comparison ... 834

15.3 Character String Functions ... 835
15.3.1 Substr .. 835
15.3.2 Index ... 838
15.3.3 Repeat ... 840
15.3.4 Insert ... 841
15.3.5 Delete ... 843
15.3.6 Concatenation .. 844

15.4 String Functions in the UCR Standard Library .. 845

Page xviii

15.4.1 StrBDel, StrBDelm ..846
15.4.2 Strcat, Strcatl, Strcatm, Strcatml ..847
15.4.3 Strchr ...848
15.4.4 Strcmp, Strcmpl, Stricmp, Stricmpl ...848
15.4.5 Strcpy, Strcpyl, Strdup, Strdupl ...849
15.4.6 Strdel, Strdelm ...850
15.4.7 Strins, Strinsl, Strinsm, Strinsml ..851
15.4.8 Strlen ...852
15.4.9 Strlwr, Strlwrm, Strupr, Struprm ...852
15.4.10 Strrev, Strrevm ...853
15.4.11 Strset, Strsetm ..853
15.4.12 Strspan, Strspanl, Strcspan, Strcspanl ...854
15.4.13 Strstr, Strstrl ...855
15.4.14 Strtrim, Strtrimm ..855
15.4.15 Other String Routines in the UCR Standard Library ...856

15.5 The Character Set Routines in the UCR Standard Library ...856

15.6 Using the String Instructions on Other Data Types ..859
15.6.1 Multi-precision Integer Strings ...859
15.6.2 Dealing with Whole Arrays and Records ...860

15.7 Sample Programs ...860
15.7.1 Find.asm ..860
15.7.2 StrDemo.asm ...862
15.7.3 Fcmp.asm ..865

15.8 Laboratory Exercises ...868
15.8.1 MOVS Performance Exercise #1 ...868
15.8.2 MOVS Performance Exercise #2 ...870
15.8.3 Memory Performance Exercise ..872
15.8.4 The Performance of Length-Prefixed vs. Zero-Terminated Strings 874

15.9 Programming Projects ...878

15.10 Summary ..878

15.11 Questions ...881

Chapter 16 Pattern Matching ... 883

16.1 An Introduction to Formal Language (Automata) Theory ...883
16.1.1 Machines vs. Languages ...883
16.1.2 Regular Languages ..884

16.1.2.1 Regular Expressions .. 885
16.1.2.2 Nondeterministic Finite State Automata (NFAs) .. 887
16.1.2.3 Converting Regular Expressions to NFAs ... 888
16.1.2.4 Converting an NFA to Assembly Language .. 890
16.1.2.5 Deterministic Finite State Automata (DFAs) .. 893
16.1.2.6 Converting a DFA to Assembly Language .. 895

16.1.3 Context Free Languages ...900
16.1.4 Eliminating Left Recursion and Left Factoring CFGs ...903
16.1.5 Converting REs to CFGs ...905
16.1.6 Converting CFGs to Assembly Language ...905
16.1.7 Some Final Comments on CFGs ...912
16.1.8 Beyond Context Free Languages ...912

16.2 The UCR Standard Library Pattern Matching Routines ...913

16.3 The Standard Library Pattern Matching Functions ...914

The Art of Assembly Language

Page xix

16.3.1 Spancset ... 914
16.3.2 Brkcset .. 915
16.3.3 Anycset ... 915
16.3.4 Notanycset ... 916
16.3.5 MatchStr .. 916
16.3.6 MatchiStr ... 916
16.3.7 MatchToStr ... 917
16.3.8 MatchChar .. 917
16.3.9 MatchToChar .. 918
16.3.10 MatchChars ... 918
16.3.11 MatchToPat .. 918
16.3.12 EOS ... 919
16.3.13 ARB ... 919
16.3.14 ARBNUM .. 920
16.3.15 Skip ... 920
16.3.16 Pos .. 921
16.3.17 RPos .. 921
16.3.18 GotoPos .. 921
16.3.19 RGotoPos ... 922
16.3.20 SL_Match2 .. 922

16.4 Designing Your Own Pattern Matching Routines .. 922

16.5 Extracting Substrings from Matched Patterns .. 925

16.6 Semantic Rules and Actions .. 929

16.7 Constructing Patterns for the MATCH Routine .. 933

16.8 Some Sample Pattern Matching Applications .. 935
16.8.1 Converting Written Numbers to Integers .. 935
16.8.2 Processing Dates .. 941
16.8.3 Evaluating Arithmetic Expressions .. 948
16.8.4 A Tiny Assembler ... 953
16.8.5 The “MADVENTURE” Game .. 963

16.9 Laboratory Exercises ... 979
16.9.1 Checking for Stack Overflow (Infinite Loops) .. 979
16.9.2 Printing Diagnostic Messages from a Pattern .. 984

16.10 Programming Projects ... 988

16.11 Summary ... 988

16.12 Questions .. 991

 Section Four: ... 993

 Advanced Assembly Language Programming .. 993

Chapter 17 Interrupts, Traps, and Exceptions .. 995

17.1 80x86 Interrupt Structure and Interrupt Service Routines (ISRs) 996

17.2 Traps ... 999

17.3 Exceptions .. 1000
17.3.1 Divide Error Exception (INT 0) ... 1000
17.3.2 Single Step (Trace) Exception (INT 1) .. 1000
17.3.3 Breakpoint Exception (INT 3) ... 1001
17.3.4 Overflow Exception (INT 4/INTO) ... 1001
17.3.5 Bounds Exception (INT 5/BOUND) ... 1001
17.3.6 Invalid Opcode Exception (INT 6) .. 1004

Page xx

17.3.7 Coprocessor Not Available (INT 7) ..1004

17.4 Hardware Interrupts ..1004
17.4.1 The 8259A Programmable Interrupt Controller (PIC) ...1005
17.4.2 The Timer Interrupt (INT 8) ...1007
17.4.3 The Keyboard Interrupt (INT 9) ...1008
17.4.4 The Serial Port Interrupts (INT 0Bh and INT 0Ch) ..1008
17.4.5 The Parallel Port Interrupts (INT 0Dh and INT 0Fh) ...1008
17.4.6 The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h) 1009
17.4.7 The Real-Time Clock Interrupt (INT 70h) ..1009
17.4.8 The FPU Interrupt (INT 75h) ..1009
17.4.9 Nonmaskable Interrupts (INT 2) ..1009
17.4.10 Other Interrupts ..1009

17.5 Chaining Interrupt Service Routines ...1010

17.6 Reentrancy Problems ..1012

17.7 The Efficiency of an Interrupt Driven System ..1014
17.7.1 Interrupt Driven I/O vs. Polling ...1014
17.7.2 Interrupt Service Time ..1015
17.7.3 Interrupt Latency ..1016
17.7.4 Prioritized Interrupts ...1020

17.8 Debugging ISRs ...1020

17.9 Summary ..1021

Chapter 18 Resident Programs ... 1025

18.1 DOS Memory Usage and TSRs ..1025

18.2 Active vs. Passive TSRs ..1029

18.3 Reentrancy ...1032
18.3.1 Reentrancy Problems with DOS ...1032
18.3.2 Reentrancy Problems with BIOS ..1033
18.3.3 Reentrancy Problems with Other Code ...1034

18.4 The Multiplex Interrupt (INT 2Fh) ..1034

18.5 Installing a TSR ..1035

18.6 Removing a TSR ...1037

18.7 Other DOS Related Issues ...1039

18.8 A Keyboard Monitor TSR ..1041

18.9 Semiresident Programs ..1055

18.10 Summary ..1064

Chapter 19 Processes, Coroutines, and Concurrency ... 1065

19.1 DOS Processes ...1065
19.1.1 Child Processes in DOS ..1065

19.1.1.1 Load and Execute ... 1066
19.1.1.2 Load Program .. 1068
19.1.1.3 Loading Overlays .. 1069
19.1.1.4 Terminating a Process ... 1069
19.1.1.5 Obtaining the Child Process Return Code ... 1070

19.1.2 Exception Handling in DOS: The Break Handler ..1070
19.1.3 Exception Handling in DOS: The Critical Error Handler 1071
19.1.4 Exception Handling in DOS: Traps ..1075
19.1.5 Redirection of I/O for Child Processes ..1075

The Art of Assembly Language

Page xxi

19.2 Shared Memory ... 1078
19.2.1 Static Shared Memory .. 1078
19.2.2 Dynamic Shared Memory .. 1088

19.3 Coroutines ... 1103

19.4 Multitasking .. 1124
19.4.1 Lightweight and HeavyWeight Processes ... 1124
19.4.2 The UCR Standard Library Processes Package .. 1125
19.4.3 Problems with Multitasking ... 1126
19.4.4 A Sample Program with Threads ... 1127

19.5 Synchronization .. 1129
19.5.1 Atomic Operations, Test & Set, and Busy-Waiting ... 1132
19.5.2 Semaphores .. 1134
19.5.3 The UCR Standard Library Semaphore Support .. 1136
19.5.4 Using Semaphores to Protect Critical Regions .. 1136
19.5.5 Using Semaphores for Barrier Synchronization .. 1140

19.6 Deadlock ... 1146

19.7 Summary ... 1147

 Section Five: .. 1151

 The PC’s I/O Ports ... 1151

Chapter 20 The PC Keyboard .. 1153

20.1 Keyboard Basics ... 1153

20.2 The Keyboard Hardware Interface .. 1159

20.3 The Keyboard DOS Interface ... 1167

20.4 The Keyboard BIOS Interface .. 1168

20.5 The Keyboard Interrupt Service Routine ... 1174

20.6 Patching into the INT 9 Interrupt Service Routine ... 1184

20.7 Simulating Keystrokes .. 1186
20.7.1 Stuffing Characters in the Type Ahead Buffer ... 1186
20.7.2 Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions 1187
20.7.3 Using the 8042 Microcontroller to Simulate Keystrokes 1192

20.8 Summary ... 1196

Chapter 21 The PC Parallel Ports .. 1199

21.1 Basic Parallel Port Information ... 1199

21.2 The Parallel Port Hardware .. 1201

21.3 Controlling a Printer Through the Parallel Port ... 1202
21.3.1 Printing via DOS .. 1203
21.3.2 Printing via BIOS ... 1203
21.3.3 An INT 17h Interrupt Service Routine ... 1203

21.4 Inter-Computer Communications on the Parallel Port .. 1209

21.5 Summary ... 1222

Chapter 22 The PC Serial Ports .. 1223

22.1 The 8250 Serial Communications Chip .. 1223
22.1.1 The Data Register (Transmit/Receive Register) .. 1224
22.1.2 The Interrupt Enable Register (IER) .. 1224
22.1.3 The Baud Rate Divisor ... 1225

Page xxii

22.1.4 The Interrupt Identification Register (IIR) ...1226
22.1.5 The Line Control Register ...1227
22.1.6 The Modem Control Register ...1228
22.1.7 The Line Status Register (LSR) ..1229
22.1.8 The Modem Status Register (MSR) ...1230
22.1.9 The Auxiliary Input Register ...1231

22.2 The UCR Standard Library Serial Communications Support Routines 1231

22.3 Programming the 8250 (Examples from the Standard Library) 1233

22.4 Summary ..1244

Chapter 23 The PC Video Display ... 1247

23.1 Memory Mapped Video ..1247

23.2 The Video Attribute Byte ...1248

23.3 Programming the Text Display ...1249

23.4 Summary ..1252

Chapter 24 The PC Game Adapter .. 1255

24.1 Typical Game Devices ...1255

24.2 The Game Adapter Hardware ...1257

24.3 Using BIOS’ Game I/O Functions ...1259

24.4 Writing Your Own Game I/O Routines ..1260

24.5 The Standard Game Device Interface (SGDI) ..1262
24.5.1 Application Programmer’s Interface (API) ...1262
24.5.2 Read4Sw ...1263
24.5.3 Read4Pots: ..1263
24.5.4 ReadPot ...1264
24.5.5 Read4: ...1264
24.5.6 CalibratePot ..1264
24.5.7 TestPotCalibration ..1264
24.5.8 ReadRaw ...1265
24.5.9 ReadSwitch ...1265
24.5.10 Read16Sw ..1265
24.5.11 Remove ...1265
24.5.12 TestPresence ...1265
24.5.13 An SGDI Driver for the Standard Game Adapter Card 1265

24.6 An SGDI Driver for the CH Products’ Flight Stick Pro

 ..1280

24.7 Patching Existing Games ...1293

24.8 Summary ..1306

 Section Six: .. 1309

 Optimization ...1309

Chapter 25 Optimizing Your Programs ... 1311

25.0 Chapter Overview ...1311

25.1 When to Optimize, When Not to Optimize ..1311

25.2 How Do You Find the Slow Code in Your Programs? ...1313

25.3 Is Optimization Necessary? ...1314

25.4 The Three Types of Optimization ...1315

25.5 Improving the Implementation of an Algorithm ..1317

The Art of Assembly Language

Page xxiii

25.6 Summary ... 1341

 Section Seven: ... 1343

 Appendixes .. 1343

Appendix A: ASCII/IBM Character Set .. 1345

Appendix B: Annotated Bibliography ... 1347

Appendix C: Keyboard Scan Codes .. 1351

Appendix D: Instruction Set Reference ... 1361

Page xxiv

Page 1

Why Would Anyone Learn This Stuff? Forward

Amazing! You’re actually reading this. That puts you into one of three categories: a student who is
being forced to read this stuff for a class, someone who picked up this book by accident (probably
because you have yet to be indoctrinated by the world at large), or one of the few who actually have an
interest in learning assembly language.

Egads. What kind of book begins this way? What kind of author would begin the book with a forward
like this one? Well, the truth is,

I

considered putting this stuff into the first chapter since most people never
bother reading the forward. A discussion of what’s right and what’s wrong with assembly language is very
important and sticking it into a chapter might encourage someone to read it. However, I quickly found
that university students can skip Chapter One as easily as they can skip a forward, so this stuff wound up
in a forward after all.

So why would anyone learn this stuff, anyway? Well, there are several reasons which come to mind:

• Your major requires a course in assembly language; i.e., you’re here against your will.
• A programmer where you work quit. Most of the source code left behind was written

in assembly language and you were elected to maintain it.
• Your boss has the audacity to insist that you write your code in assembly against your

strongest wishes.
• Your programs run just a little too slow, or are a little too large and you think assembly

language might help you get your project under control.
• You want to understand how computers actually work.
• You’re interested in learning how to write efficient code.
• You want to try something new.

Well, whatever the reason you’re here, welcome aboard. Let’s take a look at the subject you’re about
to study.

1 What’s Wrong With Assembly Language

Assembly language has a pretty bad reputation. The common impression about assembly language
programmers today is that they are all hackers or misguided individuals who need enlightenment. Here
are the reasons people give for

not

using assembly

1

:

• Assembly is hard to learn.
• Assembly is hard to read and understand.
• Assembly is hard to debug.
• Assembly is hard to maintain.
• Assembly is hard to write.
• Assembly language programming is time consuming.
• Improved compiler technology has eliminated the need for assembly language.
• Today, machines are so fast that we no longer need to use assembly.
• If you need more speed, you should use a better algorithm rather than switch to assem-

bly language.
• Machines have so much memory today, saving space using assembly is not important.
• Assembly language is not portable.

1. This text will use the terms “Assembly language” and “assembly” interchangeably.

Thi d t t d ith F M k 4 0 2

Forward

Page 2

These are some strong statements indeed!

Given that this is a book which teaches assembly language programming, written for college level
students, written by someone who appears to know what he’s talking about, your natural tendency is to
believe something if it appears in print. Having just read the above, you’re starting to assume that assembly
must be pretty bad. And that, dear friend, is eighty percent of what’s wrong with assembly language. That
is, people develop some very strong misconceptions about assembly language based on what they’ve
heard from friends, instructors, articles, and books. Oh, assembly language is certainly not perfect. It does
have many real faults. Those faults, however, are blown completely out of proportion by those unfamiliar
with assembly language. The next time someone starts preaching about the evils of assembly language,
ask, “how many years of assembly language programming experience do you have?” Of course assembly
is hard to understand

if you don’t know it.

 It is surprising how many people are willing to speak out
against assembly language based only on conversations they’ve had or articles they’ve read.

Assembly language users also use high level languages (HLLs); assembly’s most outspoken oppo-
nents rarely use anything but HLLs. Who would you believe, an expert well versed in both types of pro-
gramming languages or someone who has never taken the time to learn assembly language and develop
an honest opinion of its capabilities?

In a conversation with someone, I would go to great lengths to address each of the above issues.
Indeed, in a rough draft of this chapter I spent about ten pages explaining what is wrong with each of the
above statements. However, this book is long enough and I felt that very little was gained by going on and
on about these points. Nonetheless, a brief rebuttal to each of the above points is in order, if for no other
reason than to keep you from thinking there isn’t a decent defense for these statements.

Assembly is hard to learn.

 So is any language you don’t already know. Try learning (really learn-
ing) APL, Prolog, or Smalltalk sometime. Once you learn Pascal, learning another language like C, BASIC,
FORTRAN, Modula-2, or Ada is fairly easy because these languages are quite similar to Pascal. On the
other hand, learning a dissimilar language like Prolog is not so simple. Assembly language is also quite dif-
ferent from Pascal. It will be a little harder to learn than one of the other Pascal-like languages. However,
learning assembly isn’t much more difficult than learning your first programming language.

Assembly is hard to read and understand.

 It sure is, if you don’t know it. Most people who make
this statement simply don’t know assembly. Of course, it’s very easy to write impossible-to-read assembly
language programs. It’s also quite easy to write impossible-to-read C, Prolog, and APL programs. With
experience, you will find assembly as easy to read as other languages.

Assembly is hard to debug.

 Same argument as above. If you don’t have much experience debug-
ging assembly language programs, it’s going to be hard to debug them. Remember what it was like finding
bugs in your first Pascal (or other HLL) programs? Anytime you learn a new programming language you’ll
have problems debugging programs in that language until you gain experience.

Assembly is hard to maintain.

 C programs are hard to maintain. Indeed,

programs

 are hard to
maintain period. Inexperienced assembly language programmers tend to write hard to maintain programs.
Writing maintainable programs isn’t a talent. It’s a skill you develop through experience.

Assembly language is hard.

 This statement actually has a ring of truth to it. For the longest time
assembly language programmers wrote their programs completely from scratch, often “re-inventing the
wheel.” HLL programmers, especially C, Ada, and Modula-2 programmers, have long enjoyed the benefits
of a

standard library

 package which solves many common programming problems. Assembly language
programmers, on the other hand, have been known to rewrite an integer output routine every time they
need one. This book does

not

 take that approach. Instead, it takes advantage of some work done at the
University of California, Riverside: the

 UCR Standard Library for 80x86 Assembly Language Programmers.

These subroutines simplify assembly language just as the C standard library aids C programmers. The
library source listings are available electronically via Internet and various other communication services as
well as on a companion diskette.

Assembly language programming is time consuming.

Software engineers estimate that devel-
opers spend only about thirty percent of their time coding a solution to a problem. Even if it took twice as

Why Would Anyone Learn This Stuff?

Page 3

much time to write a program in assembly versus some HLL, there would only be a fifteen percent differ-
ence in the total project completion time. In fact,

good

 assembly language programmers do not need twice
as much time to implement something in assembly language. It is true using a HLL will save

some

 time;
however, the savings is insufficient to counter the benefits of using assembly language.

Improved compiler technology has eliminated the need for assembly language.

 This isn’t
true and probably never will be true. Optimizing compilers are getting better every day. However, assem-
bly language programmers get better performance by writing their code

differently

 than they would if they
were using some HLL. If assembly language programmers wrote their programs in C and then translated
them manually into assembly, a good C compiler would produce equivalent, or even better, code. Those
who make this claim about compiler technology are comparing their

hand-

compiled code against that
produced by a compiler. Compilers do a much better job of compiling than humans. Then again, you’ll
never catch an assembly language programmer writing “C code with MOV instructions.” After all, that’s
why you use C compilers.

Today, machines are so fast that we no longer need to use assembly.

 It is amazing that people
will spend lots of money to buy a machine slightly faster than the one they own, but they won’t spend any
extra time writing their code in assembly so it runs faster on the same hardware. There are many raging
debates about the speed of machines versus the speed of the software, but one fact remains: users always
want more speed. On any given machine, the fastest possible programs will be written in assembly lan-
guage

2

.

If you need more speed, you should use a better algorithm rather than switch to assembly
language.

Why can’t you use this better algorithm in assembly language? What if you’re already using the
best algorithm you can find and it’s still too slow? This is a totally bogus argument against assembly lan-
guage. Any algorithm you can implement in a HLL you can implement in assembly. On the other hand,
there are many algorithms you can implement in assembly which you cannot implement in a HLL

3

.

Machines have so much memory today, saving space using assembly is not important.

If
you give someone an inch, they’ll take a mile. Nowhere in programming does this saying have more appli-
cation than in program memory use. For the longest time, programmers were quite happy with 4 Kbytes.
Later, machines had 32 or even 64 Kilobytes. The programs filled up memory accordingly. Today, many
machines have 32 or 64

megabytes

of memory installed and some applications use it all. There are lots of
technical reasons why programmers should strive to write shorter programs, though now is not the time to
go into that. Let’s just say that space

is

 important and programmers should strive to write programs as short
as possible regardless of how much main memory they have in their machine.

Assembly language is not portable.

This is an undeniable fact. An 80x86 assembly language pro-
gram written for an IBM PC will not run on an Apple Macintosh

4

. Indeed, assembly language programs
written for the Apple Macintosh will not run on an Amiga, even though they share the same 680x0 micro-
processor. If you need to run your program on different machines, you’ll have to think long and hard
about using assembly language. Using C (or some other HLL) is no guarantee that your program will be
portable. C programs written for the IBM PC won’t compile and run on a Macintosh. And even if they did,
most Mac owners wouldn’t accept the result.

Portability is probably the biggest complaint people have against assembly language. They refuse to
use assembly because it is not portable, and then they turn around and write equally non-portable pro-
grams in C.

Yes, there are lots of lies, misconceptions, myths, and half-truths concerning assembly language.
Whatever you do, make sure you learn assembly language before forming your own opinions

5

. Speaking

2. That is not to imply that assembly language programs are always faster than HLL programs. A poorly written assembly language program can run
much slower than an equivalent HLL program. On the other hand, if a program is written in an HLL it is certainly possible to write a faster one in
assembly.
3. We’ll see some of these algorithms later in the book. They deal with instruction sequencing and other tricks based on how the processor oper-
ates.
4. Strictly speaking, this is not true. There is a program called SoftPC which emulates an IBM PC using an 80286

interpreter

. However, 80x86 assem-
bly language programs will not run in native mode on the Mac’s 680x0 microprocessor.

Forward

Page 4

out in ignorance may impress others who know less than you do, but it won’t impress those who know
the truth.

2 What’s Right With Assembly Language?

An old joke goes something like this: “There are three reasons for using assembly language: speed,
speed, and more speed.” Even those who absolutely hate assembly language will admit that if speed is
your primary concern, assembly language is the way to go. Assembly language has several benefits:

• Speed. Assembly language programs are generally the fastest programs around.
• Space. Assembly language programs are often the smallest.
• Capability. You can do things in assembly which are difficult or impossible in HLLs.
• Knowledge. Your knowledge of assembly language will help you write better pro-

grams, even when using HLLs.

Assembly language is the uncontested speed champion among programming languages. An expert
assembly language programmer will almost always produce a faster program than an expert C program-
mer

6

. While certain programs may not benefit much from implementation in assembly, you can speed up
many programs by a factor of five or ten over their HLL counterparts by careful coding in assembly lan-
guage; even greater improvement is possible if you’re not using an optimizing compiler. Alas, speedups
on the order of five to ten times are generally not achieved by beginning assembly language programmers.
However, if you spend the time to learn assembly language really well, you too can achieve these impres-
sive performance gains.

Despite some people’s claims that programmers no longer have to worry about memory constraints,
there are many programmers who need to write smaller programs. Assembly language programs are often
less than one-half the size of comparable HLL programs. This is especially impressive when you consider
the fact that data items generally consume the same amount of space in both types of programs, and that
data is responsible for a good amount of the space used by a typical application. Saving space saves
money. Pure and simple. If a program requires 1.5 megabytes, it will not fit on a 1.44 Mbyte floppy. Like-
wise, if an application requires 2 megabytes RAM, the user will have to install an extra megabyte if there is
only one available in the machine

7

. Even on big machines with 32 or more megabytes, writing gigantic
applications isn’t excusable. Most users put more than eight megabytes in their machines so they can run

multiple

 programs from memory at one time. The bigger a program is, the fewer applications will be able
to coexist in memory with it. Virtual memory isn’t a particularly attractive solution either. With virtual
memory, the bigger an application is, the slower the system will run as a result of that program’s size.

Capability is another reason people resort to assembly language. HLLs are an abstraction of a typical
machine architecture. They are designed to be independent of the particular machine architecture. As a
result, they rarely take into account any special features of the machine, features which are available to
assembly language programmers. If you want to use such features, you will need to use assembly lan-
guage. A really good example is the input/output instructions available on the 80x86 microprocessors.
These instructions let you directly access certain I/O devices on the computer. In general, such access is
not part of any high level language. Indeed, some languages like C pride themselves on not supporting

5. Alas, a typical ten-week course is rarely sufficient to learn assembly language well enough to develop an informed opinion on the subject. Prob-
ably three months of eight-hour days using the stuff would elevate you to the point where you could begin to make some informed statements on
the subject. Most people wouldn’t be able to consider themselves “good” at assembly language programs until they’ve been using the stuff for at
least a year.
6. There is absolutely no reason why an assembly language programmer would produce a

slower

 program since that programmer could look at the
output of the C compiler and copy whatever code runs faster than the hand produced code. HLL programmers don’t have an equivalent option.
7. You can substitute any numbers here you like. One fact remains though, programmers are famous for assuming users have more memory than
they really do.

Why Would Anyone Learn This Stuff?

Page 5

any specific I/O operations

8

. In assembly language you have no such restrictions. Anything you can do on
the machine you can do in assembly language. This is definitely

not

the case with most HLLs.

Of course, another reason for learning assembly language is just for the knowledge. Now some of
you may be thinking, “Gee, that would be wonderful, but I’ve got lots to do. My time would be better
spent writing code than learning assembly language.” There are some practical reasons for learning assem-
bly, even if you never intend to write a single line of assembly code. If you know assembly language well,
you’ll have an appreciation for the compiler, and you’ll know exactly what the compiler is doing with all
those HLL statements. Once you see how compilers translate seemingly innocuous statements into a ton of
machine code, you’ll want to search for better ways to accomplish the same thing. Good assembly lan-
guage programmers make better HLL programmers because they understand the limitations of the com-
piler and they know what it’s doing with their code. Those who don’t know assembly language will accept
the poor performance their compiler produces and simply shrug it off.

Yes, assembly language is definitely worth the effort. The only scary thing is that once you learn it
really well, you’ll probably start using it far more than you ever dreamed you would. That is a common
malady among assembly language programmers. Seems they can’t stand what the compilers are doing
with their programs.

3 Organization of This Text and Pedagogical Concerns

This book is divided into seven main sections: a section on machine organization and architecture, a
section on basic assembly language, a section on intermediate assembly language, a section on interrupts
and resident programs, a section covering IBM PC hardware peculiarities, a section on optimization, and
various appendices. It is doubtful that any single (even year-long) college course could cover all this mate-
rial, the final chapters were included to support compiler design, microcomputer design, operating sys-
tems, and other courses often found in a typical CS program.

Developing a text such as this one is a very difficult task. First of all, different universities have differ-
ent ideas about how this course should be taught. Furthermore, different schools spend differing amounts
of time on this subject (one or two quarters, a semester, or even a year). Furthermore, different schools
cover different material in the course. For example, some schools teach a “Machine Organization” course
that emphasizes hardware concepts and presents the assembly language instruction set, but does not
expect students to write real assembly language programs (that’s the job of a compiler). Other schools
teach a “Machine Organization and Assembly Language” course that combines hardware and software
issues together into one course. Still others teach a “Machine Organization” or “Digital Logic” course as a
prerequisite to an “Assembly Language” course. Still others teach “Assembly Language Programming” as a
course and leave the hardware for a “Computer Architecture” course later in the curriculum. Finally, let us
not forget that some people will pick up this text and use it to learn machine organization or assembly lan-
guage programming on their own, without taking a formal course on the subject. A good

textbook

 in this
subject area must be adaptable to the needs of the course, instructor, and student. These requirements
place enough demands on an author, but I wanted more for this text. Many textbooks teach a particular
subject well, but once you’ve read and understood them, they do not serve well as a reference guide.
Given the cost of textbooks today, it is a real shame that many textbooks’ value diminishes once the
course is complete. I sought to create a textbook that will explain many difficult concepts in as friendly a
manner as possible

and

 will serve as a reference guide once you’ve mastered the topic. By moving
advanced material you probably won’t cover in a typical college course into later chapters and by organiz-
ing this text so you can continue using it once the course is over, I hope to provide you with an excellent
value in this text.

Since this volume attempts to satisfy the requirements of several different courses, as well as provide
an excellent reference, you will probably find that it contains far more material than any single course

8. Certain languages on the PC support extensions to access the I/O devices since this is such an obvious limitation of the language. However, such
extensions are not part of the actual language.

Forward

Page 6

would actually cover. For example, the first section of this text covers machine organization. If you’ve
already covered this material in a previous course, your instructor may elect to skip the first four chapters
or so. For those courses that teach only assembly language, the instructor may decide to skip chapters two
and three. Schools operating on a ten-week quarter system may cover the material in each chapter only
briefly (about one week per chapter). Other schools may cover the material in much greater depth
because they have more time.

When writing this text, I choose to pick a subject and cover it in depth before proceeding to the next
topic. This pedagogy (teaching method) is unusual. Most assembly language texts jump around to differ-
ent topics, lightly touching on each one and returning to them as further explanation is necessary. Unfor-
tunately, such texts make poor references; trying to lookup information in such a book is difficult, at best,
because the information is spread throughout the book. Since I want this text to serve as a reasonable ref-
erence manual, such an organization was unappealing.

The problem with a straight reference manual is three-fold. First, reference manuals are often orga-
nized in a manner that makes it easy to look something up, not in a logical order that makes the material
easy to learn. For example, most assembly language reference manuals introduce the instruction set in
alphabetical order. However, you do not learn the instruction set in this manner. The second problem with
a (good) reference manual is that it presents the material in far greater depth than most beginners can han-
dle; this is why most texts keep returning to a subject, they add a little more depth on each return to the
subject. Finally, reference texts can present material in any order. The author need not ensure that a dis-
cussion only include material appearing earlier in the text. Material in the early chapters of a reference
manual can refer to later chapters; a typical college textbook should

not

 do this.

To receive maximum benefit from this text, you need to read it understanding its organization. This is

not

 a text you read from front to back, making sure you understand each and every little detail before pro-
ceeding to the next. I’ve covered many topics in this text in considerable detail. Someone learning assem-
bly language for the first time will become overwhelmed with the material that appears in each chapter.
Typically, you will read over a chapter once to learn the basic essentials and then refer back to each chap-
ter learning additional material as you need it. Since it is unlikely that you will know which material is
basic or advanced, I’ve taken the liberty of describing which sections are basic, intermediate, or advanced
at the beginning of each chapter. A ten-week course, covering this entire text for example, might only deal
with the basic topics. In a semester course, there is time to cover the intermediate material as well.
Depending on prerequisites and length of course, the instructor can elect to teach this material at any level
of detail (or even jump around in the text).

In the past, if a student left an assembly language class and could actually implement an algorithm in
assembly language, the instructor probably considered the course a success. However, compiler technol-
ogy has progressed to the point that simply “getting something to work” in assembly language is pure
folly. If you don’t write your code efficiently in assembly language, you may as well stick with HLLs.
They’re easy to use, and the compiler will probably generate faster code than you if you’re careless in the
coding process.

This text spends a great deal of time on machine and data organization. There are two important rea-
sons for this. First of all, to write efficient code on modern day processors requires an intimate knowledge
of what’s going on in the hardware. Without this knowledge, your programs on the 80486 and later could
run at less than half their possible speed. To write the best possible assembly language programs you must
be familiar with how the hardware operates. Another reason this text emphasizes computer organization is
that most colleges and universities are more interested in teaching machine organization than they are a
particular assembly language. While the typical college student won’t have much need for assembly lan-
guage during the four years as an undergraduate, the machine organization portion of the class is useful in
several upper division classes. Classes like data structures and algorithms, computer architecture, operat-
ing systems, programming language design, and compilers all benefit from an introductory course in com-
puter organization. That’s why this text devotes an entire section to that subject.

Why Would Anyone Learn This Stuff?

Page 7

4 Obtaining Program Source Listings and Other Materials in This Text

All of the software appearing in this text is available on the companion diskette. The material for this
text comes in two parts: source listings of various examples presented in this text and the code for the

UCR
Standard Library for 80x86 Assembly Language Programmers

. The UCR Standard Library is also available
electronically from several different sources (including Internet, BIX, and other on-line services).

You may obtain the files electronically via ftp from the following Internet address:

ftp.cs.ucr.edu

Log onto ftp.cs.ucr.edu using the anonymous account name and any password. Switch to the “/pub/pc/
ibmpcdir” subdirectory (this is UNIX so make sure you use lowercase letters). You will find the appropri-
ate files by searching through this directory.

The exact filename(s) of this material may change with time, and different services use different
names for these files. Generally posting a message enquiring about the UCR Standard Library or this text
will generate appropriate responses.

Forward

Page 8

Page 11

Data Representation Chapter One

Probably the biggest stumbling block most beginners encounter when attempting to
learn assembly language is the common use of the binary and hexadecimal numbering
systems. Many programmers think that hexadecimal (or hex

1

) numbers represent abso-
lute proof that God never intended anyone to work in assembly language. While it is true
that hexadecimal numbers are a little different from what you may be used to, their
advantages outweigh their disadvantages by a large margin. Nevertheless, understanding
these numbering systems is important because their use simplifies other complex topics
including boolean algebra and logic design, signed numeric representation, character
codes, and packed data.

1.0 Chapter Overview

This chapter discusses several important concepts including the binary and hexadeci-
mal numbering systems, binary data organization (bits, nibbles, bytes, words, and double
words), signed and unsigned numbering systems, arithmetic, logical, shift, and rotate
operations on binary values, bit fields and packed data, and the ASCII character set. This
is basic material and the remainder of this text depends upon your understanding of these
concepts. If you are already familiar with these terms from other courses or study, you
should at least skim this material before proceeding to the next chapter. If you are unfa-
miliar with this material, or only vaguely familiar with it, you should study it carefully
before proceeding.

All of the material in this chapter is important!

 Do not skip over any mate-
rial.

1.1 Numbering Systems

Most modern computer systems do not represent numeric values using the decimal
system. Instead, they typically use a binary or two’s complement numbering system. To
understand the limitations of computer arithmetic, you must understand how computers
represent numbers.

1.1.1 A Review of the Decimal System

You’ve been using the decimal (base 10) numbering system for so long that you prob-
ably take it for granted. When you see a number like “123”, you don’t think about the
value 123; rather, you generate a mental image of how many items this value represents.
In reality, however, the number 123 represents:

1*10

2

 + 2 * 10

1

 + 3*10

0

or

100+20+3

Each digit appearing to the left of the decimal point represents a value between zero
and nine times an increasing power of ten. Digits appearing to the right of the decimal
point represent a value between zero and nine times an increasing negative power of ten.
For example, the value 123.456 means:

1*10

2

 + 2*10

1

 + 3*10

0

 + 4*10

-1

 + 5*10

-2

 + 6*10

-3

or

1. Hexadecimal is often abbreviated as

hex

 even though, technically speaking, hex means base six, not base six-
teen.

Thi d t t d ith F M k 4 0 2

Chapter 01

Page 12

100 + 20 + 3 + 0.4 + 0.05 + 0.006

1.1.2 The Binary Numbering System

Most modern computer systems (including the IBM PC) operate using binary logic.
The computer represents values using two voltage levels (usually 0v and +5v). With two
such levels we can represent exactly two different values. These could be any two differ-
ent values, but by convention we use the values zero and one. These two values, coinci-
dentally, correspond to the two digits used by the binary numbering system. Since there is
a correspondence between the logic levels used by the 80x86 and the two digits used in
the binary numbering system, it should come as no surprise that the IBM PC employs the
binary numbering system.

The binary numbering system works just like the decimal numbering system, with
two exceptions: binary only allows the digits 0 and 1 (rather than 0-9), and binary uses
powers of two rather than powers of ten. Therefore, it is very easy to convert a binary
number to decimal. For each “1” in the binary string, add in 2

n

 where “n” is the
zero-based position of the binary digit. For example, the binary value 11001010

2

 repre-
sents:

1*2

7

 + 1*2

6

 + 0*2

5

 + 0*2

4

 + 1*2

3

 + 0*2

2

 + 1*2

1

 + 0*2

0

=

 128 + 64 + 8 + 2
=

202

10

To convert decimal to binary is slightly more difficult. You must find those powers of
two which, when added together, produce the decimal result. The easiest method is to
work from the a large power of two down to 2

0

. Consider the decimal value 1359:

• 2

10

=1024, 2

11

=2048. So 1024 is the largest power of two less than 1359.
Subtract 1024 from 1359 and begin the binary value on the left with a “1”
digit. Binary = ”1”, Decimal result is 1359 - 1024 = 335.

• The next lower power of two (2

9

= 512) is greater than the result from
above, so add a “0” to the end of the binary string. Binary = “10”, Decimal
result is still 335.

• The next lower power of two is 256 (2

8

). Subtract this from 335 and add a
“1” digit to the end of the binary number. Binary = “101”, Decimal result
is 79.

• 128 (2

7

) is greater than 79, so tack a “0” to the end of the binary string.
Binary = “1010”, Decimal result remains 79.

• The next lower power of two (2

6

 = 64) is less than79, so subtract 64 and
append a “1” to the end of the binary string. Binary = “10101”, Decimal
result is 15.

• 15 is less than the next power of two (2

5

 = 32) so simply add a “0” to the
end of the binary string. Binary = “101010”, Decimal result is still 15.

• 16 (2

4

) is greater than the remainder so far, so append a “0” to the end of
the binary string. Binary = “1010100”, Decimal result is 15.

• 2

3

 (eight) is less than 15, so stick another “1” digit on the end of the binary
string. Binary = “10101001”, Decimal result is 7.

• 2

2

 is less than seven, so subtract four from seven and append another one
to the binary string. Binary = “101010011”, decimal result is 3.

• 2

1

 is less than three, so append a one to the end of the binary string and
subtract two from the decimal value. Binary = “1010100111”, Decimal
result is now 1.

• Finally, the decimal result is one, which is 2

0

, so add a final “1” to the end
of the binary string. The final binary result is “10101001111”

Data Representation

Page 13

Binary numbers, although they have little importance in high level languages, appear
everywhere in assembly language programs.

1.1.3 Binary Formats

In the purest sense, every binary number contains an infinite number of digits (or

bits

which is short for binary digits). For example, we can represent the number five by:

101 00000101 0000000000101 ...
000000000000101

Any number of leading zero bits may precede the binary number without changing its
value.

We will adopt the convention ignoring any leading zeros. For example, 101

2

 repre-
sents the number five. Since the 80x86 works with groups of eight bits, we’ll find it much
easier to zero extend all binary numbers to some multiple of four or eight bits. Therefore,
following this convention, we’d represent the number five as 0101

2

 or 00000101

2

.

In the United States, most people separate every three digits with a comma to make
larger numbers easier to read. For example, 1,023,435,208 is much easier to read and com-
prehend than 1023435208. We’ll adopt a similar convention in this text for binary num-
bers. We will separate each group of four binary bits with a space. For example, the binary
value 1010111110110010 will be written 1010 1111 1011 0010.

We often pack several values together into the same binary number. One form of the
80x86 MOV instruction (see appendix D) uses the binary encoding

1011 0rrr dddd dddd

 to
pack three items into 16 bits: a five-bit operation code (10110), a three-bit register field
(rrr), and an eight-bit immediate value (dddd dddd). For convenience, we’ll assign a
numeric value to each bit position. We’ll number each bit as follows:

1) The rightmost bit in a binary number is bit position zero.

2) Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:

X

7

 X

6

 X

5

 X

4

 X

3

 X

2

 X

1

 X

0

A 16-bit binary value uses bit positions zero through fifteen:

X

15

 X

14

 X

13

 X

12

 X

11

 X

10

 X

9

 X

8

 X

7

 X

6

 X

5

 X

4

 X

3

 X

2

 X

1

 X

0

Bit zero is usually referred to as the

low order

 (L.O.) bit. The left-most bit is typically
called the high order (H.O.) bit. We’ll refer to the intermediate bits by their respective bit
numbers.

1.2 Data Organization

In pure mathematics a value may take an arbitrary number of bits. Computers, on the
other hand, generally work with some specific number of bits. Common collections are
single bits, groups of four bits (called nibbles), groups of eight bits (called bytes), groups of
16 bits (called words), and more. The sizes are not arbitrary. There is a good reason for
these particular values. This section will describe the bit groups commonly used on the
Intel 80x86 chips.

Chapter 01

Page 14

1.2.1 Bits

The smallest “unit” of data on a binary computer is a single bit. Since a single bit is
capable of representing only two different values (typically zero or one) you may get the
impression that there are a very small number of items you can represent with a single bit.
Not true! There are an infinite number of items you can represent with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero or
one, true or false, on or off, male or female, and right or wrong. However, you are not lim-
ited to representing binary data types (that is, those objects which have only two distinct
values). You could use a single bit to represent the numbers 723 and 1,245. Or perhaps
6,254 and 5. You could also use a single bit to represent the colors red and blue. You could
even represent two unrelated objects with a single bit,. For example, you could represent
the color red and the number 3,256 with a single bit. You can represent any two different
values with a single bit. However, you can represent only two different values with a sin-
gle bit.

To confuse things even more, different bits can represent different things. For exam-
ple, one bit might be used to represent the values zero and one, while an adjacent bit
might be used to represent the values true and false. How can you tell by looking at the
bits? The answer, of course, is that you can’t. But this illustrates the whole idea behind
computer data structures: data is what you define it to be. If you use a bit to represent a bool-
ean (true/false) value then that bit (by your definition) represents true or false. For the bit
to have any true meaning, you must be consistent. That is, if you’re using a bit to represent
true or false at one point in your program, you shouldn’t use the true/false value stored in
that bit to represent red or blue later.

Since most items you’ll be trying to model require more than two different values, sin-
gle bit values aren’t the most popular data type you’ll use. However, since everything else
consists of groups of bits, bits will play an important role in your programs. Of course,
there are several data types that require two distinct values, so it would seem that bits are
important by themselves. However, you will soon see that individual bits are difficult to
manipulate, so we’ll often use other data types to represent boolean values.

1.2.2 Nibbles

A nibble is a collection of four bits. It wouldn’t be a particularly interesting data struc-
ture except for two items: BCD (binary coded decimal) numbers and hexadecimal numbers.
It takes four bits to represent a single BCD or hexadecimal digit. With a nibble, we can rep-
resent up to 16 distinct values. In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, and F are represented with four bits (see “The Hexadecimal
Numbering System” on page 17). BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and
requires four bits. In fact, any sixteen distinct values can be represented with a nibble, but
hexadecimal and BCD digits are the primary items we can represent with a single nibble.

1.2.3 Bytes

Without question, the most important data structure used by the 80x86 microproces-
sor is the byte. A byte consists of eight bits and is the smallest addressable datum (data
item) on the 80x86 microprocessor. Main memory and I/O addresses on the 80x86 are all
byte addresses. This means that the smallest item that can be individually accessed by an
80x86 program is an eight-bit value. To access anything smaller requires that you read the
byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven using the convention in Figure 1.1.

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most significant
bit of the byte. We’ll refer to all other bits by their number.

Data Representation

Page 15

Note that a byte also contains exactly two nibbles (see Figure 1.2).

Bits 0..3 comprise the low order nibble, bits 4..7 form the high order nibble. Since a byte
contains exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally,
we’ll use a byte to represent numeric values in the range 0..255, signed numbers in the
range -128..+127 (see “Signed and Unsigned Numbers” on page 23), ASCII/IBM character
codes, and other special data types requiring no more than 256 different values. Many
data types have fewer than 256 items so eight bits is usually sufficient.

Since the 80x86 is a byte addressable machine (see “Memory Layout and Access” on
page 145), it turns out to be more efficient to manipulate a whole byte than an individual
bit or nibble. For this reason, most programmers use a whole byte to represent data types
that require no more than 256 items, even if fewer than eight bits would suffice. For exam-
ple, we’ll often represent the boolean values true and false by 000000012 and 000000002
(respectively).

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values. To allow it to communicate with the rest of the world, the IBM PC uses a
variant of the ASCII character set (see “The ASCII Character Set” on page 28). There are
128 defined codes in the ASCII character set. IBM uses the remaining 128 possible values
for extended character codes including European characters, graphic symbols, Greek let-
ters, and math symbols. See Appendix A for the character/code assignments.

1.2.4 Words

A word is a group of 16 bits. We’ll number the bits in a word starting from zero on up to
fifteen. The bit numbering appears in Figure 1.3.

Like the byte, bit 0 is the low order bit and bit 15 is the high order bit. When referencing
the other bits in a word use their bit position number.

Figure 1.2: The Two Nibbles in a Byte

Figure 1.1: Bit Numbering in a Byte

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble

Figure 1.3: Bit Numbers in a Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Chapter 01

Page 16

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte,
bits 8 through 15 form the high order byte (see Figure 1.4).

Naturally, a word may be further broken down into four nibbles as shown in Figure 1.5.

 Nibble zero is the low order nibble in the word and nibble three is the high order nib-
ble of the word. The other two nibbles are “nibble one” or “nibble two”.

With 16 bits, you can represent 216 (65,536) different values. These could be the values
in the range 0..65,535 (or, as is usually the case, -32,768..+32,767) or any other data type
with no more than 65,536 values. The three major uses for words are integer values, off-
sets, and segment values (see“Memory Layout and Access” on page 145 for a description
of segments and offsets).

Words can represent integer values in the range 0..65,535 or -32,768..32,767. Unsigned
numeric values are represented by the binary value corresponding to the bits in the word.
Signed numeric values use the two’s complement form for numeric values (see “Signed
and Unsigned Numbers” on page 23). Segment values, which are always 16 bits long, con-
stitute the paragraph address of a code, data, extra, or stack segment in memory.

1.2.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a double
word quantity is 32 bits long as shown in Figure 1.6.

Naturally, this double word can be divided into a high order word and a low order
word, or four different bytes, or eight different nibbles (see Figure 1.7).

Double words can represent all kinds of different things. First and foremost on the list
is a segmented address. Another common item represented with a double word is a 32-bit

Figure 1.4: The Two Bytes in a Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H. O. Byte L. O. Byte

Figure 1.5: Nibbles in a Word

H. O. Nibble L. O. Nibble

Nibble #3 Nibble #2 Nibble #1 Nibble #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1.6: Bit Numbers in a Double Word

31 23 15 7 0

Data Representation

Page 17

integer value (which allows unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range -2,147,483,648..2,147,483,647). 32-bit floating point values also fit
into a double word. Most of the time, we’ll use double words to hold segmented
addresses.

1.3 The Hexadecimal Numbering System

A big problem with the binary system is verbosity. To represent the value 20210
requires eight binary digits. The decimal version requires only three decimal digits and,
thus, represents numbers much more compactly than does the binary numbering system.
This fact was not lost on the engineers who designed binary computer systems. When
dealing with large values, binary numbers quickly become too unwieldy. Unfortunately,
the computer thinks in binary, so most of the time it is convenient to use the binary num-
bering system. Although we can convert between decimal and binary, the conversion is
not a trivial task. The hexadecimal (base 16) numbering system solves these problems.
Hexadecimal numbers offer the two features we’re looking for: they’re very compact, and
it’s simple to convert them to binary and vice versa. Because of this, most binary computer
systems today use the hexadecimal numbering system2. Since the radix (base) of a hexa-
decimal number is 16, each hexadecimal digit to the left of the hexadecimal point repre-
sents some value times a successive power of 16. For example, the number 123416 is equal
to:

1 * 163 + 2 * 162 + 3 * 161 + 4 * 160

or

4096 + 512 + 48 + 4 = 466010.

Each hexadecimal digit can represent one of sixteen values between 0 and 1510. Since
there are only ten decimal digits, we need to invent six additional digits to represent the
values in the range 1010 through 1510. Rather than create new symbols for these digits,
we’ll use the letters A through F. The following are all examples of valid hexadecimal
numbers:

2. Digital Equipment is the only major holdout. They still use octal numbers in most of their systems. A legacy of
the days when they produced 12-bit machines.

Figure 1.7: Nibbles, Bytes, and Words in a Double Word

31 23 15 7 0

H.O. Word L.O. Word

H.O. Byte Byte # 2 Byte # 1 L.O. Byte

31 23 15 7 0

Nibble #7 #6 #5 #4 #3 #2 #1 #0
 H. O. L. O.

31 23 15 7 0

Chapter 01

Page 18

123416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

Since we’ll often need to enter hexadecimal numbers into the computer system, we’ll
need a different mechanism for representing hexadecimal numbers. After all, on most
computer systems you cannot enter a subscript to denote the radix of the associated value.
We’ll adopt the following conventions:

• All numeric values (regardless of their radix) begin with a decimal digit.
• All hexadecimal values end with the letter “h”, e.g., 123A4h3.
• All binary values end with the letter “b”.
• Decimal numbers may have a “t” or “d” suffix.

Examples of valid hexadecimal numbers:

1234h 0DEADh 0BEEFh 0AFBh 0FEEDh 0DEAFh

 As you can see, hexadecimal numbers are compact and easy to read. In addition, you
can easily convert between hexadecimal and binary. Consider the following table:

This table provides all the information you’ll ever need to convert any hexadecimal num-
ber into a binary number or vice versa.

To convert a hexadecimal number into a binary number, simply substitute the corre-
sponding four bits for each hexadecimal digit in the number. For example, to convert

3. Actually, following hexadecimal values with an “h” is an Intel convention, not a general convention. The 68000
and 65c816 assemblers used in the Macintosh and Apple II denote hexadecimal numbers by prefacing the hex
value with a “$” symbol.

Table 1: Binary/Hex Conversion

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Data Representation

Page 19

0ABCDh into a binary value, simply convert each hexadecimal digit according to the table
above:

 0 A B C D Hexadecimal

 0000 1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy. The first step is
to pad the binary number with zeros to make sure that there is a multiple of four bits in
the number. For example, given the binary number 1011001010, the first step would be to
add two bits to the left of the number so that it contains 12 bits. The converted binary
value is 001011001010. The next step is to separate the binary value into groups of four
bits, e.g., 0010 1100 1010. Finally, look up these binary values in the table above and substi-
tute the appropriate hexadecimal digits, e.g., 2CA. Contrast this with the difficulty of con-
version between decimal and binary or decimal and hexadecimal!

Since converting between hexadecimal and binary is an operation you will need to
perform over and over again, you should take a few minutes and memorize the table
above. Even if you have a calculator that will do the conversion for you, you’ll find man-
ual conversion to be a lot faster and more convenient when converting between binary
and hex.

1.4 Arithmetic Operations on Binary and Hexadecimal Numbers

There are several operations we can perform on binary and hexadecimal numbers.
For example, we can add, subtract, multiply, divide, and perform other arithmetic opera-
tions. Although you needn’t become an expert at it, you should be able to, in a pinch, per-
form these operations manually using a piece of paper and a pencil. Having just said that
you should be able to perform these operations manually, the correct way to perform such
arithmetic operations is to have a calculator which does them for you. There are several
such calculators on the market; the following table lists some of the manufacturers who
produce such devices:

Manufacturers of Hexadecimal Calculators:

• Casio
• Hewlett-Packard
• Sharp
• Texas Instruments

 This list is, by no means, exhaustive. Other calculator manufacturers probably pro-
duce these devices as well. The Hewlett-Packard devices are arguably the best of the
bunch . However, they are more expensive than the others. Sharp and Casio produce units
which sell for well under $50. If you plan on doing any assembly language programming
at all, owning one of these calculators is essential.

Another alternative to purchasing a hexadecimal calculator is to obtain a TSR (Termi-
nate and Stay Resident) program such as SideKicktm which contains a built-in calculator.
However, unless you already have one of these programs, or you need some of the other
features they offer, such programs are not a particularly good value since they cost more
than an actual calculator and are not as convenient to use.

To understand why you should spend the money on a calculator, consider the follow-
ing arithmetic problem:

 9h
+ 1h

You’re probably tempted to write in the answer “10h” as the solution to this problem. But
that is not correct! The correct answer is ten, which is “0Ah”, not sixteen which is “10h”. A
similar problem exists with the arithmetic problem:

Chapter 01

Page 20

 10h
- 1h

You’re probably tempted to answer “9h” even though the true answer is “0Fh”. Remem-
ber, this problem is asking “what is the difference between sixteen and one?” The answer,
of course, is fifteen which is “0Fh”.

Even if the two problems above don’t bother you, in a stressful situation your brain
will switch back into decimal mode while you’re thinking about something else and you’ll
produce the incorrect result. Moral of the story – if you must do an arithmetic computa-
tion using hexadecimal numbers by hand, take your time and be careful about it. Either
that, or convert the numbers to decimal, perform the operation in decimal, and convert
them back to hexadecimal.

You should never perform binary arithmetic computations. Since binary numbers
usually contain long strings of bits, there is too much of an opportunity for you to make a
mistake. Always convert binary numbers to hex, perform the operation in hex (preferably
with a hex calculator) and convert the result back to binary, if necessary.

1.5 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexadecimal and
binary numbers: AND, OR, XOR (exclusive-or), and NOT. Unlike the arithmetic opera-
tions, a hexadecimal calculator isn’t necessary to perform these operations. It is often eas-
ier to do them by hand than to use an electronic device to compute them. The logical AND
operation is a dyadic4 operation (meaning it accepts exactly two operands). These oper-
ands are single binary (base 2) bits. The AND operation is:

0 and 0 = 0

0 and 1 = 0

1 and 0 = 0

1 and 1 = 1

A compact way to represent the logical AND operation is with a truth table. A truth
table takes the following form:

This is just like the multiplication tables you encountered in elementary school. The
column on the left and the row at the top represent input values to the AND operation.
The value located at the intersection of the row and column (for a particular pair of input
values) is the result of logically ANDing those two values together. In English, the logical
AND operation is, “If the first operand is one and the second operand is one, the result is
one; otherwise the result is zero.”

One important fact to note about the logical AND operation is that you can use it to
force a zero result. If one of the operands is zero, the result is always zero regardless of the
other operand. In the truth table above, for example, the row labelled with a zero input

4. Many texts call this a binary operation. The term dyadic means the same thing and avoids the confusion with
the binary numbering system.

Table 2: AND Truth Table

AND 0 1

0 0 0

1 0 1

Data Representation

Page 21

contains only zeros and the column labelled with a zero only contains zero results. Con-
versely, if one operand contains a one, the result is exactly the value of the second oper-
and. These features of the AND operation are very important, particularly when working
with bit strings and we want to force individual bits in the string to zero. We will investi-
gate these uses of the logical AND operation in the next section.

The logical OR operation is also a dyadic operation. Its definition is:

0 or 0 = 0

0 or 1 = 1

1 or 0 = 1

1 or 1 = 1

The truth table for the OR operation takes the following form:

Colloquially, the logical OR operation is, “If the first operand or the second operand
(or both) is one, the result is one; otherwise the result is zero.” This is also known as the
inclusive-OR operation.

If one of the operands to the logical-OR operation is a one, the result is always one
regardless of the second operand’s value. If one operand is zero, the result is always the
value of the second operand. Like the logical AND operation, this is an important
side-effect of the logical-OR operation that will prove quite useful when working with bit
strings (see the next section).

Note that there is a difference between this form of the inclusive logical OR operation
and the standard English meaning. Consider the phrase “I am going to the store or I am
going to the park.” Such a statement implies that the speaker is going to the store or to the
park but not to both places. Therefore, the English version of logical OR is slightly differ-
ent than the inclusive-OR operation; indeed, it is closer to the exclusive-OR operation.

The logical XOR (exclusive-or) operation is also a dyadic operation. It is defined as
follows:

0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

The truth table for the XOR operation takes the following form:

Table 3: OR Truth Table

OR 0 1

0 0 1

1 1 1

Table 4: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

Chapter 01

Page 22

In English, the logical XOR operation is, “If the first operand or the second operand,
but not both, is one, the result is one; otherwise the result is zero.” Note that the exclu-
sive-or operation is closer to the English meaning of the word “or” than is the logical OR
operation.

If one of the operands to the logical exclusive-OR operation is a one, the result is
always the inverse of the other operand; that is, if one operand is one, the result is zero if
the other operand is one and the result is one if the other operand is zero. If the first oper-
and contains a zero, then the result is exactly the value of the second operand. This feature
lets you selectively invert bits in a bit string.

 The logical NOT operation is a monadic5 operation (meaning it accepts only one
operand). It is:

NOT 0 = 1

NOT 1 = 0

The truth table for the NOT operation takes the following form:

1.6 Logical Operations on Binary Numbers and Bit Strings

As described in the previous section, the logical functions work only with single bit
operands. Since the 80x86 uses groups of eight, sixteen, or thirty-two bits, we need to
extend the definition of these functions to deal with more than two bits. Logical functions
on the 80x86 operate on a bit-by-bit (or bitwise) basis. Given two values, these functions
operate on bit zero producing bit zero of the result. They operate on bit one of the input
values producing bit one of the result, etc. For example, if you want to compute the logical
AND of the following two eight-bit numbers, you would perform the logical AND opera-
tion on each column independently of the others:

1011 0101
1110 1110

1010 0100

This bit-by-bit form of execution can be easily applied to the other logical operations as
well.

Since we’ve defined logical operations in terms of binary values, you’ll find it much
easier to perform logical operations on binary values than on values in other bases. There-
fore, if you want to perform a logical operation on two hexadecimal numbers, you should
convert them to binary first. This applies to most of the basic logical operations on binary
numbers (e.g., AND, OR, XOR, etc.).

The ability to force bits to zero or one using the logical AND/OR operations and the
ability to invert bits using the logical XOR operation is very important when working
with strings of bits (e.g., binary numbers). These operations let you selectively manipulate
certain bits within some value while leaving other bits unaffected. For example, if you
have an eight-bit binary value ‘X’ and you want to guarantee that bits four through seven
contain zeros, you could logically AND the value ‘X’ with the binary value 0000 1111. This

5. Monadic means the operator has one operand.

Table 5: NOT Truth Table

NOT 0 1

1 0

Data Representation

Page 23

bitwise logical AND operation would force the H.O. four bits to zero and pass the L.O.
four bits of ‘X’ through unchanged. Likewise, you could force the L.O. bit of ‘X’ to one and
invert bit number two of ‘X’ by logically ORing ‘X’ with 0000 0001 and logically exclu-
sive-ORing ‘X’ with 0000 0100, respectively. Using the logical AND, OR, and XOR opera-
tions to manipulate bit strings in this fashion is know as masking bit strings. We use the
term masking because we can use certain values (one for AND, zero for OR/XOR) to ‘mask
out’ certain bits from the operation when forcing bits to zero, one, or their inverse.

1.7 Signed and Unsigned Numbers

So far, we’ve treated binary numbers as unsigned values. The binary number ...00000
represents zero, ...00001 represents one, ...00010 represents two, and so on toward infinity.
What about negative numbers? Signed values have been tossed around in previous sec-
tions and we’ve mentioned the two’s complement numbering system, but we haven’t dis-
cussed how to represent negative numbers using the binary numbering system. That is
what this section is all about!

To represent signed numbers using the binary numbering system we have to place a
restriction on our numbers: they must have a finite and fixed number of bits. As far as the
80x86 goes, this isn’t too much of a restriction, after all, the 80x86 can only address a finite
number of bits. For our purposes, we’re going to severely limit the number of bits to eight,
16, 32, or some other small number of bits.

With a fixed number of bits we can only represent a certain number of objects. For
example, with eight bits we can only represent 256 different objects. Negative values are
objects in their own right, just like positive numbers. Therefore, we’ll have to use some of
the 256 different values to represent negative numbers. In other words, we’ve got to use
up some of the positive numbers to represent negative numbers. To make things fair, we’ll
assign half of the possible combinations to the negative values and half to the positive val-
ues. So we can represent the negative values -128..-1 and the positive values 0..127 with a
single eight bit byte6. With a 16-bit word we can represent values in the range
-32,768..+32,767. With a 32-bit double word we can represent values in the range
-2,147,483,648..+2,147,483,647. In general, with n bits we can represent the signed values in
the range -2n-1 to +2n-1-1.

Okay, so we can represent negative values. Exactly how do we do it? Well, there are
many ways, but the 80x86 microprocessor uses the two’s complement notation. In the
two’s complement system, the H.O. bit of a number is a sign bit. If the H.O. bit is zero, the
number is positive; if the H.O. bit is one, the number is negative. Examples:

For 16-bit numbers:

8000h is negative because the H.O. bit is one.

 100h is positive because the H.O. bit is zero.

 7FFFh is positive.

 0FFFFh is negative.

 0FFFh is positive.

If the H.O. bit is zero, then the number is positive and is stored as a standard binary
value. If the H.O. bit is one, then the number is negative and is stored in the two’s comple-
ment form. To convert a positive number to its negative, two’s complement form, you use
the following algorithm:

1) Invert all the bits in the number, i.e., apply the logical NOT function.

6. Technically, zero is neither positive nor negative. For technical reasons (due to the hardware involved), we’ll
lump zero in with the positive numbers.

Chapter 01

Page 24

2) Add one to the inverted result.

For example, to compute the eight bit equivalent of -5:

0000 0101 Five (in binary).
1111 1010 Invert all the bits.
1111 1011 Add one to obtain result.

 If we take minus five and perform the two’s complement operation on it, we get our
original value, 00000101, back again, just as we expect:

1111 1011 Two’s complement for -5.
0000 0100 Invert all the bits.
0000 0101 Add one to obtain result (+5).

 The following examples provide some positive and negative 16-bit signed values:

7FFFh: +32767, the largest 16-bit positive number.

8000h: -32768, the smallest 16-bit negative number.

4000h: +16,384.

To convert the numbers above to their negative counterpart (i.e., to negate them), do the
following:

7FFFh: 0111 1111 1111 1111 +32,767t
1000 0000 0000 0000 Invert all the bits (8000h)
1000 0000 0000 0001 Add one (8001h or -32,767t)

8000h: 1000 0000 0000 0000 -32,768t
0111 1111 1111 1111 Invert all the bits (7FFFh)
1000 0000 0000 0000 Add one (8000h or -32768t)

4000h: 0100 0000 0000 0000 16,384t
1011 1111 1111 1111 Invert all the bits (BFFFh)
1100 0000 0000 0000 Add one (0C000h or -16,384t)

8000h inverted becomes 7FFFh. After adding one we obtain 8000h! Wait, what’s going
on here? -(-32,768) is -32,768? Of course not. But the value +32,768 cannot be represented
with a 16-bit signed number, so we cannot negate the smallest negative value. If you
attempt this operation, the 80x86 microprocessor will complain about signed arithmetic
overflow.

Why bother with such a miserable numbering system? Why not use the H.O. bit as a
sign flag, storing the positive equivalent of the number in the remaining bits? The answer
lies in the hardware. As it turns out, negating values is the only tedious job. With the two’s
complement system, most other operations are as easy as the binary system. For example,
suppose you were to perform the addition 5+(-5). The result is zero. Consider what hap-
pens when we add these two values in the two’s complement system:

 00000101
 11111011

1 00000000

We end up with a carry into the ninth bit and all other bits are zero. As it turns out, if we
ignore the carry out of the H.O. bit, adding two signed values always produces the correct
result when using the two’s complement numbering system. This means we can use the
same hardware for signed and unsigned addition and subtraction. This wouldn’t be the
case with some other numbering systems.

Except for the questions at the end of this chapter, you will not need to perform the
two’s complement operation by hand. The 80x86 microprocessor provides an instruction,
NEG (negate), which performs this operation for you. Furthermore, all the hexadecimal

Data Representation

Page 25

calculators will perform this operation by pressing the change sign key (+/- or CHS).
Nevertheless, performing a two’s complement by hand is easy, and you should know how
to do it.

Once again, you should note that the data represented by a set of binary bits depends
entirely on the context. The eight bit binary value 11000000b could represent an
IBM/ASCII character, it could represent the unsigned decimal value 192, or it could repre-
sent the signed decimal value -64, etc. As the programmer, it is your responsibility to use
this data consistently.

1.8 Sign and Zero Extension

Since two’s complement format integers have a fixed length, a small problem devel-
ops. What happens if you need to convert an eight bit two’s complement value to 16 bits?
This problem, and its converse (converting a 16 bit value to eight bits) can be accom-
plished via sign extension and contraction operations. Likewise, the 80x86 works with fixed
length values, even when processing unsigned binary numbers. Zero extension lets you
convert small unsigned values to larger unsigned values.

Consider the value “-64”. The eight bit two’s complement value for this number is
0C0h. The 16-bit equivalent of this number is 0FFC0h. Now consider the value “+64”. The
eight and 16 bit versions of this value are 40h and 0040h. The difference between the eight
and 16 bit numbers can be described by the rule: “If the number is negative, the H.O. byte
of the 16 bit number contains 0FFh; if the number is positive, the H.O. byte of the 16 bit
quantity is zero.”

To sign extend a value from some number of bits to a greater number of bits is easy,
just copy the sign bit into all the additional bits in the new format. For example, to sign
extend an eight bit number to a 16 bit number, simply copy bit seven of the eight bit num-
ber into bits 8..15 of the 16 bit number. To sign extend a 16 bit number to a double word,
simply copy bit 15 into bits 16..31 of the double word.

Sign extension is required when manipulating signed values of varying lengths. Often
you’ll need to add a byte quantity to a word quantity. You must sign extend the byte quan-
tity to a word before the operation takes place. Other operations (multiplication and divi-
sion, in particular) may require a sign extension to 32-bits. You must not sign extend
unsigned values.

Examples of sign extension:

Eight Bits Sixteen Bits Thirty-two Bits

 80h FF80h FFFFFF80h
 28h 0028h 00000028h
 9Ah FF9Ah FFFFFF9Ah
 7Fh 007Fh 0000007Fh
 ––– 1020h 00001020h
 ––– 8088h FFFF8088h

To extend an unsigned byte you must zero extend the value. Zero extension is very
easy – just store a zero into the H.O. byte(s) of the smaller operand. For example, to zero
extend the value 82h to 16-bits you simply add a zero to the H.O. byte yielding 0082h.

Eight Bits Sixteen Bits Thirty-two Bits

 80h 0080h 00000080h
 28h 0028h 00000028h
 9Ah 009Ah 0000009Ah
 7Fh 007Fh 0000007Fh
 ––– 1020h 00001020h
 ––– 8088h 00008088h

Sign contraction, converting a value with some number of bits to the identical value
with a fewer number of bits, is a little more troublesome. Sign extension never fails. Given
an m-bit signed value you can always convert it to an n-bit number (where n > m) using

Chapter 01

Page 26

sign extension. Unfortunately, given an n-bit number, you cannot always convert it to an
m-bit number if m < n. For example, consider the value -448. As a 16-bit hexadecimal num-
ber, its representation is 0FE40h. Unfortunately, the magnitude of this number is too great
to fit into an eight bit value, so you cannot sign contract it to eight bits. This is an example
of an overflow condition that occurs upon conversion.

To properly sign contract one value to another, you must look at the H.O. byte(s) that
you want to discard. The H.O. bytes you wish to remove must all contain either zero or
0FFh. If you encounter any other values, you cannot contract it without overflow. Finally,
the H.O. bit of your resulting value must match every bit you’ve removed from the num-
ber. Examples (16 bits to eight bits):

FF80h can be sign contracted to 80h
0040h can be sign contracted to 40h
FE40h cannot be sign contracted to 8 bits.
0100h cannot be sign contracted to 8 bits.

1.9 Shifts and Rotates

Another set of logical operations which apply to bit strings are the shift and rotate
operations. These two categories can be further broken down into left shifts, left rotates,
right shifts, and right rotates. These operations turn out to be extremely useful to assembly
language programmers.

The left shift operation moves each bit in a bit string one position to the left (see Fig-
ure 1.8).

Bit zero moves into bit position one, the previous value in bit position one moves into
bit position two, etc. There are, of course, two questions that naturally arise: “What goes
into bit zero?” and “Where does bit seven wind up?” Well, that depends on the context.
We’ll shift the value zero into the L.O. bit, and the previous value of bit seven will be the
carry out of this operation.

Note that shifting a value to the left is the same thing as multiplying it by its radix. For
example, shifting a decimal number one position to the left (adding a zero to the right of
the number) effectively multiplies it by ten (the radix):

1234 SHL 1 = 12340 (SHL 1 = shift left one position)
Since the radix of a binary number is two, shifting it left multiplies it by two. If you shift a
binary value to the left twice, you multiply it by two twice (i.e., you multiply it by four). If
you shift a binary value to the left three times, you multiply it by eight (2*2*2). In general,
if you shift a value to the left n times, you multiply that value by 2n.

A right shift operation works the same way, except we’re moving the data in the
opposite direction. Bit seven moves into bit six, bit six moves into bit five, bit five moves
into bit four, etc. During a right shift, we’ll move a zero into bit seven, and bit zero will be
the carry out of the operation (see Figure 1.9).

Since a left shift is equivalent to a multiplication by two, it should come as no surprise
that a right shift is roughly comparable to a division by two (or, in general, a division by
the radix of the number). If you perform n right shifts, you will divide that number by 2n.

Figure 1.8: Shift Left Operation

7 6 5 4 3 2 1 0

Data Representation

Page 27

There is one problem with shift rights with respect to division: as described above a
shift right is only equivalent to an unsigned division by two. For example, if you shift the
unsigned representation of 254 (0FEh) one place to the right, you get 127 (07Fh), exactly
what you would expect. However, if you shift the binary representation of -2 (0FEh) to the
right one position, you get 127 (07Fh), which is not correct. This problem occurs because
we’re shifting a zero into bit seven. If bit seven previously contained a one, we’re chang-
ing it from a negative to a positive number. Not a good thing when dividing by two.

To use the shift right as a division operator, we must define a third shift operation:
arithmetic shift right7. An arithmetic shift right works just like the normal shift right opera-
tion (a logical shift right) with one exception: instead of shifting a zero into bit seven, an
arithmetic shift right operation leaves bit seven alone, that is, during the shift operation it
does not modify the value of bit seven as Figure 1.10 shows.

This generally produces the result you expect. For example, if you perform the arithmetic
shift right operation on -2 (0FEh) you get -1 (0FFh). Keep one thing in mind about arith-
metic shift right, however. This operation always rounds the numbers to the closest inte-
ger which is less than or equal to the actual result. Based on experiences with high level
programming languages and the standard rules of integer truncation, most people
assume this means that a division always truncates towards zero. But this simply isn’t the
case. For example, if you apply the arithmetic shift right operation on -1 (0FFh), the result
is -1, not zero. -1 is less than zero so the arithmetic shift right operation rounds towards
minus one. This is not a “bug” in the arithmetic shift right operation. This is the way inte-
ger division typically gets defined. The 80x86 integer division instruction also produces
this result.

Another pair of useful operations are rotate left and rotate right. These operations
behave like the shift left and shift right operations with one major difference: the bit
shifted out from one end is shifted back in at the other end.

7. There is no need for an arithmetic shift left. The standard shift left operation works for both signed and
unsigned numbers, assuming no overflow occurs.

Figure 1.9: Shift Right Operation

7 6 5 4 3 2 1 0

Figure 1.10: Arithmetic Shift Right Operation

7 6 5 4 3 2 1 0

Figure 1.11: Rotate Left Operation

7 6 5 4 3 2 1 0

Chapter 01

Page 28

1.10 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and double word data
types, occasionally you’ll need to work with a data type that uses some number of bits
other than eight, 16, or 32. For example, consider a date of the form “4/2/88”. It takes
three numeric values to represent this date: a month, day, and year value. Months, of
course, take on the values 1..12. It will require at least four bits (maximum of sixteen dif-
ferent values) to represent the month. Days range between 1..31. So it will take five bits
(maximum of 32 different values) to represent the day entry. The year value, assuming
that we’re working with values in the range 0..99, requires seven bits (which can be used
to represent up to 128 different values). Four plus five plus seven is 16 bits, or two bytes.
In other words, we can pack our date data into two bytes rather than the three that would
be required if we used a separate byte for each of the month, day, and year values. This
saves one byte of memory for each date stored, which could be a substantial saving if you
need to store a lot of dates. The bits could be arranged as shown in .

MMMM represents the four bits making up the month value, DDDDD represents the
five bits making up the day, and YYYYYYY is the seven bits comprising the year. Each col-
lection of bits representing a data item is a bit field. April 2nd, 1988 would be represented
as 4158h:

0100 00010 1011000 = 0100 0001 0101 1000b or 4158h
 4 2 88

Although packed values are space efficient (that is, very efficient in terms of memory
usage), they are computationally inefficient (slow!). The reason? It takes extra instructions
to unpack the data packed into the various bit fields. These extra instructions take addi-
tional time to execute (and additional bytes to hold the instructions); hence, you must
carefully consider whether packed data fields will save you anything.

Examples of practical packed data types abound. You could pack eight boolean values
into a single byte, you could pack two BCD digits into a byte, etc.

1.11 The ASCII Character Set

The ASCII character set (excluding the extended characters defined by IBM) is
divided into four groups of 32 characters. The first 32 characters, ASCII codes 0 through

Figure 1.12: Rotate Right Operation

7 6 5 4 3 2 1 0

Figure 1.13: Packed Date Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y

Data Representation

Page 29

1Fh (31), form a special set of non-printing characters called the control characters. We call
them control characters because they perform various printer/display control operations
rather than displaying symbols. Examples include carriage return, which positions the cur-
sor to the left side of the current line of characters8, line feed (which moves the cursor
down one line on the output device), and back space (which moves the cursor back one
position to the left). Unfortunately, different control characters perform different opera-
tions on different output devices. There is very little standardization among output
devices. To find out exactly how a control character affects a particular device, you will
need to consult its manual.

The second group of 32 ASCII character codes comprise various punctuation symbols,
special characters, and the numeric digits. The most notable characters in this group
include the space character (ASCII code 20h) and the numeric digits (ASCII codes
30h..39h). Note that the numeric digits differ from their numeric values only in the H.O.
nibble. By subtracting 30h from the ASCII code for any particular digit you can obtain the
numeric equivalent of that digit.

The third group of 32 ASCII characters is reserved for the upper case alphabetic char-
acters. The ASCII codes for the characters “A”..”Z” lie in the range 41h..5Ah (65..90). Since
there are only 26 different alphabetic characters, the remaining six codes hold various spe-
cial symbols.

The fourth, and final, group of 32 ASCII character codes are reserved for the lower
case alphabetic symbols, five additional special symbols, and another control character
(delete). Note that the lower case character symbols use the ASCII codes 61h..7Ah. If you
convert the codes for the upper and lower case characters to binary, you will notice that
the upper case symbols differ from their lower case equivalents in exactly one bit position.
For example, consider the character code for “E” and “e” in Figure 1.14.

The only place these two codes differ is in bit five. Upper case characters always con-
tain a zero in bit five; lower case alphabetic characters always contain a one in bit five. You
can use this fact to quickly convert between upper and lower case. If you have an upper
case character you can force it to lower case by setting bit five to one. If you have a lower
case character and you wish to force it to upper case, you can do so by setting bit five to
zero. You can toggle an alphabetic character between upper and lower case by simply
inverting bit five.

Indeed, bits five and six determine which of the four groups in the ASCII character set
you’re in:

8. Historically, carriage return refers to the paper carriage used on typewriters. A carriage return consisted of phys-
ically moving the carriage all the way to the right so that the next character typed would appear at the left hand
side of the paper.

Figure 1.14: ASCII Codes for “E” and “e”.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e

Chapter 01

Page 30

So you could, for instance, convert any upper or lower case (or corresponding special)
character to its equivalent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:

Char Dec Hex

The decimal representations of these ASCII codes are not very enlightening. However,
the hexadecimal representation of these ASCII codes reveals something very important –
the L.O. nibble of the ASCII code is the binary equivalent of the represented number. By
stripping away (i.e., setting to zero) the H.O. nibble of a numeric character, you can con-
vert that character code to the corresponding binary representation. Conversely, you can
convert a binary value in the range 0..9 to its ASCII character representation by simply set-
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the
H.O. bits to zero; likewise, you can use the logical-OR operation to force the H.O. bits to
0011 (three).

Note that you cannot convert a string of numeric characters to their equivalent binary
representation by simply stripping the H.O. nibble from each digit in the string. Convert-
ing 123 (31h 32h 33h) in this fashion yields three bytes: 010203h, not the correct value
which is 7Bh. Converting a string of digits to an integer requires more sophistication than
this; the conversion above works only for single digits.

Bit seven in standard ASCII is always zero. This means that the ASCII character set
consumes only half of the possible character codes in an eight bit byte. IBM uses the
remaining 128 character codes for various special characters including international char-
acters (those with accents, etc.), math symbols, and line drawing characters. Note that
these extra characters are a non-standard extension to the ASCII character set. Of course,
the name IBM has considerable clout, so almost all modern personal computers based on
the 80x86 with a video display support the extended IBM/ASCII character set. Most print-
ers support IBM’s character set as well.

Bit 6 Bit 5 Group

0 0 Control Characters

0 1 Digits & Punctuation

1 0 Upper Case & Special

1 1 Lower Case & Special

“0” 48 30h

“1” 49 31h

“2” 50 32h

“3” 51 33h

“4” 52 34h

“5” 53 35h

“6” 54 36h

“7” 55 37h

“8” 56 38h

“9” 57 39h

Data Representation

Page 31

Should you need to exchange data with other machines which are not PC-compatible,
you have only two alternatives: stick to standard ASCII or ensure that the target machine
supports the extended IBM-PC character set. Some machines, like the Apple Macintosh,
do not provide native support for the extended IBM-PC character set; however you may
obtain a PC font which lets you display the extended character set. Other machines (e.g.,
Amiga and Atari ST) have similar capabilities. However, the 128 characters in the stan-
dard ASCII character set are the only ones you should count on transferring from system
to system.

Despite the fact that it is a “standard”, simply encoding your data using standard
ASCII characters does not guarantee compatibility across systems. While it’s true that an
“A” on one machine is most likely an “A” on another machine, there is very little stan-
dardization across machines with respect to the use of the control characters. Indeed, of
the 32 control codes plus delete, there are only four control codes commonly supported –
backspace (BS), tab, carriage return (CR), and line feed (LF). Worse still, different
machines often use these control codes in different ways. End of line is a particularly trou-
blesome example. MS-DOS, CP/M, and other systems mark end of line by the two-char-
acter sequence CR/LF. Apple Macintosh, Apple II, and many other systems mark the end
of line by a single CR character. UNIX systems mark the end of a line with a single LF
character. Needless to say, attempting to exchange simple text files between such systems
can be an experience in frustration. Even if you use standard ASCII characters in all your
files on these systems, you will still need to convert the data when exchanging files
between them. Fortunately, such conversions are rather simple.

Despite some major shortcomings, ASCII data is the standard for data interchange
across computer systems and programs. Most programs can accept ASCII data; likewise
most programs can produce ASCII data. Since you will be dealing with ASCII characters
in assembly language, it would be wise to study the layout of the character set and memo-
rize a few key ASCII codes (e.g., “0”, “A”, “a”, etc.).

1.12 Summary

Most modern computer systems use the binary numbering system to represent val-
ues. Since binary values are somewhat unwieldy, we’ll often use the hexadecimal repre-
sentation for those values. This is because it is very easy to convert between hexadecimal
and binary, unlike the conversion between the more familiar decimal and binary systems.
A single hexadecimal digit consumes four binary digits (bits), and we call a group of four
bits a nibble. See:

• “The Binary Numbering System” on page 12
• “Binary Formats” on page 13
• “The Hexadecimal Numbering System” on page 17

The 80x86 works best with groups of bits which are eight, 16, or 32 bits long. We call
objects of these sizes bytes, words, and double words, respectively. With a byte, we can
represent any one of 256 unique values. With a word we can represent one of 65,536 differ-
ent values. With a double word we can represent over four billion different values. Often
we simply represent integer values (signed or unsigned) with bytes, words, and double
words; however we’ll often represent other quantities as well. See:

• “Data Organization” on page 13
• “Bytes” on page 14
• “Words” on page 15
• “Double Words” on page 16

In order to talk about specific bits within a nibble, byte, word, double word, or other
structure, we’ll number the bits starting at zero (for the least significant bit) on up to n-1

Chapter 01

Page 32

(where n is the number of bits in the object). We’ll also number nibbles, bytes, and words
in large structures in a similar fashion. See:

• “Binary Formats” on page 13

There are many operations we can perform on binary values including normal arith-
metic (+, -, *, and /) and the logical operations (AND, OR, XOR, NOT, Shift Left, Shift
Right, Rotate Left, and Rotate Right). Logical AND, OR, XOR, and NOT are typically
defined for single bit operations. We can extend these to n bits by performing bitwise
operations. The shifts and rotates are always defined for a fixed length string of bits. See:

• “Arithmetic Operations on Binary and Hexadecimal Numbers” on
page 19

• “Logical Operations on Bits” on page 20
• “Logical Operations on Binary Numbers and Bit Strings” on page 22
• “Shifts and Rotates” on page 26

There are two types of integer values which we can represent with binary strings on
the 80x86: unsigned integers and signed integers. The 80x86 represents unsigned integers
using the standard binary format. It represents signed integers using the two’s comple-
ment format. While unsigned integers may be of arbitrary length, it only makes sense to
talk about fixed length signed binary values. See:

• “Signed and Unsigned Numbers” on page 23
• “Sign and Zero Extension” on page 25

Often it may not be particularly practical to store data in groups of eight, 16, or 32 bits.
To conserve space you may want to pack various pieces of data into the same byte, word,
or double word. This reduces storage requirements at the expense of having to perform
extra operations to pack and unpack the data. See:

• “Bit Fields and Packed Data” on page 28

Character data is probably the most common data type encountered besides integer
values. The IBM PC and compatibles use a variant of the ASCII character set – the
extended IBM/ASCII character set. The first 128 of these characters are the standard
ASCII characters, 128 are special characters created by IBM for international languages,
mathematics, and line drawing. Since the use of the ASCII character set is so common in
modern programs, familiarity with this character set is essential. See:

• “The ASCII Character Set” on page 28

Data Representation

Page 33

1.13 Laboratory Exercises

Accompanying this text is a significant amount of software. This software is divided
into four basic categories: source code for examples appearing throughout this text, the
UCR Standard Library for 80x86 assembly language programmers, sample code you mod-
ify for various laboratory exercises, and application software to support various labora-
tory exercises. This software has been written using assembly language, C++, Flex/Bison,
and Delphi (object Pascal). Most of the application programs include source code as well
as executable code.

Much of the software accompanying this text runs under Windows 3.1, Windows 95,
or Windows NT. Some software, however, directly manipulates the hardware and will
only run under DOS or a DOS box in Windows 3.1. This text assumes that you are familiar
with the DOS and Windows operating systems; if you are unfamiliar with DOS or Win-
dows operation, you should refer to an appropriate text on those systems for additional
details.

1.13.1 Installing the Software

The software accompanying this text is generally supplied on CD-ROM9. You can use
most of it as-is directly off the CD-ROM. However, for speed and convenience you will
probably want to install the software on a hard disk10. To do this, you will need to create
two subdirectories in the root directory on your hard drive: ARTOFASM and STDLIB. The
ARTOFASM directory will contain the files specific to this text book, the STDLIB directory
will contain the files associated with the UCR Standard Library for 80x86 assembly lan-
guage programmers. Once you create these two subdirectories, copy all the files and sub-
directories from the corresponding directories on the CD to your hard disk. From DOS (or
a DOS window), you can use the following XCOPY commands to accomplish this:

xcopy r:\artofasm*.* c:\artofasm /s
xcopy r:\stdlib*.* c:\stdlib /s

These commands assume that your CD-ROM is drive R: and you are installing the soft-
ware on the C: hard disk. They also assume that you have created the ARTOFASM and
STDLIB subdirectories prior to executing the XCOPY commands.

To use the Standard Library in programming projects, you will need to add or modify
two lines in your AUTOEXEC.BAT file. If similar lines are not already present, add the fol-
lowing two lines to your AUTOEXEC.BAT file:

set lib=c:\stdlib\lib
set include=c:\stdlib\include

These commands tell MASM (the Microsoft Macro Assembler) where it can find the
library and include files for the UCR Standard Library. Without these lines, MASM will
report an error anytime you use the standard library routines in your programs.

If there are already a “set include = ...” and “set lib=...” lines in your AUTOEXEC.BAT
file, you should not replace them with the lines above. Instead, you should append the
string “;c:\stdlib\lib” to the end of the existing “set lib=...” statement and
“;c:\stdlib\include” to the end of the existing “set include=...” statement. Several lan-
guages (like C++) also use these “set” statements; if you arbitrarily replace them with the
statements above, your assembly language programs will work fine, but any attempt to
compile a C++ (or other language) program may fail.

9. It is also available via anonymous ftp, although there are many files associated with this text.
10. If you are using this software in a laboratory at school, your instructor has probably installed this software on
the machines in the laboratory. As a general rule, you should never install software on machines in the laboratory.
Check with your laboratory instruction before installing this software on machines in the laboratory.

Chapter 01

Page 34

If you forget to put these lines in your AUTOEXEC.BAT file, you can temporarily
(until the next time you boot the system) issue these commands by simply typing them at
the DOS command line prompt. By typing “set” by itself on the command line prompt,
you can see if these set commands are currently active.

If you do not have a CD-ROM player, you can obtain the software associated with this
textbook via anonymous ftp from cs.ucr.edu. Check in the “/pub/pc/ibmpc” subdirec-
tory. The files on the ftp server will be compressed. A “README” file will describe how to
decompress the data.

The STDLIB directory you’ve created holds the source and library files for the UCR
Standard Library for 80x86 Assembly Language Programmers. This is a core set of assem-
bly language subroutines you can call that mimic many of the routines in the C standard
library. These routines greatly simplify writing programs in assembly language. Further-
more, they are public domain so you can use them in any programs you write without
fear of licensing restrictions.

The ARTOFASM directory contains files specific to this text. Within the ARTOFASM
directory you will see a sequence of subdirectories named ch1, ch2, ch3, etc. These subdi-
rectories contain the files associated with Chapter One, Chapter Two, and so on. Within
some of these subdirectories, you will find two subdirectories named “DOS” and “WIN-
DOWS”. If these subdirectories are present, they separate those files that must run under
MS-Windows from those that run under DOS. Many of the DOS programs require a
“real-mode” environment and will not run in a DOS box window in Windows 95 or Windows NT.
You will need to run this software directory from MS-DOS. The Windows applications
require a color monitor.

There is often a third subdirectory present in each chapter directory: SOURCES. This
subdirectory contains the source listings (where appropriate or feasible) to the software
for that chapter. Most of the software for this text is written in assembly language using
MASM 6.x, generic C++, Turbo Pascal, or Borland Delphi (visual object Pascal). If you are
interested in seeing how the software operates, you can look in this subdirectory.

This text assumes you already know how to run programs from MS-DOS and Win-
dows and you are familiar with common DOS and Windows terminology. It also assumes
you know some simple MS-DOS commands like DIR, COPY, DEL, RENAME, and so on.
If you are new to Windows and DOS, you should pick up an appropriate reference man-
ual on these operating systems.

The files for Chapter One’s laboratory exercises appear in the ARTOFASM\CH1 sub-
directory. These are all Windows programs, so you will need to be running Windows 3.1,
Windows 95, Windows NT, or some later (and compatible) version of Windows to run
these programs.

1.13.2 Data Conversion Exercises

In this exercise you will be using the “convert.exe” program found in the ARTO-
FASM\CH1 subdirectory. This program displays and converts 16-bit integers using
signed decimal, unsigned decimal, hexadecimal, and binary notation.

When you run this program it opens a window with four edit boxes. (one for each data
type). Changing a value in one of the edit boxes immediately updates the values in the
other boxes so they all display their corresponding representations for the new value. If
you make a mistake on data entry, the program beeps and turns the edit box red until you
correct the mistake. Note that you can use the mouse, cursor control keys, and the editing
keys (e.g., DEL and Backspace) to change individual values in the edit boxes.

For this exercise and your laboratory report, you should explore the relationship
between various binary, hexadecimal, unsigned decimal, and signed decimal values. For
example, you should enter the unsigned decimal values 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384, and 32768 and comment on the values that appear in the in
the other text boxes.

Data Representation

Page 35

The primary purpose of this exercise is to familiarize yourself with the decimal equiv-
alents of some common binary and hexadecimal values. In your lab report, for example,
you should explain what is special about the binary (and hexadecimal) equivalents of the
decimal numbers above.

Another set of experiments to try is to choose various binary numbers that have
exactly two bits set, e.g., 11, 110, 1100, 1 1000, 11 0000, etc. Be sure to comment on the deci-
mal and hexadecimal results these inputs produce.

Try entering several binary numbers where the L.O. eight bits are all zero. Comment
on the results in your lab report. Try the same experiment with hexadecimal numbers
using zeros for the L.O. digit or the two L.O. digits.

You should also experiment with negative numbers in the signed decimal text entry
box; try using values like -1, -2, -3, -256, -1024, etc. Explain the results you obtain using
your knowledge of the two’s complement numbering system.

Try entering even and odd numbers in unsigned decimal. Discover and describe the
difference between even and odd numbers in their binary representation. Try entering
multiples of other values (e.g., for three: 3, 6, 9, 12, 15, 18, 21, ...) and see if you can detect a
pattern in the binary results.

Verify the hexadecimal <-> binary conversion this chapter describes. In particular,
enter the same hexadecimal digit in each of the four positions of a 16-bit value and com-
ment on the position of the corresponding bits in the binary representation. Try several
entering binary values like 1111, 11110, 111100, 1111000, and 11110000. Explain the results
you get and describe why you should always extend binary values so their length is an
even multiple of four before converting them.

In your lab report, list the experiments above plus several you devise yourself.
Explain the results you expect and include the actual results that the convert.exe program
produces. Explain any insights you have while using the convert.exe program.

1.13.3 Logical Operations Exercises

The logical.exe program is a simple calculator that computes various logical func-
tions. It allows you to enter binary or hexadecimal values and then it computes the result
of some logical operation on the inputs. The calculator supports the dyadic logical AND,
OR, and XOR. It also supports the monadic NOT, NEG (two’s complement), SHL (shift
left), SHR (shift right), ROL (rotate left), and ROR (rotate right).

When you run the logical.exe program it displays a set of buttons on the left hand side
of the window. These buttons let you select the calculation. For example, pressing the
AND button instructs the calculator to compute the logical AND operation between the
two input values. If you select a monadic (unary) operation like NOT, SHL, etc., then you
may only enter a single value; for the dyadic operations, both sets of text entry boxes will
be active.

The logical.exe program lets you enter values in binary or hexadecimal. Note that this
program automatically converts any changes in the binary text entry window to hexadec-
imal and updates the value in the hex entry edit box. Likewise, any changes in the hexa-
decimal text entry box are immediately reflected in the binary text box. If you enter an
illegal value in a text entry box, the logical.exe program will turn the box red until you
correct the problem.

For this laboratory exercise, you should explore each of the bitwise logical operations.
Create several experiments by carefully choosing some values, manually compute the
result you expect, and then run the experiment using the logical.exe program to verify
your results. You should especially experiment with the masking capabilities of the logical
AND, OR, and XOR operations. Try logically ANDing, ORing, and XORing different val-
ues with values like 000F, 00FF, 00F0, 0FFF, FF00, etc. Report the results and comment on
them in your laboratory report.

Chapter 01

Page 36

Some experiments you might want to try, in addition to those you devise yourself,
include the following:

• Devise a mask to convert ASCII values ‘0’..’9’ to their binary integer coun-
terparts using the logical AND operation. Try entering the ASCII codes of
each of these digits when using this mask. Describe your results. What
happens if you enter non-digit ASCII codes?

• Devise a mask to convert integer values in the range 0..9 to their corre-
sponding ASCII codes using the logical OR operation. Enter each of the
binary values in the range 0..9 and describe your results. What happens if
you enter values outside the range 0..9? In particular, what happens if
you enter values outside the range 0h..0fh?

• Devise a mask to determine whether a 16-bit integer value is positive or
negative using the logical AND operation. The result should be zero if the
number is positive (or zero) and it should be non-zero if the number is
negative. Enter several positive and negative values to test your mask.
Explain how you could use the AND operation to test any single bit to
determine if it is zero or one.

• Devise a mask to use with the logical XOR operation that will produce the
same result on the second operand as applying the logical NOT operator
to that second operand.

• Verify that the SHL and SHR operators correspond to an integer multipli-
cation by two and an integer division by two, respectively. What happens
if you shift data out of the H.O. or L.O. bits? What does this correspond to
in terms of integer multiplication and division?

• Apply the ROL operation to a set of positive and negative numbers.
Based on your observations in Section 1.13.3, what can you say will about
the result when you rotate left a negative number or a positive number?

• Apply the NEG and NOT operators to a value. Discuss the similarity and
the difference in their results. Describe this difference based on your
knowledge of the two’s complement numbering system.

1.13.4 Sign and Zero Extension Exercises

The signext.exe program accepts eight-bit binary or hexadecimal values then sign and
zero extends them to 16 bits. Like the logical.exe program, this program lets you enter a
value in either binary or hexadecimal and immediate zero and sign extends that value.

For your laboratory report, provide several eight-bit input values and describe the
results you expect. Run these values through the signext.exe program and verify the
results. For each experiment you run, be sure to list all the results in your lab report. Be
sure to try values like 0, 7fh, 80h, and 0ffh.

While running these experiments, discover which hexadecimal digits appearing in the
H.O. nibble produce negative 16-bit numbers and which produce positive 16-bit values.
Document this set in your lab report.

Enter sets of values like (1,10), (2,20), (3,30), ..., (7,70), (8,80), (9,90), (A,A0), ..., (F,F0).
Explain the results you get in your lab report. Why does “F” sign extend with zeros while
“F0” sign extends with ones?

Explain in your lab report how one would sign or zero extend 16 bit values to 32 bit
values. Explain why zero extension or sign extension is useful.

Data Representation

Page 37

1.13.5 Packed Data Exercises

The packdata.exe program uses the Date data type appearing in this chapter (see “Bit
Fields and Packed Data” on page 28). It lets you input a date value in binary or decimal
and it packs that date into a single 16-bit value.

When you run this program, it will give you a window with six data entry boxes:
three to enter the date in decimal form (month, day, year) and three text entry boxes that
let you enter the date in binary form. The month value should be in the range 1..12, the
day value should be in the range 1..31, and the year value should be in the range 0..99. If
you enter a value outside this range (or some other illegal value), then the packdata.exe
program will turn the data entry box red until you correct the problem.

Choose several dates for your experiments and convert these dates to the 16-bit
packed binary form by hand (if you have trouble with the decimal to binary conversion,
use the conversion program from the first set of exercises in this laboratory). Then run
these dates through the packdata.exe program to verify your answer. Be sure to include all
program output in your lab report.

At a bare minimum, you should include the following dates in your experiments:

2/4/68, 1/1/80, 8/16/64, 7/20/60, 11/2/72, 12/25/99, Today’s Date, a birthday (not
necessarily yours), the due date on your lab report.

Chapter 01

Page 38

1.14 Questions

1) Convert the following decimal values to binary:

a) 128 b) 4096 c) 256 d) 65536 e) 254

f) 9 g) 1024 h) 15 i) 344 j) 998

k) 255 l) 512 m) 1023 n) 2048 o) 4095

p) 8192 q) 16,384 r) 32,768 s) 6,334 t) 12,334

u) 23,465 v) 5,643 w) 464 x) 67 y) 888

2) Convert the following binary values to decimal:

a) 1001 1001 b) 1001 1101 c) 1100 0011 d) 0000 1001 e)1111 1111

f) 0000 1111 g) 0111 1111 h) 1010 0101 i) 0100 0101 j) 0101 1010

k) 1111 0000 l) 1011 1101 m) 1100 0010 n) 0111 1110 o) 1110 1111

p) 0001 1000 q) 1001 111 1 r) 0100 0010 s) 1101 1100 t) 1111 0001

u) 0110 1001 v) 0101 1011 w) 1011 1001 x) 1110 0110 y) 1001 0111

3) Convert the binary values in problem 2 to hexadecimal.

4) Convert the following hexadecimal values to binary:

a) 0ABCD b) 1024 c) 0DEAD d) 0ADD e) 0BEEF

f) 8 g) 05AAF h) 0FFFF i) 0ACDB j) 0CDBA

k) 0FEBA l) 35 m) 0BA n) 0ABA o) 0BAD

p) 0DAB q) 4321 r) 334 s) 45 t) 0E65

u) 0BEAD v) 0ABE w) 0DEAF x) 0DAD y) 9876

Perform the following hex computations (leave the result in hex):

5) 1234 +9876

6) 0FFF - 0F34

7) 100 - 1

8) 0FFE - 1

9) What is the importance of a nibble?

10) How many hexadecimal digits in:

a) a byte b) a word c) a double word

11) How many bits in a:

a) nibble b) byte c) word d) double word

12) Which bit (number) is the H.O. bit in a:

a) nibble b) byte c) word d) double word

13) What character do we use as a suffix for hexadecimal numbers? Binary numbers? Decimal
numbers?

14) Assuming a 16-bit two’s complement format, determine which of the values in question 4
are positive and which are negative.

15) Sign extend all of the values in question two to sixteen bits. Provide your answer in hex.

Data Representation

Page 39

16) Perform the bitwise AND operation on the following pairs of hexadecimal values. Present
your answer in hex. (Hint: convert hex values to binary, do the operation, then convert
back to hex).

a) 0FF00, 0FF0 b) 0F00F, 1234 c) 4321, 1234 d) 2341, 3241 e) 0FFFF, 0EDCB

f) 1111, 5789 g) 0FABA, 4322 h) 5523, 0F572 i) 2355, 7466 j) 4765, 6543

k) 0ABCD, 0EFDCl) 0DDDD, 1234m) 0CCCC, 0ABCDn) 0BBBB, 1234o) 0AAAA, 1234

p) 0EEEE, 1248 q) 8888, 1248 r) 8086, 124F s) 8086, 0CFA7 t) 8765, 3456

u) 7089, 0FEDC v) 2435, 0BCDE w) 6355, 0EFDC x) 0CBA, 6884 y) 0AC7, 365

17) Perform the logical OR operation on the above pairs of numbers.

18) Perform the logical XOR operation on the above pairs of numbers.

19) Perform the logical NOT operation on all the values in question four. Assume all values
are 16 bits.

20) Perform the two’s complement operation on all the values in question four. Assume 16 bit
values.

21) Sign extend the following hexadecimal values from eight to sixteen bits. Present your
answer in hex.

a) FF b) 82 c) 12 d) 56 e) 98

f) BF g) 0F h) 78 i) 7F j) F7

k) 0E l) AE m) 45 n) 93 o) C0

p) 8F q) DA r) 1D s) 0D t) DE

u) 54 v) 45 w) F0 x) AD y) DD

22) Sign contract the following values from sixteen bits to eight bits. If you cannot perform the
operation, explain why.

a) FF00 b) FF12 c) FFF0 d) 12 e) 80

f) FFFF g) FF88 h) FF7F i) 7F j) 2

k) 8080 l) 80FF m) FF80 n) FF o) 8

p) F q) 1 r) 834 s) 34 t) 23

u) 67 v) 89 w) 98 x) FF98 y) F98

23) Sign extend the 16-bit values in question 22 to 32 bits.

24) Assuming the values in question 22 are 16-bit values, perform the left shift operation on
them.

25) Assuming the values in question 22 are 16-bit values, perform the right shift operation on
them.

26) Assuming the values in question 22 are 16-bit values, perform the rotate left operation on
them.

27) Assuming the values in question 22 are 16-bit values, perform the rotate right operation
on them.

28) Convert the following dates to the packed format described in this chapter (see “Bit Fields
and Packed Data” on page 28). Present your values as a 16-bit hex number.

a) 1/1/92 b) 2/4/56 c) 6/19/60 d) 6/16/86 e) 1/1/99

29) Describe how to use the shift and logical operations to extract the day field from the
packed date record in question 28. That is, wind up with a 16-bit integer value in the range
0..31.

30) Suppose you have a value in the range 0..9. Explain how you could convert it to an ASCII
character using the basic logical operations.

Chapter 01

Page 40

31) The following C++ function locates the first set bit in the BitMap parameter starting at bit
position start and working up to the H.O. bit. If no such bit exists, it returns -1. Explain, in
detail, how this function works.

int FindFirstSet(unsigned BitMap, unsigned start)
{

unsigned Mask = (1 << start);

while (Mask)
{

if (BitMap & Mask) return start;
++start;
Mask <<= 1;

}
return -1;

}

32) The C++ programming language does not specify how many bits there are in an unsigned
integer. Explain why the code above will work regardless of the number of bits in an
unsigned integer.

33) The following C++ function is the complement to the function in the questions above. It
locates the first zero bit in the BitMap parameter. Explain, in detail, how it accomplishes
this.

int FindFirstClr(unsigned BitMap, unsigned start)
{

return FindFirstSet(~BitMap, start);
}

34) The following two functions set or clear (respectively) a particular bit and return the new
result. Explain, in detail, how these functions operate.

unsigned SetBit(unsigned BitMap, unsigned position)
{

return BitMap | (1 << position);
}

unsigned ClrBit(unsigned BitMap, unsigned position)
{

return BitMap & ~(1 << position);
}

35) In code appearing in the questions above, explain what happens if the start and position
parameters contain a value greater than or equal to the number of bits in an unsigned inte-
ger.

Data Representation

Page 41

1.15 Programming Projects

The following programming projects assume you are using C, C++, Turbo Pascal, Bor-
land Pascal, Delphi, or some other programming language that supports bitwise logical
operations. Note that C and C++ use the “&”, “|”, and “^” operators for logical AND, OR,
and XOR, respectively. The Borland Pascal products let you use the “and”, “or”, and “xor”
operators on integers to perform bitwise logical operations. The following projects all
expect you to use these logical operators. There are other solutions to these problems that
do not involve the use of logical operations, do not employ such a solution. The purpose
of these exercises is to introduce you to the logical operations available in high level lan-
guages. Be sure to check with your instructor to determine which language you are to
use.

The following descriptions typically describe functions you are to write. However,
you will need to write a main program to call and test each of the functions you write as
part of the assignment.

1) Write to functions, toupper and tolower, that take a single character as their parameter and
convert this character to upper case (if it was lowercase) or to lowercase (if it was upper-
case) respectively. Use the logical operations to do the conversion. Pascal users may need
to use the chr() and ord() functions to successfully complete this assignment.

2) Write a function “CharToInt” that you pass a string of characters and it returns the corre-
sponding integer value. Do not use a built-in library routine like atoi (C) or strtoint (Pascal) to
do this conversion. You are to process each character passed in the input string, convert it
from a character to an integer using the logical operations, and accumulate the result until
you reach the end of the string. An easy algorithm for this task is to multiply the accumu-
lated result by 10 and then add in the next digit. Repeat this until you reach the end of the
string. Pascal users will probably need to use the ord() function in this assignment.

3) Write a ToDate function that accepts three parameters, a month, day, and year value. This
function should return the 16-bit packed date value using the format given in this chapter
(see “Bit Fields and Packed Data” on page 28). Write three corresponding functions
ExtractMonth, ExtractDay, and ExtractYear that expect a 16-bit date value and return the
corresponding month, day, or year value. The ToDate function should automatically con-
vert dates in the range 1900-1999 to the range 0..99.

4) Write a “CntBits” function that counts the number of one bits in a 16-bit integer value. Do
not use any built-in functions in your language’s library to count these bits for you.

5) Write a “TestBit” function. This function requires two 16-bit integer parameters. The first
parameter is a 16-bit value to test; the second parameter is a value in the range 0..15
describing which bit to test. The function should return true if the corresponding bit con-
tains a one, the function should return false if that bit position contains a zero. The func-
tion should always return false if the second parameter holds a value outside the range
0..15.

6) Pascal and C/C++ provide shift left and shift right operators (SHL/SHR in Pascal, “<<“
and “>>” in C/C++). However, they do not provide rotate right and rotate left operators.
Write a pair of functions, ROL and ROR, that perform the rotate tasks. Hint: use the func-
tion from exercise five to test the H.O. bit. Then use the corresponding shift operation and
the logical OR operation to perform the rotate.

Chapter 01

Page 42

Page 43

Boolean Algebra Chapter Two

Logic circuits are the basis for modern digital computer systems. To appreciate how
computer systems operate you will need to understand digital logic and boolean algebra.

This Chapter provides only a basic introduction to boolean algebra. This subject alone
is often the subject of an entire textbook. This Chapter will concentrate on those subject
that support other chapters in this text.

2.0 Chapter Overview

Boolean logic forms the basis for computation in modern binary computer systems.
You can represent any algorithm, or any electronic computer circuit, using a system of
boolean equations. This chapter provides a brief introduction to boolean algebra, truth
tables, canonical representation, of boolean functions, boolean function simplification,
logic design, combinatorial and sequential circuits, and hardware/software equivalence.

The material is especially important to those who want to design electronic circuits or
write software that controls electronic circuits. Even if you never plan to design hardware
or write software than controls hardware, the introduction to boolean algebra this chapter
provides is still important since you can use such knowledge to optimize certain complex
conditional expressions within IF, WHILE, and other conditional statements.

The section on minimizing (optimizing) logic functions uses

Veitch Diagrams

 or

Kar-
naugh Maps

. The optimizing techniques this chapter uses reduce the number of

terms

 in a
boolean function. You should realize that many people consider this optimization tech-
nique obsolete because reducing the number of terms in an equation is not as important as
it once was. This chapter uses the mapping method as an example of boolean function
optimization, not as a technique one would regularly employ. If you are interested in cir-
cuit design and optimization, you will need to consult a text on logic design for better
techniques.

Although this chapter is mainly hardware-oriented, keep in mind that many concepts
in this text will use boolean equations (logic functions). Likewise, some programming
exercises later in this text will assume this knowledge. Therefore, you should be able to
deal with boolean functions before proceeding in this text.

2.1 Boolean Algebra

Boolean algebra is a deductive mathematical system closed over the values zero and
one (false and true). A

binary operator

“

°

” defined over this set of values accepts a pair of
boolean inputs and produces a single boolean value. For example, the boolean AND oper-
ator accepts two boolean inputs and produces a single boolean output (the logical AND of
the two inputs).

For any given algebra system, there are some initial assumptions, or

postulates

, that
the system follows. You can deduce additional rules, theorems, and other properties of the
system from this basic set of postulates. Boolean algebra systems often employ the follow-
ing postulates:

•

Closure

. The boolean system is

closed

 with respect to a binary operator if for every
pair of boolean values, it produces a boolean result. For example, logical AND is
closed in the boolean system because it accepts only boolean operands and pro-
duces only boolean results.

•

Commutativity

. A binary operator “

°

” is said to be commutative if

A°B = B°A

 for
all possible boolean values

A

 and

B

.

Thi d t t d ith F M k 4 0 2

Chapter 02

Page 44

•

Associativity

. A binary operator “

°

” is said to be associative if

(A ° B) ° C = A ° (B ° C)

for all boolean values

A

,

B

, and

C

.

•

Distribution

. Two binary operators “

°

” and “%” are distributive if

A °(B % C) = (A ° B) % (A ° C)

for all boolean values

A, B,

 and

C.

•

Identity

. A boolean value I is said to be the

identity element

 with respect to some
binary operator “

°

” if

A ° I = A

.

•

Inverse

. A boolean value I is said to be the

inverse element

 with respect to some
binary operator “

°

” if

A ° I = B

 and

B≠A

 (i.e., B is the opposite value of A in a
boolean system).

For our purposes, we will base boolean algebra on the following set of operators and
values:

The two possible values in the boolean system are zero and one. Often we will call
these values false and true (respectively).

The symbol “•” represents the logical AND operation; e.g.,

A • B

 is the result of logi-
cally ANDing the boolean values

A

 and

B

. When using single letter variable names, this
text will drop the “•” symbol; Therefore,

AB

 also represents the logical AND of the vari-
ables

A

 and

B

(we will also call this the

product

 of

A

 and

B

).

The symbol “+” represents the logical OR operation; e.g., A + B is the result of logi-
cally ORing the boolean values

A

 and

B

. (We will also call this the

sum

 of

A

 and

B.)

Logical

complement

,

negation

, or

not

, is a unary operator. This text will use the (

’

) sym-
bol to denote logical negation. For example,

A’

 denotes the logical NOT of

A

.

If several different operators appear in a single boolean expression, the result of the
expression depends on the

precedence

 of the operators. We’ll use the following precedences
(from highest to lowest) for the boolean operators: parenthesis, logical NOT, logical AND,
then logical OR. The logical AND and OR operators are

left associative.

 If two operators
with the same precedence are adjacent, you must evaluate them from left to right. The log-
ical NOT operation is right associative, although it would produce the same result using
left or right associativity since it is a unary operator.

We will also use the following set of postulates:

P1 Boolean algebra is closed under the AND, OR, and NOT operations.

P2 The identity element with respect to • is one and + is zero. There is no identity
element with respect to logical NOT.

P3 The • and + operators are commutative.

P4 • and + are distributive with respect to one another. That is,

A • (B + C) = (A • B)
+ (A • C)

 and

A + (B • C) = (A + B) • (A + C).

P5 For every value

A

 there exists a value

A’

 such that

A•A’ =

0 and

A+A’ = 1.

 This
value is the logical complement (or NOT) of A.

P6 • and + are both associative. That is,

(A•B)•C = A•(B•C)

and

 (A+B)+C = A+(B+C)

.

You can prove all other theorems in boolean algebra using these postulates. This text
will not go into the formal proofs of these theorems, however, it is a good idea to familiar-
ize yourself with some important theorems in boolean algebra. A sampling include:

Th1: A + A = A

Th2: A • A = A

Th3: A + 0 = A

Th4: A • 1 = A

Boolean Algebra

Page 45

Th5: A • 0 = 0

Th6: A + 1 = 1

Th7: (A + B)’ = A’ • B’

Th8: (A • B)’ = A’ + B’

Th9: A + A•B = A

Th10: A •(A + B) = A

Th11: A + A’B = A+B

Th12: A’ • (A + B’) = A’B’

Th13: AB + AB’ = A

Th14: (A’+B’) • (A’ + B) = A’

Th15: A + A’ = 1

Th16: A • A’ = 0

Theorems seven and eight above are known as

DeMorgan’s Theorems

 after the mathemati-
cian who discovered them.

The theorems above appear in pairs. Each pair (e.g., Th1 & Th2, Th3 & Th4, etc.) form
a

dual

. An important principle in the boolean algebra system is that of

duality

. Any valid
expression you can create using the postulates and theorems of boolean algebra remains
valid if you interchange the operators and constants appearing in the expression. Specifi-
cally, if you exchange the • and + operators and swap the 0 and 1 values in an expression,
you will wind up with an expression that obeys all the rules of boolean algebra.

This does
not mean the dual expression computes the same values

, it only means that both expressions are
legal in the boolean algebra system. Therefore, this is an easy way to generate a second
theorem for any fact you prove in the boolean algebra system.

Although we will not be proving any theorems for the sake of boolean algebra in this
text, we will use these theorems to show that two boolean equations are identical. This is
an important operation when attempting to produce

canonical representations

 of a boolean
expression or when simplifying a boolean expression.

2.2 Boolean Functions and Truth Tables

A boolean

expression

 is a sequence of zeros, ones, and

literals

separated by boolean
operators. A literal is a primed (negated) or unprimed variable name. For our purposes,
all variable names will be a single alphabetic character. A boolean function is a specific
boolean expression; we will generally give boolean functions the name “F” with a possible
subscript. For example, consider the following boolean:

F

0

 = AB+C

This function computes the logical AND of A and B and then logically ORs this result with
C. If A=1, B=0, and C=1, then F

0

 returns the value one (1•0 + 1 = 1).

Another way to represent a boolean function is via a

truth table

. The previous chapter
used truth tables to represent the AND and OR functions. Those truth tables took the
forms:

Table 6: AND Truth Table

AND 0 1

0 0 0

1 0 1

Chapter 02

Page 46

For binary operators and two input variables, this form of a truth table is very natural and
convenient. However, reconsider the boolean function F

0

 above. That function has

three

input variables, not two. Therefore, one cannot use the truth table format given above.
Fortunately, it is still very easy to construct truth tables for three or more variables. The
following example shows one way to do this for functions of three or four variables:

In the truth tables above, the four columns represent the four possible combinations of
zeros and ones for A & B (B is the H.O. or leftmost bit, A is the L.O. or rightmost bit). Like-
wise the four rows in the second truth table above represent the four possible combina-
tions of zeros and ones for the C and D variables. As before, D is the H.O. bit and C is the
L.O. bit.

Table 10 shows another way to represent truth tables. This form has two advantages
over the forms above – it is easier to fill in the table and it provides a compact representa-
tion for two or more functions.

Note that the truth table above provides the values for three separate functions of three
variables.

Although you can create an infinite variety of boolean functions, they are not all
unique. For example, F=A and F=AA are two different functions. By theorem two, how-
ever, it is easy to show that these two functions are equivalent, that is, they produce
exactly the same outputs for all input combinations. If you fix the number of input vari-
ables, there are a finite number of unique boolean functions possible. For example, there
are only 16 unique boolean functions with two inputs and there are only 256 possible
boolean functions of three input variables. Given

n

 input variables, there are 2**(2

n

) (two
raised to the two raised to the n

th

 power) unique boolean functions of those

n

 input val-
ues. For two input variables, 2^(2

2

) = 2

4

 or 16 different functions. With three input vari-

Table 7: OR Truth Table

OR 0 1

0 0 1

1 1 1

Table 8: Truth Table for a Function with Three Variables

F = AB + C
BA

00 01 10 11

C
0 0 0 0 1

1 1 1 1 1

Table 9: Truth Table for a Function with Four Variables

F = AB + CD
BA

00 01 10 11

DC

00 0 0 0 1

01 0 0 0 1

10 0 0 0 1

11 1 1 1 1

Boolean Algebra

Page 47

ables there are 2**(2

3

) = 2

8

 or 256 possible functions. Four input variables create 2**(2

4

) or
2

16

, or 65,536 different unique boolean functions.

When dealing with only 16 boolean functions, it’s easy enough to name each function.
The following table lists the 16 possible boolean functions of two input variables along
with some common names for those functions:

Beyond two input variables there are too many functions to provide specific names.
Therefore, we will refer to the function’s number rather than the function’s name. For
example,

F

8

 denotes the logical AND of

A

 and

B

 for a two-input function and

F

14

 is the
logical OR operation. Of course, the only problem is to determine a function’s number. For

Table 11: The 16 Possible Boolean Functions of Two Variables

Function # Description

0 Zero or Clear. Always returns zero regardless of A and B input
values.

1 Logical NOR (NOT (A OR B)) = (A+B)’

2 Inhibition = BA’ (B, not A). Also equivalent to B>A or A < B.

3 NOT A. Ignores B and returns A’.

4 Inhibition = AB’ (A, not B). Also equivalent to A>B or B<A.

5 NOT B. Returns B’ and ignores A

6 Exclusive-or (XOR) = A

⊕

 B. Also equivalent to A

≠

B.

7 Logical NAND (NOT (A AND B)) = (A•B)’

8 Logical AND = A•B. Returns A AND B.

9 Equivalence = (A = B). Also known as exclusive-NOR (not
exclusive-or).

10 Copy B. Returns the value of B and ignores A’s value.

11 Implication, B implies A = A + B’. (if B then A). Also equiva-
lent to B >= A.

12 Copy A. Returns the value of A and ignores B’s value.

13 Implication, A implies B = B + A’ (if A then B). Also equivalent
to A >= B.

14 Logical OR = A+B. Returns A OR B.

15 One or Set. Always returns one regardless of A and B input
values.

Table 10: Another Format for Truth Tables

C B A F = ABC F = AB + C F = A+BC

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

Chapter 02

Page 48

example, given the function of three variables

F=AB+C,

 what is the corresponding func-
tion number? This number is easy to compute by looking at the truth table for the function
(see Table 14 on page 50). If we treat the values for A, B, and C as bits in a binary number
with C being the H.O. bit and A being the L.O. bit, they produce the binary numbers in the
range zero through seven. Associated with each of these binary strings is a zero or one
function result. If we construct a binary value by placing the function result in the bit posi-
tion specified by A, B, and C, the resulting binary number is that function’s number. Con-
sider the truth table for F=AB+C:

CBA: 7 6 5 4 3 2 1 0

F=AB+C: 1 1 1 1 1 0 0 0

If we treat the function values for F as a binary number, this produces the value F816 or
24810. We will usually denote function numbers in decimal.

This also provides the insight into why there are 2**2n different functions of n vari-
ables: if you have n input variables, there are 2n bits in function’s number. If you have m
bits, there are 2m different values. Therefore, for n input variables there are m=2n possible
bits and 2m or 2**2n possible functions.

2.3 Algebraic Manipulation of Boolean Expressions

You can transform one boolean expression into an equivalent expression by applying
the postulates the theorems of boolean algebra. This is important if you want to convert a
given expression to a canonical form (a standardized form) or if you want to minimize the
number of literals (primed or unprimed variables) or terms in an expression. Minimizing
terms and expressions can be important because electrical circuits often consist of individ-
ual components that implement each term or literal for a given expression. Minimizing
the expression allows the designer to use fewer electrical components and, therefore, can
reduce the cost of the system.

Unfortunately, there are no fixed rules you can apply to optimize a given expression.
Much like constructing mathematical proofs, an individual’s ability to easily do these
transformations is usually a function of experience. Nevertheless, a few examples can
show the possibilities:

ab + ab’ + a’b = a(b+b’) + a’b By P4
= a•1 + a’b By P5
= a + a’b By Th4
= a + a’b + 0 By Th3
= a + a’b + aa’ By P5
= a + b(a + a’) By P4
= a + b•1 By P5
= a + b By Th4

(a’b + a’b’ + b’)‘ = (a’(b+b’) + b’)’ By P4
= (a’ + b’)’ By P5
= ((ab)’)’ By Th8
= ab By definition of not

b(a+c) + ab’ + bc’ + c = ba + bc + ab’ + bc’ + c By P4
= a(b+b’) + b(c + c’) + c By P4
= a•1 + b•1 + c By P5
= a + b + c By Th4

Although these examples all use algebraic transformations to simplify a boolean
expression, we can also use algebraic operations for other purposes. For example, the next
section describes a canonical form for boolean expressions. Canonical forms are rarely
optimal.

Boolean Algebra

Page 49

2.4 Canonical Forms

Since there are a finite number of boolean functions of n input variables, yet an infinite
number of possible logic expressions you can construct with those n input values, clearly
there are an infinite number of logic expressions that are equivalent (i.e., they produce the
same result given the same inputs). To help eliminate possible confusion, logic designers
generally specify a boolean function using a canonical, or standardized, form. For any
given boolean function there exists a unique canonical form. This eliminates some confu-
sion when dealing with boolean functions.

Actually, there are several different canonical forms. We will discuss only two here
and employ only the first of the two. The first is the so-called sum of minterms and the sec-
ond is the product of maxterms. Using the duality principle, it is very easy to convert
between these two.

A term is a variable or a product (logical AND) of several different literals. For exam-
ple, if you have two variables, A and B, there are eight possible terms: A, B, A’, B’, A’B’,
A’B, AB’, and AB. For three variables we have 26 different terms: A, B, C, A’, B’, C’, A’B’,
A’B, AB’, AB, A’C’, A’C, AC’, AC, B’C’, B’C, BC’, BC, A’B’C’, AB’C’, A’BC’, ABC’, A’B’C,
AB’C, A’BC, and ABC. As you can see, as the number of variables increases, the number
of terms increases dramatically. A minterm is a product containing exactly n literals. For
example, the minterms for two variables are A’B’, AB’, A’B, and AB. Likewise, the min-
terms for three variables A, B, and C are A’B’C’, AB’C’, A’BC’, ABC’, A’B’C, AB’C, A’BC,
and ABC. In general, there are 2n minterms for n variables. The set of possible minterms is
very easy to generate since they correspond to the sequence of binary numbers:

We can specify any boolean function using a sum (logical OR) of minterms. Given
F248=AB+C the equivalent canonical form is ABC+A’BC+AB’C+A’B’C+ABC’. Algebra-
ically, we can show that these two are equivalent as follows:

ABC+A’BC+AB’C+A’B’C+ABC’ = BC(A+A’) + B’C(A+A’) + ABC’
= BC•1 +B’C•1 + ABC’
= C(B+B’) + ABC’
= C + ABC’
= C + AB

Obviously, the canonical form is not the optimal form. On the other hand, there is a big
advantage to the sum of minterms canonical form: it is very easy to generate the truth
table for a function from this canonical form. Furthermore, it is also very easy to generate
the logic equation from the truth table.

To build the truth table from the canonical form, simply convert each minterm into a
binary value by substituting a “1” for unprimed variables and a “0” for primed variables.

Table 12: Minterms for Three Input Variables

Binary
Equivalent

(CBA)

Minterm

000 A’B’C’

001 AB’C’

010 A’BC’

011 ABC’

100 A’B’C

101 AB’C

110 A’BC

111 ABC

Chapter 02

Page 50

Then place a “1” in the corresponding position (specified by the binary minterm value) in
the truth table:

1) Convert minterms to binary equivalents:

F248= CBA + CBA’ + CB’A + CB’A’ + C’BA

= 111 + 110 + 101 + 100 + 011

2) Substitute a one in the truth table for each entry above

Finally, put zeros in all the entries that you did not fill with ones in the first step
above:

Going in the other direction, generating a logic function from a truth table, is almost
as easy. First, locate all the entries in the truth table with a one. In the table above, these are
the last five entries. The number of table entries containing ones determines the number of
minterms in the canonical equation. To generate the individual minterms, substitute A, B,
or C for ones and A’, B’, or C’ for zeros in the truth table above. Then compute the sum of
these items. In the example above, F248 contains one for CBA = 111, 110, 101, 100, and 011.
Therefore, F248 = CBA + CBA’ + CB’A + CB’A’ + C’AB. The first term, CBA, comes from
the last entry in the table above. C, B, and A all contain ones so we generate the minterm
CBA (or ABC, if you prefer). The second to last entry contains 110 for CBA, so we generate
the minterm CBA’. Likewise, 101 produces CB’A; 100 produces CB’A’, and 011 produces
C’BA. Of course, the logical OR and logical AND operations are both commutative, so we
can rearrange the terms within the minterms as we please and we can rearrange the min-
terms within the sum as we see fit. This process works equally well for any number of

Table 13: Creating a Truth Table from Minterms, Step One

C B A F = AB+C

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Table 14: Creating a Truth Table from Minterms, Step Two

C B A F = AB+C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Boolean Algebra

Page 51

variables. Consider the function F53504 = ABCD + A’BCD + A’B’CD + A’B’C’D. Placing
ones in the appropriate positions in the truth table generates the following:

The remaining elements in this truth table all contain zero.

Perhaps the easiest way to generate the canonical form of a boolean function is to first
generate the truth table for that function and then build the canonical form from the truth
table. We’ll use this technique, for example, when converting between the two canonical
forms this chapter presents. However, it is also a simple matter to generate the sum of
minterms form algebraically. By using the distributive law and theorem 15 (A + A’ = 1)
makes this task easy. Consider F248 = AB + C. This function contains two terms, AB and C,
but they are not minterms. Minterms contain each of the possible variables in a primed or
unprimed form. We can convert the first term to a sum of minterms as follows:

AB = AB • 1 By Th4
= AB • (C + C’) By Th 15
= ABC + ABC’ By distributive law
= CBA + C’BA By associative law

Similarly, we can convert the second term in F248 to a sum of minterms as follows:

C = C • 1 By Th4
= C • (A + A’) By Th15
= CA + CA’ By distributive law
= CA•1 + CA’•1 By Th4
= CA • (B + B’) + CA’ • (B + B’) By Th15
= CAB + CAB’ + CA’B + CA’B’ By distributive law
= CBA + CBA’ + CB’A + CB’A’ By associative law

The last step (rearranging the terms) in these two conversions is optional. To obtain the
final canonical form for F248 we need only sum the results from these two conversions:

F248 = (CBA + C’BA) + (CBA + CBA’ + CB’A + CB’A’)
= CBA + CBA’ + CB’A + CB’A’ + C’BA

Another way to generate a canonical form is to use products of maxterms. A maxterm is
the sum (logical OR) of all input variables, primed or unprimed. For example, consider
the following logic function G of three variables:

G = (A+B+C) • (A’+B+C) • (A+B’+C).

Table 15: Creating a Truth Table with Four Variables from Minterms

D C B A F = ABCD + A’BCD + A’B’CD +
A’B’C’D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0 1

1 1 0 1

1 1 1 0 1

1 1 1 1 1

Chapter 02

Page 52

Like the sum of minterms form, there is exactly one product of maxterms for each pos-
sible logic function. Of course, for every product of maxterms there is an equivalent sum
of minterms form. In fact, the function G, above, is equivalent to

F248 = CBA + CBA’ + CB’A + CB’A’ + C’BA = AB +C.

Generating a truth table from the product of maxterms is no more difficult than build-
ing it from the sum of minterms. You use the duality principle to accomplish this. Remem-
ber, the duality principle says to swap AND for OR and zeros for ones (and vice versa).
Therefore, to build the truth table, you would first swap primed and non-primed literals.
In G above, this would yield:

G= (A’ + B’ + C’) • (A + B’ + C’) • (A’ + B + C’)

The next step is to swap the logical OR and logical AND operators. This produces

G = A’B’C’ + AB’C’ + A’BC’

Finally, you need to swap all zeros and ones. This means that you store zeros into the
truth table for each of the above entries and then fill in the rest of the truth table with ones.
This will place a zero in entries zero, one, and two in the truth table. Filling the remaining
entries with ones produces F248.

You can easily convert between these two canonical forms by generating the truth
table for one form and working backwards from the truth table to produce the other form.
For example, consider the function of two variables, F7 = A + B. The sum of minterms
form is F7 = A’B + AB’ + AB. The truth table takes the form:

Working backwards to get the product of maxterms, we locate all entries that have a
zero result. This is the entry with A and B equal to zero. This gives us the first step of
G=A’B’. However, we still need to invert all the variables to obtain G=AB. By the duality
principle we need to swap the logical OR and logical AND operators obtaining G=A+B.
This is the canonical product of maxterms form.

Since working with the product of maxterms is a little messier than working with
sums of minterms, this text will generally use the sum of minterms form. Furthermore, the
sum of minterms form is more common in boolean logic work. However, you will encoun-
ter both forms when studying logic design.

2.5 Simplification of Boolean Functions

Since there are an infinite variety of boolean functions of n variables, but only a finite
number of unique boolean functions of those n variables, you might wonder if there is
some method that will simplify a given boolean function to produce the optimal form. Of
course, you can always use algebraic transformations to produce the optimal form, but
using heuristics does not guarantee an optimal transformation. There are, however, two
methods that will reduce a given boolean function to its optimal form: the map method
and the prime implicants method. In this text we will only cover the mapping method, see
any text on logic design for other methods.

Table 16: F7 (OR) Truth Table for Two Variables

F7 A B

0 0 0

0 1 0

1 0 1

1 1 1

Boolean Algebra

Page 53

Since for any logic function some optimal form must exist, you may wonder why we
don’t use the optimal form for the canonical form. There are two reasons. First, there may
be several optimal forms. They are not guaranteed to be unique. Second, it is easy to con-
vert between the canonical and truth table forms.

Using the map method to optimize boolean functions is practical only for functions of
two, three, or four variables. With care, you can use it for functions of five or six variables,
but the map method is cumbersome to use at that point. For more than six variables,
attempting map simplifications by hand would not be wise1.

The first step in using the map method is to build a two-dimensional truth table for
the function (see Figure 2.1).

Warning: Take a careful look at these truth tables. They do not use the same forms
appearing earlier in this chapter. In particular, the progression of the values is 00, 01, 11,
10, not 00, 01, 10, 11. This is very important! If you organize the truth tables in a binary
sequence, the mapping optimization method will not work properly. We will call this a
truth map to distinguish it from the standard truth table.

Assuming your boolean function is in canonical form (sum of minterms), insert ones
for each of the truth map entries corresponding to a minterm in the function. Place zeros
everywhere else. For example, consider the function of three variables F=C’B’A + C’BA’ +
C’BA + CB’A’ + CB’A + CBA’ + CBA. Figure 2.2 shows the truth map for this function.

1. However, it’s probably quite reasonable to write a program that uses the map method for seven or more vari-
ables.

Figure 2.1 Two, Three, and Four Dimensional Truth Maps

B'A'

B

A
0 1

0

1 BA'

B'A

BA

C
0

1

BA

00 01 1011

C'B'A' C'B'A C'BA'C'AB

CB'A' CB'A CBA'CAB

Three Variable Truth Table

DC

00

01

BA

00 01 1011

D'C'B'A' D'C'B'A D'C'BA'D'C'AB

D'CB'A' D'CB'A D'CBA'D'CAB

DC'B'A' DC'B'A DC'BA'DC'AB

DCB'A' DCB'A DCBA'DCAB

10

11

Four Variable Truth Table

Two Variable Truth Table

Chapter 02

Page 54

The next step is to draw rectangles around rectangular groups of ones. The rectangles
you enclose must have sides whose lengths are powers of two. For functions of three vari-
ables, the rectangles can have sides whose lengths are one, two, and four. The set of rect-
angles you draw must surround all cells containing ones in the truth map. The trick is to
draw all possible rectangles unless a rectangle would be completely enclosed within
another. Note that the rectangles may overlap if one does not enclose the other. In the
truth map in Figure 2.2 there are three such rectangles (see Figure 2.3)

Each rectangle represents a term in the simplified boolean function. Therefore, the
simplified boolean function will contain only three terms. You build each term using the
process of elimination. You eliminate any variables whose primed and unprimed form
both appear within the rectangle. Consider the long skinny rectangle above that is sitting
in the row where C=1. This rectangle contains both A and B in primed and unprimed
form. Therefore, we can eliminate A and B from the term. Since the rectangle sits in the
C=1 region, this rectangle represents the single literal C.

Now consider the solid square above. This rectangle includes C, C’, B, B’ and A.
Therefore, it represents the single term A. Likewise, the square with the dotted line above
contains C, C’, A, A’ and B. Therefore, it represents the single term B.

The final, optimal, function is the sum (logical OR) of the terms represented by the
three squares. Therefore, F= A + B + C. You do not have to consider squares containing
zeros.

When enclosing groups of ones in the truth map, you must consider the fact that a
truth map forms a torus (i.e., a doughnut shape). The right edge of the map wraps around to
the left edge (and vice-versa). Likewise, the top edge wraps around to the bottom edge.
This introduces additional possibilities when surrounding groups of ones in a map. Con-
sider the boolean function F=C’B’A’ + C’BA’ + CB’A’ + CBA’. Figure 2.4 shows the truth
map for this function.

Figure 2.2 : A Sample Truth Map

C
0

1

BA

00 01 11 10

0 1 1 1

1 1 1 1

F=C’B’A + C’BA’ + C’BA + CB’A’ + CB’A + CBA’ + CBA.

Figure 2.3 : Surrounding Rectangular Groups of Ones in a Truth Map

C
0

1

BA
00 01 11 10

0 1 1 1

1 1 1 1

Three possible rectangles whose lengths
and widths are powers of two.

Boolean Algebra

Page 55

At first glance, you would think that there are two possible rectangles here as Figure 2.5
shows. However, because the truth map is a continuous object with the right side and left
sides connected, we can form a single, square rectangle, as Figure 2.6 shows.

So what? Why do we care if we have one rectangle or two in the truth map? The
answer is because the larger the rectangles are, the more terms they will eliminate. The
fewer rectangles that we have, the fewer terms will appear in the final boolean function.
For example, the former example with two rectangles generates a function with two
terms. The first rectangle (on the left) eliminates the C variable, leaving A’B’ as its term.
The second rectangle, on the right, also eliminates the C variable, leaving the term BA’.
Therefore, this truth map would produce the equation F=A’B’ + A’B. We know this is not
optimal, see Th 13. Now consider the second truth map above. Here we have a single rect-
angle so our boolean function will only have a single term. Obviously this is more optimal
than an equation with two terms. Since this rectangle includes both C and C’ and also B
and B’, the only term left is A’. This boolean function, therefore, reduces to F=A’.

There are only two cases that the truth map method cannot handle properly: a truth
map that contains all zeros or a truth map that contains all ones. These two cases corre-
spond to the boolean functions F=0 and F=1, respectively. These functions are easy to gen-
erate by inspection of the truth map.

An important thing you must keep in mind when optimizing boolean functions using
the mapping method is that you always want to pick the largest rectangles whose sides’

Figure 2.4 : Truth Map for F=C’B’A’ + C’BA’ + CB’A’ + CBA’

C
0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1

F=C’'B’A’ + C’BA' + CB’A’ + CBA'.

Figure 2.5 : First attempt at Surrounding Rectangles Formed by Ones

C
0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1

Figure 2.6 : Correct Rectangle for the Function

C
0

1

BA
00 01 11 10

1 0 0 1

1 0 0 1

Chapter 02

Page 56

lengths are a power of two. You must do this even for overlapping rectangles (unless one
rectangle encloses another). Consider the boolean function F = C'B'A' + C'BA' + CB'A' +
C'AB + CBA' + CBA. This produces the truth map appearing in Figure 2.7.

The initial temptation is to create one of the sets of rectangles found in Figure 2.8. How-
ever, the correct mapping appears in Figure 2.9.

All three mappings will produce a boolean function with two terms. However, the first
two will produce the expressions F= B + A'B' and F = AB + A'. The third form produces F
= B + A'. Obviously, this last form is more optimal than the other two forms (see theorems
11 and 12).

For functions of three variables, the size of the rectangle determines the number of
terms it represents:

• A rectangle enclosing a single square represents a minterm. The associ-
ated term will have three literals.

• A rectangle surrounding two squares containing ones represents a term
containing two literals.

• A rectangle surrounding four squares containing ones represents a term
containing a single literal.

• A rectangle surrounding eight squares represents the function F = 1.

Truth maps you create for functions of four variables are even trickier. This is because
there are lots of places rectangles can hide from you along the edges. Figure 2.10 shows
some possible places rectangles can hide.

Figure 2.7 : Truth Map for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

Figure 2.8 : Obvious Choices for Rectangles

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

Figure 2.9 Correct Set of Rectangles for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

C
0

1

BA
00 01 11 10

1 0 1 1

1 0 1 1

Boolean Algebra

Page 57

This list of patterns doesn’t even begin to cover all of them! For example, these dia-
grams show none of the 1x2 rectangles. You must exercise care when working with four
variable maps to ensure you select the largest possible rectangles, especially when overlap
occurs. This is particularly important with you have a rectangle next to an edge of the
truth map.

Figure 2.10 : Partial Pattern List for 4x4 Truth Map

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

00

01

00 01 1011

10

11

Chapter 02

Page 58

As with functions of three variables, the size of the rectangle in a four variable truth
map controls the number of terms it represents:

• A rectangle enclosing a single square represents a minterm. The associ-
ated term will have four literals.

• A rectangle surrounding two squares containing ones represents a term
containing three literals.

• A rectangle surrounding four squares containing ones represents a term
containing two literals.

• A rectangle surrounding eight squares containing ones represents a term
containing a single literal.

• A rectangle surrounding sixteen squares represents the function F=1.

This last example demonstrates an optimization of a function containing four vari-
ables. The function is F = D’C’B’A’ + D’C’B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA +
DCB’A + DCBA + DC’B’A’ + DC’BA’, the truth map appears in Figure 2.11.

Here are two possible sets of maximal rectangles for this function, each producing
three terms (see Figure 2.12). Both functions are equivalent; both are as optimal as you
can get2. Either will suffice for our purposes.

First, let’s consider the term represented by the rectangle formed by the four corners.
This rectangle contains B, B’, D, and D’; so we can eliminate those terms. The remaining
terms contained within these rectangles are C’ and A’, so this rectangle represents the term
C’A’.

The second rectangle, common to both maps in Figure 2.12, is the rectangle formed by
the middle four squares. This rectangle includes the terms A, B, B’, C, D, and D’. Eliminat-
ing B, B’, D, and D’ (since both primed and unprimed terms exist), we obtain CA as the
term for this rectangle.

The map on the left in Figure 2.12 has a third term represented by the top row. This
term includes the variables A, A’, B, B’, C’ and D’. Since it contains A, A’, B, and B’, we can

2. Remember, there is no guarantee that there is a unique optimal solution.

Figure 2.11 : Truth Map for F = D’C’B’A’ + D’C’B’A + D’C’BA + D’C’BA’ + D’CB’A + D’CBA + DCB’A +
DCBA + DC’B’A’ + DC’BA’

00

01

00 01 1011

10

11

= 1

= 0

BA

DC

Figure 2.12 : Two Combinations of Surrounded Values Yielding Three Terms

Boolean Algebra

Page 59

eliminate these terms. This leaves the term C’D’. Therefore, the function represented by
the map on the left is F=C’A’ + CA + C’D’.

The map on the right in Figure 2.12 has a third term represented by the top/middle
four squares. This rectangle subsumes the variables A, B, B’, C, C’, and D’. We can elimi-
nate B, B’, C, and C’ since both primed and unprimed versions appear, this leaves the term
AD. Therefore, the function represented by the function on the right is F=C’A’ + CA +
AD’.

Since both expressions are equivalent, contain the same number of terms, and the
same number of operators, either form is equivalent. Unless there is another reason for
choosing one over the other, you can use either form.

2.6 What Does This Have To Do With Computers, Anyway?

Although there is a tenuous relationship between boolean functions and boolean
expressions in programming languages like C or Pascal, it is fair to wonder why we’re
spending so much time on this material. However, the relationship between boolean logic
and computer systems is much stronger. There is a one-to-one relationship between bool-
ean functions and electronic circuits. Electrical engineers who design CPUs and other
computer related circuits need to be intimately familiar with this stuff. Even if you never
intend to design your own electronic circuits, understanding this relationship is important
if you want to make the most of any computer system.

2.6.1 Correspondence Between Electronic Circuits and Boolean Functions

There is a one-to-one correspondence between an electrical circuits and boolean func-
tions. For any boolean function you can design an electronic circuit and vice versa. Since
boolean functions only require the AND, OR, and NOT boolean operators, we can con-
struct any electronic circuit using these operations exclusively. The boolean AND, OR, and
NOT functions correspond to the following electronic circuits, the AND, OR, and inverter
(NOT) gates (see Figure 2.13).

One interesting fact is that you only need a single gate type to implement any elec-
tronic circuit. This gate is the NAND gate, shown in Figure 2.14.

To prove that we can construct any boolean function using only NAND gates, we need
only show how to build an inverter (NOT), AND gate, and OR gate from a NAND (since
we can create any boolean function using only AND, NOT, and OR). Building an inverter
is easy, just connect the two inputs together (see Figure 2.15).

Once we can build an inverter, building an AND gate is easy – just invert the output
of a NAND gate. After all, NOT (NOT (A AND B)) is equivalent to A AND B (see). Of
course, this takes two NAND gates to construct a single AND gate, but no one said that

Figure 2.13 : AND, OR, and Inverter (NOT) Gates

A A'
A

B
A and B

A
B

A or B

Figure 2.14 : The NAND Gate

A

B
not (A and B)

Chapter 02

Page 60

circuits constructed only with NAND gates would be optimal, only that it is possible to
do.

The remaining gate we need to synthesize is the logical-OR gate. We can easily con-
struct an OR gate from NAND gates by applying DeMorgan’s theorems.

(A or B)’ = A’ and B’ DeMorgan’s Theorem.
A or B = (A’ and B’)’ Invert both sides of the equation.
A or B = A’ nand B’ Definition of NAND operation.

By applying these transformations, you get the circuit in Figure 2.17.

Now you might be wondering why we would even bother with this. After all, why
not just use logical AND, OR, and inverter gates directly? There are two reasons for this.
First, NAND gates are generally less expensive to build than other gates. Second, it is also
much easier to build up complex integrated circuits from the same basic building blocks
than it is to construct an integrated circuit using different basic gates.

Note, by the way, that it is possible to construct any logic circuit using only NOR
gates3. The correspondence between NAND and NOR logic is orthogonal to the corre-
spondence between the two canonical forms appearing in this chapter (sum of minterms
vs. product of maxterms). While NOR logic is useful for many circuits, most electronic
designs use NAND logic. See the exercises for more examples.

2.6.2 Combinatorial Circuits

A combinatorial circuit is a system containing basic boolean operations (AND, OR,
NOT), some inputs, and a set of outputs. Since each output corresponds to an individual
logic function, a combinatorial circuit often implements several different boolean func-
tions. It is very important that you remember this fact – each output represents a different
boolean function.

A computer’s CPU is built up from various combinatorial circuits. For example, you
can implement an addition circuit using boolean functions. Suppose you have two one-bit

3. NOR is NOT (A OR B).

Figure 2.15 : Inverter Built from a NAND Gate

A A'

Figure 2.16 : Constructing an AND Gate From Two NAND Gates

A

B
A and B

Figure 2.17 : Constructing an OR Gate From NAND Gates

A

B

A or B

Boolean Algebra

Page 61

numbers, A and B. You can produce the one-bit sum and the one-bit carry of this addition
using the two boolean functions:

S = AB’ + A’B Sum of A and B.
C = AB Carry from addition of A and B.

These two boolean functions implement a half-adder. Electrical engineers call it a half
adder because it adds two bits together but cannot add in a carry from a previous opera-
tion. A full adder adds three one-bit inputs (two bits plus a carry from a previous addition)
and produces two outputs: the sum and the carry. The two logic equations for a full adder
are

S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin
Cout = AB + ACin + BCin

Although these logic equations only produce a single bit result (ignoring the carry), it is
easy to construct an n-bit sum by combining adder circuits (see Figure 2.18). So, as this
example clearly illustrates, we can use logic functions to implement arithmetic and bool-
ean operations.

Another common combinatorial circuit is the seven-segment decoder. This is a combina-
torial circuit that accepts four inputs and determines which of the seven segments on a
seven-segment LED display should be on (logic one) or off (logic zero). Since a seven seg-
ment display contains seven output values (one for each segment), there will be seven
logic functions associated with the display (segment zero through segment six). See
Figure 2.19 for the segment assignments. Figure 2.20 shows the segment assignments for
each of the ten decimal values.

The four inputs to each of these seven boolean functions are the four bits from a
binary number in the range 0..9. Let D be the H.O. bit of this number and A be the L.O. bit
of this number. Each logic function should produce a one (segment on) for a given input if
that particular segment should be illuminated. For example S4 (segment four) should be

Figure 2.18 : Building an N-Bit Adder Using Half and Full Adders

A0
B0

S0

Carry

A1
B1

S1

Carry

A2
B2

S2

•
•
•

Half Adder

Full Adder

Full Adder
Carry

Figure 2.19 : Seven Segment Display

S0

S1 S3S2

S5
S4 S6

Chapter 02

Page 62

on for binary values 0000, 0010, 0110, and 1000. For each value that illuminates a segment,
you will have one minterm in the logic equation:

S4 = D’C’B’A’ + D’C’BA’ + D’CBA’ + DC’B’A’.

So, as a second example, is on for values zero, two, three, five, six, seven, eight, and
nine. Therefore, the logic function for S0 is

S0 = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + D’CBA + DC’B’A’ + DC’B’A

You can generate the other five logic functions in a similar fashion (see the exercises).

Combinatorial circuits are the basis for many components of a basic computer system.
You can construct circuits for addition, subtraction, comparison, multiplication, division,
and many other operations using combinatorial logic.

2.6.3 Sequential and Clocked Logic

One major problem with combinatorial logic is that it is memoryless. In theory, all logic
function outputs depend only on the current inputs. Any change in the input values is
immediately reflected in the outputs4. Unfortunately, computers need the ability to remem-
ber the results of past computations. This is the domain of sequential or clocked logic.

A memory cell is an electronic circuit that remembers an input value after the removal
of that input value. The most basic memory unit is the set/reset flip-flop. You can construct
an SR flip-flop using two NAND gates, as shown in Figure 2.21.

The S and R inputs are normally high. If you temporarily set the S input to zero and
then bring it back to one (toggle the S input), this forces the Q output to one. Likewise, if
you toggle the R input from one to zero back to one, this sets the Q output to zero. The Q’
input is generally the inverse of the Q output.

Note that if both S and R are one, then the Q output depends upon Q. That is, what-
ever Q happens to be, the top NAND gate continues to output that value. If Q was origi-
nally one, then there are two ones as inputs to the bottom flip-flop (Q nand R). This

4. In practice, there is a short propagation delay between a change in the inputs and the corresponding outputs in
any electronic implementation of a boolean function.

Figure 2.20 : Seven Segment Values for “0” through “9”.

Figure 2.21 : Set/Reset Flip Flop Constructed From NAND Gates

Q

Q'

S

R

Boolean Algebra

Page 63

produces an output of zero (Q’). Therefore, the two inputs to the top NAND gate are zero
and one. This produces the value one as an output (matching the original value for Q).

If the original value for Q was zero, then the inputs to the bottom NAND gate are Q=0
and R=1. Therefore, the output of this NAND gate is one. The inputs to the top NAND
gate, therefore, are S=1 and Q’=1. This produces a zero output, the original value of Q.

Suppose Q is zero, S is zero and R is one. This sets the two inputs to the top flip-flop to
one and zero, forcing the output (Q) to one. Returning S to the high state does not change
the output at all. You can obtain this same result if Q is one, S is zero, and R is one. Again,
this produces an output value of one. This value remains one even when S switches from
zero to one. Therefore, toggling the S input from one to zero and then back to one pro-
duces a one on the output (i.e., sets the flip-flop). The same idea applies to the R input,
except it forces the Q output to zero rather than to one.

There is one catch to this circuit. It does not operate properly if you set both the S and
R inputs to zero simultaneously. This forces both the Q and Q’ outputs to one (which is
logically inconsistent). Whichever input remains zero the longest determines the final
state of the flip-flop. A flip-flop operating in this mode is said to be unstable.

The only problem with the S/R flip-flop is that you must use separate inputs to
remember a zero or a one value. A memory cell would be more valuable to us if we could
specify the data value to remember on one input and provide a clock input to latch the
input value. This type of flip-flop, the D flip-flop (for data) uses the circuit in Figure 2.22.

Assuming you fix the Q and Q’ outputs to either 0/1 or 1/0, sending a clock pulse that goes
from zero to one back to zero will copy the D input to the Q output. It will also copy D’ to
Q’. The exercises at the end of this chapter will expect you to describe this operation in
detail, so study this diagram carefully.

Although remembering a single bit is often important, in most computer systems you
will want to remember a group of bits. You can remember a sequence of bits by combining
several D flip-flops in parallel. Concatenating flip-flops to store an n-bit value forms a reg-
ister. The electronic schematic in Figure 2.23 shows how to build an eight-bit register from
a set of D flip-flops.

Figure 2.22 : Implementing a D flip-flop with NAND Gates

Q

Q'

Clk

Data

Figure 2.23 : An Eight-bit Register Implemented with Eight D Flip-flops

D0

Q0

D1

Q1

D2

Q2

D3

Q3

D4

Q4

D5

Q5

D6

Q6

D7

Q7

Clk

Chapter 02

Page 64

Note that the eight D flip-flops use a common clock line. This diagram does not show the
Q’ outputs on the flip-flops since they are rarely required in a register.

D flip-flops are useful for building many sequential circuits above and beyond simple
registers. For example, you can build a shift register that shifts the bits one position to the
left on each clock pulse. A four-bit shift register appears in Figure 2.24.

You can even build a counter, that counts the number of times the clock toggles from
one to zero and back to one using flip-flops. The circuit in Figure 2.25 implements a four
bit counter using D flip-flops.

Surprisingly, you can build an entire CPU with combinatorial circuits and only a few
additional sequential circuits beyond these.

2.7 Okay, What Does It Have To Do With Programming, Then?

Once you have registers, counters, and shift registers, you can build state machines.
The implementation of an algorithm in hardware using state machines is well beyond the
scope of this text. However, one important point must be made with respect to such cir-
cuitry – any algorithm you can implement in software you can also implement directly in hard-
ware. This suggests that boolean logic is the basis for computation on all modern computer
systems. Any program you can write, you can specify as a sequence of boolean equations.

Of course, it is much easier to specify a solution to a programming problem using lan-
guages like Pascal, C, or even assembly language than it is to specify the solution using
boolean equations. Therefore, it is unlikely that you would ever implement an entire pro-
gram using a set of state machines and other logic circuitry. Nevertheless, there are times
when a hardware implementation is better. A hardware solution can be one, two, three, or
more orders of magnitude faster than an equivalent software solution. Therefore, some time
critical operations may require a hardware solution.

A more interesting fact is that the converse of the above statement is also true. Not
only can you implement all software functions in hardware, but it is also possible to imple-
ment all hardware functions in software. This is an important revelation because many opera-
tions you would normally implement in hardware are much cheaper to implement using
software on a microprocessor. Indeed, this is a primary use of assembly language in modern

Figure 2.24 : A Four-bit Shift Register Built from D Flip-flops

Q0 Q1 Q2 Q3

Clk

Data In

Figure 2.25 : A Four-bit Counter Built from D Flip-flops

Q0

Q0'
D Clk

Clk

Q1

Q1'
D Clk

Q2

Q2'
D Clk

Q3

Q3'
D Clk

Boolean Algebra

Page 65

systems – to inexpensively replace a complex electronic circuit. It is often possible to
replace many tens or hundreds of dollars of electronic components with a single $25
microcomputer chip. The whole field of embedded systems deals with this very problem.
Embedded systems are computer systems embedded in other products. For example,
most microwave ovens, TV sets, video games, CD players, and other consumer devices
contain one or more complete computer systems whose sole purpose is to replace a com-
plex hardware design. Engineers use computers for this purpose because they are less
expensive and easier to design with than traditional electronic circuitry.

You can easily design software that reads switches (input variables) and turns on
motors, LEDs or lights, locks or unlocks a door, etc. (output functions). To write such soft-
ware, you will need an understanding of boolean functions and how to implement such
functions in software.

Of course, there is one other reason for studying boolean functions, even if you never
intend to write software intended for an embedded system or write software that manipu-
lates real-world devices. Many high level languages process boolean expressions (e.g.,
those expressions that control an if statement or while loop). By applying transformations
like DeMorgan’s theorems or a mapping optimization it is often possible to improve the
performance of high level language code. Therefore, studying boolean functions is impor-
tant even if you never intend to design an electronic circuit. It can help you write better
code in a traditional programming language.

For example, suppose you have the following statement in Pascal:

if ((x=y) and (a <> b)) or ((x=y) and (c <= d)) then SomeStmt;

You can use the distributive law to simplify this to:

if ((x=y) and ((a <> b) or (c <= d)) then SomeStmt;

Likewise, we can use DeMorgan’s theorem to reduce

while (not((a=b) and (c=d)) do Something;

to

while (a <> b) or (c <> d) do Something;

2.8 Generic Boolean Functions

For a specific application, you can create a logic function that achieves some specific
result. Suppose, however, that you wanted to write a program to simulate any possible
boolean function? For example, on the companion diskette, there is a program that lets
you enter an arbitrary boolean function with one to four different variables. This program
will read the inputs and produce and necessary function results. Since the number of
unique four variable functions is large (65,536, to be exact), it is not practical to include a
specific solution for each one in a program. What is necessary is a generic logic function, one
that will compute the results for any arbitrary function. This section describes how to
write such a function.

A generic boolean function of four variables requires five parameters – the four input
parameters and a fifth parameter that specifies the function to compute. While there are
lots of ways to specify the function to compute, we’ll pass the boolean function’s number
as this fifth parameter.

At first glance you might wonder how we can compute a function using the function’s
number. However, keep in mind that the bits that make up the function’s number come
directly from the truth table for that function. Therefore, if we extract the bits from the
function’s number, we can construct the truth table for that function. Indeed, if we just
select the ith bit of the function number, where i = D*8 + C*4 + B*2 +A you will get the

Chapter 02

Page 66

function result for that particular value of A, B, C, and D5. The following examples, in C
and Pascal, show how to write such functions:

/**/
/* */
/* This C program demonstrates how to write a generic logic function */
/* that can compute any logic function of four variables. Given C’s */
/* bit manipulation operators, along with hexadecimal I/O, this is an */
/* easy task to accomplish in the C programming language. */
/* */
/**/

#include <stdlib.h>
#include <stdio.h>

/* Generic logic function. The “Func” parameter contains the 16-bit */
/* logical function number. This is actually an encoded truth table */
/* for the function. The a, b, c, and d parameters are the inputs to */
/* the logic function. If we treat “func” as a 2x2x2x2 array of bits, */
/* this particular function selects bit “func[d,c,b,a]” from func. */

int
generic(int func, int a, int b, int c, int d)
{
 /* Return the bit specified by a, b, c, and d */

 return (func >> (a + b*2 + c*4 + d*8)) & 1;
}

/* Main program to drive the generic logic function written in C. */

main()
{
 int func, a, b, c, d;

 /* Repeat the following until the user enters zero. */

 do
 {
 /* Get the function’s number (truth table) */

 printf(“Enter function value (hex): “);
 scanf(“%x”, &func);

 /* If the user specified zero as the function #, stop */
 /* the program. */

 if (func != 0)
 {
 printf(“Enter values for d, c, b, & a: “);
 scanf(“%d%d%d%d”,
 &d, &c, &b, &a);

 printf(“The result is %d\n”, generic(func,a,b,c,d));
 printf(“Func = %x, A=%d, B=%d, C=%d, D=%d\n”,
 func, a, b, c, d);
 }

 } while (func !=0);

}

The following Pascal program is written for Standard Pascal. Standard Pascal does not
provide any bit manipulation operations, so this program is lengthy since it has to simu-
late bits using an array of integers. Most modern Pascals (especially Turbo Pascal) provide
built-in bit operations or library routines that operate on bits. This program would be
much easier to write using such non-standard features.

5. Chapter Five explains why this multiplication works.

Boolean Algebra

Page 67

program GenericFunc(input,output);

(* Since standard Pascal does not provide an easy way to directly man- *)
(* ipulate bits in an integer, we will simulate the function number *)
(* using an array of 16 integers. “GFTYPE” is the type of that array. *)

type
 gftype = array [0..15] of integer;

var
 a, b, c, d:integer;
 fresult:integer;
 func: gftype;

(* Standard Pascal does not provide the ability to shift integer data *)
(* to the left or right. Therefore, we will simulate a 16-bit value *)
(* using an array of 16 integers. We can simulate shifts by moving *)
(* data around in the array. *)
(* *)
(* Note that Turbo Pascal *does* provide shl and shr operators. How- *)
(* ever, this code is written to work with standard Pascal, not just *)
(* Turbo Pascal. *)
(* *)
(* ShiftLeft shifts the values in func on position to the left and in- *)
(* serts the shiftin value into “bit position” zero. *)

procedure ShiftLeft(shiftin:integer);
var i:integer;
begin

 for i := 15 downto 1 do func[i] := func[i-1];
 func[0] := shiftin;

end;

(* ShiftNibble shifts the data in func to the left four positions and *)
(* inserts the four bits a (L.O.), b, c, and d (H.O.) into the vacated *)
(* positions. *)

procedure ShiftNibble(d,c,b,a:integer);
begin

 ShiftLeft(d);
 ShiftLeft(c);
 ShiftLeft(b);
 ShiftLeft(a);
end;

(* ShiftRight shifts the data in func one position to the right. It *)
(* shifts a zero into the H.O. bit of the array. *)

procedure ShiftRight;
var i:integer;
begin

 for i := 0 to 14 do func[i] := func[i+1];
 func[15] := 0;

end;

(* ToUpper converts a lower case character to upper case. *)

procedure toupper(var ch:char);
begin

 if (ch in [‘a’..’z’]) then ch := chr(ord(ch) - 32);

end;

(* ReadFunc reads a hexadecimal function number from the user and puts *)
(* this value into the func array (bit by bit). *)

function ReadFunc:integer;

Chapter 02

Page 68

var ch:char;
 i, val:integer;
begin

 write(‘Enter function number (hexadecimal): ‘);
 for i := 0 to 15 do func[i] := 0;
 repeat

 read(ch);
 if not eoln then begin

 toupper(ch);
 case ch of
 ‘0’: ShiftNibble(0,0,0,0);
 ‘1’: ShiftNibble(0,0,0,1);
 ‘2’: ShiftNibble(0,0,1,0);
 ‘3’: ShiftNibble(0,0,1,1);
 ‘4’: ShiftNibble(0,1,0,0);
 ‘5’: ShiftNibble(0,1,0,1);
 ‘6’: ShiftNibble(0,1,1,0);
 ‘7’: ShiftNibble(0,1,1,1);
 ‘8’: ShiftNibble(1,0,0,0);
 ‘9’: ShiftNibble(1,0,0,1);
 ‘A’: ShiftNibble(1,0,1,0);
 ‘B’: ShiftNibble(1,0,1,1);
 ‘C’: ShiftNibble(1,1,0,0);
 ‘D’: ShiftNibble(1,1,0,1);
 ‘E’: ShiftNibble(1,1,1,0);
 ‘F’: ShiftNibble(1,1,1,1);
 else write(chr(7),chr(8));
 end;
 end;
 until eoln;
 val := 0;
 for i := 0 to 15 do val := val + func[i];
 ReadFunc := val;
end;

(* Generic - Computes the generic logical function specified by *)
(* the function number “func” on the four input vars *)
(* a, b, c, and d. It does this by returning bit *)
(* d*8 + c*4 + b*2 + a from func. *)

function Generic(var func:gftype; a,b,c,d:integer):integer;
begin
 Generic := func[a + b*2 + c*4 + d*8];
end;

begin (* main *)

 repeat

 fresult := ReadFunc;
 if (fresult <> 0) then begin

 write(‘Enter values for D, C, B, & A (0/1):’);
 readln(d, c, b, a);
 writeln(‘The result is ‘,Generic(func,a,b,c,d));

 end;
 until fresult = 0;

end.

The following code demonstrates the power of bit manipulation operations. This ver-
sion of the code above uses special features present in the Turbo Pascal programming lan-
guage that allows programmers to shift left or right and do a bitwise logical AND on
integer variables:

program GenericFunc(input,output);
const
 hex = [‘a’..’f’, ‘A’..’F’];
 decimal = [‘0’..’9’];

var

Boolean Algebra

Page 69

 a, b, c, d:integer;
 fresult:integer;
 func: integer;

(* Here is a second version of the Pascal generic function that uses *)
(* the features of Turbo Pascal to simplify the program. *)

function ReadFunc:integer;
var ch:char;
 i, val:integer;
begin

 write(‘Enter function number (hexadecimal): ‘);
 repeat

 read(ch);
 func := 0;
 if not eoln then begin

 if (ch in Hex) then
 func := (func shl 4) + (ord(ch) and 15) + 9
 else if (ch in Decimal) then
 func := (func shl 4) + (ord(ch) and 15)
 else write(chr(7));

 end;
 until eoln;
 ReadFunc := func;
end;

(* Generic - Computes the generic logical function specified by *)
(* the function number “func” on the four input vars *)
(* a, b, c, and d. It does this by returning bit *)
(* d*8 + c*4 + b*2 + a from func. This version re- *)
(* lies on Turbo Pascal’s shift right operator and *)
(* its ability to do bitwise operations on integers. *)

function Generic(func,a,b,c,d:integer):integer;
begin
 Generic := (func shr (a + b*2 + c*4 + d*8)) and 1;
end;

begin (* main *)

 repeat

 fresult := ReadFunc;
 if (fresult <> 0) then begin

 write(‘Enter values for D, C, B, & A (0/1):’);
 readln(d, c, b, a);
 writeln(‘The result is ‘,Generic(func,a,b,c,d));

 end;
 until fresult = 0;

end.

2.9 Laboratory Exercises

This laboratory uses several Windows programs to manipulate truth tables and logic
expressions, optimize logic equations, and simulate logic equations. These programs will
help you understand the relationship between logic equations and truth tables as well as
gain a fuller understanding of logic systems.

The WLOGIC.EXE program simulates logic circuitry. WLOGIC stores several logic
equations that describe an electronic circuit and then it simulates that circuit using
“switches” as inputs and “LEDs” as outputs. For those who would like a more
“real-world” laboratory, there is an optional program you can run from DOS,

Chapter 02

Page 70

LOGICEV.EXE, that controls a real set of LEDs and switches that you construct and attach
to the PC’s parallel port. The directions for constructing this hardware appear in the
appendices. The use of either program will let you easily observe the behavior of a set of
logic functions.

If you haven’t done so already, please install the software for this text on your
machine. See the laboratory exercises in Chapter One for more details.

2.9.1 Truth Tables and Logic Equations Exercises

In this laboratory exercise you will create several different truth tables of two, three,
and four variables. The TRUTHTBL.EXE program (found in the CH2 subdirectory) will
automatically convert the truth tables you input into logic equations in the sum of min-
terms canonical form.

The TRUTHTBL.EXE file is a Windows program; it requires some version of Windows
for proper operation. In particular, it will not run properly from DOS. It should, however,
work just fine with any version of Windows from Windows 3.1 on up.

The TRUTHTBL.EXE program provides three buttons that let you choose a two vari-
able, three variable, or four variable truth table. Pressing one of these buttons rearranges
the truth table in an appropriate fashion. By default, the TRUTHTBL program assumes
you want to work with a four variable truth table. Try pressing the Two Variables, Three
Variables, and Four Variables buttons and observe the results. Describe what happens in
your lab report.

To change the truth table entries, all you need do is click on the square associated with
the truth table value you want to change. Clicking on one of these boxes toggles (inverts)
that value in that square. For example, try clicking on the DCBA square several times and
observe the results.

Note that as you click on different truth table entries, the TRUTHTBL program auto-
matically recomputes the sum of minterms canonical logic equation and displays it at the
bottom of the window. What equation does the program display if you set all squares in
the truth table to zero?6

Set up the TRUTHTBL program to work with four variables. Set the DCBA square to
one. Now press the Two Variables button. Press the Four Variables button and set all the
squares to one. Now press the Two Variables button again. Finally, press the Four Variables
button and examine the results. What does the TRUTHTBL program do when you switch
between different sized truth tables? Feel free to try additional experiments to verify your
hypothesis. Describe your results in your lab report.

Switch to two variable mode. Input the truth tables for the logical AND, OR, XOR,
and NAND truth tables. Verify the correctness of the resulting logic equations. Write up
the results in your lab report. Note: if there is a Windows-compatible printer attached to
your computer, you can print each truth table you create by pressing the Print button in
the window. This makes it very easy to include the truth table and corresponding logic
equation in your lab report. For additional credit: input the truth tables for all 16 func-
tions of two variables. In your lab report, present the results for these 16 functions.

Design several two, three, and four variable truth tables by hand. Manually determine
their logic equations in sum of minterms canonical form. Input the truth tables and verify
the correctness of your logic equations. Include your hand designed truth tables and logic
equations as well as the machine produced versions in your lab report.

6. Note: On initial entry to the program, TRUTHTBL does not display a logic equation. Therefore, you will need to
set at least one square to one and then back to zero to see this equation.

Boolean Algebra

Page 71

Consider the following layout for a seven-segment display:

Here are the segments to light for the binary values DCBA = 0000 - 1001:

E = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + D’CBA + DC’B’A’ + DC’B’A
F = D’C’B’A’+ D’CB’A’ + D’CB’A + D’CBA’ + DC’B’A’ + DC’B’A
G = D’C’B’A’ + D’C’B’A + D’C’BA’ + D’C’BA + D’CB’A’ + D’CBA + DC’B’A’ + DC’B’A
H = D’C’BA’ + D’C’BA + D’CB’A’ + D’CB’A + D’CBA’ + DC’B’A’ + DC’B’A
I = D’C’B’A’ + D’C’BA’ + D’CBA’ + DC’B’A’
J = D’C’B’A’ + D’C’B’A + D’C’BA + D’CB’A’ + D’CB’A +D’CBA’ + D’CBA + DC’B’A’ + DC’B’A
K = D’C’B’A’ + D’C’BA’ + D’C’BA + D’CB’A + D’CBA’ + DC’B’A’

Convert each of these logic equations to a truth table by setting all entries in the table
to zero and then clicking on each square corresponding to each minterm in the equation.
Verify by observing the equation that TRUTHTBL produces that you’ve successfully con-
verted each equation to a truth table. Describe the results and provide the truth tables in
your lab report.

For Additional Credit: Modify the equations above to include the following hexadec-
imal characters. Determine the new truth tables and use the TRUTHTBL program to ver-
ify that your truth tables and logic equations are correct.

2.9.2 Canonical Logic Equations Exercises

In this laboratory you will enter several different logic equations and compute their
canonical forms as well as generate their truth table. In a sense, this exercise is the oppo-
site of the previous exercise where you generated a canonical logic equation from a truth
table.

This exercise uses the CANON.EXE program found in the CH2 subdirectory. Run this
program from Windows by double clicking on its icon. This program displays a text box, a
truth table, and several buttons. Unlike the TRUTHTBL.EXE program from the previous
exercise, you cannot modify the truth table in the CANON.EXE program; it is a dis-
play-only table. In this program you will enter logic equations in the text entry box and
then press the “Compute” button to see the resulting truth table. This program also pro-
duces the sum of minterms canonical form for the logic equation you enter (hence this
program’s name).

Valid logic equations take the following form:

• A term is either a variable (A, B, C, or D) or a logic expression surrounded by
parentheses.

E

F G
H

K
I J

Chapter 02

Page 72

• A factor is either a term, or a factor followed by the prime symbol (an apostrophe,
i.e., “‘”). The prime symbol logically negates the factor immediately preceding it.

• A product is either a factor, or a factor concatenated with a product. The concate-
nation denotes logical AND operation.

• An expression is either a product or a product followed by a “+” (denoting logical
OR) and followed by another expression.

Note that logical OR has the lowest precedence, logical AND has an intermediate pre-
cedence, and logical NOT has the highest precedence of these three operators. You can use
parentheses to override operator precedence. The logical NOT operator, since its prece-
dence is so high, applies only to a variable or a parenthesized expression. The following
are all examples of legal expressions:

AB’C + D(B’+C’)
AB(C+D)’ + A’B’(C+D)
A’B’C’D’ + ABCD + A(B+C)
(A+B)’ + A’B’

For this set of exercises, you should create several logic expression and feed them
through CANON.EXE. Include the truth tables and canonical logic forms in your lab
report. Also verify that the theorems appearing in this chapter (See “Boolean Algebra” on
page 43.) are valid by entering each side of the theorem and verifying that they both pro-
duce the same truth table (e.g., (AB)’ = A’ + B’). For additional credit, create several com-
plex logic equations and generate their truth tables and canonical forms by hand. Then
input them into the CANON.EXE program to verify your work.

2.9.3 Optimization Exercises

In this set of laboratory exercises, the OPTIMZP.EXE program (found in the CH2 sub-
directory) will guide you through the steps of logic function optimization. The OPTI-
MZP.EXE program uses the Karnaugh Map technique to produce an equation with the
minimal number of terms.

Run the OPTIMZP.EXE program by clicking on its icon or running the OPTIMZP.EXE
program using the program manager’s File|Run menu option. This program lets you
enter an arbitrary logic equation using the same syntax as the CANON.EXE program in
the previous exercise.

After entering an equation press the “Optimize” button in the OPTIMZP.EXE win-
dow. This will construct the truth table, canonical equation, and an optimized form of the
logic equation you enter. Once you have optimized the equation, OPTIMZP.EXE enables
the “Step” button. Pressing this button walks you through the optimization process
step-by-step.

For this exercise you should enter the seven equations for the seven-segment display.
Generate and record the optimize versions of these equations for your lab report and the
next set of exercises. Single step through each of the equations to make sure you under-
stand how OPTIMZP.EXE produces the optimal expressions.

For additional credit: OPTIMZP.EXE generates a single optimal expression for any
given logic function. Other optimal functions may exist. Using the Karnaugh mapping
technique, see if you can determine if other, equivalent, optimal expressions exist. Feed
the optimal equations OPTIMZP.EXE produces and your optimal expressions into the
CANON.EXE program to verify that their canonical forms are identical (and, hence, the
functions are equivalent.

2.9.4 Logic Evaluation Exercises

In this set of laboratory exercises you will use the LOGIC.EXE program to enter, edit,
initialize, and evaluation logic expressions. This program lets you enter up to 22 distinct

Boolean Algebra

Page 73

logic equations involving as many as 26 variables plus a clock value. LOGIC.EXE pro-
vides four input variables and 11 output variables (four simulated LEDs and a simulated
seven-segment display). Note: this program requires that you install two files in your
WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH2 subdirectory
for more details.

Execute the LOGIC.EXE program by double-clicking on its icon or using the program
manager’s “File | Run” menu option. This program consists of three main parts: an equa-
tion editor, an initialization screen, and an execution module. LOGIC.EVE uses a set of
tabbed notebook screens to switch between these three modules. By clicking on the “Create”,
Initialize, and Execute tabs at the top of the screen with your mouse, you can select the spe-
cific module you want to use. Typically, you would first create a set of equations on the
Create page and then execute those functions on the Execute page. Optionally, you can ini-
tialize any necessary logic variables (D-Z) on the Initialize page. At any time you can easily
switch between modules by pressing on the appropriate notebook tab. For example, you
could create a set of equations, execute them, and then go back and modify the equations
(e.g., to correct any mistakes) by pressing on the Create tab.

The Create page lets you add, edit, and delete logic equations. Logic equations may
use the variables A-Z plus the “#” symbol (“#” denotes the clock). The equations use a
syntax that is very similar to the logic expressions you’ve used in previous exercises in
this chapter. In fact, there are only two major differences between the functions
LOGIC.EXE allows and the functions that the other programs allow. First, LOGIC.EXE lets
you use the variables A-Z and “#” (the other programs only let you enter functions of four
variables using A-D). The second difference is that LOGIC.EXE functions must take the
form:

variable = expression

where variable is a single alphabetic character E-Z7 and expression is a logic expression
using the variables A-Z and #. An expression may use a maximum of four different vari-
ables (A-Z) plus the clock value (#). During the expression evaluation, the LOGIC.EXE
program will evaluate the expression and store the result into the specified destination
variable.

If you enter more than four variables, LOGIC.EXE will complain about your expression.
LOGIC.EXE can only evaluation expressions that contain a maximum of four alphabetic
characters (not counting the variable to the left of the equals sign). Note that the destina-
tion variable may appear within the expression; the following is perfectly legal:

F = FA+FB

This expression would use the current value of F, along with the current values of A and B
to compute the new value for F.

Unlike a programming language like “C++”, LOGIC.EXE does not evaluate this
expression only once and store the result into F. It will evaluate the expression several times
until the value for F stabilizes. That is, it will evaluate the expression several times until the
evaluation produces the same result twice in a row. Certain expressions will produce an
infinite loop since they will never produce the same value twice in a row. For example, the
following function is unstable:

F = F’

Note that instabilities can cross function boundaries. Consider the following pair of
equations:

F = G
G = F’

LOGIC.EXE will attempt to execute this set of equations until the values for the variables
stop changing. However, the system above will produce an infinite loop.

7. A-D are read-only values that you read from a set of switches. Therefore, you cannot store a value into these
variables.

Chapter 02

Page 74

Sometimes a system of logic equations will only produce an infinite loop given certain
data values. For example, consider the following of logic equation:

F = GF’ + G’F (F = G xor F)

If G’s value is one, this system is unstable. If G’s value is zero, this equation is stable.
Unstable equations like this one are somewhat harder to discover.

LOGIC.EXE will detect and warn you about logic system instabilities when you
attempt to execute the logic functions. Unfortunately, it will not pinpoint the problem for
you; it will simply tell you that the problem exists and expect you to fix it.

The A-D, E-K, and W-Z variables are special. A-D are read-only input variables. E-K
correspond to the seven segments of a simulated seven-segment display on the Execute
page:

W-Z correspond to four output LEDs on the Execute page. If the variables E-K or W-Z con-
tain a one, then the corresponding LED (or segment) turns red (on). If the variable con-
tains zero, the corresponding LED is off.

The Create page contains three important buttons: Add, Edit, and Delete. When you
press the Add button LOGIC.EXE opens a dialog box that lets you enter an equation. Type
your equation (or edit the default equation) and press the Okay button. If there is a prob-
lem with the equation you enter, LOGIC.EXE will report the error and make you fix the
problem, otherwise, LOGIC.EXE will attempt to add this equation to the system you are
building. If a function already exists that has the same destination variable as the equation
you’ve just added, LOGIC.EXE will ask you if you really want to replace that function
before proceeding with the replacement. Once LOGIC.EXE adds your equation to its list,
it also displays the truth table for that equation. You can add up to 22 equations to the sys-
tem (since there are 22 possible destination variables, E-Z). LOGIC.EXE displays those
functions in the list box on the right hand side of the window.

Once you’ve entered two or more logic functions, you can view the truth table for a
given logic function by simply clicking on that function with the mouse in the function list
box.

If you make a mistake in a logic function you can delete that function by selecting
with the mouse and pressing the delete button, or you can edit it by selecting it with the
mouse and pressing the edit button. You can also edit a function by double-clicking on the
function in the expression list.

The Initialize page displays boxes for each of the 26 possible variables. It lets you view
the current values for these 26 variables and change the values of the E-Z variables
(remember, A-D are read-only). As a general rule, you will not need to initialize any of the
variables, so you can skip this page if you don’t need to initialize any variables.

The Execute page contains five buttons of importance: A-D and Pulse.. The A-D toggle
switches let you set the input values for the A-D variables. The Pulse switch toggles the
clock value from zero to one and then back to zero, evaluating the system of logic func-
tions while the clock is in each state.

In addition to the input buttons, there are several outputs on the Execute page. First, of
course, are the four LEDs (W, X, Y, and Z) as well as the seven-segment display (output
variables E-K as noted above). In addition to the LEDs, there is an Instability annunciator
that turns red if LOGIC.EXE detects an instability in the system. There is also a small
panel that displays the current values of all the system variables at the bottom of the win-
dow.

E

F G
H

K
I J

Boolean Algebra

Page 75

To execute the system of equations simply change one of the input values (A-D) or
press the Pulse button. LOGIC.EXE will automatically reevaluate the system of equations
whenever A-D or # changes.

To familiarize yourself with the LOGIC.EXE program, enter the following equations
into the equation editor:

W = AB A and B
X = A + B A or B
Y = A’B + AB’ A xor B
Z = A’ not A

After entering these equations, go to the execute page and enter the four values 00, 01, 10,
and 11 for BA. Note the values for W, X, Y, and Z for your lab report.

The LOGIC.EXE program simulates a seven segment display. Variables E-K light the
individual segments as follows:

Here are the segments to light for the binary values DCBA = 0000 - 1001:

Enter the seven equations for these segments into LOGIC.EXE and try out each of the pat-
terns (0000 through 1111). Hint: use the optimized equations you developed earlier.
Optional, for additional credit: enter the equations for the 16 hexadecimal values and
cycle through those 16 values. Include the results in your lab manual.

A simple sequential circuit. For this exercise you will enter the logic equations for a
simple set / reset flip-flop. The circuit diagram is

Since there are two outputs, this circuit has two corresponding logic equations. They
are

X = (AY)’
Y = (BX)’

These two equations form a sequential circuit since they both use variables that are
function outputs. In particular, Y uses the previous value for X and X uses the previous
value for Y when computing new values for X and Y.

Enter these two equations into LOGIC.EXE. Set the A and B inputs to one (the normal
or quiescent state) and run the logic simulation. Try setting the A switch to zero and deter-

E

F G
H

K
I J

X

Y (=X')'

A

B

A Set/Reset Flip-Flop

Chapter 02

Page 76

mine what happens. Press the Pulse button several times with A still at zero to see what
happens. Then switch A back to one and repeat this process. Now try this experiment
again, this time setting B to zero. Finally, try setting both A and B to zero and then press the
Pulse key several times while they are zero. Then set A back to one. Try setting both to zero
and then set B back to one. For your lab report: provide diagrams for the switch settings
and resultant LED values for each time you toggle one of the buttons.

A true D flip-flop only latches the data on the D input during a clock transition from
low to high. In this exercise you will simulate a D flip-flop. The circuit diagram for a true
D flip-flop is

F = (IG)’
G = (#F)’
H = (G#I)’
I = (DH)’
X = (GY)’
Y = (HX)’

Enter this set of equations and then test your flip-flop by entering different values on
the D input switch and pressing the clock pulse button. Explain your results in your lab
report.

In this exercise you will build a three-bit shift register using the logic equations for a
true D flip-flop. To construct a shift register, you connect the outputs from each flip-flop to
the input of the next flip-flop. The data input line provides the input to the first flip-flop,
the last output line is the “carry out” of the circuit. Using a simple rectangle to represent a
flip-flop and ignoring the Q’ output (since we don’t use it), the schematic for a four-bit
shift register looks something like the following:

X

Y (=X')

A True D flip-flop

Clk (#)

D

F

G

H

I

Boolean Algebra

Page 77

In the previous exercise you used six boolean expressions to define the D flip-flop.
Therefore, we will need a total of 18 boolean expressions to implement a three-bit
flip-flop. These expressions are

Flip-Flop #1:

W = (GR)’
F = (IG)’
G = (F#)’
H = (G#I)’
I = (DH)’
R = (HW)’

Flip-Flop #2:

X = (KS)’
J = (MK)’
K = (J#)’
L = (K#M)’
M = (WL)’
S = (LX)’

Flip-Flop #3:

Y = (OT)’
N = (QO)’
O = (N#)’
P = (O#Q)’
Q = (XP)’
T = (PY)’

Enter these equations into LOGIC.EXE. Initialize W, X, and Y to zero. Set D to one and
press the Pulse button once to shift a one into W. Now set D to zero and press the pulse
button several times to shift that single bit through each of the output bits. For your lab
report: try shifting several bit patterns through the shift register. Describe the step-by-step
operation in your lab report.

For additional credit: Describe how to create a recirculating shift register. One whose
output from bit four feeds back into bit zero. What would be the logic equations for such a
shift register? How could you initialize it (since you cannot use the D input) when using
LOGIC.EXE?

Post-lab, for additional credit: Design a two-bit full adder that computes the sum of
BA and DC and stores the binary result to the WXY LEDs. Include the equations and sam-
ple results in your lab report.

2.10 Programming Projects

You may write these programs in any HLL your instructor allows (typically C, C++,
or some version of Borland Pascal or Delphi). You may use the generic logic functions
appearing in this chapter if you so desire.

1) Write a program that reads four values from the user, I, J, K, and L, and plugs these values
into a truth table with B’A’ = I, B’A = J, BA’ = K, and BA = L. Ensure that these input val-
ues are only zero or one. Then input a series of pairs of zeros or ones from the user and

W X Y

Clk (#)

A Three-bit Shift Register Built from D Flip-flops

Data In

D D D
Q Q Q

Chapter 02

Page 78

plug them into the truth table. Display the result for each computation. Note: do not use
the generic logic function for this program.

2) Write a program that, given a 4-bit logic function number, displays the truth table for that
function of two variables.

3) Write a program that, given an 8-bit logic function number, displays the truth table for
that function of three variables.

4) Write a program that, given a 16-bit logic function number, displays the truth table for that
function of four variables.

5) Write a program that, given a 16-bit logic function number, displays the canonical equa-
tion for that function (hint: build the truth table).

2.11 Summary

Boolean algebra provides the foundation for both computer hardware and software.
A cursory understanding of this mathematical system can help you better appreciate the
connection between software and hardware.

Boolean algebra is a mathematical system with its own set of rules (postulates), theo-
rems, and values. In many respects, boolean algebra is similar to the real-arithmetic alge-
bra you studied in high school. In most respects, however, boolean algebra is actually
easier to learn than real arithmetic algebra. This chapter begins by discussing features of
any algebraic system including operators, closure, commutativity, associativity, distribu-
tion, identity, and inverse. Then it presents some important postulates and theorems from
boolean algebra and discusses the principle of duality that lets you easily prove additional
theorems in boolean algebra. For the details, see

• “Boolean Algebra” on page 43

The Truth Table is a convenient way to visually represent a boolean function or expres-
sion. Every boolean function (or expression) has a corresponding truth table that provides
all possible results for any combination of input values. This chapter presents several dif-
ferent ways to construct boolean truth tables.

Although there are an infinite number of boolean functions you can create given n
input values, it turns out that there are a finite number of unique functions possible for a
given number of inputs. In particular, there are 2^2n unique boolean functions of n inputs.
For example, there are 16 functions of two variables (2^22 = 16).

Since there are so few boolean functions with only two inputs, it is easy to assign dif-
ferent names to each of these functions (e.g., AND, OR, NAND, etc.). For functions of
three or more variables, the number of functions is too large to give each function its own
name. Therefore, we’ll assign a number to these functions based on the bits appearing in
the function’s truth table. For the details, see

• “Boolean Functions and Truth Tables” on page 45

We can manipulate boolean functions and expression algebraically. This allows us to
prove new theorems in boolean algebra, simplify expressions, convert expressions to
canonical form, or show that two expressions are equivalent. To see some examples of
algebraic manipulation of boolean expressions, check out

• “Algebraic Manipulation of Boolean Expressions” on page 48

Since there are an infinite variety of possible boolean functions, yet a finite number of
unique boolean functions (for a fixed number of inputs), clearly there are an infinite num-
ber of different functions that compute the same results. To avoid confusion, logic design-
ers usually specify a boolean function using a canonical form. If two canonical equations
are different, then they represent different boolean functions. This book describes two dif-
ferent canonical forms: the sum of minterms form and the product of maxterms form. To

Boolean Algebra

Page 79

learn about these canonical forms, how to convert an arbitrary boolean equation to canon-
ical form, and how to convert between the two canonical forms, see

• “Canonical Forms” on page 49

Although the canonical forms provide a unique representation for a given boolean
function, expressions appearing in canonical form are rarely optimal. That is, canonical
expressions often use more literals and operators than other, equivalent, expressions.
When designing an electronic circuit or a section of software involving boolean expres-
sions, most engineers prefer to use an optimized circuit or program since optimized ver-
sions are less expensive and, probably, faster. Therefore, knowing how to create an
optimized form of a boolean expression is very important. This text discusses this subject
in

• “Simplification of Boolean Functions” on page 52

Boolean algebra isn’t a system designed by some crazy mathematician that has little
importance in the real world. Boolean algebra is the basis for digital logic that is, in turn,
the basis for computer design. Furthermore, there is a one-to-one correspondence between
digital hardware and computer software. Anything you can build in hardware you can
construct with software, and vice versa. This text describes how to implement addition,
decoders, memory, shift registers, and counters using these boolean functions. Likewise,
this text describes how to improve the efficiency of software (e.g., a Pascal program) by
applying the rules and theorems of boolean algebra. For all the details, see

• “What Does This Have To Do With Computers, Anyway?” on page 59
• “Correspondence Between Electronic Circuits and Boolean Functions” on

page 59
• “Combinatorial Circuits” on page 60
• “Sequential and Clocked Logic” on page 62
• “Okay, What Does It Have To Do With Programming, Then?” on page 64

Chapter 02

Page 80

2.12 Questions

1. What is the identity element with respect to

a) AND b) OR c) XOR d) NOT e) NAND f) NOR

2. Provide truth tables for the following functions of two input variables:

a) AND b) OR c) XOR d) NAND e) NOR

f) Equivalence g) A < B h) A > B i) A implies B

3. Provide the truth tables for the following functions of three input variables:

a) ABC (and) b) A+B+C (OR) c) (ABC)’ (NAND)d) (A+B+C)’ (NOR)

e) Equivalence (ABC) + (A’B’C’) f) XOR (ABC + A’B’C’)’

4. Provide schematics (electrical circuit diagrams) showing how to implement each of the
functions in question three using only two-input gates and inverters. E.g.,

A) ABC =

5. Provide implementations of an AND gate, OR gate, and inverter gate using one or more
NOR gates.

6. What is the principle of duality? What does it do for us?

7. Build a single truth table that provides the outputs for the following three boolean func-
tions of three variables:

Fx= A + BC

Fy - AB + C’B

Fz = A’B’C’ + ABC + C’B’A

8. Provide the function numbers for the three functions in question seven above.

9. How many possible (unique) boolean functions are there if the function has

a) one input b) two inputs c) three inputs d) four inputs e) five inputs

10. Simplify the following boolean functions using algebraic transformations. Show your
work.

a) F = AB + AB’ b) F = ABC + BC’ + AC + ABC’

c) F = A’B’C’D’ + A’B’C’D + A’B’CD + A’B’CD’

d) F = A’BC + ABC’ + A’BC’ + AB’C’ + ABC + AB’C

11. Simplify the boolean functions in question 10 using the mapping method.

12. Provide the logic equations in canonical form for the boolean functions S0..S6 for the seven
segment display (see “Combinatorial Circuits” on page 60).

13. Provide the truth tables for each of the functions in question 12

14. Minimize each of the functions in question 12 using the map method.

15. The logic equation for a half-adder (in canonical form) is

Sum = AB’ + A’B Carry = AB

a) Provide an electronic circuit diagram for a half-adder using AND, OR, and Inverter
gates

b) Provide the circuit using only NAND gates

A

B

C
ABC

Boolean Algebra

Page 81

16. The canonical equations for a full adder take the form:

Sum = A’B’C + A’BC’ + AB’C’ + ABC

Carry = ABC + ABC’ + AB’C + A’BC

a) Provide the schematic for these circuits using AND, OR, and inverter gates.

b) Optimize these equations using the map method.

c) Provide the electronic circuit for the optimized version (using AND, OR, and inverter
gates).

17. Assume you have a D flip-flop (use this definition in this text) whose outputs currently
are Q=1 and Q’=0. Describe, in minute detail, exactly what happens when the clock line
goes

a) from low to high with D=0

b) from high to low with D=0

18. Rewrite the following Pascal statements to make them more efficient:

a) if (x or (not x and y)) then write(‘1’);

b) while(not x and not y) do somefunc(x,y);

c) if not((x <> y) and (a = b)) then Something;

19. Provide canonical forms (sum of minterms) for each of the following:

a) F(A,B,C) = A’BC + AB + BC b) F(A,B,C,D) = A + B + CD’ + D

c) F(A,B,C) = A’B + B’A d) F(A,B,C,D) = A + BD’

e) F(A,B,C,D) = A’B’C’D + AB’C’D’ + CD + A’BCD’

20. Convert the sum of minterms forms in question 19 to the product of maxterms forms.

Chapter 02

Page 82

Page 83

System Organization Chapter Three

To write even a modest 80x86 assembly language program requires considerable
familiarity with the 80x86 family. To write

good

 assembly language programs requires a
strong knowledge of the underlying hardware. Unfortunately, the underlying hardware is
not consistent. Techniques that are crucial for 8088 programs may not be useful on 80486
systems. Likewise, programming techniques that provide big performance boosts on an
80486 chip may not help at all on an 80286. Fortunately, some programming techniques
work well whatever microprocessor you’re using. This chapter discusses the effect hard-
ware has on the performance of computer software.

3.0 Chapter Overview

This chapter describes the basic components that make up a computer system: the
CPU, memory, I/O, and the bus that connects them. Although you can write software that
is ignorant of these concepts, high performance software requires a complete understand-
ing of this material.

This chapter begins by discussing bus organization and memory organization. These
two hardware components will probably have a bigger performance impact on your soft-
ware than the CPU’s speed. Understanding the organization of the system bus will allow
you to design data structures that operate and maximum speed. Similarly, knowing about
memory performance characteristics, data locality, and cache operation can help you
design software that runs as fast as possible. Of course, if you’re not interested in writing
code that runs as fast as possible, you can skip this discussion; however, most people do
care about speed at one point or another, so learning this information is useful.

Unfortunately, the 80x86 family microprocessors are a complex group and often over-
whelm beginning students. Therefore, this chapter describes four hypothetical members
of the 80x86 family: the 886, 8286, the 8486, and the 8686 microprocessors. These represent
simplified versions of the 80x86 chips and allow a discussion of various architectural fea-
tures without getting bogged down by huge CISC instruction sets. This text uses the x86
hypothetical processors to describe the concepts of instruction encoding, addressing
modes, sequential execution, the prefetch queue, pipelining, and superscalar operation.
Once again, these are concepts you do not need to learn if you only want to write

correct

software. However, if you want to write

fast

 software as well, especially on advanced pro-
cessors like the 80486, Pentium, and beyond, you will need to learn about these concepts.

Some might argue that this chapter gets too involved with computer architecture.
They feel such material should appear in an architectural book, not an assembly language
programming book. This couldn’t be farther from the truth! Writing

good

assembly lan-
guage programs requires a strong knowledge of the architecture. Hence the emphasis on
computer architecture in this chapter.

3.1 The Basic System Components

The basic operational design of a computer system is called its

architecture

. John Von
Neumann, a pioneer in computer design, is given credit for the architecture of most com-
puters in use today. For example, the 80x86 family uses the

Von Neumann

architecture

(VNA). A typical Von Neumann system has three major components: the

central processing
unit

 (or

CPU

),

memory,

and

input/output

 (or

I/O

). The way a system designer combines
these components impacts system performance (see Figure 3.1).

In VNA machines, like the 80x86 family, the CPU is where all the action takes place.
All computations occur inside the CPU. Data and CPU instructions reside in memory
until required by the CPU. To the CPU, most I/O devices look like memory because the

Thi d t t d ith F M k 4 0 2

Chapter 03

Page 84

CPU can store data to an output device and read data from an input device. The major dif-
ference between memory and I/O locations is the fact that I/O locations are generally
associated with external devices in the outside world.

3.1.1 The System Bus

The

system bus

 connects the various components of a VNA machine. The 80x86 family
has three major busses: the

address

 bus, the

data

 bus, and the

control

 bus. A bus is a collec-
tion of wires on which electrical signals pass between components in the system. These
busses vary from processor to processor. However, each bus carries comparable informa-
tion on all processors; e.g., the data bus may have a different implementation on the 80386
than on the 8088, but both carry data between the processor, I/O, and memory.

A typical 80x86 system component uses

standard TTL logic levels.

 This means each
wire on a bus uses a standard voltage level to represent zero and one

1

. We will always
specify zero and one rather than the electrical levels because these levels vary on different
processors (especially laptops).

3.1.1.1 The Data Bus

The 80x86 processors use the

data bus

 to shuffle data between the various components
in a computer system. The size of this bus varies widely in the 80x86 family. Indeed, this
bus defines the “size” of the processor.

On typical 80x86 systems, the data bus contains eight, 16, 32, or 64 lines. The 8088 and
80188 microprocessors have an eight bit data bus (eight data lines). The 8086, 80186, 80286,
and 80386SX processors have a 16 bit data bus. The 80386DX, 80486, and Pentium Over-
drive

 processors have a 32 bit data bus. The Pentium

 and Pentium Pro processors
have a 64 bit data bus. Future versions of the chip (the 80686/80786?) may have a larger
bus.

Having an eight bit data bus does not limit the processor to eight bit data types. It
simply means that the processor can only access one byte of data per memory cycle (see

1. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the
range 2.4-5v. If the signal on a bus line is between 0.8v and 2.4v, it’s value is indeterminate. Such a condition
should only exist when a bus line is changing from one state to the other.

Figure 3.1 Typical Von Neumann Machine

CPU

Memory

I/O Devices

System Organization

Page 85

“The Memory Subsystem” on page 87 for a description of memory cycles). Therefore, the
eight bit bus on an 8088 can only transmit half the information per unit time (memory
cycle) as the 16 bit bus on the 8086. Therefore, processors with a 16 bit bus are naturally
faster than processors with an eight bit bus. Likewise, processors with a 32 bit bus are
faster than those with a 16 or eight bit data bus. The size of the data bus affects the perfor-
mance of the system more than the size of any other bus.

You’ll often hear a processor called an

eight, 16, 32, or 64 bit processor.

 While there is a
mild controversy concerning the size of a processor, most people now agree that the num-
ber of data lines on the processor determines its size. Since the 80x86 family busses are
eight, 16, 32, or 64 bits wide, most data accesses are also eight, 16, 32, or 64 bits. Although
it is possible to process 12 bit data with an 8088, most programmers process 16 bits since
the processor will fetch and manipulate 16 bits anyway. This is because the processor
always fetches eight bits. To fetch 12 bits requires two eight bit memory operations. Since
the processor fetches 16 bits rather than 12, most programmers use all 16 bits. In general,
manipulating data which is eight, 16, 32, or 64 bits in length is the most efficient.

Although the 16, 32, and 64 bit members of the 80x86 family

can

process data up to the
width of the bus, they can also access smaller memory units of eight, 16, or 32 bits. There-
fore, anything you can do with a small data bus can be done with a larger data bus as well;
the larger data bus, however, may access memory faster and can access larger chunks of
data in one memory operation. You’ll read about the exact nature of these memory
accesses a little later (see “The Memory Subsystem” on page 87).

Table 17: 80x86 Processor Data Bus Sizes

Processor Data Bus Size

 8088 8

 80188 8

 8086 16

 80186 16

 80286 16

 80386sx 16

 80386dx 32

 80486 32

 80586 class/ Pentium (Pro) 64

The “Size” of a Processor

There has been a considerable amount of disagreement among hardware and software engineers
concerning the “size” of a processor like the 8088. From a hardware designer’s perspective, the 8088
is purely an eight bit processor – it has only eight data lines and is bus compatible with memory
and I/O devices designed for eight bit processors. Software engineers, on the other hand, have
argued that the 8088 is a 16 bit processor. From their perspective they cannot distinguish between
the 8088 (with an eight-bit data bus) and the 8086 (which has a 16-bit data bus). Indeed, the only dif-
ference is the speed at which the two processors operate; the 8086 with a 16 bit data bus is faster.
Eventually, the hardware designers won out. Despite the fact that software engineers cannot differ-
entiate the 8088 and 8086 in their programs, we call the 8088 an eight bit processor and the 8086 a 16
bit processor. Likewise, the 80386SX (which has a sixteen bit data bus) is a 16 bit processor while the
80386DX (which has a full 32 bit data bus) is a 32 bit processor.

Chapter 03

Page 86

3.1.1.2 The Address Bus

The data bus on an 80x86 family processor transfers information between a particular
memory location or I/O device and the CPU. The only question is, “

Which memory location
or I/O device?

 ” The address bus answers that question. To differentiate memory locations
and I/O devices, the system designer assigns a unique memory address to each memory
element and I/O device. When the software wants to access some particular memory
location or I/O device, it places the corresponding address on the address bus. Circuitry
associated with the memory or I/O device recognizes this address and instructs the mem-
ory or I/O device to read the data from or place data on the data bus. In either case, all
other memory locations ignore the request. Only the device whose address matches the
value on the address bus responds.

With a single address line, a processor could create exactly two unique addresses: zero
and one. With

n

 address lines, the processor can provide 2

n

 unique addresses (since there
are 2

n

 unique values in an

n

-bit binary number). Therefore, the number of bits on the
address bus will determine the

maximum

 number of addressable memory and I/O loca-
tions. The 8088 and 8086, for example, have 20 bit address busses. Therefore, they can
access up to 1,048,576 (or 2

20

) memory locations. Larger address busses can access more
memory. The 8088 and 8086, for example, suffer from an anemic address space

2

 – their
address bus is too small. Later processors have larger address busses:

Future 80x86 processors will probably support 48 bit address busses. The time is com-
ing when most programmers will consider four gigabytes of storage to be too small, much
like they consider one megabyte insufficient today. (There was a time when one megabyte
was considered far more than anyone would ever need!) Fortunately, the architecture of
the 80386, 80486, and later chips allow for an easy expansion to a 48 bit address bus
through

segmentation

.

3.1.1.3 The Control Bus

The control bus is an eclectic collection of signals that control how the processor com-
municates with the rest of the system. Consider for a moment the data bus. The CPU
sends data to memory and receives data from memory on the data bus. This prompts the
question, “Is it sending or receiving?” There are two lines on the control bus,

read

and

write

, which specify the direction of data flow. Other signals include system clocks, inter-
rupt lines, status lines, and so on. The exact make up of the control bus varies among pro-

2. The address space is the set of all addressable memory locations.

Table 18: 80x86 Family Address Bus Sizes

Processor
Address Bus

Size
Max Addressable

Memory
In English!

8088 20 1,048,576 One Megabyte

8086 20 1,048,576 One Megabyte

80188 20 1,048,576 One Megabyte

80186 20 1,048,576 One Megabyte

80286 24 16,777,216 Sixteen Megabytes

80386sx 24 16,777,216 Sixteen Megabytes

80386dx 32 4,294,976,296 Four Gigabytes

80486 32 4,294,976,296 Four Gigabytes

80586 / Pentium (Pro) 32 4,294,976,296 Four Gigabytes

System Organization

Page 87

cessors in the 80x86 family. However, some control lines are common to all processors and
are worth a brief mention.

The

read

and

 write

control lines control the direction of data on the data bus. When
both contain a logic one, the CPU and memory-I/O are not communicating with one
another. If the read line is low (logic zero), the CPU is reading data from memory (that is,
the system is transferring data from memory to the CPU). If the write line is low, the sys-
tem transfers data from the CPU to memory.

The

byte enable lines

are another set of important control lines

.

 These control lines
allow 16, 32, and 64 bit processors to deal with smaller chunks of data. Additional details
appear in the next section.

The 80x86 family, unlike many other processors, provides two distinct address spaces:
one for memory and one for I/O. While the memory address busses on various 80x86 pro-
cessors vary in size, the I/O address bus on all 80x86 CPUs is 16 bits wide. This allows the
processor to address up to 65,536 different I/O

locations.

 As it turns out, most devices (like
the keyboard, printer, disk drives, etc.) require more than one I/O location. Nonetheless,
65,536 I/O locations are more than sufficient for most applications. The original IBM PC
design only allowed the use of 1,024 of these.

Although the 80x86 family supports two address spaces, it does not have two address
busses (for I/O and memory). Instead, the system shares the address bus for both I/O and
memory addresses. Additional control lines decide whether the address is intended for
memory or I/O. When such signals are active, the I/O devices use the address on the L.O.
16 bits of the address bus. When inactive, the I/O devices ignore the signals on the
address bus (the memory subsystem takes over at that point).

3.1.2 The Memory Subsystem

A typical 80x86 processor addresses a maximum of 2

n

 different memory locations,
where

n

 is the number of bits on the address bus

3

. As you’ve seen already, 80x86 proces-
sors have 20, 24, and 32 bit address busses (with 48 bits on the way).

Of course, the first question you should ask is, “What exactly is a memory location?”
The 80x86 supports

byte addressable memory

. Therefore, the basic memory unit is a byte. So
with 20, 24, and 32 address lines, the 80x86 processors can address one megabyte, 16
megabytes, and four gigabytes of memory, respectively.

Think of memory as a linear array of bytes. The address of the first byte is zero and the
address of the last byte is 2

n

-1. For an 8088 with a 20 bit address bus, the following
pseudo-Pascal array declaration is a good approximation of memory:

Memory: array [0..1048575] of byte;

To execute the equivalent of the Pascal statement “Memory [125] := 0;” the CPU places
the value zero on the data bus, the address 125 on the address bus, and asserts the write
line (since the CPU is writing data to memory, see Figure 3.2)

To execute the equivalent of “CPU := Memory [125];” the CPU places the address 125
on the address bus, asserts the read line (since the CPU is reading data from memory), and
then reads the resulting data from the data bus (see Figure 3.2).

The above discussion applies

only

when accessing a single byte in memory. So what
happens when the processor accesses a word or a double word? Since memory consists of
an array of bytes, how can we possibly deal with values larger than eight bits?

Different computer systems have different solutions to this problem. The 80x86 family
deals with this problem by storing the L.O. byte of a word at the address specified and the
H.O. byte at the next location. Therefore, a word consumes two consecutive memory

3. This is the

maximum

. Most computer systems built around 80x86 family do not include the maximum address-
able amount of memory.

Chapter 03

Page 88

addresses (as you would expect, since a word consists of two bytes). Similarly, a double
word consumes four consecutive memory locations. The address for the double word is
the address of its L.O. byte. The remaining three bytes follow this L.O. byte, with the H.O.
byte appearing at the address of the double word

plus three

(see Figure 3.4) Bytes, words,
and double words may begin at

any

valid address in memory. We will soon see, however,
that starting larger objects at an arbitrary address is not a good idea.

Note that it is quite possible for byte, word, and double word values to overlap in
memory. For example, in Figure 3.4 you could have a word variable beginning at address
193, a byte variable at address 194, and a double word value beginning at address 192.
These variables would all overlap.

The 8088 and 80188 microprocessors have an eight bit data bus. This means that the
CPU can transfer eight bits of data at a time. Since each memory address corresponds to
an eight bit byte, this turns out to be the most convenient arrangement (from the hardware
perspective), see Figure 3.5.

The term “byte addressable memory array” means that the CPU can address memory
in chunks as small as a single byte. It also means that this is the

smallest

unit of memory
you can access at once with the processor. That is, if the processor wants to access a four
bit value, it must read eight bits and then ignore the extra four bits. Also realize that byte
addressability does not imply that the CPU can access eight bits on any arbitrary bit
boundary. When you specify address 125 in memory, you get the entire eight bits at that
address, nothing less, nothing more. Addresses are integers; you cannot, for example,
specify address 125.5 to fetch fewer than eight bits.

The 8088 and 80188 can manipulate word and double word values, even with their
eight bit data bus. However, this requires multiple memory operations because these pro-
cessors can only move eight bits of data at once. To load a word requires two memory
operations; to load a double word requires four memory operations.

Figure 3.2 Memory Write Operation

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
 125

Figure 3.3 Memory Read Operation

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
 125

System Organization

Page 89

The 8086, 80186, 80286, and 80386sx processors have a 16 bit data bus. This allows
these processors to access twice as much memory in the same amount of time as their
eight bit brethren. These processors organize memory into two

banks

: an “even” bank and
an “odd” bank (see Figure 3.6). Figure 3.7 illustrates the connection to the CPU (D0-D7
denotes the L.O. byte of the data bus, D8-D15 denotes the H.O. byte of the data bus):

The 16 bit members of the 80x86 family can load a word from any arbitrary address.
As mentioned earlier, the processor fetches the L.O. byte of the value from the address
specified and the H.O. byte from the next consecutive address. This creates a subtle prob-
lem if you look closely at the diagram above. What happens when you access a word on
an odd address? Suppose you want to read a word from location 125. Okay, the L.O. byte
of the word comes from location 125 and the H.O. word comes from location 126. What’s
the big deal? It turns out that there are two problems with this approach.

Figure 3.4 Byte, Word, and Double word Storage in Memory

195

194

193

192

191

190

189

188

187

186

Double Word
at address
192

Word at
address 188

Byte at
address 186

Address

Figure 3.5 Eight-Bit CPU-Memory Interface

CPU

Address

Data

Data comes from memory
eight bits at a time.

Chapter 03

Page 90

First, look again at Figure 3.7. Data bus lines eight through 15 (the H.O. byte) connect
to the odd bank, and data bus lines zero through seven (the L.O. byte) connect to the even
bank. Accessing memory location 125 will transfer data to the CPU on the H.O. byte of the
data bus; yet we want this data in the L.O. byte! Fortunately, the 80x86 CPUs recognize
this situation and automatically transfer the data on D8-D15 to the L.O. byte.

The second problem is even more obscure. When accessing words, we’re really access-
ing two separate bytes, each of which has its own byte address. So the question arises,
“What address appears on the address bus?” The 16 bit 80x86 CPUs always place even
addresses on the bus. Even bytes always appear on data lines D0-D7 and the odd bytes
always appear on data lines D8-D15. If you access a word at an even address, the CPU can
bring in the entire 16 bit chunk in one memory operation. Likewise, if you access a single
byte, the CPU activates the appropriate bank (using a “byte enable” control line). If the
byte appeared at an odd address, the CPU will automatically move it from the H.O. byte
on the bus to the L.O. byte.

So what happens when the CPU accesses a

word

at an odd address, like the example
given earlier? Well, the CPU cannot place the address 125 onto the address bus and read
the 16 bits from memory. There are no odd addresses coming out of a 16 bit 80x86 CPU.
The addresses are always even. So if you try to put 125 on the address bus, this will put
124 on to the address bus. Were you to read the 16 bits at this address, you would get the
word at addresses 124 (L.O. byte) and 125 (H.O. byte) – not what you’d expect. Accessing
a word at an odd address requires two memory operations. First the CPU must read the
byte at address 125, then it needs to read the byte at address 126. Finally, it needs to swap
the positions of these bytes internally since both entered the CPU on the wrong half of the
data bus.

Figure 3.6 Byte Addresses in Word Memory

Even Odd

0 1

2 3

4 5

6 7

Figure 3.7 16-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

CPU

Address

Data

D0-D7

D8-D15

Even Odd

System Organization

Page 91

Fortunately, the 16 bit 80x86 CPUs hide these details from you. Your programs can
access words at

any

 address and the CPU will properly access and swap (if necessary) the
data in memory. However, to access a word at an odd address requires two memory oper-
ations (just like the 8088/80188). Therefore, accessing words at odd addresses on a 16 bit
processor is slower than accessing words at even addresses.

By carefully arranging how
you use memory, you can improve the speed of your program.

Accessing 32 bit quantities always takes at least two memory operations on the 16 bit
processors. If you access a 32 bit quantity at an odd address, the processor will require
three memory operations to access the data.

The 32 bit 80x86 processors (the 80386, 80486, and Pentium Overdrive) use four banks
of memory connected to the 32 bit data bus (see Figure 3.8). The address placed on the
address bus is always some multiple of four. Using various “byte enable” lines, the CPU
can select which of the four bytes at that address the software wants to access. As with the
16 bit processor, the CPU will automatically rearrange bytes as necessary.

With a 32 bit memory interface, the 80x86 CPU can access any byte with one memory
operation. If (address MOD 4) does not equal three, then a 32 bit CPU can access a word at
that address using a single memory operation. However, if the remainder is three, then it
will take two memory operations to access that word (see Figure 3.9). This is the same
problem encountered with the 16 bit processor, except it occurs half as often.

A 32 bit CPU can access a double word in a single memory operation

if

the address of
that value is evenly divisible by four. If not, the CPU will require two memory operations.

Once again, the CPU handles all of this automatically. In terms of loading correct data
the CPU handles everything for you. However, there is a performance benefit to proper
data alignment. As a general rule you should always place word values at even addresses
and double word values at addresses which are evenly divisible by four. This will speed
up your program.

Figure 3.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

CPU

Address

Data

D0-D7

D8-D15

D16-D23

D24-D31

Byte 0 1 2 3

Figure 3.9 Accessing a Word at (Address mod 4) = 3.

Chapter 03

Page 92

3.1.3 The I/O Subsystem

Besides the 20, 24, or 32 address lines which access memory, the 80x86 family provides
a 16 bit I/O address bus. This gives the 80x86 CPUs two separate address spaces: one for
memory and one for I/O operations. Lines on the control bus differentiate between mem-
ory and I/O addresses. Other than separate control lines and a smaller bus, I/O address-
ing behaves exactly like memory addressing. Memory and I/O devices both share the
same data bus and the L.O. 16 lines on the address bus.

There are three limitations to the I/O subsystem on the IBM PC: first, the 80x86 CPUs
require special instructions to access I/O devices; second, the designers of the IBM PC
used the “best” I/O locations for their own purposes, forcing third party developers to
use less accessible locations; third, 80x86 systems can address no more than 65,536 (2

16

)
I/O addresses. When you consider that a typical VGA display card requires over 128,000
different locations, you can see a problem with the size of I/O bus.

Fortunately, hardware designers can map their I/O devices into the memory address
space as easily as they can the I/O address space. So by using the appropriate circuitry,
they can make their I/O devices look just like memory. This is how, for example, display
adapters on the IBM PC work.

Accessing I/O devices is a subject we’ll return to in later chapters. For right now you
can assume that I/O and memory accesses work the same way.

3.2 System Timing

Although modern computers are quite fast and getting faster all the time, they still
require a finite amount of time to accomplish even the smallest tasks. On Von Neumann
machines, like the 80x86, most operations are

serialized

. This means that the computer exe-
cutes commands in a prescribed order. It wouldn’t do, for example, to execute the state-
ment

I:=I*5+2

; before I

:=J

; in the following sequence:

I := J;
I := I * 5 + 2;

Clearly we need some way to control which statement executes first and which executes
second.

Of course, on real computer systems, operations do not occur instantaneously. Mov-
ing a copy of

J

into

I

 takes a certain amount of time. Likewise, multiplying

I

 by five and
then adding two and storing the result back into

I

takes time. As you might expect, the sec-
ond Pascal statement above takes quite a bit longer to execute than the first. For those
interested in writing fast software, a natural question to ask is, “How does the processor
execute statements, and how do we measure how long they take to execute?”

The CPU is a very complex piece of circuitry. Without going into too many details, let
us just say that operations inside the CPU must be very carefully coordinated or the CPU
will produce erroneous results. To ensure that all operations occur at just the right
moment, the 80x86 CPUs use an alternating signal called the

system clock

.

3.2.1 The System Clock

At the most basic level, the

system clock

handles all synchronization within a computer
system. The system clock is an electrical signal on the control bus which alternates
between zero and one at a periodic rate (see Figure 3.10). CPUs are a good example of a
complex synchronous logic system (see the previous chapter). The system clock gates
many of the logic gates that make up the CPU allowing them to operate in a synchronized
fashion.

System Organization

Page 93

The frequency with which the system clock alternates between zero and one is the

sys-
tem clock frequency

. The time it takes for the system clock to switch from zero to one and
back to zero is the

clock period.

One full period is also called a

clock cycle

. On most modern
systems, the system clock switches between zero and one at rates exceeding several mil-
lion times per second. The clock frequency is simply the number of clock cycles which
occur each second. A typical 80486 chip runs at speeds of 66million cycles per second.
“Hertz” (Hz) is the technical term meaning one cycle per second. Therefore, the aforemen-
tioned 80486 chip runs at 66 million hertz, or 66 megahertz (MHz). Typical frequencies for
80x86 parts range from 5 MHz up to 200 MHz and beyond. Note that one clock period (the
amount of time for one complete clock cycle) is the reciprocal of the clock frequency. For
example, a 1 MHz clock would have a clock period of one microsecond (1/1,000,000

th

 of a
second). Likewise, a 10 MHz clock would have a clock period of 100 nanoseconds (100 bil-
lionths of a second). A CPU running at 50 MHz would have a clock period of 20 nanosec-
onds. Note that we usually express clock periods in millionths or billionths of a second.

To ensure synchronization, most CPUs start an operation on either the

falling edge

(when the clock goes from one to zero) or the

 rising edge

 (when the clock goes from zero to
one). The system clock spends most of its time at either zero or one and very little time
switching between the two. Therefore clock edge is the perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot perform
tasks any faster than the clock

4

. However, just because a CPU is running at some clock fre-
quency doesn’t mean that it is executing that many operations each second. Many opera-
tions take multiple clock cycles to complete so the CPU often performs operations at a
significantly lower rate.

3.2.2 Memory Access and the System Clock

Memory access is probably the most common CPU activity. Memory access is defi-
nitely an operation synchronized around the system clock. That is, reading a value from
memory or writing a value to memory occurs no more often than once every clock cycle

5

.
Indeed, on many 80x86 processors, it takes several clock cycles to access a memory loca-
tion. The

memory access time

 is the number of clock cycles the system requires to access a
memory location; this is an important value since longer memory access times result in
lower performance.

Different 80x86 processors have different memory access times ranging from one to
four clock cycles. For example, the 8088 and 8086 CPUs require

four

clock cycles to access
memory; the 80486 requires only one. Therefore, the 80486 will execute programs which
access memory faster than an 8086, even when running at the same clock frequency.

4. Some later versions of the 80486 use special clock doubling circuitry to run twice as fast as the input clock fre-
quency. For example, with a 25 MHz clock the chip runs at an effective rate of 50 MHz. However, the internal
clock frequency

is

50 MHz. The CPU still won’t execute operations faster than 50 million operations per second.
5. This is true even on the clock doubled CPUs.

Figure 3.10 The System Clock

1
0

Time

One Clock
 “Period”

Chapter 03

Page 94

Memory access time is the amount of time between a memory operation request (read
or write) and the time the memory operation completes. On a 5 MHz 8088/8086 CPU the
memory access time is roughly 800 ns (nanoseconds). On a 50 MHz 80486, the memory
access time is slightly less than 20 ns. Note that the memory access time for the 80486 is 40
times faster than the 8088/8086. This is because the 80486’s clock frequency is ten times
faster and it uses one-fourth the clock cycles to access memory.

When reading from memory, the memory access time is the amount of time from the
point that the CPU places an address on the address bus and the CPU takes the data off
the data bus. On an 80486 CPU with a one cycle memory access time, a read looks some-
thing like shown in Figure 3.11. Writing data to memory is similar (see Figure 3.11).

Note that the CPU doesn’t wait for memory. The access time is specified by the clock
frequency. If the memory subsystem doesn’t work fast enough, the CPU will read garbage
data on a memory read operation and will not properly store the data on a memory write
operation. This will surely cause the system to fail.

Memory devices have various ratings, but the two major ones are capacity and speed
(access time). Typical dynamic RAM (random access memory) devices have capacities of
four (or more) megabytes and speeds of 50-100 ns. You can buy bigger or faster devices,
but they are much more expensive. A typical 33 MHz 80486 system uses 70 ns memory
devices.

Wait just a second here! At 33 MHz the clock period is roughly 33 ns. How can a sys-
tem designer get away with using 70 ns memory? The answer is

wait states

.

Figure 3.11 An 80486 Memory Read Cycle

The CPU places
the address on
the address bus
during this time
period The memory system must

decode the address and
place the data on the data
bus during this time period

The CPU reads the
data from the data
bus during this time
period

Figure 3.12 An 80486 Memory Write Cycle

The CPU places
the address and
data onto the bus
at this time

Sometime before the end
of the clock period the
memory subsystem must
grab and store the specified
value

System Organization

Page 95

3.2.3 Wait States

A wait state is nothing more than an extra clock cycle to give some device time to
complete an operation. For example, a 50 MHz 80486 system has a 20 ns clock period. This
implies that you need 20 ns memory. In fact, the situation is worse than this. In most com-
puter systems there is additional circuitry between the CPU and memory: decoding and
buffering logic. This additional circuitry introduces additional delays into the system (see
Figure 3.13). In this diagram, the system loses 10ns to buffering and decoding. So if the
CPU needs the data back in 20 ns, the memory must respond in less than 10 ns.

You can actually buy 10ns memory. However, it is very expensive, bulky, consumes a
lot of power, and generates a lot of heat. These are bad attributes. Supercomputers use this
type of memory. However, supercomputers also cost millions of dollars, take up entire
rooms, require special cooling, and have giant power supplies. Not the kind of stuff you
want sitting on your desk.

If cost-effective memory won’t work with a fast processor, how do companies manage
to sell fast PCs? One part of the answer is the wait state. For example, if you have a 20
MHz processor with a memory cycle time of 50 ns and you lose 10 ns to buffering and
decoding, you’ll need 40 ns memory. What if you can only afford 80 ns memory in a 20
MHz system? Adding a wait state to extend the memory cycle to 100 ns (two clock cycles)
will solve this problem. Subtracting 10ns for the decoding and buffering leaves 90 ns.
Therefore, 80 ns memory will respond well before the CPU requires the data.

Almost every general purpose CPU in existence provides a signal on the control bus
to allow the insertion of wait states. Generally, the decoding circuitry asserts this line to
delay one additional clock period, if necessary. This gives the memory sufficient access
time, and the system works properly (see Figure 3.14).

Sometimes a single wait state is not sufficient. Consider the 80486 running at 50 MHz.
The normal memory cycle time is less than 20 ns. Therefore, less than 10 ns are available
after subtracting decoding and buffering time. If you are using 60 ns memory in the sys-
tem, adding a single wait state will not do the trick. Each wait state gives you 20 ns, so
with a single wait state you would need 30 ns memory. To work with 60 ns memory you
would need to add three wait states (zero wait states = 10 ns, one wait state = 30 ns, two
wait states = 50 ns, and three wait states = 70 ns).

Needless to say, from the system performance point of view, wait states are not a good
thing. While the CPU is waiting for data from memory it cannot operate on that data.

Figure 3.13 Decoding and Buffing Delays

CPU

D
e
c
o
d
e
r

B
u
f
f
e
r

address

data

5 ns delay
through
decoder

5 ns delay
through
buffer

Chapter 03

Page 96

Adding a single wait state to a memory cycle on an 80486 CPU doubles the amount of time
required to access the data. This, in turn, halves the speed of the memory access. Running
with a wait state on every memory access is almost like cutting the processor clock fre-
quency in half. You’re going to get a lot less work done in the same amount of time.

You’ve probably seen the ads. “80386DX, 33 MHz, 8 megabytes 0 wait state RAM...
only $1,000!” If you look closely at the specs you’ll notice that the manufacturer is using 80
ns memory. How can they build systems which run at 33 MHz and have zero wait states?
Easy. They lie.

There is no way an 80386 can run at 33 MHz, executing an arbitrary program, without
ever inserting a wait state. It is flat out impossible. However, it is quite possible to design
a memory subsystem which under certain, special, circumstances manages to operate with-
out wait states part of the time. Most marketing types figure if their system ever operates
at zero wait states, they can make that claim in their literature. Indeed, most marketing
types have no idea what a wait state is other than it’s bad and having zero wait states is
something to brag about.

However, we’re not doomed to slow execution because of added wait states. There are
several tricks hardware designers can play to achieve zero wait states most of the time. The
most common of these is the use of cache (pronounced “cash”) memory.

3.2.4 Cache Memory

If you look at a typical program (as many researchers have), you’ll discover that it
tends to access the same memory locations repeatedly. Furthermore, you also discover
that a program often accesses adjacent memory locations. The technical names given to
this phenomenon are temporal locality of reference and spatial locality of reference. When
exhibiting spatial locality, a program accesses neighboring memory locations. When dis-
playing temporal locality of reference a program repeatedly accesses the same memory
location during a short time period. Both forms of locality occur in the following Pascal
code segment:

for i := 0 to 10 do
A [i] := 0;

There are two occurrences each of spatial and temporal locality of reference within this
loop. Let’s consider the obvious ones first.

Figure 3.14 Inserting a Wait State into a Memory Read Operation

The CPU places
the address on
the address bus
during this time
period

The memory system must
decode the address and
place the data on the data
bus during this time period,
since one clock cycle is insufficient,
the systems adds a second clock cycle,
a wait state

The CPU reads the
data from the data
bus during this time
period

System Organization

Page 97

In the Pascal code above, the program references the variable i several times. The for
loop compares i against 10 to see if the loop is complete. It also increments i by one at the
bottom of the loop. The assignment statement also uses i as an array index. This shows
temporal locality of reference in action since the CPU accesses i at three points in a short
time period.

This program also exhibits spatial locality of reference. The loop itself zeros out the
elements of array A by writing a zero to the first location in A, then to the second location
in A, and so on. Assuming that Pascal stores the elements of A into consecutive memory
locations6, each loop iteration accesses adjacent memory locations.

There is an additional example of temporal and spatial locality of reference in the Pas-
cal example above, although it is not so obvious. Computer instructions which tell the sys-
tem to do the specified task also appear in memory. These instructions appear
sequentially in memory – the spatial locality part. The computer also executes these
instructions repeatedly, once for each loop iteration – the temporal locality part.

If you look at the execution profile of a typical program, you’d discover that the pro-
gram typically executes less than half the statements. Generally, a typical program might
only use 10-20% of the memory allotted to it. At any one given time, a one megabyte pro-
gram might only access four to eight kilobytes of data and code. So if you paid an outra-
geous sum of money for expensive zero wait state RAM, you wouldn’t be using most of it
at any one given time! Wouldn’t it be nice if you could buy a small amount of fast RAM
and dynamically reassign its address(es) as the program executes?

This is exactly what cache memory does for you. Cache memory sits between the CPU
and main memory. It is a small amount of very fast (zero wait state) memory. Unlike nor-
mal memory, the bytes appearing within a cache do not have fixed addresses. Instead,
cache memory can reassign the address of a data object. This allows the system to keep
recently accessed values in the cache. Addresses which the CPU has never accessed or
hasn’t accessed in some time remain in main (slow) memory. Since most memory accesses
are to recently accessed variables (or to locations near a recently accessed location), the
data generally appears in cache memory.

Cache memory is not perfect. Although a program may spend considerable time exe-
cuting code in one place, eventually it will call a procedure or wander off to some section
of code outside cache memory. In such an event the CPU has to go to main memory to
fetch the data. Since main memory is slow, this will require the insertion of wait states.

A cache hit occurs whenever the CPU accesses memory and finds the data in the
cache. In such a case the CPU can usually access data with zero wait states. A cache miss
occurs if the CPU accesses memory and the data is not present in cache. Then the CPU has
to read the data from main memory, incurring a performance loss. To take advantage of
locality of reference, the CPU copies data into the cache whenever it accesses an address
not present in the cache. Since it is likely the system will access that same location shortly,
the system will save wait states by having that data in the cache.

As described above, cache memory handles the temporal aspects of memory access,
but not the spatial aspects. Caching memory locations when you access them won’t speed
up the program if you constantly access consecutive locations (spatial locality of refer-
ence). To solve this problem, most caching systems read several consecutive bytes from
memory when a cache miss occurs7. The 80486, for example, reads 16 bytes at a shot upon
a cache miss. If you read 16 bytes, why read them in blocks rather than as you need them?
As it turns out, most memory chips available today have special modes which let you
quickly access several consecutive memory locations on the chip. The cache exploits this
capability to reduce the average number of wait states needed to access memory.

If you write a program that randomly accesses memory, using a cache might actually
slow you down. Reading 16 bytes on each cache miss is expensive if you only access a few

6. It does, see “Memory Layout and Access” on page 145.
7. Engineers call this block of data a cache line.

Chapter 03

Page 98

bytes in the corresponding cache line. Nonetheless, cache memory systems work quite
well.

It should come as no surprise that the ratio of cache hits to misses increases with the
size (in bytes) of the cache memory subsystem. The 80486 chip, for example, has 8,192
bytes of on-chip cache. Intel claims to get an 80-95% hit rate with this cache (meaning
80-95% of the time the CPU finds the data in the cache). This sounds very impressive.
However, if you play around with the numbers a little bit, you’ll discover it’s not all that
impressive. Suppose we pick the 80% figure. Then one out of every five memory accesses,
on the average, will not be in the cache. If you have a 50 MHz processor and a 90 ns mem-
ory access time, four out of five memory accesses require only one clock cycle (since they
are in the cache) and the fifth will require about 10 wait states8. Altogether, the system
will require 15 clock cycles to access five memory locations, or three clock cycles per
access, on the average. That’s equivalent to two wait states added to every memory
access. Now do you believe that your machine runs at zero wait states?

There are a couple of ways to improve the situation. First, you can add more cache
memory. This improves the cache hit ratio, reducing the number of wait states. For exam-
ple, increasing the hit ratio from 80% to 90% lets you access 10 memory locations in 20
cycles. This reduces the average number of wait states per memory access to one wait
state – a substantial improvement. Alas, you can’t pull an 80486 chip apart and solder
more cache onto the chip. However, the 80586/Pentium CPU has a significantly larger
cache than the 80486 and operates with fewer wait states.

Another way to improve performance is to build a two-level caching system. Many
80486 systems work in this fashion. The first level is the on-chip 8,192 byte cache. The next
level, between the on-chip cache and main memory, is a secondary cache built on the com-
puter system circuit board (see Figure 3.15).

A typical secondary cache contains anywhere from 32,768 bytes to one megabyte of mem-
ory. Common sizes on PC subsystems are 65,536 and 262,144 bytes of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache
to begin with?” Well, the secondary cache generally does not operate at zero wait states.
The circuitry to support 262,144 bytes of 10 ns memory (20 ns total access time) would be
very expensive. So most system designers use slower memory which requires one or two
wait states. This is still much faster than main memory. Combined with the on-chip cache,
you can get better performance from the system.

8. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90).
However, the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive
addresses in about 40 ns after accessing the first location. Therefore, the 80486 will require an additional six clock
cycles to read the remaining three double words. The total is 11 clock cycles or 10 wait states.

Figure 3.15 A Two Level Caching System

CPU

On-chip (primary)
cache Secondary Cache

Main
Memory

System Organization

Page 99

Consider the previous example with an 80% hit ratio. If the secondary cache requires
two cycles for each memory access and three cycles for the first access, then a cache miss
on the on-chip cache will require a total of six clock cycles. All told, the average system
performance will be two clocks per memory access. Quite a bit faster than the three
required by the system without the secondary cache. Furthermore, the secondary cache
can update its values in parallel with the CPU. So the number of cache misses (which
affect CPU performance) goes way down.

You’re probably thinking, “So far this all sounds interesting, but what does it have to
do with programming?” Quite a bit, actually. By writing your program carefully to take
advantage of the way the cache memory system works, you can improve your program’s
performance. By colocating variables you commonly use together in the same cache line,
you can force the cache system to load these variables as a group, saving extra wait states
on each access.

If you organize your program so that it tends to execute the same sequence of instruc-
tions repeatedly, it will have a high degree of temporal locality of reference and will, there-
fore, execute faster.

3.3 The 886, 8286, 8486, and 8686 “Hypothetical” Processors

To understand how to improve system performance, it’s time to explore the internal
operation of the CPU. Unfortunately, the processors in the 80x86 family are complex
beasts. Discussing their internal operation would probably cause more confusion than
enlightenment. So we will use the 886, 8286, 8486, and 8686 processors (the “x86” proces-
sors). These “paper processors” are extreme simplifications of various members of the
80x86 family. They highlight the important architectural features of the 80x86.

The 886, 8286, 8486, and 8686 processors are all identical except for the way they exe-
cute instructions. They all have the same register set, and they “execute” the same instruc-
tion set. That sentence contains some new ideas; let’s attack them one at a time.

3.3.1 CPU Registers

CPU registers are very special memory locations constructed from flip-flops. They are
not part of main memory; the CPU implements them on-chip. Various members of the
80x86 family have different register sizes. The 886, 8286, 8486, and 8686 (x86 from now on)
CPUs have exactly four registers, all 16 bits wide. All arithmetic and location operations
occur in the CPU registers.

Because the x86 processor has so few registers, we’ll give each register its own name
and refer to it by that name rather than its address. The names for the x86 registers are

AX –The accumulator register
BX –The base address register
CX –The count register
DX –The data register

Besides the above registers, which are visible to the programmer, the x86 processors also
have an instruction pointer register which contains the address of the next instruction to
execute. There is also a flags register that holds the result of a comparison. The flags regis-
ter remembers if one value was less than, equal to, or greater than another value.

Because registers are on-chip and handled specially by the CPU, they are much faster
than memory. Accessing a memory location requires one or more clock cycles. Accessing
data in a register usually takes zero clock cycles. Therefore, you should try to keep vari-
ables in the registers. Register sets are very small and most registers have special purposes
which limit their use as variables, but they are still an excellent place to store temporary
data.

Chapter 03

Page 100

3.3.2 The Arithmetic & Logical Unit

The arithmetic and logical unit (ALU) is where most of the action takes place inside
the CPU. For example, if you want to add the value five to the AX register, the CPU:

• Copies the value from AX into the ALU,
• Sends the value five to the ALU,
• Instructs the ALU to add these two values together,
• Moves the result back into the AX register.

3.3.3 The Bus Interface Unit

The bus interface unit (BIU) is responsible for controlling the address and data busses
when accessing main memory. If a cache is present on the CPU chip then the BIU is also
responsible for accessing data in the cache.

3.3.4 The Control Unit and Instruction Sets

A fair question to ask at this point is “How exactly does a CPU perform assigned
chores?” This is accomplished by giving the CPU a fixed set of commands, or instructions,
to work on. Keep in mind that CPU designers construct these processors using logic gates
to execute these instructions. To keep the number of logic gates to a reasonably small set
(tens or hundreds of thousands), CPU designers must necessarily restrict the number and
complexity of the commands the CPU recognizes. This small set of commands is the
CPU’s instruction set.

Programs in early (pre-Von Neumann) computer systems were often “hard-wired”
into the circuitry. That is, the computer’s wiring determined what problem the computer
would solve. One had to rewire the circuitry in order to change the program. A very diffi-
cult task. The next advance in computer design was the programmable computer system,
one that allowed a computer programmer to easily “rewire” the computer system using a
sequence of sockets and plug wires. A computer program consisted of a set of rows of
holes (sockets), each row representing one operation during the execution of the program.
The programmer could select one of several instructions by plugging a wire into the par-
ticular socket for the desired instruction (see Figure 3.16). Of course, a major difficulty
with this scheme is that the number of possible instructions is severely limited by the
number of sockets one could physically place on each row. However, CPU designers
quickly discovered that with a small amount of additional logic circuitry, they could
reduce the number of sockets required from n holes for n instructions to log2(n) holes for n
instructions. They did this by assigning a numeric code to each instruction and then

Figure 3.16 Patch Panel Programming

Instr #1

Instr #2

Instr #3
 .
 .
 .

m
ov

e

ad
d

su
bt

ra
ct

m
ul

tip
ly

di
vi

de

an
d

or xo
r

System Organization

Page 101

encode that instruction as a binary number using log2(n) holes (see Figure 3.17). This
addition requires eight logic functions to decode the A, B, and C bits from the patch panel,
but the extra circuitry is well worth the cost because it reduces the number of sockets that
must be repeated for each instruction.

Of course, many CPU instructions are not stand-alone. For example, the move instruc-
tion is a command that moves data from one location in the computer to another (e.g.,
from one register to another). Therefore, the move instruction requires two operands: a
source operand and a destination operand. The CPU’s designer usually encodes these source
and destination operands as part of the machine instruction, certain sockets correspond to
the source operand and certain sockets correspond to the destination operand.
Figure 3.17 shows one possible combination of sockets to handle this. The move instruc-
tion would move data from the source register to the destination register, the add instruc-
tion would add the value of the source register to the destination register, etc.

One of the primary advances in computer design that the VNA provides is the con-
cept of a stored program. One big problem with the patch panel programming method is
that the number of program steps (machine instructions) is limited by the number of rows
of sockets available on the machine. John Von Neumann and others recognized a relation-
ship between the sockets on the patch panel and bits in memory; they figured they could
store the binary equivalents of a machine program in main memory and fetch each pro-
gram from memory, load it into a special decoding register that connected directly to the
instruction decoding circuitry of the CPU.

Figure 3.17 Encoding Instructions

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

Figure 3.18 Encoding Instructions with Source and Destination Fields

Instr #1

Instr #2

Instr #3
 .
 .
 .

C B A

CBA Instruction
000 move
001 add
010 subtract
011 multiply
100 divide
101 and
110 or
111 xor

DD SS

DD -or- SS Register

 00 AX
 01 BX
 10 CX
 11 DX

Chapter 03

Page 102

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the con-
trol unit (CU), fetches instruction codes (also known as operation codes or opcodes) from
memory and moves them to the instruction decoding register. The control unit contains a
special registers, the instruction pointer that contains the address of an executable instruc-
tion. The control unit fetches this instruction’s code from memory and places it in the
decoding register for execution. After executing the instruction, the control unit incre-
ments the instruction pointer and fetches the next instruction from memory for execution,
and so on.

When designing an instruction set, the CPU’s designers generally choose opcodes that
are a multiple of eight bits long so the CPU can easily fetch complete instructions from
memory. The goal of the CPU’s designer is to assign an appropriate number of bits to the
instruction class field (move, add, subtract, etc.) and to the operand fields. Choosing more
bits for the instruction field lets you have more instructions, choosing additional bits for
the operand fields lets you select a larger number of operands (e.g., memory locations or
registers). There are additional complications. Some instructions have only one operand
or, perhaps, they don’t have any operands at all. Rather than waste the bits associated
with these fields, the CPU designers often reuse these fields to encode additional opcodes,
once again with some additional circuitry. The Intel 80x86 CPU family takes this to an
extreme with instructions ranging from one to about ten bytes long. Since this is a little too
difficult to deal with at this early stage, the x86 CPUs will use a different, much simpler,
encoding scheme.

3.3.5 The x86 Instruction Set

The x86 CPUs provide 20 basic instruction classes. Seven of these instructions have
two operands, eight of these instructions have a single operand, and five instructions have
no operands at all. The instructions are mov (two forms), add, sub, cmp, and, or, not, je, jne,
jb, jbe, ja, jae, jmp, brk, iret, halt, get, and put. The following paragraphs describe how each of
these work.

The mov instruction is actually two instruction classes merged into the same instruc-
tion. The two forms of the mov instruction take the following forms:

mov reg, reg/memory/constant
mov memory, reg

where reg is any of ax, bx, cx, or dx; constant is a numeric constant (using hexadecimal nota-
tion), and memory is an operand specifying a memory location. The next section describes
the possible forms the memory operand can take. The “reg/memory/constant” operand
tells you that this particular operand may be a register, memory location, or a constant.

The arithmetic and logical instructions take the following forms:

add reg, reg/memory/constant
sub reg, reg/memory/constant
cmp reg, reg/memory/constant
and reg, reg/memory/constant
or reg, reg/memory/constant
not reg/memory

The add instruction adds the value of the second operand to the first (register) operand,
leaving the sum in the first operand. The sub instruction subtracts the value of the second
operand from the first, leaving the difference in the first operand. The cmp instruction
compares the first operand against the second and saves the result of this comparison for
use with one of the conditional jump instructions (described in a moment). The and and or
instructions compute the corresponding bitwise logical operation on the two operands
and store the result into the first operand. The not instruction inverts the bits in the single
memory or register operand.

The control transfer instructions interrupt the sequential execution of instructions in
memory and transfer control to some other point in memory either unconditionally, or

System Organization

Page 103

after testing the result of the previous cmp instruction. These instructions include the fol-
lowing:

ja dest -- Jump if above
jae dest -- Jump if above or equal
jb dest -- Jump if below
jbe dest -- Jump if below or equal
je dest -- Jump if equal
jne dest -- Jump if not equal
jmp dest -- Unconditional jump
iret -- Return from an interrupt

The first six instructions in this class let you check the result of the previous cmp instruc-
tion for greater than, greater or equal, less than, less or equal, equality, or inequality9. For
example, if you compare the ax and bx registers with the cmp instruction and execute the ja
instruction, the x86 CPU will jump to the specified destination location if ax was greater
than bx. If ax is not greater than bx, control will fall through to the next instruction in the
program. The jmp instruction unconditionally transfers control to the instruction at the
destination address. The iret instruction returns control from an interrupt service routine,
which we will discuss later.

The get and put instructions let you read and write integer values. Get will stop and
prompt the user for a hexadecimal value and then store that value into the ax register. Put
displays (in hexadecimal) the value of the ax register.

The remaining instructions do not require any operands, they are halt and brk. Halt ter-
minates program execution and brk stops the program in a state that it can be restarted.

The x86 processors require a unique opcode for every different instruction, not just the
instruction classes. Although “mov ax, bx” and “mov ax, cx” are both in the same class,
they must have different opcodes if the CPU is to differentiate them. However, before
looking at all the possible opcodes, perhaps it would be a good idea to learn about all the
possible operands for these instructions.

3.3.6 Addressing Modes on the x86

The x86 instructions use five different operand types: registers, constants, and three
memory addressing schemes. Each form is called an addressing mode. The x86 processors
support the register addressing mode10, the immediate addressing mode, the indirect
addressing mode, the indexed addressing mode, and the direct addressing mode. The fol-
lowing paragraphs explain each of these modes.

Register operands are the easiest to understand. Consider the following forms of the
mov instruction:

mov ax, ax
mov ax, bx
mov ax, cx
mov ax, dx

The first instruction accomplishes absolutely nothing. It copies the value from the ax
register back into the ax register. The remaining three instructions copy the value of bx, cx
and dx into ax. Note that the original values of bx, cx, and dx remain the same. The first
operand (the destination) is not limited to ax; you can move values to any of these registers.

Constants are also pretty easy to deal with. Consider the following instructions:

mov ax, 25
mov bx, 195
mov cx, 2056
mov dx, 1000

9. The x86 processors only performed unsigned comparisons.
10. Technically, registers do not have an address, but we apply the term addressing mode to registers nonetheless.

Chapter 03

Page 104

These instructions are all pretty straightforward; they load their respective registers with
the specified hexadecimal constant11.

There are three addressing modes which deal with accessing data in memory. These
addressing modes take the following forms:

mov ax, [1000]
mov ax, [bx]
mov ax, [1000+bx]

The first instruction above uses the direct addressing mode to load ax with the 16 bit
value stored in memory starting at location 1000 hex.

The mov ax, [bx] instruction loads ax from the memory location specified by the
contents of the bx register. This is an indirect addressing mode. Rather than using the value
in bx, this instruction accesses to the memory location whose address appears in bx. Note
that the following two instructions:

mov bx, 1000
mov ax, [bx]

are equivalent to the single instruction:

mov ax, [1000]

Of course, the second sequence is preferable. However, there are many cases where the
use of indirection is faster, shorter, and better. We’ll see some examples of this when we
look at the individual processors in the x86 family a little later.

The last memory addressing mode is the indexed addressing mode. An example of this
memory addressing mode is

mov ax, [1000+bx]

This instruction adds the contents of bx with 1000 to produce the address of the memory
value to fetch. This instruction is useful for accessing elements of arrays, records, and
other data structures.

3.3.7 Encoding x86 Instructions

Although we could arbitrarily assign opcodes to each of the x86 instructions, keep in
mind that a real CPU uses logic circuitry to decode the opcodes and act appropriately on
them. A typical CPU opcode uses a certain number of bits in the opcode to denote the
instruction class (e.g., mov, add, sub), and a certain number of bits to encode each of the
operands. Some systems (e.g., CISC, or Complex Instruction Set Computers) encode these
fields in a very complex fashion producing very compact instructions. Other systems (e.g.,
RISC, or Reduced Instruction Set Computers) encode the opcodes in a very simple fashion
even if it means wasting some bits in the opcode or limiting the number of operations. The
Intel 80x86 family is definitely CISC and has one of the most complex opcode decoding
schemes ever devised. The whole purpose for the hypothetical x86 processors is to present
the concept of instruction encoding without the attendant complexity of the 80x86 family,
while still demonstrating CISC encoding.

A typical x86 instruction takes the form shown in Figure 3.19. The basic instruction is
either one or three bytes long. The instruction opcode consists of a single byte that con-
tains three fields. The first field, the H.O. three bits, defines the instruction class. This pro-
vides eight combinations. As you may recall, there are 20 instruction classes; we cannot
encode 20 instruction classes with three bits, so we’ll have to pull some tricks to handle
the other classes. As you can see in Figure 3.19, the basic opcode encodes the mov instruc-
tions (two classes, one where the rr field specifies the destination, one where the mmm
field specifies the destination), the add, sub, cmp, and, and or instructions. There is one

11. All numeric constants on the x86 are given in hexadecimal. The “h” suffix is not necessary.

System Organization

Page 105

additional class: special. The special instruction class provides a mechanism that allows us
to expand the number of available instruction classes, we will return to this class shortly.

To determine a particular instruction’s opcode, you need only select the appropriate
bits for the iii, rr, and mmm fields. For example, to encode the mov ax, bx instruction you
would select iii=110 (mov reg, reg), rr=00 (ax), and mmm=001 (bx). This produces the
one-byte instruction 11000001 or 0C0h.

Some x86 instructions require more than one byte. For example, the instruction
mov ax, [1000] loads the ax register from memory location 1000. The encoding for the
opcode is 11000110 or 0C6h. However, the encoding for mov ax,[2000]’s opcode is also
0C6h. Clearly these two instructions do different things, one loads the ax register from
memory location 1000h while the other loads the ax register from memory location 2000.
To encode an address for the [xxxx] or [xxxx+bx] addressing modes, or to encode the con-
stant for the immediate addressing mode, you must follow the opcode with the 16-bit
address or constant, with the L.O. byte immediately following the opcode in memory and
the H.O. byte after that. So the three byte encoding for mov ax, [1000] would be 0C6h, 00h,
10h12 and the three byte encoding for mov ax, [2000] would be 0C6h, 00h, 20h.

The special opcode allows the x86 CPU to expand the set of available instructions.
This opcode handles several zero and one-operand instructions as shown in Figure 3.20
and Figure 3.21.

12. Remember, all numeric constants are hexadecimal.

Figure 3.19 Basic x86 Instruction Encoding.

i i i r r m m m

i i i

000 = special
001 = or
010 = and
011 = cmp
100 = sub
101 = add
110 = mov reg, mem/reg/const
111 = mov mem, reg

r r

00 = AX
01 = BX
10 = CX
11 = DX

mmm

0 0 0 = AX
0 0 1 = BX
0 1 0 = CX
0 1 1 = DX
1 0 0 = [BX]
1 0 1 = [xxxx+BX]
1 1 0 = [xxxx]
1 1 1 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [bx+xxxx], [xxxxx],
or a constant.

Figure 3.20 Single Operand Instruction Encodings

0 0 0 i i m m m

i i

00 = zero operand instructions
01 = jump instructions
10 = not
11 = illegal (reserved)

mmm (if ii = 10)

000 = AX
001 = BX
010 = CX
011 = DX
100 = [BX]
101 = [xxxx+BX]
110 = [xxxx]
111 = constant

This 16-bit field is present
only if the instruction is a
jump instruction or an operand
is a memory addressing mode
of the form [bx+xxxx], [xxxxx],
or a constant.

Chapter 03

Page 106

There are four one-operand instruction classes. The first encoding (00) further
expands the instruction set with a set of zero-operand instructions (see Figure 3.21). The
second opcode is also an expansion opcode that provides all the x86 jump instructions (see
Figure 3.22). The third opcode is the not instruction. This is the bitwise logical not opera-
tion that inverts all the bits in the destination register or memory operand. The fourth sin-
gle-operand opcode is currently unassigned. Any attempt to execute this opcode will halt
the processor with an illegal instruction error. CPU designers often reserve unassigned
opcodes like this one to extend the instruction set at a future date (as Intel did when mov-
ing from the 80286 processor to the 80386).

There are seven jump instructions in the x86 instruction set. They all take the follow-
ing form:

jxx address

The jmp instruction copies the 16-bit immediate value (address) following the opcode
into the IP register. Therefore, the CPU will fetch the next instruction from this target
address; effectively, the program “jumps” from the point of the jmp instruction to the
instruction at the target address.

The jmp instruction is an example of an unconditional jump instruction. It always trans-
fers control to the target address. The remaining six instructions are conditional jump
instructions. They test some condition and jump if the condition is true; they fall through
to the next instruction if the condition is false. These six instructions, ja, jae, jb, jbe, je, and
jne let you test for greater than, greater than or equal, less than, less than or equal, equality,
and inequality. You would normally execute these instructions immediately after a cmp

Figure 3.21 Zero Operand Instruction Encodings

0 0 0 0 0 i i i

i i i

000 = illegal
001 = illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put

Figure 3.22 Jump Instruction Encodings

0 0 0 0 1 i i i

mmm (if ii = 10)

000 = j e
001 = jne
010 = j b
011 = jbe
100 = j a
101 = jae
110 = jmp
111 = ill egal

This 16-bit field is always present
and contains the target address to
jump move into the instruction
pointer register if the jump
is taken.

System Organization

Page 107

instruction since it sets the less than and equality flags that the conditional jump instruc-
tions test. Note that there are eight possible jump opcodes, but the x86 uses only seven of
them. The eighth opcode is another illegal opcode.

The last group of instructions, the zero operand instructions, appear in Figure 3.21.
Three of these instructions are illegal instruction opcodes. The brk (break) instruction
pauses the CPU until the user manually restarts it. This is useful for pausing a program
during execution to observe results. The iret (interrupt return) instruction returns control
from an interrupt service routine. We will discuss interrupt service routines later. The halt
program terminates program execution. The get instruction reads a hexadecimal value
from the user and returns this value in the ax register; the put instruction outputs the value
in the ax register.

3.3.8 Step-by-Step Instruction Execution

The x86 CPUs do not complete execution of an instruction in a single clock cycle. The
CPU executes several steps for each instruction. For example, the CU issues the following
commands to execute the mov reg, reg/memory/constant instruction:

• Fetch the instruction byte from memory.
• Update the ip register to point at the next byte.
• Decode the instruction to see what it does.
• If required, fetch a 16-bit instruction operand from memory.
• If required, update ip to point beyond the operand.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand.
• Store the fetched value into the destination register

A step-by-step description may help clarify what the CPU is doing. In the first step,
the CPU fetches the instruction byte from memory. To do this, it copies the value of the ip
register to the address bus and reads the byte at that address. This will take one clock
cycle13.

After fetching the instruction byte, the CPU updates ip so that it points at the next byte
in the instruction stream. If the current instruction is a multibyte instruction, ip will now
point at the operand for the instruction. If the current instruction is a single byte instruc-
tion, ip would be left pointing at the next instruction. This takes one clock cycle.

The next step is to decode the instruction to see what it does. This will tell the CPU,
among other things, if it needs to fetch additional operand bytes from memory. This takes
one clock cycle.

During decoding, the CPU determines the types of operands the instruction requires.
If the instruction requires a 16 bit constant operand (i.e., if the mmm field is 101, 110, or
111) then the CPU fetches that constant from memory. This step may require zero, one, or
two clock cycles. It requires zero cycles if there is no 16 bit operand; it requires one clock
cycle if the 16 bit operand is word-aligned (that is, begins at an even address); it requires
two clock cycles if the operand is not word aligned (that is, begins at an odd address).

If the CPU fetches a 16 bit memory operand, it must increment ip by two so that it
points at the next byte following the operand. This operation takes zero or one clock
cycles. Zero clock cycles if there is no operand; one if an operand is present.

Next, the CPU computes the address of the memory operand. This step is required
only when the mmm field of the instruction byte is 101 or 100. If the mmm field contains
101, then the CPU computes the sum of the bx register and the 16 bit constant; this
requires two cycles, one cycle to fetch bx’s value, the other to computer the sum of bx and
xxxx. If the mmm field contains 100, then the CPU fetches the value in bx for the memory

13. We will assume that clock cycles and memory cycles are equivalent.

Chapter 03

Page 108

address, this requires one cycle. If the mmm field does not contain 100 or 101, then this step
takes zero cycles.

Fetching the operand takes zero, one, two, or three cycles depending upon the oper-
and itself. If the operand is a constant (mmm=111), then this step requires zero cycles
because we’ve already fetched this constant from memory in a previous step. If the oper-
and is a register (mmm = 000, 001, 010, or 011) then this step takes one clock cycle. If this is
a word aligned memory operand (mmm=100, 101, or 110) then this step takes two clock
cycles. If it is an unaligned memory operand, it takes three clock cycles to fetch its value.

The last step to the mov instruction is to store the value into the destination location.
Since the destination of the load instruction is always a register, this operation takes a sin-
gle cycle.

Altogether, the mov instruction takes between five and eleven cycles, depending on its
operands and their alignment (starting address) in memory.

The CPU does the following for the mov memory, reg instruction:

• Fetch the instruction byte from memory (one clock cycle).
• Update ip to point at the next byte (one clock cycle).
• Decode the instruction to see what it does (one clock cycle).
• If required, fetch an operand from memory (zero cycles if [bx] addressing

mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode and the
value xxxx immediately following the opcode starts on an even address,
or two clock cycles if the value xxxx starts at an odd address).

• If required, update ip to point beyond the operand (zero cycles if no such
operand, one clock cycle if the operand is present).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the register to store (one clock cycle).
• Store the fetched value into the destination location (one cycle if a regis-

ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

The timing for the last two items is different from the other mov because that instruction
can read data from memory; this version of mov instruction “loads” its data from a regis-
ter. This instruction takes five to eleven clock cycles to execute.

The add, sub, cmp, and, and or instructions do the following:

• Fetch the instruction byte from memory (one clock cycle).
• Update ip to point at the next byte (one clock cycle).
• Decode the instruction (one clock cycle).
• If required, fetch a constant operand from memory (zero cycles if [bx]

addressing mode, one cycle if [xxxx], [xxxx+bx], or xxxx addressing mode
and the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

• If required, update ip to point beyond the constant operand (zero or one
clock cycles).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the operand and send it to the ALU (zero cycles if a con-
stant, one cycle if a register, two cycles if a word-aligned memory oper-
and, or three clock cycles if an odd-address aligned memory operand).

• Fetch the value of the first operand (a register) and send it to the ALU
(one clock cycle).

• Instruct the ALU to add, subtract, compare, logically and, or logically or
the values (one clock cycle).

• Store the result back into the first register operand (one clock cycle).

System Organization

Page 109

These instructions require between eight and seventeen clock cycles to execute.

The not instruction is similar to the above, but may be a little faster since it only has a
single operand:

• Fetch the instruction byte from memory (one clock cycle).
• Update ip to point at the next byte (one clock cycle).
• Decode the instruction (one clock cycle).
• If required, fetch a constant operand from memory (zero cycles if [bx]

addressing mode, one cycle if [xxxx] or [xxxx+bx] addressing mode and
the value xxxx immediately following the opcode starts on an even
address, or two clock cycles if the value xxxx starts at an odd address).

• If required, update ip to point beyond the constant operand (zero or one
clock cycles).

• Compute the address of the operand (zero cycles if the addressing mode
is not [bx] or [xxxx+bx], one cycle if the addressing mode is [bx], or two
cycles if the addressing mode is [xxxx+bx]).

• Get the value of the operand and send it to the ALU (one cycle if a regis-
ter, two cycles if a word-aligned memory operand, or three clock cycles if
an odd-address aligned memory operand).

• Instruct the ALU to logically not the values (one clock cycle).
• Store the result back into the operand (one clock cycle if a register, two

clock cycles if an even-aligned memory location, three cycles if
odd-aligned memory location).

The not instruction takes six to fifteen cycles to execute.

The conditional jump instructions work as follows:

• Fetch the instruction byte from memory (one clock cycle).
• Update ip to point at the next byte (one clock cycle).
• Decode the instructions (one clock cycle).
• Fetch the target address operand from memory (one cycle if xxxx is at an

even address, two clock cycles if at an odd address).
• Update ip to point beyond the address (one clock cycle).
• Test the “less than” and “equality” CPU flags (one cycle).
• If the flag values are appropriate for the particular conditional jump, the

CPU copies the 16 bit constant into the ip register (zero cycles if no branch,
one clock cycle if branch occurs).

The unconditional jump instruction is identical in operation to the mov reg, xxxx
instruction except the destination register is the x86’s ip register rather than ax, bx, cx, or
dx.

The brk, iret, halt, put, and get instructions are of no interest to us here. They appear in the
instruction set mainly for programs and experiments. We can’t very well give them
“cycle” counts since they may take an indefinite amount of time to complete their task.

3.3.9 The Differences Between the x86 Processors

All the x86 processors share the same instruction set, the same addressing modes, and
execute their instructions using the same sequence of steps. So what’s the difference? Why
not invent one processor rather than four?

The main reason for going through this exercise is to explain performance differences
related to four hardware features: pre-fetch queues, caches, pipelines and superscalar designs.
The 886 processor is an inexpensive “device” which doesn’t implement any of these fancy
features. The 8286 processor implements the prefetch queue. The 8486 has a pre-fetch
queue, a cache, and a pipeline. The 8686 has all of the above features with superscalar
operation. By studying each of these processors you can see the benefits of each feature.

Chapter 03

Page 110

3.3.10 The 886 Processor

The 886 processor is the slowest member of the x86 family. Timings for each instruc-
tion were discussed in the previous sections. The mov instruction, for example, takes
between five and twelve clock cycles to execute depending upon the operands. The fol-
lowing table provides the timing for the various forms of the instructions on the 886 pro-
cessors.

There are three important things to note from this. First, longer instructions take more
time to execute. Second, instructions that do not reference memory generally execute
faster; this is especially true if there are wait states associated with memory access (the
table above assumes zero wait states). Finally, instructions using complex addressing
modes run slower. Instructions which use register operands are shorter, do not access
memory, and do not use complex addressing modes. This is why you should attempt to keep
your variables in registers.

3.3.11 The 8286 Processor

The key to improving the speed of a processor is to perform operations in parallel. If,
in the timings given for the 886, we were able to do two operations on each clock cycle, the
CPU would execute instructions twice as fast when running at the same clock speed.
However, simply deciding to execute two operations per clock cycle is not so easy. Many
steps in the execution of an instruction share functional units in the CPU (functional units
are groups of logic that perform a common operation, e.g., the ALU and the CU). A func-
tional unit is only capable of one operation at a time. Therefore, you cannot do two opera-
tions that use the same functional unit concurrently (e.g., incrementing the ip register and
adding two values together). Another difficulty with doing certain operations concur-
rently is that one operation may depend on the other’s result. For example, the last two
steps of the add instruction involve adding to values and then storing their sum. You can-
not store the sum into a register until after you’ve computed the sum. There are also some
other resources the CPU cannot share between steps in an instruction. For example, there

Table 19: Execution Times for 886 Instructions

Instruction ⇒
Addressing Mode ⇓

mov
(both forms)

add, sub,
cmp, and, or,

not jmp jxx

reg, reg 5 7

reg, xxxx 6-7 8-9

reg, [bx] 7-8 9-10

reg, [xxxx] 8-10 10-12

reg, [xxxx+bx] 10-12 12-14

[bx], reg 7-8

[xxxx], reg 8-10

[xxxx+bx], reg 10-12

reg 6

[bx] 9-11

[xxxx] 10-13

[xxxx+bx] 12-15

xxxx 6-7 6-8

System Organization

Page 111

is only one data bus; the CPU cannot fetch an instruction opcode at the same time it is try-
ing to store some data to memory. The trick in designing a CPU that executes several steps
in parallel is to arrange those steps to reduce conflicts or add additional logic so the two
(or more) operations can occur simultaneously by executing in different functional units.

Consider again the steps the mov reg, mem/reg/const instruction requires:

• Fetch the instruction byte from memory.
• Update the ip register to point at the next byte.
• Decode the instruction to see what it does.
• If required, fetch a 16-bit instruction operand from memory.
• If required, update ip to point beyond the operand.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand.
• Store the fetched value into the destination register

The first operation uses the value of the ip register (so we cannot overlap incrementing
ip with it) and it uses the bus to fetch the instruction opcode from memory. Every step that
follows this one depends upon the opcode it fetches from memory, so it is unlikely we will
be able to overlap the execution of this step with any other.

The second and third operations do not share any functional units, nor does decoding
an opcode depend upon the value of the ip register. Therefore, we can easily modify the
control unit so that it increments the ip register at the same time it decodes the instruction.
This will shave one cycle off the execution of the mov instruction.

The third and fourth operations above (decoding and optionally fetching the 16-bit
operand) do not look like they can be done in parallel since you must decode the instruc-
tion to determine if it the CPU needs to fetch a 16-bit operand from memory. However, we
could design the CPU to go ahead and fetch the operand anyway, so that it’s available if
we need it. There is one problem with this idea, though, we must have the address of the
operand to fetch (the value in the ip register) and if we must wait until we are done incre-
menting the ip register before fetching this operand. If we are incrementing ip at the same
time we’re decoding the instruction, we will have to wait until the next cycle to fetch this
operand.

Since the next three steps are optional, there are several possible instruction sequences
at this point:

#1 (step 4, step 5, step 6, and step 7) – e.g., mov ax, [1000+bx]

#2 (step 4, step 5, and step 7) – e.g., mov ax, [1000]

#3 (step 6 and step 7) – e.g., mov ax, [bx]

#4 (step 7) – e.g., mov ax, bx

In the sequences above, step seven always relies on the previous set in the sequence.
Therefore, step seven cannot execute in parallel with any of the other steps. Step six also
relies upon step four. Step five cannot execute in parallel with step four since step four
uses the value in the ip register, however, step five can execute in parallel with any other
step. Therefore, we can shave one cycle off the first two sequences above as follows:

#1 (step 4, step 5/6, and step 7)

#2 (step 4, step 5/7)

#3 (step 6 and step 7)

#4 (step 7)

Of course, there is no way to overlap the execution of steps seven and eight in the mov
instruction since it must surely fetch the value before storing it away. By combining these
steps, we obtain the following steps for the mov instruction:

• Fetch the instruction byte from memory.
• Decode the instruction and update ip
• If required, fetch a 16-bit instruction operand from memory.
• Compute the address of the operand, if required (i.e., bx+xxxx) .
• Fetch the operand, if required update ip to point beyond xxxx.

Chapter 03

Page 112

• Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we’ve shaved one or two cycles off the
execution of the mov instruction. This simple optimization works with most of the other
instructions as well.

Another problem with the execution of the mov instruction concerns opcode align-
ment. Consider the mov ax, [1000] instruction that appears at location 100 in memory. The
CPU spends one cycle fetching the opcode and, after decoding the instruction an deter-
mining it has a 16-bit operand, it takes two additional cycles to fetch that operand from
memory (because that operand appears at an odd address – 101). The real travesty here is
that the extra clock cycle to fetch these two bytes is unnecessary, after all, the CPU fetched
the L.O. byte of the operand when it grabbed the opcode (remember, the x86 CPUs are
16-bit processors and always fetch 16 bits from memory), why not save that byte and use
only one additional clock cycle to fetch the H.O. byte? This would shave one cycle off the
execution time when the instruction begins at an even address (so the operand falls on an
odd address). It would require only a one-byte register and a small amount of additional
logic to accomplish this, well worth the effort.

While we are adding a register to buffer up operand bytes, let’s consider some addi-
tional optimizations that could use the same logic. For example, consider what happens
with that same mov instruction above executes. If we fetch the opcode and L.O. operand
byte on the first cycle and the H.O. byte of the operand on the second cycle, we’ve actually
read four bytes, not three. That fourth byte is the opcode of the next instruction. If we
could save this opcode until the execution of the next instruction, we could shave a cycle
of its execution time since it would not have to fetch the opcode byte. Furthermore, since
the instruction decoder is idle while the CPU is executing the mov instruction, we can
actually decode the next instruction while the current instruction is executing, thereby
shaving yet another cycle off the execution of the next instruction. On the average, we will
fetch this extra byte on every other instruction. Therefore, implementing this simple
scheme will allow us to shave two cycles off about 50% of the instructions we execute.

Can we do anything about the other 50% of the instructions? The answer is yes. Note
that the execution of the mov instruction is not accessing memory on every clock cycle.
For example, while storing the data into the destination register the bus is idle. During
time periods when the bus is idle we can pre-fetch instruction opcodes and operands and
save these values for executing the next instruction.

The major improvement to the 8286 over the 886 processor is the prefetch queue. When-
ever the CPU is not using the Bus Interface Unit (BIU), the BIU can fetch additional bytes
from the instruction stream. Whenever the CPU needs an instruction or operand byte, it
grabs the next available byte from the prefetch queue. Since the BIU grabs two bytes at a
time from memory at one shot and the CPU generally consumes fewer than two bytes per
clock cycle, any bytes the CPU would normally fetch from the instruction stream will
already be sitting in the prefetch queue.

Note, however, that we’re not guaranteed that all instructions and operands will be
sitting in the prefetch queue when we need them. For example, the jmp 1000 instruction
will invalidate the contents of the prefetch queue. If this instruction appears at location
400, 401, and 402 in memory, the prefetch queue will contain the bytes at addresses 403,
404, 405, 406, 407, etc. After loading ip with 1000 the bytes at addresses 403, etc., won’t do
us any good. So the system has to pause for a moment to fetch the double word at address
1000 before it can go on.

Another improvement we can make is to overlap instruction decoding with the last
step of the previous instruction. After the CPU processes the operand, the next available
byte in the prefetch queue is an opcode, and the CPU can decode it in anticipation of its
execution. Of course, if the current instruction modifies the ip register, any time spent
decoding the next instruction goes to waste, but since this occurs in parallel with other
operations, it does not slow down the system.

System Organization

Page 113

This sequence of optimizations to the system requires quite a few changes to the hard-
ware. A block diagram of the system appears in Figure 3.23. The instruction execution
sequence now assumes that the following events occur in the background:

CPU Prefetch Events:

• If the prefetch queue is not full (generally it can hold between eight and
thirty-two bytes, depending on the processor) and the BIU is idle on the
current clock cycle, fetch the next word from memory at the address in ip
at the beginning of the clock cycle14.

• If the instruction decoder is idle and the current instruction does not
require an instruction operand, begin decoding the opcode at the front of
the prefetch queue (if present), otherwise begin decoding the third byte in
the prefetch queue (if present). If the desired byte is not in the prefetch
queue, do not execute this event.

The instruction execution timings make a few optimistic assumptions, namely that
any necessary opcodes and instruction operands are already present in the prefetch queue
and that it has already decoded the current instruction opcode. If either cause is not true,
an 8286 instruction’s execution will delay while the system fetches the data from memory
or decodes the instruction. The following are the steps for each of the 8286 instructions:

mov reg, mem/reg/const

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand. Zero cycles if constant (assuming already in the

prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

• Store the result in the destination register, one cycle.

mov mem, reg

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand (a register), one cycle.
• Store into the destination operand. Two cycles if even-aligned memory

value, three cycles if odd-aligned memory value.

instr reg, mem/reg/const (instr = add, sub, cmp, and, or)

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).

14. This operation fetches only a byte if ip contains an odd value.

Figure 3.23 CPU With a Prefetch Queue

CPU

B
I
U

Control
Unit

Prefetch
Queue

A
L
U

R
e
g
i
s
t
e
r
s

Data

Address

Execution
Unit

Chapter 03

Page 114

• Fetch the source operand. Zero cycles if constant (assuming already in the
prefetch queue), one cycle if a register, two cycles if even-aligned memory
value, three cycles if odd-aligned memory value.

• Fetch the value of the first operand (a register), one cycle.
• Compute the sum, difference, etc., as appropriate, one cycle.
• Store the result in the destination register, one cycle.

not mem/reg

• If required, compute the sum of [xxxx+bx] (1 cycle, if required).
• Fetch the source operand. One cycle if a register, two cycles if

even-aligned memory value, three cycles if odd-aligned memory value.
• Logically not the value, one cycle.
• Store the result, one cycle if a register, two cycles if even-aligned memory

value, three cycles if odd-aligned memory value.

jcc xxxx (conditional jump, cc=a, ae, b, be, e, ne)

• Test the current condition code (less than and equal) flags, one cycle.
• If the flag values are appropriate for the particular conditional branch, the

CPU copies the 16-bit instruction operand into the ip register, one cycle.

jmp xxxx

• The CPU copies the 16-bit instruction operand into the ip register, one
cycle.

As for the 886, we will not consider the execution times of the other x86 instructions since
most of them are indeterminate.

The jump instructions look like they execute very quickly on the 8286. In fact, they
may execute very slowly. Don’t forget, jumping from one location to another invalidates
the contents of the prefetch queue. So although the jmp instruction looks like it executes in
one clock cycle, it forces the CPU to flush the prefetch queue and, therefore, spend several
cycles fetching the next instruction, fetching additional operands, and decoding that
instruction. Indeed, it make be two or three instructions after the jmp instruction before
the CPU is back to the point where the prefetch queue is operating smoothly and the CPU
is decoding opcodes in parallel with the execution of the previous instruction. The has one
very important implication to your programs: if you want to write fast code, make sure to
avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they
actually make the jump. If the condition is false, they fall through to the next instruction
and continue to use the values in the prefetch queue as well as any pre-decoded instruc-
tion opcodes. Therefore, if you can determine, while writing the program, which condi-
tion is most likely (e.g., less than vs. not less than), you should arrange your program so
that the most common case falls through and conditional jump rather than take the
branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. It
never requires more than one clock cycle to fetch a single byte instruction, but it always
requires two cycles to fetch a three-byte instruction. Therefore, if the target of a jump
instruction is two one-byte instructions, the BIU can fetch both instructions in one clock
cycle and begin decoding the second one while executing the first. If these instructions are
three-byte instructions, the CPU may not have enough time to fetch and decode the sec-
ond or third instruction by the time it finishes the first. Therefore, you should attempt to
use shorter instructions whenever possible since they will improve the performance of the
prefetch queue.

The following table provides the (optimistic) execution times for the 8286 instructions:

System Organization

Page 115

Note how much faster the mov instruction runs on the 8286 compared to the 886. This is
because the prefetch queue allows the processor to overlap the execution of adjacent
instructions. However, this table paints an overly rosy picture. Note the disclaimer:
“assuming the opcode is present in the prefetch queue and has been decoded.” Consider
the following three instruction sequence:

????: jmp 1000
1000: jmp 2000
2000: mov cx, 3000[bx]

The second and third instructions will not execute as fast as the timings suggest in the
table above. Whenever we modify the value of the ip register the CPU flushes the prefetch
queue. So the CPU cannot fetch and decode the next instruction. Instead, it must fetch the
opcode, decode it, etc., increasing the execution time of these instructions. At this point
the only improvement we’ve made is to execute the “update ip” operation in parallel with
another step.

Usually, including the prefetch queue improves performance. That’s why Intel pro-
vides the prefetch queue on every model of the 80x86, from the 8088 on up. On these pro-
cessors, the BIU is constantly fetching data for the prefetch queue whenever the program
is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8286 processor runs
much faster than the 886 because it can keep the prefetch queue full. However, consider
the following instructions:

100: mov ax, [1000]
105: mov bx, [2000]
10A: mov cx, [3000]

a. Cost of prefetch and decode on the next instruction.
b. If not taken.

Table 20: Execution Times for 8286 Instructions

Instruction ⇒
Addressing Mode ⇓

mov
(both forms)

add, sub,
cmp, and, or,

not jmp jxx

reg, reg 2 4

reg, xxxx 1 3

reg, [bx] 3-4 5-6

reg, [xxxx] 3-4 5-6

reg, [xxxx+bx] 4-5 6-7

[bx], reg 3-4 5-6

[xxxx], reg 3-4 5-6

[xxxx+bx], reg 4-5 6-7

reg 3

[bx] 5-7

[xxxx] 5-7

[xxxx+bx] 6-8

xxxx 1+pfda 2b

2+pfd

Chapter 03

Page 116

Since the ax, bx, and cx registers are 16 bits, here’s what happens (assuming the first
instruction is in the prefetch queue and decoded):

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction (zero cycles).
• There is an operand to this instruction, so get it from the prefetch queue

(zero cycles).
• Get the value of the second operand (one cycle). Update ip.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

End of first instruction. Two bytes currently in prefetch queue.

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction to see what it does (zero cycles).
• If there is an operand to this instruction, get that operand from the

prefetch queue (one clock cycle because we’re still missing one byte).
• Get the value of the second operand (one cycle). Update ip.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

End of second instruction. Three bytes currently in prefetch queue.

• Fetch the opcode byte from the prefetch queue (zero cycles).
• Decode the instruction (zero cycles).
• If there is an operand to this instruction, get that operand from the

prefetch queue (zero cycles).
• Get the value of the second operand (one cycle). Update ip.
• Store the fetched value into the destination register (one cycle). Fetch two

bytes from code stream. Decode the next instruction.

As you can see, the second instruction requires one more clock cycle than the other
two instructions. This is because the BIU cannot fill the prefetch queue quite as fast as the
CPU executes the instructions. This problem is exasperated when you limit the size of the
prefetch queue to some number of bytes. This problem doesn’t exist on the 8286 processor,
but most certainly does exist in the 80x86 processors.

You’ll soon see that the 80x86 processors tend to exhaust the prefetch queue quite eas-
ily. Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch
new opcodes from memory, slowing the program. Executing shorter instructions helps
keep the prefetch queue full. For example, the 8286 can load two one-byte instructions
with a single memory cycle, but it takes 1.5 clock cycles to fetch a single three-byte instruc-
tion. Usually, it takes longer to execute those four one-byte instructions than it does to exe-
cute the single three-byte instruction. This gives the prefetch queue time to fill and decode
new instructions. In systems with a prefetch queue, it’s possible to find eight two-byte
instructions which operate faster than an equivalent set of four four-byte instructions. The
reason is that the prefetch queue has time to refill itself with the shorter instructions.

Moral of the story: when programming a processor with a prefetch queue, always use the
shortest instructions possible to accomplish a given task.

3.3.12 The 8486 Processor

Executing instructions in parallel using a bus interface unit and an execution unit is a
special case of pipelining. The 8486 incorporates pipelining to improve performance. With
just a few exceptions, we’ll see that pipelining allows us to execute one instruction per
clock cycle.

The advantage of the prefetch queue was that it let the CPU overlap instruction fetch-
ing and decoding with instruction execution. That is, while one instruction is executing,
the BIU is fetching and decoding the next instruction. Assuming you’re willing to add

System Organization

Page 117

hardware, you can execute almost all operations in parallel. That is the idea behind pipe-
lining.

3.3.12.1 The 8486 Pipeline

Consider the steps necessary to do a generic operation:

• Fetch opcode.
• Decode opcode and (in parallel) prefetch a possible 16-bit operand.
• Compute complex addressing mode (e.g., [xxxx+bx]), if applicable.
• Fetch the source value from memory (if a memory operand) and the des-

tination register value (if applicable).
• Compute the result.
• Store result into destination register.

Assuming you’re willing to pay for some extra silicon, you can build a little
“mini-processor” to handle each of the above steps. The organization would look some-
thing like Figure 3.24.

If you design a separate piece of hardware for each stage in the pipeline above, almost
all these steps can take place in parallel. Of course, you cannot fetch and decode the
opcode for any one instruction at the same time, but you can fetch one opcode while
decoding the previous instruction. If you have an n-stage pipeline, you will usually have n
instructions executing concurrently. The 8486 processor has a six stage pipeline, so it over-
laps the execution of six separate instructions.

Figure 3.25, Instruction Execution in a Pipeline, demonstrates pipelining. T1, T2, T3, etc.,
represent consecutive “ticks” of the system clock. At T=T1 the CPU fetches the opcode
byte for the first instruction.

At T=T2, the CPU begins decoding the opcode for the first instruction. In parallel, it
fetches 16-bits from the prefetch queue in the event the instruction has an operand. Since
the first instruction no longer needs the opcode fetching circuitry, the CPU instructs it to
fetch the opcode of the second instruction in parallel with the decoding of the first instruc-
tion. Note there is a minor conflict here. The CPU is attempting to fetch the next byte from
the prefetch queue for use as an operand, at the same time it is fetching 16 bits from the

Figure 3.24 A Pipelined Implementation of Instruction Execution

Fetch
Opcode

Decode
Opcode /
Prefetch
Operand

Compute
Address

Fetch
Source
and Dest
Values

Compute
Result

Store
Result

Stage 1 2 3 4 5 6

Figure 3.25 Instruction Execution in a Pipeline

DecodeOpcode Address Vakues Compute Store

T1 T2 T3 T4 T5 T6 T7 T8 T9 ...

Etc.

Instr #1

Instr #2

Instr #3

DecodeOpcode Address Vakues Compute

DecodeOpcode Address Vakues Compute

Store

Store

Chapter 03

Page 118

prefetch queue for use as an opcode. How can it do both at once? You’ll see the solution in
a few moments.

At T=T3 the CPU computes an operand address for the first instruction, if any. The
CPU does nothing on the first instruction if it does not use the [xxxx+bx] addressing mode.
During T3, the CPU also decodes the opcode of the second instruction and fetches any
necessary operand. Finally the CPU also fetches the opcode for the third instruction. With
each advancing tick of the clock, another step in the execution of each instruction in the
pipeline completes, and the CPU fetches yet another instruction from memory.

At T=T6 the CPU completes the execution of the first instruction, computes the result
for the second, etc., and, finally, fetches the opcode for the sixth instruction in the pipeline.
The important thing to see is that after T=T5 the CPU completes an instruction on every
clock cycle. Once the CPU fills the pipeline, it completes one instruction on each cycle. Note that
this is true even if there are complex addressing modes to be computed, memory oper-
ands to fetch, or other operations which use cycles on a non-pipelined processor. All you
need to do is add more stages to the pipeline, and you can still effectively process each
instruction in one clock cycle.

3.3.12.2 Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little too simplistic.
There are two drawbacks to that simple pipeline: bus contention among instructions and
non-sequential program execution. Both problems may increase the average execution
time of the instructions in the pipeline.

Bus contention occurs whenever an instruction needs to access some item in memory.
For example, if a mov mem, reg instruction needs to store data in memory and a
mov reg, mem instruction is reading data from memory, contention for the address and
data bus may develop since the CPU will be trying to simultaneously fetch data and write
data in memory.

One simplistic way to handle bus contention is through a pipeline stall. The CPU, when
faced with contention for the bus, gives priority to the instruction furthest along in the
pipeline. The CPU suspends fetching opcodes until the current instruction fetches (or
stores) its operand. This causes the new instruction in the pipeline to take two cycles to
execute rather than one (see Figure 3.26).

This example is but one case of bus contention. There are many others. For example,
as noted earlier, fetching instruction operands requires access to the prefetch queue at the
same time the CPU needs to fetch an opcode. Furthermore, on processors a little more
advanced than the 8486 (e.g., the 80486) there are other sources of bus contention popping
up as well. Given the simple scheme above, it’s unlikely that most instructions would exe-
cute at one clock per instruction (CPI).

Figure 3.26 A Pipeline Stall

Value Load Compute Store

T5 T6 T7 T8 T9 T10 T11 ...

Address Value Load Compute Store

Operand Address Value Load Compute Store

Instr #1

Instr #2

Instr #3

Pipeline stall occurs here
because Instr #1 is fetching
a value at the same time the
CPU wants to fetch an opcode

Instr #3 appears to take two
clock cycles to complete
because of the pipeline stall

System Organization

Page 119

Fortunately, the intelligent use of a cache system can eliminate many pipeline stalls
like the ones discussed above. The next section on caching will describe how this is done.
However, it is not always possible, even with a cache, to avoid stalling the pipeline. What
you cannot fix in hardware, you can take care of with software. If you avoid using mem-
ory, you can reduce bus contention and your programs will execute faster. Likewise, using
shorter instructions also reduces bus contention and the possibility of a pipeline stall.

What happens when an instruction modifies the ip register? By the time the instruction

jmp 1000

completes execution, we’ve already started five other instructions and we’re only one
clock cycle away from the completion of the first of these. Obviously, the CPU must not
execute those instructions or it will compute improper results.

The only reasonable solution is to flush the entire pipeline and begin fetching opcodes
anew. However, doing so causes a severe execution time penalty. It will take six clock
cycles (the length of the 8486 pipeline) before the next instruction completes execution.
Clearly, you should avoid the use of instructions which interrupt the sequential execution
of a program. This also shows another problem – pipeline length. The longer the pipeline
is, the more you can accomplish per cycle in the system. However, lengthening a pipeline
may slow a program if it jumps around quite a bit. Unfortunately, you cannot control the
number of stages in the pipeline. You can, however, control the number of transfer instruc-
tions which appear in your programs. Obviously you should keep these to a minimum in
a pipelined system.

3.3.12.3 Cache, the Prefetch Queue, and the 8486

System designers can resolve many problems with bus contention through the intelli-
gent use of the prefetch queue and the cache memory subsystem. They can design the
prefetch queue to buffer up data from the instruction stream, and they can design the
cache with separate data and code areas. Both techniques can improve system perfor-
mance by eliminating some conflicts for the bus.

The prefetch queue simply acts as a buffer between the instruction stream in memory
and the opcode fetching circuitry. Unfortunately, the prefetch queue on the 8486 does not
enjoy the advantage it had on the 8286. The prefetch queue works well for the 8286
because the CPU isn’t constantly accessing memory. When the CPU isn’t accessing mem-
ory, the BIU can fetch additional instruction opcodes for the prefetch queue. Alas, the 8486
CPU is constantly accessing memory since it fetches an opcode byte on every clock cycle.
Therefore, the prefetch queue cannot take advantage of any “dead” bus cycles to fetch
additional opcode bytes – there aren’t any “dead” bus cycles. However, the prefetch
queue is still valuable on the 8486 for a very simple reason: the BIU fetches two bytes on
each memory access, yet some instructions are only one byte long. Without the prefetch
queue, the system would have to explicitly fetch each opcode, even if the BIU had already
“accidentally” fetched the opcode along with the previous instruction. With the prefetch
queue, however, the system will not refetch any opcodes. It fetches them once and saves
them for use by the opcode fetch unit.

For example, if you execute two one-byte instructions in a row, the BIU can fetch both
opcodes in one memory cycle, freeing up the bus for other operations. The CPU can use
these available bus cycles to fetch additional opcodes or to deal with other memory
accesses.

Of course, not all instructions are one byte long. The 8486 has two instruction sizes:
one byte and three bytes. If you execute several three-byte load instructions in a row,
you’re going to run slower, e.g.,

mov ax, 1000
mov bx, 2000
mov cx, 3000
add ax, 5000

Chapter 03

Page 120

Each of these instructions reads an opcode byte and a 16 bit operand (the constant).
Therefore, it takes an average of 1.5 clock cycles to read each instruction above. As a result,
the instructions will require six clock cycles to execute rather than four.

Once again we return to that same rule: the fastest programs are the ones which use the
shortest instructions. If you can use shorter instructions to accomplish some task, do so. The
following instruction sequence provides a good example:

mov ax, 1000
mov bx, 1000
mov cx, 1000
add ax, 1000

We can reduce the size of this program and increase its execution speed by changing it to:

mov ax, 1000
mov bx, ax
mov cx, ax
add ax, ax

This code is only five bytes long compared to 12 bytes for the previous example. The
previous code will take a minimum of five clock cycles to execute, more if there are other
bus contention problems. The latter example takes only four15. Furthermore, the second
example leaves the bus free for three of those four clock periods, so the BIU can load addi-
tional opcodes. Remember, shorter often means faster.

While the prefetch queue can free up bus cycles and eliminate bus contention, some
problems still exist. Suppose the average instruction length for a sequence of instructions
is 2.5 bytes (achieved by having three three-byte instructions and one one-byte instruction
together). In such a case the bus will be kept busy fetching opcodes and instruction oper-
ands. There will be no free time left to access memory. Assuming some of those instruc-
tions access memory the pipeline will stall, slowing execution.

Suppose, for a moment, that the CPU has two separate memory spaces, one for
instructions and one for data, each with their own bus. This is called the Harvard Archi-
tecture since the first such machine was built at Harvard. On a Harvard machine there
would be no contention for the bus. The BIU could continue to fetch opcodes on the
instruction bus while accessing memory on the data/memory bus (see Figure 3.27),

15. Actually, both of these examples will take longer to execute. See the section on hazards for more details.

Figure 3.27 A Typical Harvard Machine

CPU

Data Memory

I/O Devices

Data/Memory Bus

Instruction Bus Instruction Memory

System Organization

Page 121

In the real world, there are very few true Harvard machines. The extra pins needed on
the processor to support two physically separate busses increase the cost of the processor
and introduce many other engineering problems. However, microprocessor designers
have discovered that they can obtain many benefits of the Harvard architecture with few
of the disadvantages by using separate on-chip caches for data and instructions.
Advanced CPUs use an internal Harvard architecture and an external Von Neumann
architecture. Figure 3.28 shows the structure of the 8486 with separate data and instruc-
tion caches.

Each path inside the CPU represents an independent bus. Data can flow on all paths
concurrently. This means that the prefetch queue can be pulling instruction opcodes from
the instruction cache while the execution unit is writing data to the data cache. Now the
BIU only fetches opcodes from memory whenever it cannot locate them in the instruction
cache. Likewise, the data cache buffers memory. The CPU uses the data/address bus only
when reading a value which is not in the cache or when flushing data back to main mem-
ory.

By the way, the 8486 handles the instruction operand / opcode fetch contention prob-
lem in a sneaky fashion. By adding an extra decoder circuit, it decodes the instruction at
the beginning of the prefetch queue and three bytes into the prefetch queue in parallel.
Then, if the previous instruction did not have a 16-bit operand, the CPU uses the result
from the first decoder; if the previous instruction uses the operand, the CPU uses the
result from the second decoder.

Although you cannot control the presence, size, or type of cache on a CPU, as an
assembly language programmer you must be aware of how the cache operates to write
the best programs. On-chip instruction caches are generally quite small (8,192 bytes on the
80486, for example). Therefore, the shorter your instructions, the more of them will fit in
the cache (getting tired of “shorter instructions” yet?). The more instructions you have in
the cache, the less often bus contention will occur. Likewise, using registers to hold tempo-
rary results places less strain on the data cache so it doesn’t need to flush data to memory
or retrieve data from memory quite so often. Use the registers wherever possible!

Figure 3.28 Internal Structure of the 8486 CPU

8486 CPU

B
I
U

Data/Address
Busses

Instruct ion
Cache

Prefetch
Queue

D
a
t
a

C
a
c
h
e

E
x
e
c
u
t
i
o
n

U
n
i
t

Chapter 03

Page 122

3.3.12.4 Hazards on the 8486

There is another problem with using a pipeline: the data hazard. Let’s look at the exe-
cution profile for the following instruction sequence:

mov bx, [1000]
mov ax, [bx]

When these two instructions execute, the pipeline will look something like
Figure 3.29.

Note a major problem here. These two instructions fetch the 16 bit value whose
address appears at location 1000 in memory. But this sequence of instructions won’t work
properly! Unfortunately, the second instruction has already used the value in bx before the
first instruction loads the contents of memory location 1000 (T4 & T6 in the diagram
above).

CISC processors, like the 80x86, handle hazards automatically16. However, they will
stall the pipeline to synchronize the two instructions. The actual execution on the 8486
would look something like shown in Figure 3.29.

By delaying the second instruction two clock cycles, the 8486 guarantees that the load
instruction will load ax from the proper address. Unfortunately, the second load instruc-
tion now executes in three clock cycles rather than one. However, requiring two extra
clock cycles is better than producing incorrect results. Fortunately, you can reduce the
impact of hazards on execution speed within your software.

Note that the data hazard occurs when the source operand of one instruction was a
destination operand of a previous instruction. There is nothing wrong with loading bx
from [1000] and then loading ax from [bx], unless they occur one right after the other. Suppose
the code sequence had been:

mov cx, 2000
mov bx, [1000]
mov ax, [bx]

16. RISC chips do not. If you tried this sequence on a RISC chip you would get an incorrect answer.

Figure 3.29 A Hazard on the 8486

into bx

T1 T2 T3 T4 T5 T6 T7 ...

Operand Address Store mov bx, [1000]

mov ax, [bx]

Opcode

Operand Load Load StoreOpcode

1000 ***

bx [bx] into ax

from [1000]

Load Compute

Address

Figure 3.30 A Hazard on the 8486

into bx

T3 T4 T5 T6 T7 ...

Address Store mov bx, [1000]

mov ax, [bx]Operand Load Load Store

bx [bx] into ax

from [1000]

Load Compute

Address Delay Delay

System Organization

Page 123

We could reduce the effect of the hazard that exists in this code sequence by simply
rearranging the instructions. Let’s do that and obtain the following:

mov bx, [1000]
mov cx, 2000
mov ax, [bx]

Now the mov ax instruction requires only one additional clock cycle rather than two. By
inserting yet another instruction between the mov bx and mov ax instructions you can elim-
inate the effects of the hazard altogether17.

On a pipelined processor, the order of instructions in a program may dramatically
affect the performance of that program. Always look for possible hazards in your instruc-
tion sequences. Eliminate them wherever possible by rearranging the instructions.

3.3.13 The 8686 Processor

With the pipelined architecture of the 8486 we could achieve, at best, execution times
of one CPI (clock per instruction). Is it possible to execute instructions faster than this? At
first glance you might think, “Of course not, we can do at most one operation per clock
cycle. So there is no way we can execute more than one instruction per clock cycle.” Keep
in mind however, that a single instruction is not a single operation. In the examples pre-
sented earlier each instruction has taken between six and eight operations to complete. By
adding seven or eight separate units to the CPU, we could effectively execute these eight
operations in one clock cycle, yielding one CPI. If we add more hardware and execute, say,
16 operations at once, can we achieve 0.5 CPI? The answer is a qualified “yes.” A CPU
including this additional hardware is a superscalar CPU and can execute more than one
instruction during a single clock cycle. That’s the capability that the 8686 processor adds.

A superscalar CPU has, essentially, several execution units (see Figure 3.31). If it
encounters two or more instructions in the instruction stream (i.e., the prefetch queue)
which can execute independently, it will do so.

There are a couple of advantages to going superscalar. Suppose you have the follow-
ing instructions in the instruction stream:

17. Of course, any instruction you insert at this point must not modify the values in the ax and bx registers.

Figure 3.31 Internal Structure of the 8686 CPU

8686 CPU

B
I
U

Data/Address
Busses

Instruct ion
Cache

Prefetch
Queue

D
a
t
a

C
a
c
h
e

E
x
e
c
u
t
i
o
n

U
n
i
t

#
1

E
x
e
c
u
t
i
o
n

U
n
i
t

#
2

Chapter 03

Page 124

mov ax, 1000
mov bx, 2000

If there are no other problems or hazards in the surrounding code, and all six bytes for
these two instructions are currently in the prefetch queue, there is no reason why the CPU
cannot fetch and execute both instructions in parallel. All it takes is extra silicon on the
CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up
program sequences which have hazards. One limitation of the 8486 CPU is that once a
hazard occurs, the offending instruction will completely stall the pipeline. Every instruc-
tion which follows will also have to wait for the CPU to synchronize the execution of the
instructions. With a superscalar CPU, however, instructions following the hazard may
continue execution through the pipeline as long as they don’t have hazards of their own.
This alleviates (though does not eliminate) some of the need for careful instruction sched-
uling.

As an assembly language programmer, the way you write software for a superscalar
CPU can dramatically affect its performance. First and foremost is that rule you’re proba-
bly sick of by now: use short instructions. The shorter your instructions are, the more
instructions the CPU can fetch in a single operation and, therefore, the more likely the
CPU will execute faster than one CPI. Most superscalar CPUs do not completely duplicate
the execution unit. There might be multiple ALUs, floating point units, etc. This means
that certain instruction sequences can execute very quickly while others won’t. You have
to study the exact composition of your CPU to decide which instruction sequences pro-
duce the best performance.

3.4 I/O (Input/Output)

There are three basic forms of input and output that a typical computer system will
use: I/O-mapped I/O, memory-mapped input/output, and direct memory access (DMA).
I/O-mapped input/output uses special instructions to transfer data between the com-
puter system and the outside world; memory-mapped I/O uses special memory locations
in the normal address space of the CPU to communicate with real-world devices; DMA is
a special form of memory-mapped I/O where the peripheral device reads and writes
memory without going through the CPU. Each I/O mechanism has its own set of advan-
tages and disadvantages, we will discuss these in this section.

The first thing to learn about the input/output subsystem is that I/O in a typical com-
puter system is radically different than I/O in a typical high level programming language.
In a real computer system you will rarely find machine instructions that behave like
writeln, printf, or even the x86 Get and Put instructions18. In fact, most input/output
instructions behave exactly like the x86’s mov instruction. To send data to an output
device, the CPU simply moves that data to a special memory location (in the I/O address
space if I/O-mapped input/output [see “The I/O Subsystem” on page 92] or to an
address in the memory address space if using memory-mapped I/O). To read data from
an input device, the CPU simply moves data from the address (I/O or memory) of that
device into the CPU. Other than there are usually more wait states associated with a typi-
cal peripheral device than actual memory, the input or output operation looks very simi-
lar to a memory read or write operation (see “Memory Access and the System Clock” on
page 93).

An I/O port is a device that looks like a memory cell to the computer but contains con-
nections to the outside world. An I/O port typically uses a latch rather than a flip-flop to
implement the memory cell. When the CPU writes to the address associated with the
latch, the latch device captures the data and makes it available on a set of wires external to
the CPU and memory system (see Figure 3.32). Note that I/O ports can be read-only,
write-only, or read/write. The port in Figure 3.32, for example, is a write-only port. Since

18. Get and Put behave the way they do in order to simplify writing x86 programs.

System Organization

Page 125

the outputs on the latch do not loop back to the CPU’s data bus, the CPU cannot read the
data the latch contains. Both the address decode and write control lines must be active for
the latch to operate; when reading from the latch’s address the decode line is active, but
the write control line is not.

Figure 3.33 shows how to create a read/write input/output port. The data written to
the output port loops back to a transparent latch. Whenever the CPU reads the decoded
address the read and decode lines are active and this activates the lower latch. This places
the data previously written to the output port on the CPU’s data bus, allowing the CPU to
read that data. A read-only (input) port is simply the lower half of Figure 3.33; the system
ignores any data written to an input port.

A perfect example of an output port is a parallel printer port. The CPU typically
writes an ASCII character to a byte-wide output port that connects to the DB-25F connect
on the back of the computer’s case. A cable transmits this data to a the printer where an
input port (to the printer) receives the data. A processor inside the printer typically con-
verts this ASCII character to a sequence of dots it prints on the paper.

Generally, a given peripheral device will use more than a single I/O port. A typical
PC parallel printer interface, for example, uses three ports: a read/write port, an input
port, and an output port. The read/write port is the data port (it is read/write to allow the
CPU to read the last ASCII character it wrote to the printer port). The input port returns
control signals from the printer; these signals indicate whether the printer is ready to
accept another character, is off-line, is out of paper, etc. The output port transmits control
information to the printer such as whether data is available to print.

To the programmer, the difference between I/O-mapped and memory-mapped
input/output operations is the instruction to use. For memory-mapped I/O, any instruc-
tion that accesses memory can access a memory-mapped I/O port. On the x86, the mov,

Figure 3.32 An Output Port Created with a Single Latch

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data Data to outside world

Figure 3.33 An Input/Output Port Requires Two Latches

Data Bus from CPU

L
a
t
c
h

CPU write control line

Address decode line

W

En

Data

Data Bus to CPU

L
a
t
c
h

CPU read control line

Address decode line

R

En

Data

Data to outside world

Chapter 03

Page 126

add, sub, cmp, and, or, and not instructions can read memory; the mov and not instructions
can write data to memory. I/O-mapped input/output uses special instructions to access
I/O ports. For example, the x86 CPUs use the get and put instructions19, the Intel 80x86
family uses the in and out instructions. The 80x86 in and out instructions work just like the
mov instruction except they place their address on the I/O address bus rather than the
memory address bus (See “The I/O Subsystem” on page 92.).

Memory-mapped I/O subsystems and I/O-mapped subsystems both require the
CPU to move data between the peripheral device and main memory. For example, to
input a sequence of ten bytes from an input port and store these bytes into memory the
CPU must read each value and store it into memory. For very high-speed I/O devices the
CPU may be too slow when processing this data a byte at a time. Such devices generally
contain an interface to the CPU’s bus so it directly read and write memory. This is known
as direct memory access since the peripheral device accesses memory directly, without using
the CPU as an intermediary. This often allows the I/O operation to proceed in parallel
with other CPU operations, thereby increasing the overall speed of the system. Note, how-
ever, that the CPU and DMA device cannot both use the address and data busses at the
same time. Therefore, concurrent processing only occurs if the CPU has a cache and is exe-
cuting code and accessing data found in the cache (so the bus is free). Nevertheless, even if
the CPU must halt and wait for the DMA operation to complete, the I/O is still much
faster since many of the bus operations during I/O or memory-mapped input/output
consist of instruction fetches or I/O port accesses which are not present during DMA
operations.

3.5 Interrupts and Polled I/O

Many I/O devices cannot accept data at an arbitrary rate. For example, a Pentium
based PC is capable of sending several million characters a second to a printer, but that
printer is (probably) unable to print that many characters each second. Likewise, an input
device like a keyboard is unable to provide several million keystrokes per second (since it
operates at human speeds, not computer speeds). The CPU needs some mechanism to
coordinate data transfer between the computer system and its peripheral devices.

One common way to coordinate data transfer is to provide some status bits in a sec-
ondary input port. For example, a one in a single bit in an I/O port can tell the CPU that a
printer is ready to accept more data, a zero would indicate that the printer is busy and the
CPU should not send new data to the printer. Likewise, a one bit in a different port could
tell the CPU that a keystroke from the keyboard is available at the keyboard data port, a
zero in that same bit could indicate that no keystroke is available. The CPU can test these
bits prior to reading a key from the keyboard or writing a character to the printer.

Assume that the printer data port is memory-mapped to address 0FFE0h and the
printer status port is bit zero of memory-mapped port 0FFE2h. The following code waits
until the printer is ready to accept a byte of data and then it writes the byte in the L.O. byte
of ax to the printer port:

0000: mov bx, [FFE2]
0003: and bx, 1
0006: cmp bx, 0
0009: je 0000
000C: mov [FFE0], ax

 . .
 . .
 . .

The first instruction fetches the data at the status input port. The second instruction
logically ands this value with one to clear bits one through fifteen and set bit zero to the
current status of the printer port. Note that this produces the value zero in bx if the printer

19. Get and put are a little fancier than true I/O-mapped instructions, but we will ignore that difference here.

System Organization

Page 127

is busy, it produces the value one in bx if the printer is ready to accept additional data. The
third instruction checks bx to see if it contains zero (i.e., the printer is busy). If the printer is
busy, this program jumps back to location zero and repeats this process over and over
again until the printer status bit is one20.

The following code provides an example of reading a keyboard. It presumes that the
keyboard status bit is bit zero of address 0FFE6h (zero means no key pressed) and the
ASCII code of the key appears at address 0FFE4h when bit zero of location 0FFE6h con-
tains a one:

0000: mov bx, [FFE6]
0003: and bx, 1
0006: cmp bx, 0
0009: je 0000
000C: mov ax, [FFE4]

 . .
 . .
 . .

This type of I/O operation, where the CPU constantly tests a port to see if data is
available, is polling, that is, the CPU polls (asks) the port if it has data available or if it is
capable of accepting data. Polled I/O is inherently inefficient. Consider what happens in
the previous code segment if the user takes ten seconds to press a key on the keyboard –
the CPU spins in a loop doing nothing (other than testing the keyboard status port) for
those ten seconds.

In early personal computer systems (e.g., the Apple II), this is exactly how a program
would read data from the keyboard; when it wanted to read a key from the keyboard it
would poll the keyboard status port until a key was available. Such computers could not
do other operations while waiting for keystrokes. More importantly, if too much time
passes between checking the keyboard status port, the user could press a second key and
the first keystroke would be lost21.

The solution to this problem is to provide an interrupt mechanism. An interrupt is an
external hardware event (like a keypress) that causes the CPU to interrupt the current
instruction sequence and call a special interrupt service routine. (ISR). An interrupt service
routine typically saves all the registers and flags (so that it doesn’t disturb the computa-
tion it interrupts), does whatever operation is necessary to handle the source of the inter-
rupt, it restores the registers and flags, and then it resumes execution of the code it
interrupted. In many computer systems (e.g., the PC), many I/O devices generate an
interrupt whenever they have data available or are able to accept data from the CPU. The
ISR quickly processes the request in the background, allowing some other computation to
proceed normally in the foreground.

CPUs that support interrupts must provide some mechanism that allows the pro-
grammer to specify the address of the ISR to execute when an interrupt occurs. Typically,
an interrupt vector is a special memory location that contains the address of the ISR to exe-
cute when an interrupt occurs. The x86 CPUs, for example, contain two interrupt vectors:
one for a general purpose interrupt and one for a reset interrupt (the reset interrupt corre-
sponds to pressing the reset button on most PCs). The Intel 80x86 family supports up to
256 different interrupt vectors.

After an ISR completes its operation, it generally returns control to the foreground
task with a special “return from interrupt” instruction. On the x86 the iret (interrupt
return) instruction handles this task. An ISR should always end with this instruction so
the ISR can return control to the program it interrupted.

A typical interrupt-driven input system uses the ISR to read data from an input port
and buffer it up whenever data becomes available. The foreground program can read that

20. Note that this is a hypothetical example. The PC’s parallel printer port is not mapped to memory addresses
0FFE0h and 0FFE2h on the x86.
21. A keyboard data port generally provides only the last character typed, it does not provide a “keyboard buffer”
for the system.

Chapter 03

Page 128

data from the buffer at its leisure without losing any data from the port. Likewise, a typi-
cal interrupt-driven output system (that gets an interrupt whenever the output device is
ready to accept more data) can remove data from a buffer whenever the peripheral device
is ready to accept new data.

3.6 Laboratory Exercises

In this laboratory you will use the “SIMX86.EXE” program found in the Chapter
Three subdirectory. This program contains a built-in assembler (compiler), debugger, and
interrupter for the x86 hypothetical CPUs. You will learn how to write basic x86 assembly
language programs, assemble (compile) them, modify the contents of memory, and exe-
cute your x86 programs. You will also experiment with memory-mapped I/O,
I/O-mapped input/output, DMA, and polled as well as interrupt-driven I/O systems.

In this set of laboratory exercises you will use the SIMx86.EXE program to enter, edit,
initialize, and emulate x86 programs. This program requires that you install two files in
your WINDOWS\SYSTEM directory. Please see the README.TXT file in the CH3 subdi-
rectory for more details.

3.6.1 The SIMx86 Program – Some Simple x86 Programs

To run the SIMx86 program double click on its icon or choose run from the Windows
file menu and enter the pathname for SIMx86. The SIMx86 program consists of three main
screen that you can select by clicking on the Editor, Memory, or Emulator notebook tabs in
the window. By default, SIMx86 opens the Editor screen. From the Editor screen you can
edit and assemble x86 programs; from Memory screen you can view and modify the con-
tents of memory; from the Emulator screen you execute x86 programs and view x86 pro-
grams in memory.

The SIMx86 program contains two menu items: File and Edit. These are standard Win-
dows menus so there is little need to describe their operation except for two points. First,
the New, Open, Save, and Save As items under the file menu manipulate the data in the
text editor box on the Editor screen, they do not affect anything on the other screens. Sec-
ond, the Print menu item in the File menu prints the source code appearing in the text edi-
tor if the Editor screen is active, it prints the entire form if the Memory or Emulator
screens are active.

To see how the SIMx86 program operates, switch to the Editor screen (if you are not
already there). Select “Open” from the File menu and choose “EX1.X86” from the Chapter
Three subdirectory. That file should look like the following:

mov ax, [1000]
mov bx, [1002]
add ax, bx
sub ax, 1
mov bx, ax
add bx, ax
add ax, bx
halt

This short code sequence adds the two values at location 1000 and 1002, subtracts one
from their sum, and multiplies the result by three ((ax + ax) + ax) = ax*3), leaving the result
in ax and then it halts.

On the Editor screen you will see three objects: the editor window itself, a box that
holds the “Starting Address,” and an “Assemble” button. The “Starting Address” box
holds a hexadecimal number that specifies where the assembler will store the machine
code for the x86 program you write with the editor. By default, this address is zero. About
the only time you should change this is when writing interrupt service routines since the
default reset address is zero. The “Assemble” button directs the SIMx86 program to con-

System Organization

Page 129

vert your assembly language source code into x86 machine code and store the result
beginning at the Starting Address in memory. Go ahead and press the “Assemble” button
at this time to assemble this program to memory.

Now press the “Memory” tab to select the memory screen. On this screen you will see
a set of 64 boxes arranged as eight rows of eight boxes. To the left of these eight rows you
will see a set of eight (hexadecimal) memory addresses (by default, these are 0000, 0008,
0010, 0018, 0020, 0028, 0030, and 0038). This tells you that the first eight boxes at the top of
the screen correspond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7; the second row of eight
boxes correspond to locations 8, 9, A, B, C, D, E, and F; and so on. At this point you should
be able to see the machine codes for the program you just assembled in memory locations
0000 through 000D. The rest of memory will contain zeros.

The memory screen lets you look at and possibly modify 64 bytes of the total 64K
memory provided for the x86 processors. If you want to look at some memory locations
other than 0000 through 003F, all you need do is edit the first address (the one that cur-
rently contains zero). At this time you should change the starting address of the memory
display to 1000 so you can modify the values at addresses 1000 and 1002 (remember, the
program adds these two values together). Type the following values into the correspond-
ing cells: at address 1000 enter the value 34, at location 1001 the value 12, at location 1002
the value 01, and at location 1003 the value 02. Note that if you type an illegal hexadecimal
value, the system will turn that cell red and beep at you.

By typing an address in the memory display starting address cell, you can look at or
modify locations almost anywhere in memory. Note that if you enter a hexadecimal
address that is not an even multiple of eight, the SIMx86 program disable up to seven cells
on the first row. For example, if you enter the starting address 1002, SIMx86 will disable
the first two cells since they correspond to addresses 1000 and 1001. The first active cell is
1002. Note the SIMx86 reserves memory locations FFF0 through FFFF for mem-
ory-mapped I/O. Therefore, it will not allow you to edit these locations. Addresses FFF0
through FFF7 correspond to read-only input ports (and you will be able to see the input
values even though SIMx86 disables these cells). Locations FFF8 through FFFF are
write-only output ports, SIMx86 displays garbage values if you look at these locations.

On the Memory page along with the memory value display/edit cells, there are two
other entry cells and a button. The “Clear Memory” button clears memory by writing
zeros throughout. Since your program’s object code and initial values are currently in
memory, you should not press this button. If you do, you will need to reassemble your
code and reenter the values for locations 1000 through 1003.

The other two items on the Memory screen let you set the interrupt vector address
and the reset vector address. By default, the reset vector address contains zero. This means
that the SIMx86 begins program execution at address zero whenever you reset the emula-
tor. Since your program is currently sitting at location zero in memory, you should not
change the default reset address.

The “Interrupt Vector” value is FFFF by default. FFFF is a special value that tells
SIMx86 “there is no interrupt service routine present in the system, so ignore all inter-
rupts.” Any other value must be the address of an ISR that SIMx86 will call whenever an
interrupt occurs. Since the program you assembled does not have an interrupt service rou-
tine, you should leave the interrupt vector cell containing the value FFFF.

Finally, press the “Emulator” tab to look at the emulator screen. This screen is much
busier than the other two. In the upper left hand corner of the screen is a data entry box
with the label IP. This box holds the current value of the x86 instruction pointer register.
Whenever SIMx86 runs a program, it begins execution with the instruction at this address.
Whenever you press the reset button (or enter SIMx86 for the first time), the IP register
contains the value found in the reset vector. If this register does not contain zero at this
point, press the reset button on the Emulator screen to reset the system.

Immediately below the ip value, the Emulator page disassembles the instruction found
at the address in the ip register. This is the very next instruction that SIMx86 will execute
when you press the “Run” or “Step” buttons. Note that SIMx86 does not obtain this

Chapter 03

Page 130

instruction from the source code window on the Editor screen. Instead, it decodes the
opcode in memory (at the address found in ip) and generates this string itself. Therefore,
there may be minor differences between the instruction you wrote and the instruction
SIMx86 displays on this page. Note that a disassembled instruction contains several
numeric values in front of the actual instruction. The first (four-digit) value is the memory
address of that instruction. The next pair of digits (or the next three pairs of digits) are the
opcodes and possible instruction operand values. For example, the mov ax, [1000] instruc-
tion’s machine code is C6 00 10 since these are the three sets of digits appearing at this
point.

Below the current disassembled instruction, SIMx86 displays 15 instructions it disas-
sembles. The starting address for this disassemble is not the value in the ip register.
Instead, the value in the lower right hand corner of the screen specifies the starting disas-
sembly address. The two little arrows next to the disassembly starting address let you
quickly increment or decrement the disassembly starting address. Assuming the starting
address is zero (change it to zero if it is not), press the down arrow. Note that this incre-
ments the starting address by one. Now look back at the disassembled listing. As you can
see, pressing the down arrow has produced an interesting result. The first instruction (at
address 0001) is “****”. The four asterisks indicate that this particular opcode is an illegal
instruction opcode. The second instruction, at address 0002, is not ax. Since the program
you assembled did not contain an illegal opcode or a not ax instruction, you may be won-
dering where these instructions came from. However, note the starting address of the first
instruction: 0001. This is the second byte of the first instruction in your program. In fact,
the illegal instruction (opcode=00) and the not ax instruction (opcode=10) are actually a
disassembly of the mov ax, [1000] two-byte operand. This should clearly demonstrate a
problem with disassembly – it is possible to get “out of phase” by specify a starting
address that is in the middle of a multi-byte instruction. You will need to consider this
when disassembling code.

In the middle of the Emulator screen there are several buttons: Run, Step, Halt, Inter-
rupt, and Reset (the “Running” box is an annunciator, not a button). Pressing the Run but-
ton will cause the SIMx86 program to run the program (starting at the address in the ip
register) at “full” speed. Pressing the Step button instructs SIMx86 to execute only the
instruction that ip points at and then stop. The Halt button, which is only active while a
program is running, will stop execution. Pressing the Interrupt button generates an inter-
rupt and pressing the Reset button resets the system (and halts execution if a program is
currently running). Note that pressing the Reset button clears the x86 registers to zero and
loads the ip register with the value in the reset vector.

The “Running” annunciator is gray if SIMx86 is not currently running a program. It
turns red when a program is actually running. You can use this annunciator as an easy
way to tell if a program is running if the program is busy computing something (or is in
an infinite loop) and there is no I/O to indicate program execution.

The boxes with the ax, bx, cx, and dx labels let you modify the values of these registers
while a program is not running (the entry cells are not enabled while a program is actually
running). These cells also display the current values of the registers whenever a program
stops or between instructions when you are stepping through a program. Note that while
a program is running the values in these cells are static and do not reflect their current val-
ues.

The “Less” and “Equal” check boxes denote the values of the less than and equal
flags. The x86 cmp instruction sets these flags depending on the result of the comparison.
You can view these values while the program is not running. You can also initialize them
to true or false by clicking on the appropriate box with the mouse (while the program is
not running).

In the middle section of the Emulator screen there are four “LEDs” and four “toggle
switches.” Above each of these objects is a hexadecimal address denoting their mem-
ory-mapped I/O addresses. Writing a zero to a corresponding LED address turns that
LED “off” (turns it white). Writing a one to a corresponding LED address turns that LED

System Organization

Page 131

“on” (turns it red). Note that the LEDs only respond to bit zero of their port addresses.
These output devices ignore all other bits in the value written to these addresses.

The toggle switches provide four memory-mapped input devices. If you read the
address above each switch SIMx86 will return a zero if the switch is off. SIMx86 will
return a one if the switch is in the on position. You can toggle a switch by clicking on it
with the mouse. Note that a little rectangle on the switch turns red if the switch is in the
“on” position.

The two columns on the right side of the Emulate screen (“Input” and “Output”) dis-
play input values read with the get instruction and output values the put instruction
prints.

For this first exercise, you will use the Step button to single step through each of the
instructions in the EX1.x86 program. First, begin by pressing the Reset button22. Next,
press the Step button once. Note that the values in the ip and ax registers change. The ip
register value changes to 0003 since that is the address of the next instruction in memory,
ax’s value changed to 1234 since that’s the value you placed at location 1000 when operat-
ing on the Memory screen. Single step through the remaining instructions (by repeatedly
pressing Step) until you get the “Halt Encountered” dialog box.

For your lab report: explain the results obtained after the execution of each instruc-
tion. Note that single-stepping through a program as you’ve done here is an excellent way
to ensure that you fully understand how the program operates. As a general rule, you
should always single-step through every program you write when testing it.

3.6.2 Simple I/O-Mapped Input/Output Operations

Go to the Editor screen and load the EX2.x86 file into the editor. This program intro-
duces some new concepts, so take a moment to study this code:

mov bx, 1000
a: get

mov [bx], ax
add bx, 2
cmp ax, 0
jne a

mov cx, bx
mov bx, 1000
mov ax, 0

b: add ax, [bx]
add bx, 2
cmp bx, cx
jb b

put
halt

The first thing to note are the two strings “a:” and “b:” appearing in column one of the
listing. The SIMx86 assembler lets you specify up to 26 statement labels by specifying a sin-
gle alphabetic character followed by a colon. Labels are generally the operand of a jump
instruction of some sort. Therefore, the “jne a” instruction above really says “jump if not
equal to the statement prefaced with the ‘a:’ label” rather than saying “jump if not equal to
location ten (0Ah) in memory.”

Using labels is much more convenient than figuring out the address of a target
instruction manually, especially if the target instruction appears later in the code. The
SIMx86 assembler computes the address of these labels and substitutes the correct address

22. It is a good idea to get in the habit of pressing the Reset button before running or stepping through any pro-
gram.

Chapter 03

Page 132

for the operands of the jump instructions. Note that you can specify a numeric address in
the operand field of a jump instruction. However, all numeric addresses must begin with
a decimal digit (even though they are hexadecimal values). If your target address would
normally begin with a value in the range A through F, simply prepend a zero to the num-
ber. For example, if “jne a” was supposed to mean “jump if not equal to location 0Ah” you
would write the instruction as “jne 0a”.

This program contains two loops. In the first loop, the program reads a sequence of
values from the user until the user enters the value zero. This loop stores each word into
successive memory locations starting at address 1000h. Remember, each word read by the
user requires two bytes; this is why the loop adds two to bx on each iteration.

The second loop in this program scans through the input values and computes their
sum. At the end of the loop, the code prints the sum to the output window using the put
instruction.

For your lab report: single-step through this program and describe how each instruc-
tion works. Reset the x86 and run this program at full speed. Enter several values and
describe the result. Discuss the get and put instruction. Describe why they do
I/O-mapped input/output operations rather than memory-mapped input/output opera-
tions.

3.6.3 Memory Mapped I/O

From the Editor screen, load the EX3.x86 program file. That program takes the follow-
ing form (the comments were added here to make the operation of this program clearer):

a: mov ax, [fff0]
mov bx, [fff2]

mov cx, ax ;Computes Sw0 and Sw1
and cx, bx
mov [fff8], cx

mov cx, ax ;Computes Sw0 or Sw1
or cx, bx
mov [fffa], cx

mov cx, ax ;Computes Sw0 xor Sw1
mov dx, bx ;Remember, xor = AB’ + A’B
not cx
not bx
and cx, bx
and dx, ax
or cx, dx
mov [fffc], cx

not cx ;Computes Sw0 = Sw1
mov [fffe], cx ;Remember, equals = not xor

mov ax, [fff4] ;Read the third switch.
cmp ax, 0 ;See if it’s on.
je a ;Repeat this program while off.
halt

Locations 0FFF0h, 0FFF2h, and 0FFF4h correspond to the first three toggle switches
on the Execution page. These are memory-mapped I/O devices that put a zero or one into
the corresponding memory locations depending upon whether the toggle switch is in the
on or off state. Locations 0FFF8h, 0FFFAh, 0FFFCh, and 0FFFEh correspond to the four
LEDs. Writing a zero to these locations turns the corresponding LED off, writing a one
turns it on.

System Organization

Page 133

This program computes the logical and, or, xor, and xnor (not xor) functions for the
values read from the first two toggle switches. This program displays the results of these
functions on the four output LEDs. This program reads the value of the third toggle
switch to determine when to quit. When the third toggle switch is in the on position, the
program will stop.

For your lab report: run this program and cycle through the four possible combina-
tions of on and off for the first two switches. Include the results in your lab report.

3.6.4 DMA Exercises

In this exercise you will start a program running (EX4.x86) that examines and oper-
ates on values found in memory. Then you will switch to the Memory screen and modify
values in memory (that is, you will directly access memory while the program continues
to run), thus simulating a peripheral device that uses DMA.

The EX4.x86 program begins by setting memory location 1000h to zero. Then it loops
until one of two conditions is met – either the user toggles the FFF0 switch or the user
changes the value in memory location 1000h. Toggling the FFF0 switch terminates the pro-
gram. Changing the value in memory location 1000h transfers control to a section of the
program that adds together n words, where n is the new value in memory location 1000h.
The program sums the words appearing in contiguous memory locations starting at
address 1002h. The actual program looks like the following:

d: mov cx, 0 ;Clear location 1000h before we
mov [1000], cx ; begin testing it.

; The following loop checks to see if memory location 1000h changes or if
; the FFF0 switch is in the on position.

a: mov cx, [1000] ;Check to see if location 1000h
cmp cx, 0 ; changes. Jump to the section that
jne c ; sums the values if it does.

mov ax, [fff0] ;If location 1000h still contains zero,
cmp ax, 0 ; read the FFF0 switch and see if it is
je a ; off. If so, loop back. If the switch
halt ; is on, quit the program.

; The following code sums up the “cx” contiguous words of memory starting at
; memory location 1002. After it sums up these values, it prints their sum.

c: mov bx, 1002 ;Initialize BX to point at data array.
mov ax, 0 ;Initialize the sum

b: add ax, [bx] ;Sum in the next array value.
add bx, 2 ;Point BX at the next item in the array.
sub cx, 1 ;Decrement the element count.
cmp cx, 0 ;Test to see if we’ve added up all the
jne b ; values in the array.

put ;Print the sum and start over.
jmp d

Load this program into SIMx86 and assemble it. Switch to the Emulate screen, press
the Reset button, make sure the FFF0 switch is in the off position, and then run the pro-
gram. Once the program is running switch to the memory screen by pressing the Memory
tab. Change the starting display address to 1000. Change the value at location 1000h to 5.
Switch back to the emulator screen. Assuming memory locations 1002 through 100B all
contain zero, the program should display a zero in the output column.

Switch back to the memory page. What does location 1000h now contain? Change the
L.O. bytes of the words at address 1002, 1004, and 1006 to 1, 2, and 3, respectively. Change

Chapter 03

Page 134

the value in location 1000h to three. Switch to the Emulator page. Describe the output in
your lab report. Try entering other values into memory. Toggle the FFF0 switch when you
want to quit running this program.

For your lab report: explain how this program uses DMA to provide program input.
Run several tests with different values in location 1000h and different values in the data
array starting at location 1002. Include the results in your report.

For additional credit: Store the value 12 into memory location 1000. Explain why the
program prints two values instead of just one value.

3.6.5 Interrupt Driven I/O Exercises

In this exercise you will load two programs into memory: a main program and an
interrupt service routine. This exercise demonstrates the use of interrupts and an interrupt
service routine.

The main program (EX5a.x86) will constantly compare memory locations 1000h and
1002h. If they are not equal, the main program will print the value of location 1000h and
then copy this value to location 1002h and repeat this process. The main program repeats
this loop until the user toggles switch FFF0 to the on position. The code for the main pro-
gram is the following:

a: mov ax, [1000] ;Fetch the data at location 1000h and
cmp ax, [1002] ; see if it is the same as location
je b ; 1002h. If so, check the FFF0 switch.
put ;If the two values are different, print
mov [1002], ax ; 1000h’s value and make them the same.

b: mov ax, [fff0] ;Test the FFF0 switch to see if we
cmp ax, 0 ; should quit this program.
je a
halt

The interrupt service routine (EX5b.x86) sits at location 100h in memory. Whenever an
interrupt occurs, this ISR simply increments the value at location 1000h by loading this
value into ax, adding one to the value in ax, and then storing this value back to location
1000h. After these instructions, the ISR returns to the main program. The interrupt service
routine contains the following code:

mov ax, [1000] ;Increment location 1000h by one and
add ax, 1 ; return to the interrupted code.
mov [1000], ax
iret

You must load and assemble both files before attempting to run the main program.
Begin by loading the main program (EX5a.x86) into memory and assemble it at address
zero. Then load the ISR (EX5b.x86) into memory, set the Starting Address to 100, and then
assemble your code. Warning: if you forget to change the starting address you will wipe out
your main program when you assemble the ISR. If this happens, you will need to repeat this proce-
dure from the beginning.

After assembling the code, the next step is to set the interrupt vector so that it contains
the address of the ISR. To do this, switch to the Memory screen. The interrupt vector cell
should currently contain 0FFFFh (this value indicates that interrupts are disabled).
Change this to 100 so that it contains the address of the interrupt service routine. This also
enables the interrupt system.

Finally, switch to the Emulator screen, make sure the FFF0 toggle switch is in the off
position, reset the program, and start it running. Normally, nothing will happen. Now
press the interrupt button and observe the results.

System Organization

Page 135

For your lab report: describe the output of the program whenever you press the inter-
rupt button. Explain all the steps you would need to follow to place the interrupt service
routine at address 2000h rather than 100h.

For additional credit: write your own interrupt service routine that does something
simple. Run the main program and press the interrupt button to test your code. Verify that
your ISR works properly.

3.6.6 Machine Language Programming & Instruction Encoding Exercises

To this point you have been creating machine language programs with SIMx86’s
built-in assembler. An assembler is a program that translates an ASCII source file contain-
ing textual representations of a program into the actual machine code. The assembler pro-
gram saves you a considerable amount of work by translating human readable
instructions into machine code. Although tedious, you can perform this translation your-
self. In this exercise you will create some very short machine language programs by encod-
ing the instructions and entering their hexadecimal opcodes into memory on the memory
screen.

Using the instruction encodings found in Figure 3.19, Figure 3.20, Figure 3.21, and
Figure 3.22, write the hexadecimal values for the opcodes beside each of the following
instructions:

You can assume that the program starts at address zero and, therefore, label “a” will be at
address 0003 since the mov cx, 0 instruction is three bytes long.

 mov cx, 0

a: get

 put

 add ax, ax

 put

 add ax, ax

 put

 add ax, ax

 put

 add cx, 1

 cmp cx, 4

 jb a

 halt

Binary Opcode Hex Operand

Chapter 03

Page 136

For your lab report: enter the hexadecimal opcodes and operands into memory start-
ing at location zero using the Memory editor screen. Dump these values and include them
in your lab report. Switch to the Emulator screen and disassemble the code starting at
address zero. Verify that this code is the same as the assembly code above. Print a copy of
the disassembled code and include it in your lab report. Run the program and verify that
it works properly.

3.6.7 Self Modifying Code Exercises

In the previous laboratory exercise, you discovered that the system doesn’t really dif-
ferentiate data and instructions in memory. You were able to enter hexadecimal data and
the x86 processor treats it as a sequence of executable instructions. It is also possible for a
program to store data into memory and then execute it. A program is self-modifying if it
creates or modifies some of the instructions it executes.

Consider the following x86 program (EX6.x86):

sub ax, ax
mov [100], ax

a: mov ax, [100]
cmp ax, 0
je b
halt

b: mov ax, 00c6
mov [100], ax
mov ax, 0710
mov [102], ax
mov ax, a6a0
mov [104], ax
mov ax, 1000
mov [106], ax
mov ax, 8007
mov [108], ax
mov ax, 00e6
mov [10a], ax
mov ax, 0e10
mov [10c], ax
mov ax, 4
mov [10e], ax
jmp 100

This program writes the following code to location 100 and then executes it:

mov ax, [1000]
put
add ax, ax
add ax, [1000]
put
sub ax, ax
mov [1000], ax
jmp 0004 ;0004 is the address of the A: label.

For your lab report: execute the EX7.x86 program and verify that it generates the
above code at location 100.

Although this program demonstrates the principle of self-modifying code, it hardly
does anything useful. As a general rule, one would not use self-modifying code in the
manner above, where one segment writes some sequence of instructions and then exe-
cutes them. Instead, most programs that use self-modifying code only modify existing
instructions and often only the operands of those instructions.

System Organization

Page 137

Self-modifying code is rarely found in modern assembly language programs. Pro-
grams that are self-modifying are hard to read and understand, difficult to debug, and
often unstable. Programmers often resort to self-modifying code when the CPU’s architec-
ture lacks sufficient power to achieve a desired goal. The later Intel 80x86 processors do
not lack for instructions or addressing modes, so it is very rare to find 80x86 programs that
use self-modifying code23. The x86 processors, however, have a very weak instruction set,
so there are actually a couple of instances where self-modifying code may prove useful.

A good example of an architectural deficiency where the x86 is lacking is with respect
to subroutines. The x86 instruction set does not provide any (direct) way to call and return
from a subroutine. However, you can easily simulate a call and return using the jmp
instruction and self-modifying code. Consider the following x86 “subroutine” that sits at
location 100h in memory:

; Integer to Binary converter.
; Expects an unsigned integer value in AX.
; Converts this to a string of zeros and ones storing this string of
; values into memory starting at location 1000h.

mov bx, 1000 ;Starting address of string.
mov cx, 10 ;16 (10h) digits in a word.

a: mov dx, 0 ;Assume current bit is zero.
cmp ax, 8000 ;See if AX’s H.O. bit is zero or one.
jb b ;Branch if AX’x H.O. bit is zero.
mov dx, 1 ;AX’s H.O. bit is one, set that here.

b: mov [bx], dx ;Store zero or one to next string loc.
add bx, 1 ;Bump BX up to next string location.
add ax, ax ;AX = AX *2 (shift left operation).
sub cx, 1 ;Count off 16 bits.
cmp cx, 0 ;Repeat 16 times.
ja a
jmp 0 ;Return to caller via self-mod code.

The only instruction that a program will modify in this subroutine is the very last jmp
instruction. This jump instruction must transfer control to the first instruction beyond the
jmp in the calling code that transfers control to this subroutine; that is, the caller must store
the return address into the operand of the jmp instruction in the code above. As it turns
out, the jmp instruction is at address 120h (assuming the code above starts at location
100h). Therefore, the caller must store the return address into location 121h (the operand
of the jmp instruction). The following sample “main” program makes three calls to the
“subroutine” above:

mov ax, 000c ;Address of the BRK instr below.
mov [121], ax ;Store into JMP as return address.
mov ax, 1234 ;Convert 1234h to binary.
jmp 100 ;”Call” the subroutine above.
brk ;Pause to let the user examine 1000h.

mov ax, 0019 ;Address of the brk instr below.
mov [121], ax
mov ax, fdeb ;Convert 0FDEBh to binary.
jmp 100
brk

mov ax, 26 ;Address of the halt instr below.
mov [121], ax
mov ax, 2345 ;Convert 2345h to binary.
jmp 100

halt

23. Many viruses and copy protection programs use self modifying code to make it difficult to detect or bypass
them.

Chapter 03

Page 138

Load the subroutine (EX7s.x86) into SIMx86 and assemble it starting at location 100h.
Next, load the main program (EX7m.x86) into memory and assemble it starting at location
zero. Switch to the Emulator screen and verify that all the return addresses (0ch, 19h, and
26h) are correct. Also verify that the return address needs to be written to location 121h.
Next, run the program. The program will execute a brk instruction after each of the first
two calls. The brk instruction pauses the program. At this point you can switch to the
memory screen at look at locations 1000-100F in memory. They should contain the
pseudo-binary conversion of the value passed to the subroutine. Once you verify that the
conversion is correct, switch back to the Emulator screen and press the Run button to con-
tinue program execution after the brk.

For your lab report: describe how self-modifying code works and explain in detail
how this code uses self-modifying code to simulate call and return instructions. Explain
the modifications you would need to make to move the main program to address 800h
and the subroutine to location 900h.

For additional credit: Actually change the program and subroutine so that they work
properly at the addresses above (800h and 900h).

3.7 Programming Projects

Note: You are to write these programs in x86 assembly language code using the
SIMx86 program. Include a specification document, a test plan, a program listing, and
sample output with your program submissions

1) The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

2) Create a callable subroutine that performs the multplication inproblem (1) above. Pass the
two values to multiple to the subroutine in the ax and bx registers. Return the product in
the cx register. Use the self-modifying code technique found in the section “Self Modifying
Code Exercises” on page 136.

3) Write a program that reads two two-bit numbers from switches (FFF0/FFF2) and
(FFF4/FFF6). Treating these bits as logical values, your code should compute the three-bit
sum of these two values (two-bit result plus a carry). Use the logic equations for the full
adder from the previous chapter. Do not simply add these values using the x86 add instruction.
Display the three-bit result on LEDs FFF8, FFFA, and FFFC.

4) Write a subroutine that expects an address in BX, a count in CX, and a value in AX. It
should write CX copies of AX to successive words in memory starting at address BX.
Write a main program that calls this subroutine several times with different addresses.
Use the self-modifying code subroutine call and return mechanism described in the labo-
ratory exercises.

5) Write the generic logic function for the x86 processor (see Chapter Two). Hint: add ax, ax
does a shift left on the value in ax. You can test to see if the high order bit is set by checking
to see if ax is greater than 8000h.

6) Write a program that reads the generic function number for a four-input function from the
user and then continually reads the switches and writes the result to an LED.

7) Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in cx, and locates the maximum value in that array. Dis-
play the value after scanning the array.

8) Write a program that computes the two’s complement of an array of values starting at
location 1000h. CX should contain the number of values in the array. Assume each array
element is a two-byte integer.

9) Write a “light show” program that displays a “light show” on the SIMx86’s LEDs. It
should accomplish this by writing a set of values to the LEDs, delaying for some time

System Organization

Page 139

period (by executing an empty loop) and then repeating the process over and over again.
Store the values to write to the LEDs in an array in memory and fetch a new set of LED
values from this array on each loop iteration.

10) Write a simple program that sorts the words in memory locations 1000..10FF in ascending
order. You can use a simple insertion sort algorithm. The Pascal code for such a sort is

for i := 0 to n-1 do
for j := i+1 to n do

if (memory[i] > memory[j]) then
begin

temp := memory[i];
memory[i] := memory[j];
memory[j] := temp;

end;

3.8 Summary

Writing good assembly language programs requires a strong knowledge of the under-
lying hardware. Simply knowing the instruction set is insufficient. To produce the best
programs, you must understand how the hardware executes your programs and accesses
data.

Most modern computer systems store programs and data in the same memory space
(the Von Neumann architecture). Like most Von Neumann machines, a typical 80x86 system
has three major components: the central processing unit (CPU), input/output (I/O), and
memory. See:

• “The Basic System Components” on page 83

Data travels between the CPU, I/O devices, and memory on the system bus. There are
three major busses employed by the 80x86 family, the address bus, the data bus, and the con-
trol bus. The address bus carries a binary number which specifies which memory location
or I/O port the CPU wishes to access; the data bus carries data between the CPU and
memory or I/O; the control bus carries important signals which determine whether the
CPU is reading or writing memory data or accessing an I/O port. See:

• “The System Bus” on page 84
• “The Data Bus” on page 84
• “The Address Bus” on page 86
• “The Control Bus” on page 86

The number of data lines on the data bus determines the size of a processor. When we
say that a processor is an eight bit processor we mean that it has eight data lines on its data
bus. The size of the data which the processor can handle internally on the CPU does not
affect the size of that CPU. See:

• “The Data Bus” on page 84
• “The “Size” of a Processor” on page 85

The address bus transmits a binary number from the CPU to memory and I/O to
select a particular memory element or I/O port. The number of lines on the address bus
sets the maximum number of memory locations the CPU can access. Typical address bus
sizes on the 80x86 CPUs are 20, 24, and 32 bits. See:

• “The Address Bus” on page 86

The 80x86 CPUs also have a control bus which contains various signals necessary for
the proper operation of the system. The system clock, read/write control signals, and I/O
or memory control signals are some samples of the many lines which appear on the con-
trol bus. See:

• “The Control Bus” on page 86

Chapter 03

Page 140

The memory subsystem is where the CPU stores program instructions and data. On
80x86 based systems, memory appears as a linear array of bytes, each with its own unique
address. The address of the first byte in memory is zero, and the address of the last avail-
able byte in memory is 2n-1, where n is the number of lines on the address bus. The 80x86
stores words in two consecutive memory locations. The L.O. byte of the word is at the
lowest address of those two bytes; the H.O. byte immediately follows the first at the next
highest address. Although a word consumes two memory addresses, when dealing with
words we simply use the address of its L.O. byte as the address of that word. Double
words consume four consecutive bytes in memory. The L.O. byte appears at the lowest
address of the four, the H.O. byte appears at the highest address. The “address” of the
double word is the address of its L.O. byte. See:

• “The Memory Subsystem” on page 87

CPUs with 16, 32, or 64 bit data busses generally organize memory in banks. A 16 bit
memory subsystem uses two banks of eight bits each, a 32 bit memory subsystem uses
four banks of eight bits each, and a 64 bit system uses eight banks of eight bits each.
Accessing a word or double word at the same address within all the banks is faster than
accessing an object which is split across two addresses in the different banks. Therefore,
you should attempt to align word data so that it begins on an even address and double
word data so that it begins on an address which is evenly divisible by four. You may place
byte data at any address. See:

• “The Memory Subsystem” on page 87

The 80x86 CPUs provide a separate 16 bit I/O address space which lets the CPU
access any one of 65,536 different I/O ports. A typical I/O device connected to the IBM PC
only uses 10 of these address lines, limiting the system to 1,024 different I/O ports. The
major benefit to using an I/O address space rather than mapping all I/O devices to mem-
ory space is that the I/O devices need not infringe upon the addressable memory space.
To differentiate I/O and memory accesses, there are special control lines on the system
bus. See:

• “The Control Bus” on page 86
• “The I/O Subsystem” on page 92

The system clock controls the speed at which the processor performs basic operations.
Most CPU activities occur on the rising or falling edge of this clock. Examples include
instruction execution, memory access, and checking for wait states. The faster the system
clock runs, the faster your program will execute; however, your memory must be as fast as
the system clock or you will need to introduce wait states, which slow the system back
down. See:

• “System Timing” on page 92
• “The System Clock” on page 92
• “Memory Access and the System Clock” on page 93
• “Wait States” on page 95

Most programs exhibit a locality of reference. They either access the same memory loca-
tion repeatedly within a small period of time (temporal locality) or they access neighboring
memory locations during a short time period (spatial locality). A cache memory subsystem
exploits this phenomenon to reduce wait states in a system. A small cache memory system
can achieve an 80-95% hit ratio. Two-level caching systems use two different caches (typi-
cally one on the CPU chip and one off chip) to achieve even better system performance.
See:

• “Cache Memory” on page 96

CPUs, such as those in the 80x86 family, break the execution of a machine instruction
down into several distinct steps, each requiring one clock cycle. These steps include fetch-
ing an instruction opcode, decoding that opcode, fetching operands for the instruction,
computing memory addresses, accessing memory, performing the basic operation, and
storing the result away. On a very simplistic CPU, a simple instruction may take several
clock cycles. The best way to improve the performance of a CPU is to execute several

System Organization

Page 141

internal operations in parallel with one another. A simple scheme is to put an instruction
prefetch queue on the CPU. This allows you to overlap opcode fetching and decoding
with instruction execution, often cutting the execution time in half. Another alternative is
to use an instruction pipeline so you can execute several instructions in parallel. Finally,
you can design a superscalar CPU which executes two or more instructions concurrently.
These techniques will all improve the running time of your programs. See:

• “The 886 Processor” on page 110
• “The 8286 Processor” on page 110
• “The 8486 Processor” on page 116
• “The 8686 Processor” on page 123

Although pipelined and superscalar CPUs improve overall system performance,
extracting the best performance from such complex CPUs requires careful planning by the
programmer. Pipeline stalls and hazards can cause a major loss of performance in poorly
organized programs. By carefully organizing the sequence of the instructions in your pro-
grams you can make your programs run as much as two to three times faster. See:

• “The 8486 Pipeline” on page 117
• “Stalls in a Pipeline” on page 118
• “Cache, the Prefetch Queue, and the 8486” on page 119
• “Hazards on the 8486” on page 122
• “The 8686 Processor” on page 123

The I/O subsystem is the third major component of a Von Neumann machine (mem-
ory and the CPU being the other two). There are three primary ways to move data
between the computer system and the outside world: I/O-mapped input/output, mem-
ory-mapped input/output, and direct memory access (DMA). For more information, see:

• “I/O (Input/Output)” on page 124

To improve system performance, most modern computer systems use interrupts to
alert the CPU when an I/O operation is complete. This allows the CPU to continue with
other processing rather than waiting for an I/O operation to complete (polling the I/O
port). For more information on interrupts and polled I/O operatoins, see:

• “Interrupts and Polled I/O” on page 126

Chapter 03

Page 142

3.9 Questions

1. What three components make up Von Neumann Machines?

2. What is the purpose of

a) The system bus
b) The address bus
c) The data bus
d) The control bus

3. Which bus defines the “size” of the processor?

4. Which bus controls how much memory you can have?

5. Does the size of the data bus control the maximum value the CPU can process? Explain.

6. What are the data bus sizes of:

a) 8088 b) 8086 c) 80286 d) 80386sx
e) 80386 f) 80486 g) 80586/Pentium

7. What are the address bus sizes of the above processors?

8. How many “banks” of memory do each of the above processors have?

9. Explain how to store a word in byte addressable memory (that is, at what addresses).
Explain how to store a double word.

10. How many memory operations will it take to read a word from the following addresses
on the following processors?

11. Repeat the above for double words

12. Explain which addresses are best for byte, word, and doubleword variables on an 8088,
80286, and 80386 processor.

13. How many different I/O locations can you address on the 80x86 chip? How many are typ-
ically available on a PC?

14. What is the purpose of the system clock?

Table 21: Memory Cycles for Word Accesses

100 101 102 103 104 105

8088

80286

80386

Table 22: Memory Cycles for Doubleword Accesses

100 101 102 103 104 105

8088

80286

80386

System Organization

Page 143

15. What is a clock cycle?

16. What is the relationship between clock frequency and the clock period?

17. How many clock cycles are required for each of the following to read a byte from mem-
ory?

a) 8088 b) 8086 c) 80486

18. What does the term “memory access time” mean?

19. What is a wait state?

20. If you are running an 80486 at the following clock speeds, how many wait states are
required if you are using 80ns RAM (assuming no other delays)?

a) 20 MHz b) 25 MHz c) 33 MHz d) 50 MHz e) 100 MHz

21. If your CPU runs at 50 MHz, 20ns RAM probably won’t be fast enough to operate at zero
wait states. Explain why.

22. Since sub-10ns RAM is available, why aren’t all system zero wait state systems?

23. Explain how the cache operates to save some wait states.

24. What is the difference between spatial and temporal locality of reference?

25. Explain where temporal and spatial locality of reference occur in the following Pascal
code:

while i < 10 do begin
x := x * i;
i := i + 1;

end;

26. How does cache memory improve the performance of a section of code exhibiting spatial
locality of reference?

27. Under what circumstances is a cache not going to save you any wait states?

28. What is the effective (average) number of wait states the following systems will operate
under?

a) 80% cache hit ratio, 10 wait states (WS) for memory, 0 WS for cache.
b) 90% cache hit ratio; 7 WS for memory; 0 WS for cache.
c) 95% cache hit ratio; 10 WS memory; 1 WS cache.
d) 50% cache hit ratio; 2 WS memory; 0 WS cache.

29. What is the purpose of a two level caching system? What does it save?

30. What is the effective number of wait states for the following systems?

a) 80% primary cache hit ratio (HR) zero WS; 95% secondary cache HR with 2 WS; 10 WS
for main memory access.
b) 50% primary cache HR, zero WS; 98% secondary cache HR, one WS; five WS for main
memory access.
c) 95% primary cache HR, one WS; 98% secondary cache HR, 4 WS; 10 WS for main mem-
ory access.

31. Explain the purpose of the bus interface unit, the execution unit, and the control unit.

32. Why does it take more than one clock cycle to execute an instruction. Give some x86
examples.

33. How does a prefetch queue save you time? Give some examples.

Chapter 03

Page 144

34. How does a pipeline allow you to (seemingly) execute one instruction per clock cycle?
Give an example.

35. What is a hazard?

36. What happens on the 8486 when a hazard occurs?

37. How can you eliminate the effects of a hazard?

38. How does a jump (JMP/Jcc) instruction affect

a) The prefetch queue.
b) The pipeline.

39. What is a pipeline stall?

40. Besides the obvious benefit of reducing wait states, how can a cache improve the perfor-
mance of a pipelined system?

41. What is a Harvard Architecture Machine?

42. What does a superscalar CPU do to speed up execution?

43. What are the two main techniques you should use on a superscalar CPU to ensure your
code runs as quickly as possible? (note: these are mechanical details, “Better Algorithms”
doesn’t count here).

44. What is an interrupt? How does it improved system performance?

45. What is polled I/O?

46. What is the difference between memory-mapped and I/O mapped I/O?

47. DMA is a special case of memory-mapped I/O. Explain.

Page 145

Memory Layout and Access Chapter Four

Chapter One discussed the basic format for data in memory. Chapter Three covered
how a computer system physically organizes that data. This chapter discusses how the
80x86 CPUs access data in memory.

4.0 Chapter Overview

This chapter forms an important bridge between sections one and two (Machine
Organization and Basic Assembly Language, respectively). From the point of view of
machine organization, this chapter discusses memory addressing, memory organization,
CPU addressing modes, and data representation in memory. From the assembly language
programming point of view, this chapter discusses the 80x86 register sets, the 80x86 mem-
ory addressing modes, and composite data types. This is a pivotal chapter. If you do not
understand the material in this chapter, you will have difficulty understanding the chap-
ters that follow. Therefore, you should study this chapter carefully before proceeding.

This chapter begins by discussing the registers on the 80x86 processors. These proces-
sors provide a set of general purpose registers, segment registers, and some special pur-
pose registers. Certain members of the family provide additional registers, although
typical application do not use them.

After presenting the registers, this chapter describes memory organization and seg-
mentation on the 80x86. Segmentation is a difficult concept to many beginning 80x86
assembly language programmers. Indeed, this text tends to avoid using segmented
addressing throughout the introductory chapters. Nevertheless, segmentation is a power-
ful concept that you must become comfortable with if you intend to write non-trivial
80x86 programs.

80x86 memory addressing modes are, perhaps, the most important topic in this chap-
ter. Unless you completely master the use of these addressing modes, you will not be able
to write reasonable assembly language programs. Do not progress beyond this section of
the text until you are comfortable with the 8086 addressing modes. This chapter also dis-
cusses the 80386 (and later) extended addressing modes. Knowing these addressing
modes is not that important for now, but if you do learn them you can use them to save
some time when writing code for 80386 and later processors.

This chapter also introduces a handful of 80x86 instructions. Although the five or so
instructions this chapter uses are insufficient for writing real assembly language pro-
grams, they do provide a sufficient set of instructions to let you manipulate variables and
data structures – the subject of the next chapter.

4.1 The 80x86 CPUs:A Programmer’s View

Now it’s time to discuss some real processors: the 8088/8086, 80188/80186, 80286, and
80386/80486/80586/Pentium. Chapter Three dealt with many hardware aspects of a com-
puter system. While these hardware components affect the way you should write soft-
ware, there is more to a CPU than bus cycles and pipelines. It’s time to look at those
components of the CPU which are most visible to you, the assembly language program-
mer.

The most visible component of the CPU is the register set. Like our hypothetical pro-
cessors, the 80x86 chips have a set of on-board registers. The register set for each processor
in the 80x86 family is a superset of those in the preceding CPUs. The best place to start is
with the register set for the 8088, 8086, 80188, and 80186 since these four processors have
the same registers. In the discussion which follows, the term “8086” will imply any of
these four CPUs.

Thi d t t d ith F M k 4 0 2

Chapter 04

Page 146

Intel’s designers have classified the registers on the 8086 into three categories: general
purpose registers, segment registers, and miscellaneous registers. The general purpose
registers are those which may appear as operands of the arithmetic, logical, and related
instructions. Although these registers are “general purpose”, every one has its own special
purpose. Intel uses the term “general purpose” loosely. The 8086 uses the segment regis-
ters to access blocks of memory called, surprisingly enough, segments. See “Segments on
the 80x86” on page 151 for more details on the exact nature of the segment registers. The
final class of 8086 registers are the miscellaneous registers. There are two special registers
in this group which we’ll discuss shortly.

4.1.1 8086 General Purpose Registers

There are eight 16 bit general purpose registers on the 8086:

ax

,

bx

,

cx

,

dx

,

si

,

di

,

bp

, and

sp

. While you can use many of these registers interchangeably in a computation, many
instructions work more efficiently or absolutely require a specific register from this group.
So much for general purpose.

The

ax

 register (

Accumulator

) is where most arithmetic and logical computations take
place. Although you can do most arithmetic and logical operations in other registers, it is
often more efficient to use the

ax

 register for such computations. The

bx

 register (

Base

) has
some special purposes as well. It is commonly used to hold indirect addresses, much like
the

bx

 register on the x86 processors. The

cx

 register (

Count

), as its name implies, counts
things. You often use it to count off the number of iterations in a loop or specify the num-
ber of characters in a string. The

dx

register (

Data

) has two special purposes: it holds the
overflow from certain arithmetic operations, and it holds I/O addresses when accessing
data on the 80x86 I/O bus.

The

si

 and

di

 registers (

Source Index

 and

Destination Index

) have some special purposes
as well. You may use these registers as pointers (much like the

bx

 register) to indirectly
access memory. You’ll also use these registers with the 8086 string instructions when pro-
cessing character strings.

The

bp

 register (

Base Pointer

) is similar to the

bx

 register. You’ll generally use this regis-
ter to access parameters and local variables in a procedure.

The

sp

 register (

Stack Pointer

) has a very special purpose – it maintains the

program
stack

. Normally, you would not use this register for arithmetic computations. The proper
operation of most programs depends upon the careful use of this register.

Besides the eight 16 bit registers, the 8086 CPUs also have eight 8 bit registers. Intel
calls these registers

al

,

ah

,

bl

,

bh

,

cl

,

ch

,

dl

, and

dh

. You’ve probably noticed a similarity
between these names and the names of some 16 bit registers (

ax

,

bx

,

cx

, and

dx

, to be exact).
The eight bit registers are not independent.

al

 stands for “

ax

’s L.O. byte.”

ah

 stands for
“

ax

’s H.O. byte.” The names of the other eight bit registers mean the same thing with
respect to

bx

,

cx

, and

dx

. Figure 4.1 shows the general purpose register set.

Note that the eight bit registers do not form an independent register set. Modifying

al

will change the value of

ax

; so will modifying

ah

. The value of

al

 exactly corresponds to
bits zero through seven of

ax

. The value of

ah

 corresponds to bits eight through fifteen of

ax

. Therefore any modification to

al

 or

ah

 will modify the value of

ax

. Likewise, modifying

ax

 will change

both

al

 and

ah

. Note, however, that changing

al

 will not affect the value of

ah

, and vice versa. This statement applies to

bx/bl/bh

,

cx/cl/ch

, and

dx/dl/dh

as well.

The

 si

,

 di

,

 bp

, and

sp

 registers are only 16 bits. There is no way to directly access the
individual bytes of these registers as you can the low and high order bytes of

ax

,

bx

,

cx

,
and

dx

.

Memory Layout and Access

Page 147

4.1.2 8086 Segment Registers

The 8086 has four special

segment registers

:

cs

,

ds

,

es

, and

ss

. These stand for

Code Seg-
ment, Data Segment, Extra Segment,

and

 Stack Segment,

respectively. These registers are all
16 bits wide. They deal with selecting blocks (segments) of main memory. A segment reg-
ister (e.g.,

cs

) points at the beginning of a segment in memory.

Segments of memory on the 8086 can be no larger than 65,536 bytes long. This infa-
mous “64K segment limitation” has disturbed many a programmer. We’ll see some prob-
lems with this 64K limitation, and some solutions to those problems, later.

The

cs

 register points at the segment containing the currently executing machine
instructions. Note that, despite the 64K segment limitation, 8086 programs can be longer
than 64K. You simply need multiple code segments in memory. Since you can change the
value of the

cs

 register, you can switch to a new code segment when you want to execute
the code located there.

The data segment register,

ds

, generally points at global variables for the program.
Again, you’re limited to 65,536 bytes of data in the data segment; but you can always
change the value of the

ds

 register to access additional data in other segments.

The extra segment register,

es

, is exactly that – an extra segment register. 8086 pro-
grams often use this segment register to gain access to segments when it is difficult or
impossible to modify the other segment registers.

The

 ss

 register points at the segment containing the 8086

stack.

 The stack is where the
8086 stores important machine state information, subroutine return addresses, procedure
parameters, and local variables. In general, you do not modify the stack segment register
because too many things in the system depend upon it.

Although it is theoretically possible to store data in the segment registers, this is never
a good idea. The segment registers have a very special purpose – pointing at accessible
blocks of memory. Any attempt to use the registers for any other purpose may result in
considerable grief, especially if you intend to move up to a better CPU like the 80386.

Figure 4.1 8086 Register Set

AX

AH AL

BX

BH BL

CX

CH CL

DX

DH DL

S I

D I

BP

SP

Chapter 04

Page 148

4.1.3 8086 Special Purpose Registers

There are two special purpose registers on the 8086 CPU: the instruction pointer (

ip

)
and the flags register. You do not access these registers the same way you access the other
8086 registers. Instead, the CPU generally manipulates these registers directly.

The

ip

 register is the equivalent of the

ip

 register on the x86 processors – it contains the
address of the currently executing instruction. This is a 16 bit register which provides a
pointer into the current code segment (16 bits lets you select any one of 65,536 different
memory locations). We’ll come back to this register when we discuss the control transfer
instructions later.

The flags register is unlike the other registers on the 8086. The other registers hold
eight or 16 bit values. The flags register is simply an eclectic collection of one bit values
which help determine the current state of the processor. Although the flags register is 16
bits wide, the 8086 uses only nine of those bits. Of these flags, four flags you use all the
time: zero, carry, sign, and overflow. These flags are the 8086

condition codes.

The flags reg-
ister appears in Figure 4.2.

4.1.4 80286 Registers

The 80286 microprocessor adds one major programmer-visible feature to the 8086 –
protected mode operation. This text will not cover the 80286 protected mode of operation
for a variety of reasons. First, the protected mode of the 80286 was poorly designed. Sec-
ond, it is of interest only to programmers who are writing their own operating system or
low-level systems programs for such operating systems. Even if you are writing software
for a protected mode operating system like UNIX or OS/2, you would not use the pro-
tected mode features of the 80286. Nonetheless, it’s worthwhile to point out the extra reg-
isters and status flags present on the 80286 just in case you come across them.

There are three additional bits present in the 80286 flags register. The I/O Privilege
Level is a two bit value (bits 12 and 13). It specifies one of four different privilege levels
necessary to perform I/O operations. These two bits generally contain 00b when operat-
ing in

 real mode

 on the 80286 (the 8086 emulation mode). The NT (

nested task

) flag controls
the operation of an interrupt return (IRET) instruction. NT is normally zero for real-mode
programs.

Besides the extra bits in the flags register, the 80286 also has five additional registers
used by an operating system to support memory management and multiple processes: the

Figure 4.2 8086 Flags Register

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

= Unused

Memory Layout and Access

Page 149

machine status word (

msw

), the global descriptor table register (

gdtr

), the local descriptor
table register (

ldtr

), the interrupt descriptor table register (

idtr

) and the task register (

tr

).

About the only use a typical application program has for the protected mode on the
80286 is to access more than one megabyte of RAM. However, as the 80286 is now virtu-
ally obsolete, and there are better ways to access more memory on later processors, pro-
grammers rarely use this form of protected mode.

4.1.5 80386/80486 Registers

The 80386 processor dramatically extended the 8086 register set. In addition to all the
registers on the 80286 (and therefore, the 8086), the 80386 added several new registers and
extended the definition of the existing registers. The 80486 did not add any new registers
to the 80386’s basic register set, but it did define a few bits in some registers left undefined
by the 80386.

The most important change, from the programmer’s point of view, to the 80386 was
the introduction of a 32 bit register set. The ax, bx, cx, dx, si, di, bp, sp, flags, and ip registers
were all extended to 32 bits. The 80386 calls these new 32 bit versions eax, ebx, ecx, edx,
esi, edi, ebp, esp, eflags, and eip to differentiate them from their 16 bit versions (which are
still available on the 80386). Besides the 32 bit registers, the 80386 also provides two new
16 bit segment registers, fs and gs, which allow the programmer to concurrently access six
different segments in memory without reloading a segment register. Note that all the seg-
ment registers on the 80386 are 16 bits. The 80386 did not extend the segment registers to
32 bits as it did the other registers.

The 80386 did not make any changes to the bits in the flags register. Instead, it
extended the flags register to 32 bits (the “eflags” register) and defined bits 16 and 17. Bit
16 is the debug resume flag (RF) used with the set of 80386 debug registers. Bit 17 is the
Virtual 8086 mode flag (VM) which determines whether the processor is operating in vir-
tual-86 mode (which simulates an 8086) or standard protected mode. The 80486 adds a
third bit to the eflags register at position 18 – the alignment check flag. Along with control
register zero (CR0) on the 80486, this flag forces a trap (program abort) whenever the pro-
cessor accesses non-aligned data (e.g., a word on an odd address or a double word at an
address which is not an even multiple of four).

The 80386 added four control registers: CR0-CR3. These registers extend the msw reg-
ister of the 80286 (the 80386 emulates the 80286 msw register for compatibility, but the
information really appears in the CRx registers). On the 80386 and 80486 these registers
control functions such as paged memory management, cache enable/disable/operation
(80486 only), protected mode operation, and more.

The 80386/486 also adds eight debugging registers. A debugging program like
Microsoft Codeview or the Turbo Debugger can use these registers to set breakpoints
when you are trying to locate errors within a program. While you would not use these
registers in an application program, you’ll often find that using such a debugger reduces
the time it takes to eradicate bugs from your programs. Of course, a debugger which
accesses these registers will only function properly on an 80386 or later processor.

Finally, the 80386/486 processors add a set of test registers to the system which test
the proper operation of the processor when the system powers up. Most likely, Intel put
these registers on the chip to allow testing immediately after manufacture, but system
designers can take advantage of these registers to do a power-on test.

For the most part, assembly language programmers need not concern themselves
with the extra registers added to the 80386/486/Pentium processors. However, the 32 bit
extensions and the extra segment registers are quite useful. To the application program-
mer, the programming model for the 80386/486/Pentium looks like that shown in Figure 4.3

Chapter 04

Page 150

4.2 80x86 Physical Memory Organization

Chapter Three discussed the basic organization of a Von Neumann Architecture
(VNA) computer system. In a typical VNA machine, the CPU connects to memory via the
bus. The 80x86 selects some particular memory element using a binary number on the
address bus. Another way to view memory is as an array of bytes. A Pascal data structure
that roughly corresponds to memory would be:

Memory : array [0..MaxRAM] of byte;

The value on the address bus corresponds to the index supplied to this array. E.g., writing
data to memory is equivalent to

Memory [address] := Value_to_Write;

Reading data from memory is equivalent to

Value_Read := Memory [address];

Different 80x86 CPUs have different address busses that control the maximum num-
ber of elements in the memory array (see “The Address Bus” on page 86). However,
regardless of the number of address lines on the bus, most computer systems do not have
one byte of memory for each addressable location. For example, 80386 processors have 32
address lines allowing up to four gigabytes of memory. Very few 80386 systems actually
have four gigabytes. Usually, you’ll find one to 256 megabytes in an 80x86 based system.

The first megabyte of memory, from address zero to 0FFFFFh is special on the 80x86.
This corresponds to the entire address space of the 8088, 8086, 80186, and 80188 micropro-
cessors. Most DOS programs limit their program and data addresses to locations in this
range. Addresses limited to this range are named real addresses after the 80x86 real mode.

Figure 4.3 80386 Registers (Application Programmer Visible)

AX
AH AL

EAX ES I

EDI

EBP

ESP

S I

BX
BH BL

EBX

CX
CH CL

ECX

DX
DH DL

EDX

E S S S

GS

FLAGS

EFLAGSC S

DS

D I

B P

S P

FS

Memory Layout and Access

Page 151

4.3 Segments on the 80x86

You cannot discuss memory addressing on the 80x86 processor family without first
discussing segmentation. Among other things, segmentation provides a powerful mem-
ory management mechanism. It allows programmers to partition their programs into
modules that operate independently of one another. Segments provide a way to easily
implement object-oriented programs. Segments allow two processes to easily share data.
All in all, segmentation is a really neat feature. On the other hand, if you ask ten program-
mers what they think of segmentation, at least nine of the ten will claim it’s terrible. Why
such a response?

Well, it turns out that segmentation provides one other nifty feature: it allows you to
extend the addressability of a processor. In the case of the 8086, segmentation let Intel’s
designers extend the maximum addressable memory from 64K to one megabyte. Gee, that
sounds good. Why is everyone complaining? Well, a little history lesson is in order to
understand what went wrong.

In 1976, when Intel began designing the 8086 processor, memory was very expensive.
Personal computers, such that they were at the time, typically had four thousand bytes of
memory. Even when IBM introduced the PC five years later, 64K was still quite a bit of
memory, one megabyte was a tremendous amount. Intel’s designers felt that 64K memory
would remain a large amount throughout the lifetime of the 8086. The only mistake they
made was completely underestimating the lifetime of the 8086. They figured it would last
about five years, like their earlier 8080 processor. They had plans for lots of other proces-
sors at the time, and “86” was not a suffix on the names of any of those. Intel figured they
were set. Surely one megabyte would be more than enough to last until they came out
with something better1.

Unfortunately, Intel didn’t count on the IBM PC and the massive amount of software
to appear for it. By 1983, it was very clear that Intel could not abandon the 80x86 architec-
ture. They were stuck with it, but by then people were running up against the one mega-
byte limit of 8086. So Intel gave us the 80286. This processor could address up to 16
megabytes of memory. Surely more than enough. The only problem was that all that won-
derful software written for the IBM PC was written in such a way that it couldn’t take
advantage of any memory beyond one megabyte.

It turns out that the maximum amount of addressable memory is not everyone’s main
complaint. The real problem is that the 8086 was a 16 bit processor, with 16 bit registers
and 16 bit addresses. This limited the processor to addressing 64K chunks of memory.
Intel’s clever use of segmentation extended this to one megabyte, but addressing more
than 64K at one time takes some effort. Addressing more than 256K at one time takes a lot
of effort.

Despite what you might have heard, segmentation is not bad. In fact, it is a really
great memory management scheme. What is bad is Intel’s 1976 implementation of seg-
mentation still in use today. You can’t blame Intel for this – they fixed the problem in the
80’s with the release of the 80386. The real culprit is MS-DOS that forces programmers to
continue to use 1976 style segmentation. Fortunately, newer operating systems such as
Linux, UNIX, Windows 9x, Windows NT, and OS/2 don’t suffer from the same problems
as MS-DOS. Furthermore, users finally seem to be more willing to switch to these newer
operating systems so programmers can take advantage of the new features of the 80x86
family.

With the history lesson aside, it’s probably a good idea to figure out what segmenta-
tion is all about. Consider the current view of memory: it looks like a linear array of bytes.
A single index (address) selects some particular byte from that array. Let’s call this type of
addressing linear or flat addressing. Segmented addressing uses two components to spec-
ify a memory location: a segment value and an offset within that segment. Ideally, the seg-
ment and offset values are independent of one another. The best way to describe

1. At the time, the iapx432 processor was their next big product. It died a slow and horrible death.

Chapter 04

Page 152

segmented addressing is with a two-dimensional array. The segment provides one of the
indices into the array, the offset provides the other (see Figure 4.4).

Now you may be wondering, “Why make this process more complex?” Linear
addresses seem to work fine, why bother with this two dimensional addressing scheme?
Well, let’s consider the way you typically write a program. If you were to write, say, a
SIN(X) routine and you needed some temporary variables, you probably would not use
global variables. Instead, you would use local variables inside the SIN(X) function. In a
broad sense, this is one of the features that segmentation offers – the ability to attach
blocks of variables (a segment) to a particular piece of code. You could, for example, have
a segment containing local variables for SIN, a segment for SQRT, a segment for DRAW-
Window, etc. Since the variables for SIN appear in the segment for SIN, it’s less likely your
SIN routine will affect the variables belonging to the SQRT routine. Indeed, on the 80286
and later operating in protected mode, the CPU can prevent one routine from accidentally
modifying the variables in a different segment.

A full segmented address contains a segment component and an offset component.
This text will write segmented addresses as segment:offset. On the 8086 through the 80286,
these two values are 16 bit constants. On the 80386 and later, the offset can be a 16 bit con-
stant or a 32 bit constant.

The size of the offset limits the maximum size of a segment. On the 8086 with 16 bit
offsets, a segment may be no longer than 64K; it could be smaller (and most segments are),
but never larger. The 80386 and later processors allow 32 bit offsets with segments as large
as four gigabytes.

The segment portion is 16 bits on all 80x86 processors. This lets a single program have
up to 65,536 different segments in the program. Most programs have less than 16 seg-
ments (or thereabouts) so this isn’t a practical limitation.

Of course, despite the fact that the 80x86 family uses segmented addressing, the actual
(physical) memory connected to the CPU is still a linear array of bytes. There is a function
that converts the segment value to a physical memory address. The processor then adds
the offset to this physical address to obtain the actual address of the data in memory. This
text will refer to addresses in your programs as segmented addresses or logical addresses. The
actual linear address that appears on the address bus is the physical address (see Figure 4.4).

On the 8086, 8088, 80186, and 80188 (and other processors operating in real mode), the
function that maps a segment to a physical address is very simple. The CPU multiplies the
segment value by sixteen (10h) and adds the offset portion. For example, consider the seg-
mented address2: 1000:1F00. To convert this to a physical address you multiply the seg-

2. All segmented addresses in this text use the hexadecimal radix. Since this text will always use the hex radix for
addresses, there is no need to append an “h” to the end of such values.

Figure 4.4 Segmented Addressing as a Two-Dimensional Process

Offset
Segment

X

Y

Access the memory
location specified
by segment Y and
offset X.

Memory Layout and Access

Page 153

ment value (1000h) by sixteen. Multiplying by the radix is very easy. Just append a zero to
the end of the number. Appending a zero to 1000h produces 10000h. Add 1F00h to this to
obtain 11F00h. So 11F00h is the physical address that corresponds to the segmented
address 1000:1F00 (see Figure 4.4).

Warning: A very common mistake people make when performing this computation is
to forget they are working in hexadecimal, not decimal. It is surprising to see how many
people add 9+1 and get 10h rather than the correct answer 0Ah.

Intel, when designing the 80286 and later processors, did not extend the addressing
by adding more bits to the segment registers. Instead, they changed the function the CPU
uses to convert a logical address to a physical address. If you write code that depends on
the “multiply by sixteen and add in the offset” function, your program will only work on
an 80x86 processor operating in real mode, and you will be limited to one megabyte of
memory3.

In the 80286 and later processors, Intel introduced protected mode segments. Among
other changes, Intel completely revamped the algorithm for mapping segments to the lin-
ear address space. Rather than using a function (such as multiplying the segment value by
10h), the protected mode processors use a look up table to compute the physical address. In
protected mode, the 80286 and later processors use the segment value as the index into an
array. The contents of the selected array element provide (among other things) the starting
address for the segment. The CPU adds this value to the offset to obtain the physical
address (see Figure 4.4).

Note that your applications cannot directly modify the segment descriptor table (the
lookup table). The protected mode operating system (UNIX, Linux, Windows, OS/2, etc.)
handles that operation.

3. Actually, you can also operate in V86 (virtual 86) mode on the 80386 and later, but you will still be limited to one
megabyte addressable memory.

Figure 4.5 Segmented Addressing in Physical Memory

Segment:offset

Segment points here

Plus the offset to
obtain the address
of the actual memory
location to access.

Figure 4.6 Converting a Logical Address to a Physical Address

1000:1F00

10000
1F00+

11F00

First, multiply the segment value by 10h.
Then add in the offset portion.

Their sum produces the physical address

Chapter 04

Page 154

The best programs never assume that a segment is located at a particular spot in
memory. You should leave it up to the operating system to place your programs into
memory and not generate any segment addresses on your own.

4.4 Normalized Addresses on the 80x86

When operating in real mode, an interesting problem develops. You may refer to a
single object in memory using several different addresses. Consider the address from the
previous examples, 1000:1F00. There are several different memory addresses that refer to
the same physical address. For example, 11F0:0, 1100:F00, and even 1080:1700 all corre-
spond to physical address 11F00h. When working with certain data types and especially
when comparing pointers, it’s convenient if segmented addresses point at different objects
in memory when their bit representations are different. Clearly this is not always the case
in real mode on an 80x86 processor.

Fortunately, there is an easy way to avoid this problem. If you need to compare two
addresses for (in)equality, you can use normalized addresses. Normalized addresses take a
special form so they are all unique. That is, unless two normalized segmented values are
exactly the same, they do not point at the same object in memory.

There are many different ways (16, in fact) to create normalized addresses. By conven-
tion, most programmers (and high level languages) define a normalized address as fol-
lows:

• The segment portion of the address may be any 16 bit value.
• The offset portion must be a value in the range 0..0Fh.

Normalized pointers that take this form are very easy to convert to a physical address. All
you need to do is append the single hexadecimal digit of the offset to the segment value.
The normalized form of 1000:1F00 is 11F0:0. You can obtain the physical address by
appending the offset (zero) to the end of 11F0 yielding 11F00.

It is very easy to convert an arbitrary segmented value to a normalized address. First,
convert your segmented address to a physical address using the “multiply by 16 and add
in the offset” function. Then slap a colon between the last two digits of the five-digit
result:

1000:1F00 ⇒ 11F00 ⇒ 11F0:0

Figure 4.7 Converting a Logical Address to a Physical Address in Protected Mode

1000:1F00

xxxxxxxx
1F00+

yyyyyyyy

Use the segment as an index
into the segment descriptor array.
Fetch the value at this location
and add it to the offset to
obtain the physical address.

Memory Layout and Access

Page 155

Note that this discussion applies only to 80x86 processors operating in real mode. In
protected mode there is no direct correspondence between segmented addresses and
physical addresses so this technique does not work. However, this text deals mainly with
programs that run in real mode, so normalized pointers appear throughout this text.

4.5 Segment Registers on the 80x86

When Intel designed the 8086 in 1976, memory was a precious commodity. They
designed their instruction set so that each instruction would use as few bytes as possible.
This made their programs smaller so computer systems employing Intel processors would
use less memory. As such, those computer systems cost less to produce. Of course, the cost
of memory has plummeted to the point where this is no longer a concern but it was a con-
cern back then4. One thing Intel wanted to avoid was appending a 32 bit address (seg-
ment:offset) to the end of instructions that reference memory. They were able to reduce
this to 16 bits (offset only) by making certain assumptions about which segments in mem-
ory an instruction could access.

The 8086 through 80286 processors have four segment registers: cs, ds, ss and es. The
80386 and later processors have these segment registers plus fs and gs. The cs (code seg-
ment) register points at the segment containing the currently executing code. The CPU
always fetches instructions from the address given by cs:ip. By default, the CPU expects to
access most variables in the data segment. Certain variables and other operations occur in
the stack segment. When accessing data in these specific areas, no segment value is neces-
sary. To access data in one of the extra segments (es, fs, or gs), only a single byte is neces-
sary to choose the appropriate segment register. Only a few control transfer instructions
allow you to specify a full 32 bit segmented address.

Now, this might seem rather limiting. After all, with only four segment registers on
the 8086 you can address a maximum of 256 Kilobytes (64K per segment), not the full
megabyte promised. However, you can change the segment registers under program con-
trol, so it is possible to address any byte by changing the value in a segment register.

Of course, it takes a couple of instructions to change the value of one of the 80x86’s
segment registers. These instructions consume memory and take time to execute. So sav-
ing two bytes per memory access would not pay off if you are accessing data in different
segments all the time. Fortunately, most consecutive memory accesses occur in the same
segment. Hence, loading segment registers isn’t something you do very often.

4.6 The 80x86 Addressing Modes

Like the x86 processors described in the previous chapter, the 80x86 processors let you
access memory in many different ways. The 80x86 memory addressing modes provide
flexible access to memory, allowing you to easily access variables, arrays, records, point-
ers, and other complex data types. Mastery of the 80x86 addressing modes is the first step
towards mastering 80x86 assembly language.

When Intel designed the original 8086 processor, they provided it with a flexible,
though limited, set of memory addressing modes. Intel added several new addressing
modes when it introduced the 80386 microprocessor. Note that the 80386 retained all the
modes of the previous processors; the new modes are just an added bonus. If you need to
write code that works on 80286 and earlier processors, you will not be able to take advan-
tage of these new modes. However, if you intend to run your code on 80386sx or higher
processors, you can use these new modes. Since many programmers still need to write
programs that run on 80286 and earlier machines5, it’s important to separate the discus-
sion of these two sets of addressing modes to avoid confusing them.

4. Actually, small programs are still important. The smaller a program is the faster it will run because the CPU has
to fetch fewer bytes from memory and the instructions don’t take up as much of the cache.
5. Modern PCs rarely use processors earlier than the 80386, but embedded system still use the older processors.

Chapter 04

Page 156

4.6.1 8086 Register Addressing Modes

Most 8086 instructions can operate on the 8086’s general purpose register set. By spec-
ifying the name of the register as an operand to the instruction, you may access the con-
tents of that register. Consider the 8086 mov (move) instruction:

mov destination, source

This instruction copies the data from the source operand to the destination operand.
The eight and 16 bit registers are certainly valid operands for this instruction. The only
restriction is that both operands must be the same size. Now let’s look at some actual 8086
mov instructions:

mov ax, bx ;Copies the value from BX into AX
mov dl, al ;Copies the value from AL into DL
mov si, dx ;Copies the value from DX into SI
mov sp, bp ;Copies the value from BP into SP
mov dh, cl ;Copies the value from CL into DH
mov ax, ax ;Yes, this is legal!

Remember, the registers are the best place to keep often used variables. As you’ll see a lit-
tle later, instructions using the registers are shorter and faster than those that access mem-
ory. Throughout this chapter you’ll see the abbreviated operands reg and r/m
(register/memory) used wherever you may use one of the 8086’s general purpose regis-
ters.

In addition to the general purpose registers, many 8086 instructions (including the
mov instruction) allow you to specify one of the segment registers as an operand. There are
two restrictions on the use of the segment registers with the mov instruction. First of all,
you may not specify cs as the destination operand, second, only one of the operands can
be a segment register. You cannot move data from one segment register to another with a
single mov instruction. To copy the value of cs to ds, you’d have to use some sequence like:

mov ax, cs
mov ds, ax

You should never use the segment registers as data registers to hold arbitrary values.
They should only contain segment addresses. But more on that, later. Throughout this text
you’ll see the abbreviated operand sreg used wherever segment register operands are
allowed (or required).

4.6.2 8086 Memory Addressing Modes

The 8086 provides 17 different ways to access memory. This may seem like quite a bit
at first6, but fortunately most of the address modes are simple variants of one another so
they’re very easy to learn. And learn them you should! The key to good assembly lan-
guage programming is the proper use of memory addressing modes.

The addressing modes provided by the 8086 family include displacement-only, base,
displacement plus base, base plus indexed, and displacement plus base plus indexed.
Variations on these five forms provide the 17 different addressing modes on the 8086. See,
from 17 down to five. It’s not so bad after all!

4.6.2.1 The Displacement Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand, is the
displacement-only (or direct) addressing mode. The displacement-only addressing mode
consists of a 16 bit constant that specifies the address of the target location. The
instruction mov al,ds:[8088h] loads the al register with a copy of the byte at memory loca-

6. Just wait until you see the 80386!

Memory Layout and Access

Page 157

tion 8088h7. Likewise, the instruction mov ds:[1234h],dl stores the value in the dl register to
memory location 1234h (see Figure 4.8)

The displacement-only addressing mode is perfect for accessing simple variables. Of
course, you’d probably prefer using names like “I” or “J” rather than “DS:[1234h]” or
“DS:[8088h]”. Well, fear not, you’ll soon see it’s possible to do just that.

Intel named this the displacement-only addressing mode because a 16 bit constant
(displacement) follows the mov opcode in memory. In that respect it is quite similar to the
direct addressing mode on the x86 processors (see the previous chapter). There are some
minor differences, however. First of all, a displacement is exactly that– some distance from
some other point. On the x86, a direct address can be thought of as a displacement from
address zero. On the 80x86 processors, this displacement is an offset from the beginning of
a segment (the data segment in this example). Don’t worry if this doesn’t make a lot of
sense right now. You’ll get an opportunity to study segments to your heart’s content a lit-
tle later in this chapter. For now, you can think of the displacement-only addressing mode
as a direct addressing mode. The examples in this chapter will typically access bytes in
memory. Don’t forget, however, that you can also access words on the 8086 processors8

(see Figure 4.9).

By default, all displacement-only values provide offsets into the data segment. If you
want to provide an offset into a different segment, you must use a segment override prefix
before your address. For example, to access location 1234h in the extra segment (es) you
would use an instruction of the form mov ax,es:[1234h]. Likewise, to access this location in
the code segment you would use the instruction mov ax, cs:[1234h]. The ds: prefix in the
previous examples is not a segment override. The CPU uses the data segment register by
default. These specific examples require ds: because of MASM’s syntactical limitations.

7. The purpose of the “DS:” prefix on the instruction will become clear a little later.
8. And double words on the 80386 and later.

MASM Syntax for 8086 Memory Addressing Modes
Microsoft’s assembler uses several different variations to denote indexed, based/indexed, and dis-
placement plus based/indexed addressing modes. You will see all of these forms used interchange-
ably throughout this text. The following list some of the possible combinations that are legal for the
various 80x86 addressing modes:

disp[bx], [bx][disp], [bx+disp], [disp][bx], and [disp+bx]

[bx][si], [bx+si], [si][bx], and [si+bx]

disp[bx][si], disp[bx+si], [disp+bx+si], [disp+bx][si], disp[si][bx], [disp+si][bx],
[disp+si+bx], [si+disp+bx], [bx+disp+si], etc.

MASM treats the “[]” symbols just like the “+” operator. This operator is commutative, just like the
“+” operator. Of course, this discussion applies to all the 8086 addressing modes, not just those
involving BX and SI. You may substitute any legal registers in the addressing modes above.

Figure 4.8 Displacement Only (Direct) Addressing Mode

8088h

MOV AL, DS:[8088h]

AL

DL

MOV DS:[1234h], DL

1234h

Chapter 04

Page 158

4.6.2.2 The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using the register
indirect addressing modes. There are four forms of this addressing mode on the 8086, best
demonstrated by the following instructions:

mov al, [bx]
mov al, [bp]
mov al, [si]
mov al, [di]

As with the x86 [bx] addressing mode, these four addressing modes reference the byte
at the offset found in the bx, bp, si, or di register, respectively. The [bx], [si], and [di] modes
use the ds segment by default. The [bp] addressing mode uses the stack segment (ss) by
default.

You can use the segment override prefix symbols if you wish to access data in differ-
ent segments. The following instructions demonstrate the use of these overrides:

mov al, cs:[bx]
mov al, ds:[bp]
mov al, ss:[si]
mov al, es:[di]

Intel refers to [bx] and [bp] as base addressing modes and bx and bp as base registers (in
fact, bp stands for base pointer). Intel refers to the [si] and [di] addressing modes as indexed
addressing modes (si stands for source index, di stands for destination index). However, these
addressing modes are functionally equivalent. This text will call these forms register indi-
rect modes to be consistent.

Note: the [si] and [di] addressing modes work exactly the same way, just substitute si
and di for bx above.

Figure 4.9 Accessing a Word

1235h

MOV AX, DS:[1234h]

AX 1234h

Figure 4.10 [BX] Addressing Mode

MOV AL, [BX]

DS

BX
+

AL

Memory Layout and Access

Page 159

4.6.2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

mov al, disp[bx]
mov al, disp[bp]
mov al, disp[si]
mov al, disp[di]

If bx contains 1000h, then the instruction mov cl,20h[bx] will load cl from memory loca-
tion ds:1020h. Likewise, if bp contains 2020h, mov dh,1000h[bp] will load dh from location
ss:3020.

The offsets generated by these addressing modes are the sum of the constant and the
specified register. The addressing modes involving bx, si, and di all use the data segment,
the disp[bp] addressing mode uses the stack segment by default. As with the register indi-
rect addressing modes, you can use the segment override prefixes to specify a different
segment:

mov al, ss:disp[bx]
mov al, es:disp[bp]
mov al, cs:disp[si]
mov al, ss:disp[di]

You may substitute si or di in Figure 4.12 to obtain the [si+disp] and [di+disp] addressing

modes.

Note that Intel still refers to these addressing modes as based addressing and indexed
addressing. Intel’s literature does not differentiate between these modes with or without
the constant. If you look at how the hardware works, this is a reasonable definition. From
the programmer’s point of view, however, these addressing modes are useful for entirely

Figure 4.11 [BP] Addressing Mode

MOV AL, [BP]

SS

BP
+

AL

Based vs. Indexed Addressing

There is actually a subtle difference between the based and indexed addressing modes. Both address-
ing modes consist of a displacement added together with a register. The major difference between the
two is the relative sizes of the displacement and register values. In the indexed addressing mode, the
constant typically provides the address of the specific data structure and the register provides an off-
set from that address. In the based addressing mode, the register contains the address of the data
structure and the constant displacement supplies the index from that point.

Since addition is commutative, the two views are essentially equivalent. However, since Intel sup-
ports one and two byte displacements (See “The 80x86 MOV Instruction” on page 166) it made more
sense for them to call it the based addressing mode. In actual use, however, you’ll wind up using it as
an indexed addressing mode more often than as a based addressing mode, hence the name change.

Chapter 04

Page 160

different things. Which is why this text uses different terms to describe them. Unfortu-
nately, there is very little consensus on the use of these terms in the 80x86 world.

4.6.2.4 Based Indexed Addressing Modes

The based indexed addressing modes are simply combinations of the register indirect
addressing modes. These addressing modes form the offset by adding together a base reg-
ister (bx or bp) and an index register (si or di). The allowable forms for these addressing
modes are

mov al, [bx][si]
mov al, [bx][di]
mov al, [bp][si]
mov al, [bp][di]

Suppose that bx contains 1000h and si contains 880h. Then the instruction

mov al,[bx][si]

would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 1004,
mov ax,[bp+di] will load the 16 bits in ax from locations SS:259C and SS:259D.

The addressing modes that do not involve bp use the data segment by default. Those
that have bp as an operand use the stack segment by default.

You substitute di in Figure 4.12 to obtain the [bx+di] addressing mode. You substitute di
in Figure 4.12 for the [bp+di] addressing mode.

4.6.2.5 Based Indexed Plus Displacement Addressing Mode

These addressing modes are a slight modification of the base/indexed addressing
modes with the addition of an eight bit or sixteen bit constant. The following are some
examples of these addressing modes (see Figure 4.12 and Figure 4.12).

Figure 4.12 [BX+disp] Addressing Mode

MOV AL, [BX+disp]

DS

BX
+

AL

+

Figure 4.13 [BP+disp] Addressing Mode

MOV AL, [BP+disp]

SS

BP +

AL

+

Memory Layout and Access

Page 161

mov al, disp[bx][si]
mov al, disp[bx+di]
mov al, [bp+si+disp]
mov al, [bp][di][disp]

You may substitute di in Figure 4.12 to produce the [bx+di+disp] addressing mode. You may
substitute di in Figure 4.12 to produce the [bp+di+disp] addressing mode.

Figure 4.14 [BX+SI] Addressing Mode

MOV AL, [BX+SI]

DS

BX +

AL

+SI

Figure 4.15 [BP+SI] Addressing Mode

MOV AL, [BP+SI]

SS

BP +

AL

+SI

Figure 4.16 [BX + SI + disp] Addressing Mode

MOV AL, [BX+SI+disp]

DS

BX +

AL

+SI

+

Figure 4.17 [BP + SI + disp] Addressing Mode

MOV AL, [BP+SI+disp]

SS

BP +

AL

+SI

+

Chapter 04

Page 162

Suppose bp contains 1000h, bx contains 2000h, si contains 120h, and di contains 5. Then
mov al,10h[bx+si] loads al from address DS:2130; mov ch,125h[bp+di] loads ch from location
SS:112A; and mov bx,cs:2[bx][di] loads bx from location CS:2007.

4.6.2.6 An Easy Way to Remember the 8086 Memory Addressing Modes

There are a total of 17 different legal memory addressing modes on the 8086: disp,
[bx], [bp], [si], [di], disp[bx], disp[bp], disp[si], disp[di], [bx][si], [bx][di], [bp][si], [bp][di],
disp[bx][si], disp [bx][di], disp[bp][si], and disp[bp][di]9. You could memorize all these
forms so that you know which are valid (and, by omission, which forms are invalid).
However, there is an easier way besides memorizing these 17 forms. Consider the chart in
Figure 4.12.

If you choose zero or one items from each of the columns and wind up with at least
one item, you’ve got a valid 8086 memory addressing mode. Some examples:

• Choose disp from column one, nothing from column two, [di] from column
3, you get disp[di].

• Choose disp, [bx], and [di]. You get disp[bx][di].
• Skip column one & two, choose [si]. You get [si]
• Skip column one, choose [bx], then choose [di]. You get [bx][di]

Likewise, if you have an addressing mode that you cannot construct from this table,
then it is not legal. For example, disp[dx][si] is illegal because you cannot obtain [dx] from
any of the columns above.

4.6.2.7 Some Final Comments About 8086 Addressing Modes

The effective address is the final offset produced by an addressing mode computation.
For example, if bx contains 10h, the effective address for 10h[bx] is 20h. You will see the
term effective address in almost any discussion of the 8086’s addressing mode. There is
even a special instruction load effective address (lea) that computes effective addresses.

Not all addressing modes are created equal! Different addressing modes may take dif-
fering amounts of time to compute the effective address. The exact difference varies from
processor to processor. Generally, though, the more complex an addressing mode is, the
longer it takes to compute the effective address. Complexity of an addressing mode is
directly related to the number of terms in the addressing mode. For example, disp[bx][si] is

9. That’s not even counting the syntactical variations!

Figure 4.18 Table to Generate Valid 8086 Addressing Modes

DISP
[BX]

[BP]

[SI]

[DI]

Memory Layout and Access

Page 163

more complex than [bx]. See the instruction set reference in the appendices for information
regarding the cycle times of various addressing modes on the different 80x86 processors.

The displacement field in all addressing modes except displacement-only can be a
signed eight bit constant or a signed 16 bit constant. If your offset is in the range
-128…+127 the instruction will be shorter (and therefore faster) than an instruction with a
displacement outside that range. The size of the value in the register does not affect the
execution time or size. So if you can arrange to put a large number in the register(s) and
use a small displacement, that is preferable over a large constant and small values in the
register(s).

If the effective address calculation produces a value greater than 0FFFFh, the CPU
ignores the overflow and the result wraps around back to zero. For example, if bx contains
10h, then the instruction mov al,0FFFFh[bx] will load the al register from location ds:0Fh,
not from location ds:1000Fh.

In this discussion you’ve seen how these addressing modes operate. The preceding
discussion didn’t explain what you use them for. That will come a little later. As long as you
know how each addressing mode performs its effective address calculation, you’ll be fine.

4.6.3 80386 Register Addressing Modes

The 80386 (and later) processors provide 32 bit registers. The eight general-purpose
registers all have 32 bit equivalents. They are eax, ebx, ecx, edx, esi, edi, ebp, and esp. If you
are using an 80386 or later processor you can use these registers as operands to several
80386 instructions.

4.6.4 80386 Memory Addressing Modes

The 80386 processor generalized the memory addressing modes. Whereas the 8086
only allowed you to use bx or bp as base registers and si or di as index registers, the 80386
lets you use almost any general purpose 32 bit register as a base or index register. Further-
more, the 80386 introduced new scaled indexed addressing modes that simplify accessing
elements of arrays. Beyond the increase to 32 bits, the new addressing modes on the 80386
are probably the biggest improvement to the chip over earlier processors.

4.6.4.1 Register Indirect Addressing Modes

On the 80386 you may specify any general purpose 32 bit register when using the reg-
ister indirect addressing mode. [eax], [ebx], [ecx], [edx], [esi], and [edi] all provide offsets,
by default, into the data segment. The [ebp] and [esp] addressing modes use the stack seg-
ment by default.

Note that while running in 16 bit real mode on the 80386, offsets in these 32 bit regis-
ters must still be in the range 0…0FFFFh. You cannot use values larger than this to access
more than 64K in a segment10. Also note that you must use the 32 bit names of the regis-
ters. You cannot use the 16 bit names. The following instructions demonstrate all the legal
forms:

mov al, [eax]
mov al, [ebx]
mov al, [ecx]
mov al, [edx]
mov al, [esi]
mov al, [edi]
mov al, [ebp] ;Uses SS by default.

10. Unless, of course, you’re operating in protected mode, in which case this is perfectly legal.

Chapter 04

Page 164

mov al, [esp] ;Uses SS by default.

4.6.4.2 80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing Modes

The indexed addressing modes (register indirect plus a displacement) allow you to
mix a 32 bit register with a constant. The base/indexed addressing modes let you pair up
two 32 bit registers. Finally, the base/indexed/displacement addressing modes let you
combine a constant and two registers to form the effective address. Keep in mind that the
offset produced by the effective address computation must still be 16 bits long when oper-
ating in real mode.

On the 80386 the terms base register and index register actually take on some meaning.
When combining two 32 bit registers in an addressing mode, the first register is the base
register and the second register is the index register. This is true regardless of the register
names. Note that the 80386 allows you to use the same register as both a base and index
register, which is actually useful on occasion. The following instructions provide represen-
tative samples of the various base and indexed address modes along with syntactical vari-
ations:

mov al, disp[eax] ;Indexed addressing
mov al, [ebx+disp] ; modes.
mov al, [ecx][disp]
mov al, disp[edx]
mov al, disp[esi]
mov al, disp[edi]
mov al, disp[ebp] ;Uses SS by default.
mov al, disp[esp] ;Uses SS by default.

The following instructions all use the base+indexed addressing mode. The first regis-
ter in the second operand is the base register, the second is the index register. If the base
register is esp or ebp the effective address is relative to the stack segment. Otherwise the
effective address is relative to the data segment. Note that the choice of index register does
not affect the choice of the default segment.

mov al, [eax][ebx] ;Base+indexed addressing
mov al, [ebx+ebx] ; modes.
mov al, [ecx][edx]
mov al, [edx][ebp] ;Uses DS by default.
mov al, [esi][edi]
mov al, [edi][esi]
mov al, [ebp+ebx] ;Uses SS by default.
mov al, [esp][ecx] ;Uses SS by default.

Naturally, you can add a displacement to the above addressing modes to produce the
base+indexed+displacement addressing mode. The following instructions provide a rep-
resentative sample of the possible addressing modes:

mov al, disp[eax][ebx] ;Base+indexed addressing
mov al, disp[ebx+ebx] ; modes.
mov al, [ecx+edx+disp]
mov al, disp[edx+ebp] ;Uses DS by default.
mov al, [esi][edi][disp]
mov al, [edi][disp][esi]
mov al, disp[ebp+ebx] ;Uses SS by default.
mov al, [esp+ecx][disp] ;Uses SS by default.

There is one restriction the 80386 places on the index register. You cannot use the esp
register as an index register. It’s okay to use esp as the base register, but not as the index
register.

Memory Layout and Access

Page 165

4.6.4.3 80386 Scaled Indexed Addressing Modes

The indexed, base/indexed, and base/indexed/disp addressing modes described
above are really special instances of the 80386 scaled indexed addressing modes. These
addressing modes are particularly useful for accessing elements of arrays, though they are
not limited to such purposes. These modes let you multiply the index register in the
addressing mode by one, two, four, or eight. The general syntax for these addressing
modes is

disp[index*n]
[base][index*n]

or
disp[base][index*n]

where “base” and “index” represent any 80386 32 bit general purpose registers and “n” is
the value one, two, four, or eight.

The 80386 computes the effective address by adding disp, base, and index*n together.
For example, if ebx contains 1000h and esi contains 4, then

mov al,8[ebx][esi*4] ;Loads AL from location 1018h
mov al,1000h[ebx][ebx*2] ;Loads AL from location 4000h
mov al,1000h[esi*8] ;Loads AL from location 1020h

Note that the 80386 extended indexed, base/indexed, and base/indexed/displacement
addressing modes really are special cases of this scaled indexed addressing mode with
“n” equal to one. That is, the following pairs of instructions are absolutely identical to the
80386:

mov al, 2[ebx][esi*1] mov al, 2[ebx][esi]
mov al, [ebx][esi*1] mov al, [ebx][esi]
mov al, 2[esi*1] mov al, 2[esi]

Of course, MASM allows lots of different variations on these addressing modes. The
following provide a small sampling of the possibilities:

disp[bx][si*2], [bx+disp][si*2], [bx+si*2+disp], [si*2+bx][disp],
disp[si*2][bx], [si*2+disp][bx], [disp+bx][si*2]

4.6.4.4 Some Final Notes About the 80386 Memory Addressing Modes

Because the 80386’s addressing modes are more orthogonal, they are much easier to
memorize than the 8086’s addressing modes. For programmers working on the 80386 pro-
cessor, there is always the temptation to skip the 8086 addressing modes and use the 80386
set exclusively. However, as you’ll see in the next section, the 8086 addressing modes
really are more efficient than the comparable 80386 addressing modes. Therefore, it is
important that you know all the addressing modes and choose the mode appropriate to
the problem at hand.

When using base/indexed and base/indexed/disp addressing modes on the 80386,
without a scaling option (that is, letting the scaling default to “*1”), the first register
appearing in the addressing mode is the base register and the second is the index register.
This is an important point because the choice of the default segment is made by the choice
of the base register. If the base register is ebp or esp, the 80386 defaults to the stack seg-
ment. In all other cases the 80386 accesses the data segment by default, even if the index reg-
ister is ebp. If you use the scaled index operator (“*n”) on a register, that register is always
the index register regardless of where it appears in the addressing mode:

Chapter 04

Page 166

[ebx][ebp] ;Uses DS by default.
[ebp][ebx] ;Uses SS by default.
[ebp*1][ebx] ;Uses DS by default.
[ebx][ebp*1] ;Uses DS by default.
[ebp][ebx*1] ;Uses SS by default.
[ebx*1][ebp] ;Uses SS by default.
es:[ebx][ebp*1] ;Uses ES.

4.7 The 80x86 MOV Instruction

The examples throughout this chapter will make extensive use of the 80x86 mov
(move) instruction. Furthermore, the mov instruction is the most common 80x86 machine
instruction. Therefore, it’s worthwhile to spend a few moments discussing the operation
of this instruction.

Like it’s x86 counterpart, the mov instruction is very simple. It takes the form:

mov Dest,Source

Mov makes a copy of Source and stores this value into Dest. This instruction does not
affect the original contents of Source. It overwrites the previous value in Dest. For the most
part, the operation of this instruction is completely described by the Pascal statement:

Dest := Source;

This instruction has many limitations. You’ll get ample opportunity to deal with them
throughout your study of 80x86 assembly language. To understand why these limitations
exist, you’re going to have to take a look at the machine code for the various forms of this
instruction. One word of warning, they don’t call the 80386 a CISC (Complex Instruction
Set Computer) for nothing. The encoding for the mov instruction is probably the most
complex in the instruction set. Nonetheless, without studying the machine code for this
instruction you will not be able to appreciate it, nor will you have a good understanding
of how to write optimal code using this instruction. You’ll see why you worked with the
x86 processors in the previous chapters rather than using actual 80x86 instructions.

There are several versions of the mov instruction. The mnemonic11 mov describes over
a dozen different instructions on the 80386. The most commonly used form of the mov
instruction has the following binary encoding shown in Figure 4.19.

The opcode is the first eight bits of the instruction. Bits zero and one define the width
of the instruction (8, 16, or 32 bits) and the direction of the transfer. When discussing spe-
cific instructions this text will always fill in the values of d and w for you. They appear
here only because almost every other text on this subject requires that you fill in these val-
ues.

Following the opcode is the addressing mode byte, affectionately called the
“mod-reg-r/m” byte by most programmers. This byte chooses which of 256 different pos-

11. Mnemonic means memory aid. This term describes the English names for instructions like MOV, ADD, SUB,
etc., which are much easier to remember than the hexadecimal encodings for the machine instructions.

Figure 4.19 Generic MOV Instruction

opcode

displacement

addressing mode

mod reg r/m

note: displacement may be zero, one, or two bytes long.

x x x x x x x x

1 0 0 0 1 0 d w

x x x x x x x x

Memory Layout and Access

Page 167

sible operand combinations the generic mov instruction allows. The generic mov instruc-
tion takes three different assembly language forms:

mov reg, memory
mov memory, reg
mov reg, reg

Note that at least one of the operands is always a general purpose register. The reg field in
the mod/reg/rm byte specifies that register (or one of the registers if using the third form
above). The d (direction) bit in the opcode decides whether the instruction stores data into
the register (d=1) or into memory (d=0).

The bits in the reg field let you select one of eight different registers. The 8086 sup-
ports 8 eight bit registers and 8 sixteen bit general purpose registers. The 80386 also sup-
ports eight 32 bit general purpose registers. The CPU decodes the meaning of the reg field
as follows:

To differentiate 16 and 32 bit register, the 80386 and later processors use a special
opcode prefix byte before instructions using the 32 bit registers. Otherwise, the instruction
encodings are the same for both types of instructions.

 The r/m field, in conjunction with the mod field, chooses the addressing mode. The mod
field encoding is the following:

The mod field chooses between a register-to-register move and a register-to/from-mem-
ory move. It also chooses the size of the displacement (zero, one, two, or four bytes) that
follows the instruction for memory addressing modes. If MOD=00, then you have one of
the addressing modes without a displacement (register indirect or base/indexed). Note
the special case where MOD=00 and r/m=110. This would normally correspond to the [bp]

Table 23: REG Bit Encodings

reg w=0
16 bit mode

w=1
32 bit mode

w=1

000 AL AX EAX

001 CL CX ECX

010 DL DX EDX

011 BL BX EBX

100 AH SP ESP

101 CH BP EBP

110 DH SI ESI

111 BH DI EDI

Table 24: MOD Encoding

MOD Meaning

00 The r/m field denotes a register indirect memory addressing mode or a
base/indexed addressing mode (see the encodings for r/m) unless the r/m
field contains 110. If MOD=00 and r/m=110 the mod and r/m fields denote
displacement-only (direct) addressing.

01 The r/m field denotes an indexed or base/indexed/displacement addressing
mode. There is an eight bit signed displacement following the mod/reg/rm
byte.

10 The r/m field denotes an indexed or base/indexed/displacement addressing
mode. There is a 16 bit signed displacement (in 16 bit mode) or a 32 bit
signed displacement (in 32 bit mode) following the mod/reg/rm byte .

11 The r/m field denotes a register and uses the same encoding as the reg field

Chapter 04

Page 168

addressing mode. The 8086 uses this encoding for the displacement-only addressing
mode. This means that there isn’t a true [bp] addressing mode on the 8086.

To understand why you can use the [bp] addressing mode in your programs, look at
MOD=01 and MOD=10 in the above table. These bit patterns activate the disp[reg] and the
disp[reg][reg] addressing modes. “So what?” you say. “That’s not the same as the [bp]
addressing mode.” And you’re right. However, consider the following instructions:

mov al, 0[bx]
mov ah, 0[bp]
mov 0[si], al
mov 0[di], ah

These statements, using the indexed addressing modes, perform the same operations as
their register indirect counterparts (obtained by removing the displacement from the
above instructions). The only real difference between the two forms is that the indexed
addressing mode is one byte longer (if MOD=01, two bytes longer if MOD=10) to hold the
displacement of zero. Because they are longer, these instructions may also run a little
slower.

This trait of the 8086 – providing two or more ways to accomplish the same thing –
appears throughout the instruction set. In fact, you’re going to see several more examples
before you’re through with the mov instruction. MASM generally picks the best form of
the instruction automatically. Were you to enter the code above and assemble it using
MASM, it would still generate the register indirect addressing mode for all the instruc-
tions except mov ah,0[bp]. It would, however, emit only a one-byte displacement that is
shorter and faster than the same instruction with a two-byte displacement of zero. Note
that MASM does not require that you enter 0[bp], you can enter [bp] and MASM will auto-
matically supply the zero byte for you.

If MOD does not equal 11b, the r/m field encodes the memory addressing mode as
follows:

Don’t forget that addressing modes involving bp use the stack segment (ss) by default. All
others use the data segment (ds) by default.

If this discussion has got you totally lost, you haven’t even seen the worst of it yet.
Keep in mind, these are just some of the 8086 addressing modes. You’ve still got all the 80386
addressing modes to look at. You’re probably beginning to understand what they mean when
they say complex instruction set computer. However, the important concept to note is that
you can construct 80x86 instructions the same way you constructed x86 instructions in
Chapter Three – by building up the instruction bit by bit. For full details on how the 80x86
encodes instructions, see the appendices.

Table 25: R/M Field Encoding

R/M Addressing mode (Assuming MOD=00, 01, or 10)

000 [BX+SI] or DISP[BX][SI] (depends on MOD)

001 [BX+DI] or DISP[BX+DI] (depends on MOD)

010 [BP+SI] or DISP[BP+SI] (depends on MOD)

011 [BP+DI] or DISP[BP+DI] (depends on MOD)

100 [SI] or DISP[SI] (depends on MOD)

101 [DI] or DISP[DI] (depends on MOD)

110 Displacement-only or DISP[BP] (depends on MOD)

111 [BX] or DISP[BX] (depends on MOD)

Memory Layout and Access

Page 169

4.8 Some Final Comments on the MOV Instructions

There are several important facts you should always remember about the mov instruc-
tion. First of all, there are no memory to memory moves. For some reason, newcomers to
assembly language have a hard time grasping this point. While there are a couple of
instructions that perform memory to memory moves, loading a register and then storing
that register is almost always more efficient. Another important fact to remember about
the mov instruction is that there are many different mov instructions that accomplish the
same thing. Likewise, there are several different addressing modes you can use to access
the same memory location. If you are interested in writing the shortest and fastest possible
programs in assembly language, you must be constantly aware of the trade-offs between
equivalent instructions.

The discussion in this chapter deals mainly with the generic mov instruction so you
can see how the 80x86 processors encode the memory and register addressing modes into
the mov instruction. Other forms of the mov instruction let you transfer data between
16-bit general purpose registers and the 80x86 segment registers. Others let you load a
register or memory location with a constant. These variants of the mov instruction use a
different opcode. For more details, see the instruction encodings in Appendix D.

There are several additional mov instructions on the 80386 that let you load the 80386
special purpose registers. This text will not consider them. There are also some string
instructions on the 80x86 that perform memory to memory operations. Such instructions
appear in the next chapter. They are not a good substitute for the mov instruction.

4.9 Laboratory Exercises

It is now time to begin working with actual 80x86 assembly language. To do so, you
will need to learn how to use several assembly-language related software development
tools. In this set of laboratory exercises you will learn how to use the basic tools to edit,
assemble, debug, and run 80x86 assembly language programs. These exercises assume
that you have already installed MASM (Microsoft’s Macro Assembler) on your system. If
you have not done so already, please install MASM (following Microsoft’s directions)
before attempting the exercises in this laboratory.

4.9.1 The UCR Standard Library for 80x86 Assembly Language Programmers

Most of the programs in this textbook use a set of standard library routines created at
the University of California, Riverside. These routines provide standardized I/O, string
handling, arithmetic, and other useful functions. The library itself is very similar to the C
standard library commonly used by C/C++ programmers. Later chapters in this text will
describe many of the routines found in the library, there is no need to go into that here.
However, many of the example programs in this chapter and in later chapters will use cer-
tain library routines, so you must install and activate the library at this time.

The library appears on the companion CD-ROM. You will need to copy the library
from CD-ROM to the hard disk. A set of commands like the following (with appropriate
adjustments for the CD-ROM drive letter) will do the trick:

c:
cd \
md stdlib
cd stdlib
xcopy r:\stdlib*.* . /s

Once you’ve copied the library to your hard disk, there are two additional commands
you must execute before attempting to assemble any code that uses the standard library:

Chapter 04

Page 170

set include=c:\stdlib\include
set lib=c:\stdlib\lib

It would probably be a good idea to place these commands in your autoexec.bat file so
they execute automatically every time you start up your system. If you have not set the
include and lib variables, MASM will complain during assembly about missing files.

4.9.2 Editing Your Source Files

Before you can assemble (compile) and run your program, you must create an assem-
bly language source file with an editor. MASM will properly handle any ASCII text file, so
it doesn’t matter what editor you use to create that file as long as that editor processes
ASCII text files. Note that most word processors do not normally work with ASCII text
files, therefore, you should not use a word processor to maintain your assembly language
source files.

MS-DOS, Windows, and MASM all three come with simple text editors you can use to
create and modify assembly language source files. The EDIT.EXE program comes with
MS-DOS; The NOTEPAD.EXE application comes with Windows; and the PWB (Program-
mer’s Work Bench) comes with MASM. If you do not have a favorite text editor, feel free
to use one of these programs to edit your source code. If you have some language system
(e.g., Borland C++, Delphi, or MS Visual C++) you can use the editor they provide to pre-
pare your assembly language programs, if you prefer.

Given the wide variety of possible editors out there, this chapter will not attempt to
describe how to use any of them. If you’ve never used a text editor on the PC before, con-
sult the appropriate documentation for that text editor.

4.9.3 The SHELL.ASM File

Although you can write an assembly language program completely from scratch
within your text editor of choice, most assembly language programs contain a large num-
ber of statements common to every assembly language program. In the Chapter Four
directory on the companion CD-ROM there is a “SHELL.ASM” text file. The SHELL.ASM
file is a skeleton assembly language file12. That is, it contains all the “overhead” instruc-
tions necessary to create a working assembly language program with the exception of the
instructions and variables that make up that specific program. In many respects, it is com-
parable to the following Pascal program:

program shell(input,output);
begin
end.

Which is to say that SHELL.ASM is a valid program. You can assemble and run it but it
won’t do very much.

The main reason for the SHELL.ASM program is that there are lots of lines of code
that must appear in an empty assembly language program just to make the assembler
happy. Unfortunately, to understand what these instructions mean requires considerable
study. Rather than put off writing any programs until you understand everything neces-
sary to create your first program, you’re going to blindly use the SHELL.ASM file without
questioning what any of it means. Fear not. Within a couple chapters it will all make
sense. But for now, just type it in and use it exactly as it appears. The only thing you need
to know about SHELL.ASM right away is where to place your code in this file. That’s easy
to see, though; there are three comments in the file telling you where to put your variables
(if any), subroutine/procedures/functions (if any), and the statements for your main pro-

12. This file is available on the companion CD-ROM.

Memory Layout and Access

Page 171

gram. The following is the complete listing of the SHELL.ASM file for those who may not
have access to the electronic version:

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

; Global variables go here:

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Variables that wind up being used by the standard library routines.
; The MemInit routine uses “PSP” and “zzzzzzseg” labels. They must be
; present if you intend to use getenv, MemInit, malloc, and free.

public PSP
PSP dw ?

;--
; Here is a good place to put other routines:
;---
; Main is the main program. Program execution always begins here.

Main proc
mov cs:PSP, es ;Save pgm seg prefix
mov ax, seg dseg ;Set up the segment

registers
mov ds, ax
mov es, ax

mov dx, 0
meminit
jnc GoodMemInit

print
db “Error initializing memory

manager”,cr,lf,0
jmp Quit

GoodMemInit:

;***
; Put your main program here.
;***

Quit: ExitPgm
Main endp
cseg ends

; Allocate a reasonable amount of space for the stack (2k).

sseg segment para stack ‘stack’
stk db 256 dup (“stack “)
sseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Although you’re supposed to simply accept this code as-is and without question, a
few explanations are in order. The program itself begins with a pair of “include” and
“includelib” statements. These statements tell the assembler and linker that this code will
be using some of the library routines from the “UCR Standard Library for 80x86 Assembly
Language Programmers.” This library appears on the companion CD-ROM.

Chapter 04

Page 172

Note that text beginning with a semicolon (“;”) is a comment. The assembler ignores
all the text from the semicolon to the end of the line. As with high level languages, com-
ments are very important for explaining the operation of your program. In this example,
the comments point out some important parts of the SHELL.ASM program13.

The next section of interest is the line that begins with dseg segment …. This is the
beginning of your global data area. This statement defines the beginning of a data seg-
ment (dseg stands for data segment) that ends with the dseg ends statement. You should
place all your global variables between these two statements.

Next comes the code segment (it’s called cseg) where the 80x86 instructions go. The
important thing to note here is the comment “Put your main program here.” For now, you
should ignore everything else in the code segment except this one comment. The
sequences of assembly language statements you create should go between the lines of
asterisks surrounding this comment. Have no fear; you’ll learn what all these statements
mean in the next two chapters. Attempting to explain them now would simply be too
much of a digression.

Finally come two additional segments in the program: sseg and zzzzzzseg. These seg-
ments are absolutely necessary (the system requires sseg, the UCR Standard Library
requires zzzzzzseg). You should not modify these segments.

When you begin writing a new assembly language program you should not modify
the SHELL.ASM file directly. You should first make a copy of SHELL.ASM using the DOS
copy command. For example, you might copy the file to PROJECT1.ASM and then make
all your modifications to this file. By doing this you will have an undisturbed copy of
SHELL.ASM available for your next project.

There is a special version of SHELL.ASM, X86.ASM, that contains some additional
code to support programming projects in this chapter. Please see the programming
projects section for more details.

4.9.4 Assembling Your Code with MASM

To run MASM you use the ML.EXE (MASM and Link) program. This file is typically
found in a directory with a name like C:\MASM611\BIN. You should check to see if your
path includes this directory. If not, you should adjust the DOS shell path variable so that it
includes the directory containing ML.EXE, LINK.EXE, CV.EXE, and other MASM-related
programs.

MASM is a DOS-based program. The easiest way to run it is from DOS or from a DOS
box inside Windows. The basic MASM command takes the following form:

ml {options} filename.asm

Note that the ML program requires that you type the “.asm” suffix to the filename when
assembling an assembly language source file.

Most of the time, you will only use the “/Zi” option. This tells MASM to add sym-
bolic debugging information to the .EXE file for use by CodeView. This makes the execut-
able file somewhat larger, but it also makes tracing through a program with CodeView
(see “Debuggers and CodeView” on page 173) considerably easier. Normally, you will
always use this option during development and skip using it when you want to produce
an EXE file you can distribute.

Another useful option, one you would normally use without a filename, is “/?”– the
help command. ML, if it encounters this option, will display a list of all the options
ML.EXE accepts. Most of these options you will rarely, if ever, use. Consult the MASM
documentation for more details on MASM command-line options.

13. By the way, when you create a program using SHELL.ASM it’s always a good idea to delete comments like
“Insert your global data here.” These comments are for the benefit of people reading the SHELL.ASM file, not for
people reading your programs. Such comments look really goofy in an actual program.

Memory Layout and Access

Page 173

Typing a command of the form “ML /Zi mypgm.asm” produces two new files
(assuming there were no errors): mypgm.obj and mypgm.exe. The OBJ (object code file) is
an intermediate file the assembler and linker use. Most of the time you can delete this if
you program consists of a single source file. The mypgm.exe file is the executable version
of the program. You can run this program directly from DOS or run it through the Code-
View debugger (often the best choice).

4.9.5 Debuggers and CodeView

The SIMx86 program is an example of a very simple debugging program. It should
come as no surprise that there are several debugger programs available for the 80x86 as
well. In this chapter you will learn the basic operation of the CodeView debugger. Code-
View is a professional product with many different options and features. This short chap-
ter cannot begin to describe all the possible ways to use the CodeView debugger.
However, you will learn how to use some of the more common CodeView commands and
debugging techniques.

One major drawback to describing a system like CodeView is that Microsoft con-
stantly updates the CodeView product. These updates create subtle changes in the
appearance of several screen images and the operation of various commands. It’s quite
possible that you’re using an older version of CodeView than the one described in this
chapter, or this chapter describes an older version of CodeView than the one you’re using
(This Chapter uses CodeView v4.0). Well, don’t let this concern you. The basic principles
are the same and you should have no problem adjusting for version differences.

Note: this chapter assumes you are running CodeView from MS-DOS. If you are using
a Windows version, the screens will look slightly different.

4.9.5.1 A Quick Look at CodeView

To run CodeView, simply type the following command at the DOS command line
prompt:

c:> CV program.exe

Program.exe represents the name of the program you wish to debug (the “.exe” suffix is
optional). CodeView requires that you specify a “.EXE” or “.COM” program name. If you
do not supply an executable filename, CodeView will ask you to pick a file when you run
it.

CodeView requires an executable program name as the command line parameter.
Since you probably haven’t written an executable assembly language program yet, you
haven’t got a program to supply to CodeView. To alleviate this problem, use the
SHELL.EXE program found in the Chapter Four subdirectory. To run CodeView using
SHELL.EXE just use the command “CV SHELL.EXE”. This will bring up a screen which
looks something like that in Figure 4.20.

There are four sections to the screen in Figure 4.20: the menu bar on the first line, the
source1 window, the command window, and the help/ status line. Note that CodeView has
many windows other than the two above. CodeView remembers which windows were
open the last time it was run, so it might come up displaying different windows than
those above. At first, the Command window is the active window. However, you can eas-
ily switch between windows by pressing the F6 key on the keyboard.

The windows are totally configurable. The Windows menu lets you select which win-
dows appear on the screen. As with most Microsoft windowing products, you select items
on the menu bar by holding down the alt key and pressing the first letter of the menu you
wish to open. For example, pressing alt-W opens up the Windows menu as shown in
Figure 4.21.

Chapter 04

Page 174

4.9.5.2 The Source Window

The Source1 and Source2 items let you open additional source windows. This lets you
view, simultaneously, several different sections of the current program you’re debugging.
Source windows are useful for source level debugging.

Figure 4.20 CodeView Debugger: An Initial Window

Figure 4.21 CodeView Window Menu (alt-W)

Memory Layout and Access

Page 175

4.9.5.3 The Memory Window

The Memory item lets you open a memory window. The memory windows lets you
display and modify values in memory. By default, this window displays the variables in
your data segment, though you can easily display any values in memory by typing their
address.

Figure 4.22 is an example of a memory display.

The values on the left side of the screen are the segmented memory addresses. The
columns of hexadecimal values in the middle of the screen represent the values for 16
bytes starting at the specified address. Finally, the characters on the right hand side of the
screen represent the ASCII characters for each of the 16 bytes at the specified addresses.
Note that CodeView displays a period for those byte values that are not printable ASCII
characters.

When you first bring up the memory window, it typically begins displaying data at
offset zero in your data segment. There are a coup.le of ways to display different memory
locations. First, you can use the PgUp and PgDn keys to scroll through memory14.
Another option is to move the cursor over a segment or offset portion of an address and
type in a new value. As you type each digit, CodeView automatically displays the data at
the new address.

If you want to modify values in memory, simply move the cursor over the top of the
desired byte’s value and type a new hexadecimal value. CodeView automatically updates
the corresponding byte in memory.

CodeView lets you open multiple Memory windows at one time. Each time you select
Memory from the View memory, CodeView will open up another Memory window. With
multiple memory windows open you can compare the values at several non-contiguous
memory locations on the screen at one time. Remember, if you want to switch between the
memory windows, press the F6 key.

Pressing Shift-F3 toggles the data display mode between displaying hexadecimal
bytes, ASCII characters, words, double words, integers (signed), floating point values, and

14. Mouse users can also move the thumb control on the scroll bar to achieve this same result.

Figure 4.22 A Memory Display

Chapter 04

Page 176

other data types. This is useful when you need to view memory using different data types.
You only have the option of displaying the contents of the entire window as a single data
type; however, you can open multiple memory windows and display a different data type
in each one.

4.9.5.4 The Register Window

The Register item in the Windows menu displays or hides the 80x86 registers window.
This windows displays the current 80x86 register values (see Figure 4.23).

To change the value of a register, activate the register window (using F6, if it is not
already selected) and move the cursor over the value you wish to change. Type a new
value over the desired register’s existing value. Note that FL stands for flags. You can
change the values of the flags in the flags register by entering a new value after the FL=
entry. Another way to change the flags is to move the cursor over one of the flag entries at
the bottom of the register window and press an alphabetic key (e.g., “A”) on the key-
board. This will toggle the specified flag. The flag values are (0/1): overflow=(OV/NV),
direction=(DN/UP), interrupt=(DI/EI), sign=(PL/NG), zero=(NZ/ZR), auxiliary
carry=(NA/AC), parity=(PO/PE), carry=(NC/CY).

Note that pressing the F2 key toggles the display of the registers window. This feature
is quite useful when debugging programs. The registers window eats up about 20% of the
display and tends to obscure other windows. However, you can quickly recall the regis-
ters window, or make it disappear, by simply pressing F2.

4.9.5.5 The Command Window

The Command window lets you type textual commands into CodeView. Although
almost every command available in the command window is available elsewhere, many
operations are easier done in the command window. Furthermore, you can generally exe-
cute a sequence of completely different commands in the command window faster than
switching between the various other windows in CodeView. The operation of the com-
mand window will be the subject of the next section in this chapter.

Figure 4.23 The Register Window

Memory Layout and Access

Page 177

4.9.5.6 The Output Menu Item

Selecting View Output from the Windows menu (or pressing the F4 key) toggles the
display between the CodeView display and the current program output. While your pro-
gram is actually running, CodeView normally displays the program’s output. Once the
program turns control over to CodeView, however, the debugging windows appear
obscuring your output. If you need to take a quick peek at the program’s output while in
CodeView, the F4 key will do the job.

4.9.5.7 The CodeView Command Window

CodeView is actually two debuggers in one. On the one hand, it is a modern win-
dow-based debugging system with a nice mouse-based user interface. On the other hand,
it can behave like a traditional command-line based debugger. The command window
provides the key to this split personality. If you activate the command window, you can
enter debugger commands from the keyboard. The following are some of the more com-
mon CodeView commands you will use:

A address Assemble
BC bp_number Breakpoint Clear
BD bp_number Breakpoint Disable
BE bp_number Breakpoint Enable
BL Breakpoint List
BP address Breakpoint Set
D range Dump Memory
E Animate execution
Ex Address Enter Commands (x= “ “, b, w, d, etc.)
G {address} Go (address is optional)
H command Help
I port Input data from I/O port
L Restart program from beginning
MC range address Compare two blocks of memory
MF range data_value(s) Fill Memory with specified value(s)
MM range address Copy a block of memory
MS range data_value(s) Search memory range for set of values
N Value10 Set the default radix

O port value Output value to an output port
P Program Step
Q Quit
R Register
Rxx value Set register xx to value
T Trace
U address Unassemble statements at address

In this chapter we will mainly consider those commands that manipulate memory.
Execution commands like the breakpoint , trace, and go commands appear in a later chap-
ter. Of course, it wouldn’t hurt for you to learn some of the other commands, you may
find some of them to be useful.

4.9.5.7.1 The Radix Command (N)

The first command window command you must learn is the RADIX (base selection)
command. By default, CodeView works in decimal (base 10). This is very inconvenient for
assembly language programmers so you should always execute the radix command upon
entering CodeView and set the base to hexadecimal. To do this, use the command

N 16

Chapter 04

Page 178

4.9.5.7.2 The Assemble Command

The CodeView command window Assemble command works in a fashion not unlike
the SIM886 assemble command. The command uses the syntax:

A address

Address is the starting address of the machine instructions. This is either a full segmented
address (ssss:oooo, ssss is the segment, oooo is the offset) or a simple offset value of the form
oooo. If you supply only an offset, CodeView uses CS’ current value as the segment
address.

After you press Enter, CodeView will prompt you to enter a sequence of machine
instructions. Pressing Enter by itself terminates the entry of assembly language instruc-
tions. Figure 4.24 is an example of this command in action.

The Assemble command is one of the few commands available only in the command
window. Apparently, Microsoft does not expect programmers to enter assembly language
code into memory using CodeView. This is not an unreasonable assumption since Code-
View is a a high level language source level debugger.

In general, the CodeView Assemble command is useful for quick patches to a program,
but it is no substitute for MASM 6.x. Any changes you make to your program with the
assemble command will not appear in your source file. It’s very easy to correct a bug in
CodeView and forget to make the change to your original source file and then wonder
why the bug is still in your code.

4.9.5.7.3 The Compare Memory Command

The Memory Compare command will compare the bytes in one block of memory
against the bytes in a second block of memory. It will report any differences between the
two ranges of bytes. This is useful, for example, to see if a program has initialized two
arrays in an identical fashion or to compare two long strings. The compare command
takes the following forms:

MC start_address end_address second_block_address

Figure 4.24 The Assemble Command

Memory Layout and Access

Page 179

MC start_address L length_of_block second_block_address

The first form compares the bytes from memory locations start_address through
end_address with the data starting at location second_block_address. The second form lets
you specify the size of the blocks rather than specify the ending address of the first block.
If CodeView detects any differences in the two ranges of bytes, it displays those differ-
ences and their addresses. The following are all legal compare commands:

MC 8000:0 8000:100 9000:80

MC 8000:100 L 20 9000:0

MC 0 100 200

The first command above compares the block of bytes from locations 8000:0 through
8000:100 against a similarly sized block starting at address 9000:80 (i.e., 9000:80..180).

The second command above demonstrates the use of the “L” option which specifies a
length rather than an ending address. In this example, CodeView will compare the values
in the range 8000:0..8000:1F (20h/32 bytes) against the data starting at address 9000:0.

The third example above shows that you needn’t supply a full segmented address for
the starting_address and second_block_address values. By default, CodeView uses the data
segment (DS:) if you do not supply a segment portion of the address. Note, however, that
if you supply a starting and ending address, they must both have the same segment value;
you must supply the same segment address to both or you must let both addresses default
to DS’ value.

If the two blocks are equal, CodeView immediately prompts you for another com-
mand without printing anything to the command window. If there are differences
between the two blocks of bytes, however, CodeView lists those differences (and their
addresses) in the command window.

In the example in Figure 4.25, memory locations 8000:0 through 8000:200 were first
initialized to zero. Then locations 8000:10 through 8000:1E were set to 1, 2, 3, ..., 0Fh.
Finally, the Memory Compare command compared the bytes in the range 8000:0…8000:FF
with the block of bytes starting at address 8000:100. Since locations 8000:10…8000:1E were
different from the bytes at locations 8000:110…8000:11E, CodeView printed their
addresses and differences.

Figure 4.25 The Memory Compare Command

Chapter 04

Page 180

4.9.5.7.4 The Dump Memory Command

The Dump command lets you display the values of selected memory cells. The Mem-
ory window in CodeView also lets you view (and modify) memory. However, the Dump
command is sometimes more convenient, especially when looking at small blocks of
memory.

The Dump command takes several forms, depending on the type of data you want to
display on the screen. This command typically takes one of the forms:

D starting_address ending_address

D starting_address L length

By default, the dump command displays 16 hexadecimal and ASCII byte values per
line (just like the Memory window).

There are several additional forms of the Dump command that let you specify the dis-
play format for the data. However, the exact format seems to change with every version of
CodeView. For example, in CodeView 4.10, you would use commands like the following:

DA address_range Dump ASCII characters
DB address_range Dump hex bytes/ASCII (default)
DI address_range Dump integer words
DIU address_range Dump unsigned integer words
DIX address_range Dump 16-bit values in hex
DL address_range Dump 32-bit integers
DLU address_range Dump 32-bit unsigned integers
DLX address_range Dump 32-bit values in hex
DR address_range Dump 32-bit real values
DRL address_range Dump 64-bit real values
DRT address_range Dump 80-bit real values

You should probably check the help associated with your version of CodeView to ver-
ify the exact format of the memory dump commands. Note that some versions of Code-
View allow you to use MDxx for the memory dump command.

Once you execute one of the above commands, the “D” command name displays the data
in the new format. The “DB” command reverts back to byte/ASCII display. Figure 4.26
provides an example of these commands.

Figure 4.26 The Memory Dump Command

Memory Layout and Access

Page 181

If you enter a dump command without an address, CodeView will display the data
immediately following the last dump command. This is sometimes useful when viewing
memory.

4.9.5.7.5 The Enter Command

The CodeView Memory windows lets you easily display and modify the contents of
memory. From the command window it takes two different commands to accomplish
these tasks: Dump to display memory data and Enter to modify memory data. For most
memory modification tasks, you’ll find the memory windows easier to use. However, the
CodeView Enter command handles a few tasks easier than the Memory window.

Like the Dump command, the Enter command lets you enter data in several different
formats. The commands to accomplish this are

EA- Enter data in ASCII format
EB- Enter byte data in hexadecimal format
ED- Enter double word data in hexadecimal format
EI- Enter 16-bit integer data in (signed) decimal format
EIU- Enter 16-bit integer data in (unsigned) decimal format.
EIX- Enter 16-bit integer data in hexadecimal format.
EL- Enter 32-bit integer data in (signed) decimal format
ELU- Enter 32-bit integer data in (unsigned) decimal format.
ELX- Enter 32-bit integer data in hexadecimal format.
ER- Enter 32-bit floating point data
ERL- Enter 64-bit floating pont data
ERT- Enter 80-bit floating point data

Like the Dump command, the syntax for this command changes regularly with different
versions of CodeView. Be sure to use CodeView’s help facility if these commands don’t
seem to work. MExx is a synonym for Exx in CodeView.

Enter commands take two possible forms:

Ex starting_address

Ex starting_address list_of_values

The first form above is the interactive Enter command. Upon pressing the key, Code-
view will display the starting address and the data at that address, then prompt you to
enter a new value for that location. Type the new value followed by a space and Code-
View will prompt you for the value for the next location; typing a space by itself skips
over the current location; typing the enter key or a value terminated with the enter key
terminates the interactive Enter mode. Note that the EA command does not let you enter
ASCII values in the interactive mode. It behaves exactly like the EB command during data
entry.

The second form of the Enter command lets you enter a sequence of values into mem-
ory a single entry. With this form of the Enter command, you simply follow the starting
address with the list of values you want to store at that address. CodeView will automati-
cally store each value into successive memory locations beginning at the starting address.
You can enter ASCII data using this form of Enter by enclosing the characters in quotes.
Figure 4.27 demonstrates the use of the Enter command.

There are a couple of points concerning the Enter command of which you should be
aware. First of all, you cannot use “E” as a command by itself . Unlike the Dump com-
mand, this does not mean “begin entering data after the last address.” Instead, this is a
totally separate command (Animate). The other thing to note is that the current display
mode (ASCII, byte, word, double word, etc.) and the current entry mode are not indepen-
dent. Changing the default display mode to word also changes the entry mode to word,
and vice versa.

Chapter 04

Page 182

4.9.5.7.6 The Fill Memory Command

The Enter command and the Memory window let you easily change the value of indi-
vidual memory locations, or set a range of memory locations to several different values. If
you want to clear an array or otherwise initialize a block of memory locations so that they
all contain the same values, the Memory Fill command provides a better alternative.

The Memory Fill command uses the following syntax:

MF starting_address ending_address values

MF starting_address L block_length values

The Memory Fill command fills memory locations starting_address through ending_address
with the byte values specified in the values list. The second form above lets you specify the
block length rather than the ending address.

The values list can be a single value or a list of values. If values is a single byte value,
then the Memory Fill command initializes all the bytes of the memory block with that
value. If values is a list of bytes, the Fill command repeats that sequence of bytes over and
over again in memory. For example, the following command stores 1 2 3 4 5 1 2 3 4 5 1 2 3
4 5... to the 256 bytes starting at location 8000:0

F 8000:0 L 100 1 2 3 4 5

Unfortunately, the Fill command works only with byte (or ASCII string) data. However,
you can simulate word, doubleword, etc., memory fills breaking up those other values
into their component bytes. Don’t forget, though, that the L.O. byte always comes first.

4.9.5.7.7 The Move Memory Command

This Command window operation copies data from one block of memory to another.
This lets you copy the data from one array to another, move code around in memory, rein-
itialize a group of variables from a saved memory block, and so on. The syntax for the
Memory Move command is as follows:

Figure 4.27 The Enter Command

Memory Layout and Access

Page 183

MM starting_address ending_address destination_address

MM starting_address L block_length destination_address

If the source and destination blocks overlap, CodeView detects this and handles the mem-
ory move operation correctly.

4.9.5.7.8 The Input Command

The Input command lets you read data from one of the 80x86’s 65,536 different input
ports. The syntax for this command is

I port_address

where port_address is a 16-bit value denoting the I/O port address to read. The input com-
mand reads the byte at that port and displays its value.

Note that it is not a wise idea to use this command with an arbitrary address. Certain
devices activate some functions whenever you read one of their I/O ports. By reading a
port you may cause the device to lose data or otherwise disturb that device.

Note that this command only reads a single byte from the specified port. If you want
to read a word or double-word from a given input port you will need to execute two suc-
cessive Input operations at the desired port address and the next port address.

This command appears to be broken in certain versions of CodeView (e.g., 4.01).

4.9.5.7.9 The Output Command

The Output command is complementary to the Input command. This command lets
you output a data value to a port. It uses the syntax:

O port_address output_value

Output_value is a single byte value that CodeView will write to the output port given by
port_address.

Note that CodeView also uses the “O” command to set options. If it does not recog-
nize a valid port address as the first operand it will think this is an Option command. If
the Output command doesn’t seem to be working properly, you’ve probably switched out
of the assembly language mode (CodeView supports BASIC, Pascal, C, and FORTRAN in
addition to assembly language) and the port address you’re entering isn’t a valid numeric
value in the new mode. Be sure to use the N 16 command to set the default radix to hexa-
decimal before using this command!

4.9.5.7.10 The Quit Command

Pressing Q (for Quit) terminates the current debugging session and returns control to
MS-DOS. You can also quit CodeView by selecting the Exit item from the File menu.

4.9.5.7.11 The Register Command

The CodeView Register command lets you view and change the values of the regis-
ters. To view the current values of the 80x86 registers you would use the following com-
mand:

R

Chapter 04

Page 184

This command displays the registers and disassembles the instruction at address CS:IP.

You can also change the value of a specific register using a command of the form:

Rxx
-or-

Rxx = value

where xx represents one of the 80x86’s register names: AX, BX, CX, DX, SI, DI, BP, SP, CS,
DS, ES, SS, IP, or FL. The first version (“Rxx”) displays the specified register and then
prompts you to enter a new value. The second form of this command above immediately
sets the specified register to the given value (see Figure 4.28).

4.9.5.7.12 The Unassemble Command

The Command window Unassemble command will disassemble a sequence of
instructions at an address you specify, converting the binary machine codes into (barely)
readable machine instructions. The basic command uses the following syntax:

U address
Note that you must have a source window open for this instruction to operate properly!

In general, the Unassemble command is of little use because the Source window lets
you view your program at the source level (rather than at the disassembled machine lan-
guage level). However, the Unassemble command is great for disassembling BIOS, DOS,
TSRs, and other code in memory.

4.9.5.8 CodeView Function Keys

CodeView uses the function keys on the PC’s keyboard for often-executed operations.
The following table gives a brief description of the use of each function key.

Figure 4.28 The Register Command

Memory Layout and Access

Page 185

The F3 function key deserves special mention. Pressing this key toggles the source
mode between machine language (actually, disassembled machine language), mixed, and
source. In source mode (assuming you’ve assembled your code with the proper options)
the source window displays your actual source code. In mixed mode, CodeView displays
a line of source code followed by the machine code generated for that line of source code.
This mode is primarily for high level language users, but it does have some utility for
assembly language users as you’ll see when you study macros. In machine mode, Code-
View ignores your source code and simply disassembles the binary opcodes in memory.
This mode is useful if you suspect a bug in MASM (they do exist) and you’re not sure than
MASM is assembling your code properly.

4.9.5.9 Some Comments on CodeView Addresses

The examples given for addresses in the previous sections are a little misleading. You
could easily get the impression that you have to enter an address in hexadecimal form,
i.e., ssss:oooo or oooo. Actually, you can specify memory addresses in many different ways.
For example, if you have a variable in your assembly language program named MyVar,
you could use a command like

D Myvar
to display the value of this variable15. You do not need to know the address, nor even the
segment of that variable. Another way to specify an address is via the 80x86 register set.
For example, if ES:BX points at the block of memory you want to display, you could use
the following command to display your data:

D ES:BX
CodeView will use the current values in the es and bx registers as the address of the block
of memory to display. There is nothing magical about the use of the registers. You can use
them just like any other address component. In the example above, es held the segment
value and bx held the offset— very typical for an 80x86 assembly language program.

15. This requires that you assemble your program in a very special way, but we’re getting to that.

Table 26: Function Key Usage in CodeView

Function
Key

Alone Shift Ctrl Alt

F1 Help Help contents Next Help Prev Help

F2 Register Win-
dow

F3 Source Window
Mode

Memory Win-
dow Mode

F4 Output Screen Close Window

F5 Run

F6 Switch Window Prev Window

F7 Execute to cur-
sor

F8 Trace Prev History Size window

F9 Breakpoint

F10 Step instrs, run
calls.

Next History Maximize Win-
dow

Chapter 04

Page 186

However, CodeView does not require you to use legal 80x86 combinations. For example,
you could dump the bytes at address cx:ax using the dump command

D CX:AX
The use of 80x86 registers is not limited to specifying source addresses. You can spec-

ify destination addresses and even lengths using the registers:

D CX:AX L BX ES:DI
Of course, you can mix and match the use of registers and numeric addresses in the same
command with no problem:

D CX:AX L 100 8000:0

You can also use complex arithmetic expressions to specify an address in memory. In
particular, you can use the addition operator to compute the sum of various components
of an address. This works out really neat when you need to simulate 80x86 addressing
modes. For example, if you want to see which byte is at address 1000[bx], you could use
the command:

D BX+1000 L 1

To simulate the [BX][SI] addressing mode and look at the word at that address you could
use the command:

DIX BX+SI L 1

The examples presented in this section all use the Dump command, but you can use
this technique with any of the CodeView commands. For more information concerning
what constitutes valid CodeView address, as well as a full explanation of allowable
expression forms, please consult the CodeView on-line help system.

4.9.5.10 A Wrap on CodeView

We’re not through discussing CodeView by any means. In particular, we’ve not dis-
cussed the execution, single stepping, and breakpoint commands which are crucial for
debugging programs. We will return to these subjects in later chapters. Nonetheless,
we’ve covered a considerable amount of material, certainly enough to deal with most of
the experiments in this laboratory exercise. As we need those other commands, this man-
ual will introduce them.

Of course, there are two additional sources of information on CodeView available to
you— the section on CodeView in the “Microsoft Macro Assembler Programmer’s Guide”
and the on-line help available inside CodeView. In particular, the on-line help is quite use-
ful for figuring out how a specific command works inside CodeView.

4.9.6 Laboratory Tasks

The Chapter Four subdirectory on the companion CD-ROM contains a sample file
named EX4_1.ASM. Assemble this program using MASM (do not use the /Zi option for
the time being). For your lab report: include a print-out of the program. Describe what the
program does. Run the program and include a print-out of the program’s output with
your lab report.

Whenever you assemble a program MASM, by default, writes one byte of data to the
file for every instruction byte and data variable in the program, even if that data is unini-
tialized. If you declare large arrays in your program the EXE file ML produces will be
quite large as well. Note the size of the EX4_1.EXE program you created above. Now reas-
semble the program using the following command:

ml EX4_1.asm /link /exepack

ML passes the “/link /exepack” option on to the linker. The exepack option tells the
linker to pack the EXE file by removing redundant information (in particular, the unini-

Memory Layout and Access

Page 187

tialized data). This often makes the EXE file much smaller. For your lab report: after
assembling the file using the command above, note the size of the resulting EXE file. Com-
pare the two sizes and comment on their difference in your lab report.

Note that the EXEPACK option only saves disk space. It does not make the program
use any less memory while it is running. Furthermore, you cannot load programs you’ve
packed with the EXEPACK option into the CodeView debugger. Therefore, you should
not use the EXEPACK option during program development and testing. You should only
use this option once you’ve eliminated all the bugs from the program and further devel-
opment ceases.

Using your editor of choice, edit the x86.asm file. Read the comments at the beginning
of the program that explain how to write x86 programs that assemble and run on the
80x86 CPU. For your lab report: describe the restrictions on the x86 programs you can
write.

The EX4_2.ASM source file is a copy of the x86.ASM file with a few additional com-
ments in the main program describing a set of procedures you should follow. Load this
file into your text editor of choice and read the instructions in the main program. Follow
them to produce a program. Assemble this program using ML and execute the resulting
EX4_2.EXE program file. For your lab report: include a print-out of your resulting pro-
gram. Include a print-out of the program’s output when you run it.

Trying loading EX4_2.EXE into CodeView using the following DOS Window com-
mand:

cv EX4_2

When CodeView runs you will notice that it prints a message in the command window
complaining that there is “no CodeView information for EX4_2.EXE.” Look at the code in
the source window. Try and find the instructions you place in the main program. For your
lab report: contrast the program listing appearing in the CodeView source window with
that produced on the Emulator screen of the SIMx86 program.

Now reassemble the EX4_2.asm file and load it into CodeView using the following
DOS commands:

ml /Zi EX4_2.asm
cv EX4_2

For your lab report: describe the difference in the CodeView source window when using
the /Zi ML option compared to the CodeView source window without this option.

4.10 Programming Projects

Note: You are to write these programs in 80x86 assembly language code using a copy of
the X86.ASM file as the starting point for your programs. The 80x86 instruction set is
almost a superset of the x86 instruction set. Therefore, you can use most of the instructions
you learned in the last chapter. Read the comments at the beginning of the x86.ASM file
for more details. Note in particular that you cannot use the label “C” in your program
because “C” is a reserved word in MASM. Include a specification document, a test plan,
a program listing, and sample output with your program submissions.

1) The following projects are modifications of the programming assignments in the previous
chapter. Convert those x86 programs to their 80x86 counterparts.

1a. The x86 instruction set does not include a multiply instruction. Write a short program that
reads two values from the user and displays their product (hint: remember that multipli-
cation is just repeated addition).

1b. Write a program that reads three values from the user: an address it puts into BX, a count
it puts into CX, and a value it puts in AX. It should write CX copies of AX to successive
words in memory starting at address BX (in the data segment).

Chapter 04

Page 188

1c. Write the generic logic function for the x86 processor (see Chapter Two). Hint: add ax, ax
does a shift left on the value in ax. You can test to see if the high order bit is set by checking
to see if ax is greater than 8000h.

1d. Write a program that scans an array of words starting at address 1000h and memory, of
the length specified by the value in cx, and locates the maximum value in that array. Dis-
play the value after scanning the array.

1e. Write a program that computes the two’s complement of an array of values starting at
location 1000h. CX should contain the number of values in the array. Assume each array
element is a two-byte integer.

1f. Write a simple program that sorts the words in memory locations 1000..10FF in ascending
order. You can use a simple insertion sort algorithm. The Pascal code for such a sort is

for i := 0 to n-1 do
for j := i+1 to n do

if (memory[i] > memory[j]) then
begin

temp := memory[i];
memory[i] := memory[j];
memory[j] := temp;

end;

For the following projects, feel free to use any additional 80x86 addressing modes that
might make the project easier to write.

2) Write a program that stores the values 0, 1, 2, 3, ..., into successive words in the data seg-
ment starting at offset 3000h and ending at offset 3FFEh (the last value written will be
7FFh). Then store the value 3000h to location 1000h. Next, write a code segment that sums
the 512 words starting at the address found in location 1000h. This portion of the program
cannot assume that 1000h contains 3000h. Print the sum and then quit.

4.11 Summary

This chapter presents an 80x86-centric view of memory organization and data struc-
tures. This certainly isn’t a complete course on data structures, indeed this topic appears
again later in Volume Two. This chapter discussed the primitive and simple composite
data types and how to declare and use them in your program. Lots of additional informa-
tion on the declaration and use of simple data types appears in “MASM: Directives &
Pseudo-Opcodes” on page 355.

The 8088, 8086, 80188, 80186, and 80286 all share a common set of registers which typ-
ical programs use. This register set includes the general purpose registers: ax, bx, cx, dx, si,
di, bp, and sp; the segment registers: cs, ds, es, and ss; and the special purpose registers ip
and flags. These registers are 16 bits wide. These processors also have eight 8 bit registers:
al, ah, bl, bh, cl, ch, dl, and dh which overlap the ax, bx, cx, and dx registers. See:

• “8086 General Purpose Registers” on page 146
• “8086 Segment Registers” on page 147
• “8086 Special Purpose Registers” on page 148

In addition, the 80286 supports several special purpose memory management regis-
ters which are useful in operating systems and other system level programs. See:

• “80286 Registers” on page 148

The 80386 and later processors extend the general purpose and special purpose regis-
ter sets to 32 bits. These processors also add two additional segment registers you can use
in your application programs. In addition to these improvements, which any program can
take advantage of, the 80386/486 processors also have several additional system level reg-
isters for memory management, debugging, and processor testing. See:

• “80386/80486 Registers” on page 149

Memory Layout and Access

Page 189

The Intel 80x86 family uses a powerful memory addressing scheme known as seg-
mented addressing that provides simulated two dimensional addressing. This lets you
group logically related blocks of data into segments. The exact format of these segments
depends on whether the CPU is operating in real mode or protected mode. Most DOS pro-
grams operate in real mode. When working in real mode, it is very easy to convert a logical
(segmented) address to a linear physical address. However, in protected mode this conver-
sion is considerably more difficult. See:

• “Segments on the 80x86” on page 151

Because of the way segmented addresses map to physical addresses in real mode, it is
quite possible to have two different segmented addresses that refer to the same memory
location. One solution to this problem is to use normalized addresses. If two normalized
addresses do not have the same bit patterns, they point at different addresses. Normalized
pointers are useful when comparing pointers in real mode. See:

• “Normalized Addresses on the 80x86” on page 154

With the exception of two instructions, the 80x86 doesn’t actually work with full 32 bit
segmented addresses. Instead, it uses segment registers to hold default segment values.
This allowed Intel’s designers to build a much smaller instruction set since addresses are
only 16 bits long (offset portion only) rather than 32 bits long. The 80286 and prior proces-
sors provide four segment registers: cs, ds, es, and ss; the 80386 and later provide six
segment registers: cs, ds, es, fs, gs, and ss. See:

• “Segment Registers on the 80x86” on page 155

The 80x86 family provides many different ways to access variables, constants, and
other data items. The name for a mechanism by which you access a memory location is
addressing mode. The 8088, 8086, and 80286 processors provide a large set of memory
addressing modes. See:

• “The 80x86 Addressing Modes” on page 155
• “8086 Register Addressing Modes” on page 156
• “8086 Memory Addressing Modes” on page 156

The 80386 and later processors provide an expanded set of register and memory
addressing modes. See:

• “80386 Register Addressing Modes” on page 163
• “80386 Memory Addressing Modes” on page 163

The most common 80x86 instruction is the mov instruction. This instruction supports
most of the addressing modes available on the 80x86 processor family. Therefore, the mov
instruction is a good instruction to look at when studying the encoding and operation of
80x86 instructions. See:

• “The 80x86 MOV Instruction” on page 166

The mov instruction takes several generic forms, allowing you to move data between
a register and some other location. The possible source/destination locations include: (1)
other registers, (2) memory locations (using a general memory addressing mode), (3) con-
stants (using the immediate addressing mode), and (4) segment registers.

The mov instruction lets you transfer data between two locations (although you can-
not move data between two memory locations see the discussion of the mod-reg-r/m
byte).

Chapter 04

Page 190

4.12 Questions

1) Although the 80x86 processors always use segmented addresses, the instruction encod-
ings for instructions like “mov AX, I” only have a 16 bit offset encoded into the opcode.
Explain.

2) Segmented addressing is best described as a two dimensional addressing scheme. Explain.

3) Convert the following logical addresses to physical addresses. Assume all values are hexa-
decimal and real mode operation on the 80x86:

a) 1000:1000 b) 1234:5678 c) 0:1000 d) 100:9000 e) FF00:1000

f) 800:8000 g) 8000:800 h) 234:9843 i) 1111:FFFF j) FFFF:10

4) Provide normalized forms of the logical addresses above.

5) List all the 8086 memory addressing modes.

6) List all the 80386 (and later) addressing mode that are not available on the 8086 (use
generic forms like disp[reg], do no enumerate all possible combinations).

7) Besides memory addressing modes, what are the other two major addressing modes on
the 8086?

8) Describe a common use for each of the following addressing modes:

a) Register b) Displacement only c) Immediate

d) Register Indirect e) Indexed f) Based indexed

g) Based indexed plus displacement h) Scaled indexed

9) Given the bit pattern for the generic MOV instruction (see “The 80x86 MOV Instruction”
on page 166) explain why the 80x86 does not support a memory to memory move opera-
tion.

10) Which of the following MOV instructions are not handled by the generic MOV instruction
opcode? Explain.

a) mov ax, bx b) mov ax, 1234 c) mov ax, I

d) mov ax, [bx] e) mov ax, ds f) mov [bx], 2

11) Assume the variable “I” is at offset 20h in the data segment. Provide the binary encodings
for the above instructions.

12) What determines if the R/M field specifies a register or a memory operand?

13) What field in the REG-MOD-R/M byte determines the size of the displacement following
an instruction? What displacement sizes does the 8086 support?

14) Why doesn’t the displacement only addressing mode support multiple displacement
sizes?

15) Why would you not want to interchange the two instructions “mov ax, [bx]” and
“mov ax,[ebx]”?

16) Certain 80x86 instructions take several forms. For example, there are two different ver-
sions of the MOV instruction that load a register with an immediate value. Explain why
the designers incorporated this redundancy into the instruction set.

17) Why isn’t there a true [bp] addressing mode?

18) List all of the 80x86 eight bit registers.

19) List all the 80x86 general purpose 16 bit registers.

20) List all the 80x86 segment registers (those available on all processors).

21) Describe the “special purposes” of each of the general purpose registers.

22) List all the 80386/486/586 32 bit general purpose registers.

Memory Layout and Access

Page 191

23) What is the relationship between the 8, 16, and 32 bit general purpose registers on the
80386?

24) What values appear in the 8086 flags register? The 80286 flags register?

25) Which flags are the condition codes?

26) Which extra segment registers appear on the 80386 but not on earlier processors?

Chapter 04

Page 192

Page 195

Variables and Data Structures Chapter Five

Chapter One discussed the basic format for data in memory. Chapter Three covered
how a computer system physically organizes that data. This chapter finishes this discus-
sion by connecting the concept of

data representation

 to its actual physical representation.
As the title implies, this chapter concerns itself with two main topics: variables and data
structures. This chapter does not assume that you’ve had a formal course in data struc-
tures, though such experience would be useful.

5.0 Chapter Overview

This chapter discusses how to declare and access scalar variables, integers, reals, data
types, pointers, arrays, and structures. You must master these subjects before going on to
the next chapter. Declaring and accessing arrays, in particular, seems to present a multi-
tude of problems to beginning assembly language programmers. However, the rest of this
text depends on your understanding of these data structures and their memory represen-
tation. Do not try to skim over this material with the expectation that you will pick it up as
you need it later. You will need it right away and trying to learn this material along with
later material will only confuse you more.

5.1 Some Additional Instructions: LEA, LES, ADD, and MUL

The purpose of this chapter is not to present the 80x86 instruction set. However, there
are four additional instructions (above and beyond

mov

) that will prove handy in the dis-
cussion throughout the rest of this chapter. These are the

load effective address

 (

lea

),

load

es

and general purpose register

(

les

),

addition

 (

add

), and

multiply

 (

mul

). These instructions,
along with the

mov

 instruction, provide all the necessary power to access the different
data types this chapter discusses.

The

lea

instruction takes the form:

lea reg

16

, memory

reg

16

is a 16 bit general purpose register.

Memory

 is a memory location represented by a
mod/reg/rm byte

1

 (except it must be a memory location, it cannot be a register).

This instruction loads the 16 bit register with the offset of the location specified by the
memory operand.

lea ax,1000h[bx][si],

 for example, would load

ax

 with the address of the
memory location pointed at by

1000h[bx][si].

 This, of course, is the value

 1000h+bx+si. Lea

is also quite useful for obtaining the address of a variable. If you have a variable I some-
where in memory,

 lea bx,I

will load the

bx

 register with the address (offset) of I.

The

les

 instruction takes the form

les reg

16

, memory

32

This instruction loads the

es

 register and one of the 16 bit general purpose registers
from the specified memory address. Note that any memory address you can specify with
a mod/reg/rm byte is legal but like the

lea

 instruction it must be a memory location, not a
register.

The

les

 instruction loads the specified general purpose register from the word at the
given address, it loads the

es

 register from the following word in memory. This instruc-
tion, and it’s companion

lds

 (which loads

ds

) are the only instructions on pre-80386
machines that manipulate 32 bits at a time.

1. Or by the mod/reg/rm -- sib addressing mode bytes on the 80386.

Thi d t t d ith F M k 4 0 2

Chapter 05

Page 196

The

add

 instruction, like it’s x86 counterpart, adds two values on the 80x86. This
instruction takes several forms. There are five forms that concern us here. They are

add reg, reg
add reg, memory
add memory, reg
add reg, constant
add memory, constant

All these instructions add the second operand to the first leaving the sum in the first oper-
and. For example,

add bx,5

computes

 bx := bx + 5.

The last instruction to look at is the

mul

 (multiply) instruction. This instruction has
only a single operand and takes the form:

mul reg/memory

There are many important details concerning

mul

 that this chapter ignores. For the
sake of the discussion that follows, assume that the register or memory location is a 16 bit
register or memory location. In such a case this instruction computes

 dx:ax :=ax*reg/mem

2

.
Note that there is no immediate mode for this instruction.

5.2 Declaring Variables in an Assembly Language Program

Although you’ve probably surmised that memory locations and variables are some-
what related, this chapter hasn’t gone out of its way to draw strong parallels between the
two. Well, it’s time to rectify that situation. Consider the following short (and useless) Pas-
cal program:

program useless(input,output);
var i,j:integer;
begin

i := 10;
write(‘Enter a value for j:’);
readln(j);
i := i*j + j*j;
writeln(‘The result is ‘,i);

end.

When the computer executes the statement

 i:=10;

3

 it makes a copy of the value 10 and
somehow remembers this value for use later on. To accomplish this, the compiler sets
aside a memory location specifically for the exclusive use of the variable

i.

 Assuming the
compiler arbitrarily assigned location DS:10h for this purpose it could use the instruction

 mov ds:[10h],10

to accomplish this

4

. If

 i

is a 16 bit word, the compiler would probably
assign the variable

 j

to the word starting at location 12h or 0Eh. Assuming it’s location 12h,
the second assignment statement in the program might wind up looking like the follow-
ing:

mov ax, ds:[10h] ;Fetch value of I
mul ds:[12h] ;Multiply by J
mov ds:[10h], ax ;Save in I (ignore overflow)
mov ax, ds:[12h] ;Fetch J
mul ds:[12h] ;Compute J*J
add ds:[10h], ax ;Add I*J + J*J, store into I

2. Any time you multiply two 16 bit values you could get a 32 bit result. The 80x86 places this 32 bit result in

dx:ax

with the H.O. word in

dx

 and the L.O. word in

ax

.
3. Actually, the computer executes the

machine code

 emitted by the Pascal compiler for this statement; but you need
not worry about such details here.
4. But don’t try this at home, folks! There is one minor syntactical detail missing from this instruction. MASM will
complain bitterly if you attempt to assemble this particular instruction.

Variables and Data Structures

Page 197

Although there are a few details missing from this code, it is fairly straightforward
and you can easily see what is going on in this program.

Now imagine a 5,000 line program like this one using variables like ds:[10h], ds:[12h],
ds:[14h

],

etc. Would you want to locate the statement where you accidentally stored the
result of a computation into

 j

rather than

 i

? Indeed, why should you even care that the
variable

 i

is at location 10h and

 j

is at location 12h? Why shouldn’t you be able to use
names like

 i

and

 j

 rather than worrying about these numerical addresses? It seems reason-
able to rewrite the code above as:

mov ax, i
mul j
mov i, ax
mov ax, j
mul j
add i, ax

Of course you can do this in assembly language! Indeed, one of the primary jobs of an
assembler like MASM is to let you use symbolic names for memory locations. Further-
more, the assembler will even assign locations to the names automatically for you. You
needn’t concern yourself with the fact that variable

 i

is really the word at memory location
DS:10h unless you’re curious.

It should come as no surprise that

ds

 will point to the dseg segment in the
SHELL.ASM file. Indeed, setting up

ds

 so that it points at dseg is one of the first things
that happens in the SHELL.ASM main program. Therefore, all you’ve got to do is tell the
assembler to reserve some storage for your variables in dseg and attach the offset of said
variables with the names of those variables. This is a very simple process and is the sub-
ject of the next several sections.

5.3 Declaring and Accessing Scalar Variables

Scalar variables hold single values. The variables

 i

and

 j

in the preceding section are
examples of scalar variables. Examples of data structures that are not scalars include
arrays, records, sets, and lists. These latter data types are made up from scalar values.
They are the

composite types

. You’ll see the composite types a little later; first you need to
learn to deal with the scalar types.

To declare a variable in dseg, you would use a statement something like the following:

ByteVar byte ?

ByteVar

 is a

label

. It should begin at column one on the line somewhere in the dseg segment
(that is, between the

 dseg segment

and

 dseg ends

statements). You’ll find out all about
labels in a few chapters, for now you can assume that most legal Pascal/C/Ada identifiers
are also valid assembly language labels.

If you need more than one variable in your program, just place additional lines in the
dseg segment declaring those variables. MASM will automatically allocate a unique stor-
age location for the variable (it wouldn’t be too good to have

 i

and

 j

located at the same
address now, would it?). After declaring said variable, MASM will allow you to refer to
that variable

by name

 rather than by location in your program. For example, after inserting
the above statement into the data segment (dseg), you could use instructions like

mov ByteVar,al

 in your program.

The first variable you place in the data segment gets allocated storage at location DS:0.
The next variable in memory gets allocated storage just beyond the previous variable. For
example, if the variable at location zero was a byte variable, the next variable gets allo-
cated storage at DS:1. However, if the first variable was a word, the second variable gets
allocated storage at location DS:2. MASM is always careful to allocate variables in such a
manner that they do not overlap. Consider the following dseg definition:

Chapter 05

Page 198

dseg segment para public ‘data’
bytevar byte ? ;byte allocates bytes
wordvar word ? ;word allocates words
dwordvar dword ? ;dword allocs dbl words
byte2 byte ?
word2 word ?
dseg ends

MASM allocates storage for

bytevar

 at location DS:0. Because

bytevar

 is one byte long,
the next available memory location is going to be DS:1. MASM, therefore, allocates storage
for

wordvar

 at location DS:1. Since words require two bytes, the next available memory
location after

wordvar

 is DS:3 which is where MASM allocates storage for

dwordvar

.

Dword-
var

is four bytes long, so MASM allocates storage for

byte2

 starting at location DS:7. Like-
wise, MASM allocates storage for

word2

 at location DS:8. Were you to stick another
variable after

word2

, MASM would allocate storage for it at location DS:0A.

Whenever you refer to one of the names above, MASM automatically substitutes the
appropriate offset. For example, MASM would translate the

mov ax,wordvar

instruction
into

 mov ax,ds:[1].

 So now you can use symbolic names for your variables and completely
ignore the fact that these variables are really memory locations with corresponding offsets
into the data segment.

5.3.1 Declaring and using BYTE Variables

So what are byte variables good for, anyway? Well you can certainly represent any
data type that has less than 256 different values with a single byte. This includes some
very important and often-used data types including the character data type, boolean data
type, most enumerated data types, and small integer data types (signed and unsigned),
just to name a few.

Characters on a typical IBM compatible system use the eight bit ASCII/IBM character
set (see “A: ASCII/IBM Character Set” on page 1345). The 80x86 provides a rich set of
instructions for manipulating character data. It’s not surprising to find that most byte
variables in a typical program hold character data.

The boolean data type represents only two values: true or false. Therefore, it only
takes a single bit to represent a boolean value. However, the 80x86 really wants to work
with data at least eight bits wide. It actually takes extra code to manipulate a single bit
rather than a whole byte. Therefore, you should use a whole byte to represent a boolean
value. Most programmers use the value zero to represent false and anything else (typi-
cally one) to represent true. The 80x86’s zero flag makes testing for zero/not zero very
easy. Note that this choice of zero or non-zero is mainly for convenience. You could use

any

 two different values (or two different sets of values) to represent true and false.

Most high level languages that support enumerated data types convert them (inter-
nally) to unsigned integers. The first item in the list is generally item zero, the second item
in the list is item one, the third is item two, etc. For example, consider the following Pascal
enumerated data type:

colors = (red, blue, green, purple, orange, yellow, white, black);

Most Pascal compilers will assign the value zero to red, one to blue, two to green, etc.

Later, you will see how to actually create your own enumerated data types in assem-
bly language. All you need to learn now is how to allocate storage for a variable that holds
an enumerated value. Since it’s unlikely there will be more than 256 items enumerated by
the data type, you can use a simple byte variable to hold the value. If you have a variable,
say

color

 of type

colors

, using the instruction mov color,2 is the same thing as saying
color:=green in Pascal. (Later, you’ll even learn how to use more meaningful statements
like mov color,green to assign the color green to the color variable).

Of course, if you have a small unsigned integer value (0…255) or small signed integer
(-128…127) a single byte variable is the best way to go in most cases. Note that most pro-

Variables and Data Structures

Page 199

grammers treat all data types except small signed integers as unsigned values. That is,
characters, booleans, enumerated types, and unsigned integers are all usually unsigned
values. In some very special cases you might want to treat a character as a signed value,
but most of the time even characters are unsigned values.

There are three main statements for declaring byte variables in a program. They are

identifier db ?
identifier byte ?
and
identifier sbyte ?

identifier represents the name of your byte variable. “db” is an older term that predates
MASM 6.x. You will see this directive used quite a bit by other programmers (especially
those who are not using MASM 6.x or later) but Microsoft considers it to be an obsolete
term; you should always use the byte and sbyte declarations instead.

The byte declaration declares unsigned byte variables. You should use this declaration
for all byte variables except small signed integers. For signed integer values, use the sbyte
(signed byte) directive.

Once you declare some byte variables with these statements, you may reference those
variables within your program by their names:

i db ?
j byte ?
k sbyte ?

 .
 .
 .
mov i, 0
mov j, 245
mov k, -5
mov al, i
mov j, al
etc.

Although MASM 6.x performs a small amount of type checking, you should not get
the idea that assembly language is a strongly typed language. In fact, MASM 6.x will only
check the values you’re moving around to verify that they will fit in the target location. All
of the following are legal in MASM 6.x:

mov k, 255
mov j, -5
mov i, -127

Since all of these variables are byte-sized variables, and all the associated constants will fit
into eight bits, MASM happily allows each of these statements. Yet if you look at them,
they are logically incorrect. What does it mean to move -5 into an unsigned byte variable?
Since signed byte values must be in the range -128…127, what happens when you store
the value 255 into a signed byte variable? Well, MASM simply converts these values to
their eight bit equivalents (-5 becomes 0FBh, 255 becomes 0FFh [-1], etc.).

Perhaps a later version of MASM will perform stronger type checking on the values
you shove into these variables, perhaps not. However, you should always keep in mind
that it will always be possible to circumvent this checking. It’s up to you to write your pro-
grams correctly. The assembler won’t help you as much as Pascal or Ada will. Of course,
even if the assembler disallowed these statements, it would still be easy to get around the
type checking. Consider the following sequence:

mov al, -5
 .

; Any number of statements which do not affect AL
 .
mov j, al

Chapter 05

Page 200

There is, unfortunately, no way the assembler is going to be able to tell you that you’re
storing an illegal value into j5. The registers, by their very nature, are neither signed nor
unsigned. Therefore the assembler will let you store a register into a variable regardless of
the value that may be in that register.

Although the assembler does not check to see if both operands to an instruction are
signed or unsigned, it most certainly checks their size. If the sizes do not agree the assem-
bler will complain with an appropriate error message. The following examples are all ille-
gal:

mov i, ax ;Cannot move 16 bits into eight
mov i, 300 ;300 won’t fit in eight bits.
mov k, -130 ;-130 won’t fit into eight bits.

You might ask “if the assembler doesn’t really differentiate signed and unsigned val-
ues, why bother with them? Why not simply use db all the time?” Well, there are two rea-
sons. First, it makes your programs easier to read and understand if you explicitly state
(by using byte and sbyte) which variables are signed and which are unsigned. Second, who
said anything about the assembler ignoring whether the variables are signed or unsigned?
The mov instruction ignores the difference, but there are other instructions that do not.

One final point is worth mentioning concerning the declaration of byte variables. In
all of the declarations you’ve seen thus far the operand field of the instruction has always
contained a question mark. This question mark tells the assembler that the variable
should be left uninitialized when DOS loads the program into memory6. You may specify
an initial value for the variable, that will be loaded into memory before the program starts
executing, by replacing the question mark with your initial value. Consider the following
byte variable declarations:

i db 0
j byte 255
k sbyte -1

In this example, the assembler will initialize i, j, and k to zero, 255, and -1, respectively,
when the program loads into memory. This fact will prove quite useful later on, especially
when discussing tables and arrays. Once again, the assembler only checks the sizes of the
operands. It does not check to make sure that the operand for the byte directive is posi-
tive or that the value in the operand field of sbyte is in the range -128…127. MASM will
allow any value in the range -128…255 in the operand field of any of these statements.

In case you get the impression that there isn’t a real reason to use byte vs. sbyte in a
program, you should note that while MASM sometimes ignores the differences in these
definitions, Microsoft’s CodeView debugger does not. If you’ve declared a variable as a
signed value, CodeView will display it as such (including a minus sign, if necessary). On
the other hand, CodeView will always display db and byte variables as positive values.

5.3.2 Declaring and using WORD Variables

Most 80x86 programs use word values for three things: 16 bit signed integers, 16 bit
unsigned integers, and offsets (pointers). Oh sure, you can use word values for lots of
other things as well, but these three represent most applications of the word data type.
Since the word is the largest data type the 8086, 8088, 80186, 80188, and 80286 can handle,
you’ll find that for most programs, the word is the basis for most computations. Of course,
the 80386 and later allow 32 bit computations, but many programs do not use these 32 bit
instructions since that would limit them to running on 80386 or later CPUs.

You use the dw, word, and sword statements to declare word variables. The following
examples demonstrate their use:

5. Actually, for this simple example you could modify the assembler to detect this problem. But it’s easy enough to
come up with a slightly more complex example where the assembler could not detect the problem on.
6. DOS actually initializes such variables to zero, but you shouldn’t count on this.

Variables and Data Structures

Page 201

NoSignedWord dw ?
UnsignedWord word ?
SignedWord sword ?
Initialized0 word 0
InitializedM1 sword -1
InitializedBig word 65535
InitializedOfs dw NoSignedWord

Most of these declarations are slight modifications of the byte declarations you saw in
the last section. Of course you may initialize any word variable to a value in the range
-32768…65535 (the union of the range for signed and unsigned 16 bit constants). The last
declaration above, however, is new. In this case a label appears in the operand field (spe-
cifically, the name of the NoSignedWord variable). When a label appears in the operand
field the assembler will substitute the offset of that label (within the variable’s segment). If
these were the only declarations in dseg and they appeared in this order, the last declara-
tion above would initialize InitializedOfs with the value zero since NoSignedWord’s offset is
zero within the data segment. This form of initialization is quite useful for initializing
pointers. But more on that subject later.

The CodeView debugger differentiates dw/word variables and sword variables. It
always displays the unsigned values as positive integers. On the other hand, it will dis-
play sword variables as signed values (complete with minus sign, if the value is negative).
Debugging support is one of the main reasons you’ll want to use word or sword as appro-
priate.

5.3.3 Declaring and using DWORD Variables

You may use the dd, dword, and sdword instructions to declare four-byte integers,
pointers, and other variables types. Such variables will allow values in the range
-2,147,483,648…4,294,967,295 (the union of the range of signed and unsigned four-byte
integers). You use these declarations like the word declarations:

NoSignedDWord dd ?
UnsignedDWord dword ?
SignedDWord sdword ?
InitBig dword 4000000000
InitNegative sdword -1
InitPtr dd InitBig

The last example initializes a double word pointer with the segment:offset address of the
InitBig variable.

Once again, it’s worth pointing out that the assembler doesn’t check the types of these
variables when looking at the initialization values. If the value fits into 32 bits, the assem-
bler will accept it. Size checking, however, is strictly enforced. Since the only 32 bit mov
instructions on processors earlier than the 80386 are les and lds, you will get an error if you
attempt to access dword variables on these earlier processors using a mov instruction. Of
course, even on the 80386 you cannot move a 32 bit variable into a 16 bit register, you must
use the 32 bit registers. Later, you’ll learn how to manipulate 32 bit variables, even on a 16
bit processor. Until then, just pretend that you can’t.

Keep in mind, of course, that CodeView differentiates between dd/dword and sdword.
This will help you see the actual values your variables have when you’re debugging your
programs. CodeView only does this, though, if you use the proper declarations for your
variables. Always use sdword for signed values and dd or dword (dword is best) for unsigned
values.

Chapter 05

Page 202

5.3.4 Declaring and using FWORD, QWORD, and TBYTE Variables

MASM 6.x also lets you declare six-byte, eight-byte, and ten-byte variables using the
df/fword, dq/qword, and dt/tbyte statements. Declarations using these statements were origi-
nally intended for floating point and BCD values. There are better directives for the float-
ing point variables and you don’t need to concern yourself with the other data types
you’d use these directives for. The following discussion is for completeness’ sake.

 The df/fword statement’s main utility is declaring 48 bit pointers for use in 32 bit pro-
tected mode on the 80386 and later. Although you could use this directive to create an
arbitrary six byte variable, there are better directives for doing that. You should only use
this directive for 48 bit far pointers on the 80386.

dq/qword lets you declare quadword (eight byte) variables. The original purpose of this
directive was to let you create 64 bit double precision floating point variables and 64 bit
integer variables. There are better directives for creating floating point variables. As for 64
bit integers, you won’t need them very often on the 80x86 CPU (at least, not until Intel
releases a member of the 80x86 family with 64 bit general purpose registers).

The dt/tbyte directives allocate ten bytes of storage. There are two data types indige-
nous to the 80x87 (math coprocessor) family that use a ten byte data type: ten byte BCD
values and extended precision (80 bit) floating point values. This text will pretty much
ignore the BCD data type. As for the floating point type, once again there is a better way to
do it.

5.3.5 Declaring Floating Point Variables with REAL4, REAL8, and REAL10

These are the directives you should use when declaring floating point variables. Like
dd, dq, and dt these statements reserve four, eight, and ten bytes. The operand fields for
these statements may contain a question mark (if you don’t want to initialize the variable)
or it may contain an initial value in floating point form. The following examples demon-
strate their use:

x real4 1.5
y real8 1.0e-25
z real10 -1.2594e+10

Note that the operand field must contain a valid floating point constant using either
decimal or scientific notation. In particular, pure integer constants are not allowed. The
assembler will complain if you use an operand like the following:

x real4 1

To correct this, change the operand field to “1.0”.

Please note that it takes special hardware to perform floating point operations (e.g., an
80x87 chip or an 80x86 with built-in math coprocessor). If such hardware is not available,
you must write software to perform operations like floating point addition, subtraction,
multiplication, etc. In particular, you cannot use the 80x86 add instruction to add two
floating point values. This text will cover floating point arithmetic in a later chapter (see
“Floating Point Arithmetic” on page 771). Nonetheless, it’s appropriate to discuss how to
declare floating point variables in the chapter on data structures.

MASM also lets you use dd, dq, and dt to declare floating point variables (since these
directives reserve the necessary four, eight, or ten bytes of space). You can even initialize
such variables with floating point constants in the operand field. But there are two major
drawbacks to declaring variables this way. First, as with bytes, words, and double words,
the CodeView debugger will only display your floating point variables properly if you
use the real4, real8, or real10 directives. If you use dd, dq, or dt, CodeView will display your
values as four, eight, or ten byte unsigned integers. Another, potentially bigger, problem
with using dd, dq, and dt is that they allow both integer and floating point constant initial-
izers (remember, real4, real8, and real10 do not). Now this might seem like a good feature

Variables and Data Structures

Page 203

at first glance. However, the integer representation for the value one is not the same as the
floating point representation for the value 1.0. So if you accidentally enter the value “1” in
the operand field when you really meant “1.0”, the assembler would happily digest this
and then give you incorrect results. Hence, you should always use the real4, real8, and
real10 statements to declare floating point variables.

5.4 Creating Your Own Type Names with TYPEDEF

Let’s say that you simply do not like the names that Microsoft decided to use for
declaring byte, word, dword, real, and other variables. Let’s say that you prefer Pascal’s
naming convention or, perhaps, C’s naming convention. You want to use terms like inte-
ger, float, double, char, boolean, or whatever. If this were Pascal you could redefine the names
in the type section of the program. With C you could use a “#define” or a typedef state-
ment to accomplish the task. Well, MASM 6.x has it’s own typedef statement that also lets
you create aliases of these names. The following example demonstrates how to set up
some Pascal compatible names in your assembly language programs:

integer typedef sword
char typedef byte
boolean typedef byte
float typedef real4
colors typedef byte

Now you can declare your variables with more meaningful statements like:

i integer ?
ch char ?
FoundIt boolean ?
x float ?
HouseColor colors ?

If you are an Ada, C, or FORTRAN programmer (or any other language, for that mat-
ter), you can pick type names you’re more comfortable with. Of course, this doesn’t
change how the 80x86 or MASM reacts to these variables one iota, but it does let you cre-
ate programs that are easier to read and understand since the type names are more indica-
tive of the actual underlying types.

Note that CodeView still respects the underlying data type. If you define integer to be
an sword type, CodeView will display variables of type integer as signed values. Likewise,
if you define float to mean real4, CodeView will still properly display float variables as
four-byte floating point values.

5.5 Pointer Data Types

Some people refer to pointers as scalar data types, others refer to them as composite
data types. This text will treat them as scalar data types even though they exhibit some
tendencies of both scalar and composite data types (for a complete description of compos-
ite data types, see “Composite Data Types” on page 206).

Of course, the place to start is with the question “What is a pointer?” Now you’ve
probably experienced pointers first hand in the Pascal, C, or Ada programming languages
and you’re probably getting worried right now. Almost everyone has a real bad experi-
ence when they first encounter pointers in a high level language. Well, fear not! Pointers
are actually easier to deal with in assembly language. Besides, most of the problems you
had with pointers probably had nothing to do with pointers, but rather with the linked list
and tree data structures you were trying to implement with them. Pointers, on the other
hand, have lots of uses in assembly language that have nothing to do with linked lists,
trees, and other scary data structures. Indeed, simple data structures like arrays and
records often involve the use of pointers. So if you’ve got some deep-rooted fear about

Chapter 05

Page 204

pointers, well forget everything you know about them. You’re going to learn how great
pointers really are.

Probably the best place to start is with the definition of a pointer. Just exactly what is a
pointer, anyway? Unfortunately, high level languages like Pascal tend to hide the simplic-
ity of pointers behind a wall of abstraction. This added complexity (which exists for good
reason, by the way) tends to frighten programmers because they don’t understand what’s
going on.

Now if you’re afraid of pointers, well, let’s just ignore them for the time being and
work with an array. Consider the following array declaration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to understand. M is an
array with 1024 integers in it, indexed from M[0] to M[1023]. Each one of these array ele-
ments can hold an integer value that is independent of all the others. In other words, this
array gives you 1024 different integer variables each of which you refer to by number (the
array index) rather than by name.

If you encountered a program that had the statement M[0]:=100 you probably
wouldn’t have to think at all about what is happening with this statement. It is storing the
value 100 into the first element of the array M. Now consider the following two state-
ments:

i := 0; (* Assume “i” is an integer variable *)
M [i] := 100;

You should agree, without too much hesitation, that these two statements perform the
same exact operation as M[0]:=100;. Indeed, you’re probably willing to agree that you can
use any integer expression in the range 0…1023 as an index into this array. The following
statements still perform the same operation as our single assignment to index zero:

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that produces an inte-
ger in the range 0…1023 is legal. So what?” Okay, how about the following:

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it slowly, it makes
sense and you’ll discover that these two instructions perform the exact same operation
you’ve been doing all along. The first statement stores zero into array element M[1]. The
second statement fetches the value of M[1], which is an integer so you can use it as an array
index into M, and uses that value (zero) to control where it stores the value 100.

If you’re willing to accept the above as reasonable, perhaps bizarre, but usable none-
theless, then you’ll have no problems with pointers. Because m[1] is a pointer! Well, not
really, but if you were to change “M” to “memory” and treat this array as all of memory,
this is the exact definition of a pointer.

A pointer is simply a memory location whose value is the address (or index, if you
prefer) of some other memory location. Pointers are very easy to declare and use in an
assembly language program. You don’t even have to worry about array indices or any-
thing like that. In fact, the only complication you’re going to run into is that the 80x86 sup-
ports two kinds of pointers: near pointers and far pointers.

A near pointer is a 16 bit value that provides an offset into a segment. It could be any
segment but you will generally use the data segment (dseg in SHELL.ASM). If you have a
word variable p that contains 1000h, then p “points” at memory location 1000h in dseg. To
access the word that p points at, you could use code like the following:

mov bx, p ;Load BX with pointer.
mov ax, [bx] ;Fetch data that p points at.

Variables and Data Structures

Page 205

By loading the value of p into bx this code loads the value 1000h into bx (assuming p
contains 1000h and, therefore, points at memory location 1000h in dseg). The second
instruction above loads the ax register with the word starting at the location whose offset
appears in bx. Since bx now contains 1000h, this will load ax from locations DS:1000 and
DS:1001.

Why not just load ax directly from location 1000h using an instruction like
mov ax,ds:[1000h]? Well, there are lots of reasons. But the primary reason is that this single
instruction always loads ax from location 1000h. Unless you are willing to mess around
with self-modifying code, you cannot change the location from which it loads ax. The pre-
vious two instructions, however, always load ax from the location that p points at. This is
very easy to change under program control, without using self-modifying code. In fact,
the simple instruction mov p,2000h will cause those two instructions above to load ax from
memory location DS:2000 the next time they execute. Consider the following instructions:

lea bx, i ;This can actually be done with
mov p, bx ; a single instruction as you’ll
 . ; see in Chapter Eight.
 .

< Some code that skips over the next two instructions >

lea bx, j ;Assume the above code skips these
mov p, bx ; two instructions, that you get
 . ; here by jumping to this point from
 . ; somewhere else.
mov bx, p ;Assume both code paths above wind
mov ax, [bx] ; up down here.

This short example demonstrates two execution paths through the program. The first
path loads the variable p with the address of the variable i (remember, lea loads bx with the
offset of the second operand). The second path through the code loads p with the address
of the variable j. Both execution paths converge on the last two mov instructions that load
ax with i or j depending upon which execution path was taken. In many respects, this is
like a parameter to a procedure in a high level language like Pascal. Executing the same
instructions accesses different variables depending on whose address (i or j) winds up in
p.

Sixteen bit near pointers are small, fast, and the 80x86 provides efficient access using
them. Unfortunately, they have one very serious drawback – you can only access 64K of
data (one segment) when using near pointers7. Far pointers overcome this limitation at
the expense of being 32 bits long. However, far pointers let you access any piece of data
anywhere in the memory space. For this reason, and the fact that the UCR Standard
Library uses far pointers exclusively, this text will use far pointers most of the time. But
keep in mind that this is a decision based on trying to keep things simple. Code that uses
near pointers rather than far pointers will be shorter and faster.

To access data referenced by a 32 bit pointer, you will need to load the offset portion
(L.O. word) of the pointer into bx, bp, si, or di and the segment portion into a segment reg-
ister (typically es). Then you could access the object using the register indirect addressing
mode. Since the les instruction is so convenient for this operation, it is the perfect choice
for loading es and one of the above four registers with a pointer value. The following sam-
ple code stores the value in al into the byte pointed at by the far pointer p:

les bx, p ;Load p into ES:BX
mov es:[bx], al ;Store away AL

Since near pointers are 16 bits long and far pointers are 32 bits long, you could simply
use the dw/word and dd/dword directives to allocate storage for your pointers (pointers are
inherently unsigned, so you wouldn’t normally use sword or sdword to declare a pointer).

7. Technically, this isn’t true. A single pointer is limited to accessing data in one particular segment at a time, but
you could have several near pointers each pointing at data in different segments. Unfortunately, you need to keep
track of all this yourself and it gets out of hand very quickly as the number of pointers in your program increases.

Chapter 05

Page 206

However, there is a much better way to do this by using the typedef statement. Consider
the following general forms:

typename typedef near ptr basetype
typename typedef far ptr basetype

In these two examples typename represents the name of the new type you’re creating while
basetype is the name of the type you want to create a pointer for. Let’s look at some specific
examples:

nbytptr typedef near ptr byte
fbytptr typedef far ptr byte
colorsptr typedef far ptr colors
wptr typedef near ptr word
intptr typedef near ptr integer
intHandle typedef near ptr intptr

(these declarations assume that you’ve previously defined the types colors and integer with
the typedef statement). The typedef statements with the near ptr operands produce 16 bit
near pointers. Those with the far ptr operands produce 32 bit far pointers. MASM 6.x
ignores the base type supplied after the near ptr or far ptr. However, CodeView uses the
base type to display the object a pointer refers to in its correct format.

Note that you can use any type as the base type for a pointer. As the last example
above demonstrates, you can even define a pointer to another pointer (a handle). Code-
View would properly display the object a variable of type intHandle points at as an
address.

With the above types, you can now generate pointer variables as follows:

bytestr nbytptr ?
bytestr2 fbytptr ?
CurrentColor colorsptr ?
CurrentItem wptr ?
LastInt intptr ?

Of course, you can initialize these pointers at assembly time if you know where they
are going to point when the program first starts running. For example, you could initialize
the bytestr variable above with the offset of MyString using the following declaration:

bytestr nbytptr MyString

5.6 Composite Data Types

Composite data types are those that are built up from other (generally scalar) data
types. An array is a good example of a composite data type – it is an aggregate of elements
all the same type. Note that a composite data type need not be composed of scalar data
types, there are arrays of arrays for example, but ultimately you can decompose a com-
posite data type into some primitive, scalar, types.

This section will cover two of the more common composite data types: arrays and
records. It’s a little premature to discuss some of the more advanced composite data types.

5.6.1 Arrays

Arrays are probably the most commonly used composite data type. Yet most begin-
ning programmers have a very weak understanding of how arrays operate and their asso-
ciated efficiency trade-offs. It’s surprising how many novice (and even advanced!)
programmers view arrays from a completely different perspective once they learn how to
deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements) are all the
same type. Selection of a member from the array is by an integer index8. Different indices
select unique elements of the array. This text assumes that the integer indices are contigu-

Variables and Data Structures

Page 207

ous (though it is by no means required). That is, if the number x is a valid index into the
array and y is also a valid index, with x < y, then all i such that x < i < y are valid indices
into the array.

Whenever you apply the indexing operator to an array, the result is the specific array
element chosen by that index. For example, A[i] chooses the ith element from array A. Note
that there is no formal requirement that element i be anywhere near element i+1 in mem-
ory. As long as A[i] always refers to the same memory location and A[i+1] always refers to
its corresponding location (and the two are different), the definition of an array is satis-
fied.

In this text, arrays occupy contiguous locations in memory. An array with five ele-
ments will appear in memory as shown in Figure 5.1.

The base address of an array is the address of the first element on the array and always
appears in the lowest memory location. The second array element directly follows the first
in memory, the third element follows the second, etc. Note that there is no requirement
that the indices start at zero. They may start with any number as long as they are contigu-
ous. However, for the purposes of discussion, it’s easier to discuss accessing array ele-
ments if the first index is zero. This text generally begins most arrays at index zero unless
there is a good reason to do otherwise. However, this is for consistency only. There is no
efficiency benefit one way or another to starting the array index at some value other than
zero.

To access an element of an array, you need a function that converts an array index into
the address of the indexed element. For a single dimension array, this function is very sim-
ple. It is

Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

where Initial_Index is the value of the first index in the array (which you can ignore if zero)
and the value Element_Size is the size, in bytes, of an individual element of the array.

5.6.1.1 Declaring Arrays in Your Data Segment

Before you access elements of an array, you need to set aside storage for that array.
Fortunately, array declarations build on the declarations you’ve seen so far. To allocate n
elements in an array, you would use a declaration like the following:

arrayname basetype n dup (?)

Arrayname is the name of the array variable and basetype is the type of an element of that
array. This sets aside storage for the array. To obtain the base address of the array, just use
arrayname.

The n dup (?) operand tells the assembler to duplicate the object inside the parenthe-
ses n times. Since a question mark appears inside the parentheses, the definition above

8. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

Figure 5.1 Single Dimension Array Implementation

A[0] A[1] A[2] A[3] A[4]

A: array [0..4] of sometype;

Low memory
addresses

High memory
addressesBase address of A

Chapter 05

Page 208

would create n occurrences of an uninitialized value. Now let’s look at some specific
examples:

CharArray char 128 dup (?) ;array[0..127] of char
IntArray integer 8 dup (?) ;array[0..7] of integer
BytArray byte 10 dup (?) ;array[0..9] of byte
PtrArray dword 4 dup (?) ;array[0..3] of dword

The first two examples, of course, assume that you’ve used the typedef statement to define
the char and integer data types.

These examples all allocate storage for uninitialized arrays. You may also specify that
the elements of the arrays be initialized to a single value using declarations like the fol-
lowing:

RealArray real4 8 dup (1.0)
IntegerAry integer 8 dup (1)

These definitions both create arrays with eight elements. The first definition initializes
each four-byte real value to 1.0, the second declaration initializes each integer element to
one.

This initialization mechanism is fine if you want each element of the array to have the
same value. What if you want to initialize each element of the array with a (possibly) dif-
ferent value? Well, that is easily handled as well. The variable declaration statements
you’ve seen thus far offer yet another initialization form:

name type value1, value2, value3, …, valuen

This form allocates n variables of type type. It initializes the first item to value1, the sec-
ond item to value2, etc. So by simply enumerating each value in the operand field, you can
create an array with the desired initial values. In the following integer array, for example,
each element contains the square of its index:

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

If your array has more elements than will fit on one line, there are several ways to con-
tinue the array onto the next line. The most straight-forward method is to use another
integer statement but without a label:

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
integer 121, 144, 169, 196, 225, 256, 289, 324
integer 361, 400

Another option, that is better in some circumstances, is to use a backslash at the end of
each line to tell MASM 6.x to continue reading data on the next line:

Squares integer 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \
121, 144, 169, 196, 225, 256, 289, 324, \
361, 400

Of course, if your array has several thousand elements in it, typing them all in will not
be very much fun. Most arrays initialized this way have no more than a couple hundred
entries, and generally far less than 100.

You need to learn about one final technique for initializing single dimension arrays
before moving on. Consider the following declaration:

BigArray word 256 dup (0,1,2,3)

This array has 1024 elements, not 256. The n dup (xxxx) operand tells MASM to dupli-
cate xxxx n times, not create an array with n elements. If xxxx consists of a single item, then
the dup operator will create an n element array. However, if xxxx contains two items sepa-
rated by a comma, the dup operator will create an array with 2*n elements. If xxxx contains
three items separated by commas, the dup operator creates an array with 3*n items, and so
on. Since there are four items in the parentheses above, the dup operator creates 256*4 or
1024 items in the array. The values in the array will initially be 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
...

Variables and Data Structures

Page 209

You will see some more possibilities with the dup operator when looking at multidi-
mensional arrays a little later.

5.6.1.2 Accessing Elements of a Single Dimension Array

To access an element of a zero-based array, you can use the simplified formula:

Element_Address = Base_Address + index * Element_Size

For the Base_Address entry you can use the name of the array (since MASM associates
the address of the first operand with the label). The Element_Size entry is the number of
bytes for each array element. If the object is an array of bytes, the Element_Size field is one
(resulting in a very simple computation). If each element of the array is a word (or integer,
or other two-byte type) then Element_Size is two. And so on. To access an element of the
Squares array in the previous section, you’d use the formula:

Element_Address = Squares + index*2

The 80x86 code equivalent to the statement AX:=Squares[index] is

mov bx, index
add bx, bx ;Sneaky way to compute 2*bx
mov ax, Squares [bx]

There are two important things to notice here. First of all, this code uses the add
instruction rather than the mul instruction to compute 2*index. The main reason for choos-
ing add is that it was more convenient (remember, mul doesn’t work with constants and it
only operates on the ax register). It turns out that add is a lot faster than mul on many pro-
cessors, but since you probably didn’t know that, it wasn’t an overriding consideration in
the choice of this instruction.

The second thing to note about this instruction sequence is that it does not explicitly
compute the sum of the base address plus the index times two. Instead, it relies on the
indexed addressing mode to implicitly compute this sum. The instruction
mov ax, Squares[bx] loads ax from location Squares+bx which is the base address plus
index*2 (since bx contains index*2). Sure, you could have used

lea ax, Squares
add bx, ax
mov ax, [bx]

in place of the last instruction, but why use three instructions where one will do the same
job? This is a good example of why you should know your addressing modes inside and
out. Choosing the proper addressing mode can reduce the size of your program, thereby
speeding it up.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a sin-
gle dimension array. Indeed, it’s syntax even suggests an array access. The only thing to
keep in mind is that you must remember to multiply the index by the size of an element.
Failure to do so will produce incorrect results.

If you are using an 80386 or later, you can take advantage of the scaled indexed
addressing mode to speed up accessing an array element even more. Consider the follow-
ing statements:

mov ebx, index ;Assume a 32 bit value.
mov ax, Squares [ebx*2]

This brings the instruction count down to two instructions. You’ll soon see that two
instructions aren’t necessarily faster than three instructions, but hopefully you get the
idea. Knowing your addressing modes can surely help.

Before moving on to multidimensional arrays, a couple of additional points about
addressing modes and arrays are in order. The above sequences work great if you only
access a single element from the Squares array. However, if you access several different
elements from the array within a short section of code, and you can afford to dedicate

Chapter 05

Page 210

another register to the operation, you can certainly shorten your code and, perhaps, speed
it up as well. The mov ax,Squares[BX] instruction is four bytes long (assuming you need a
two-byte displacement to hold the offset to Squares in the data segment). You can reduce
this to a two byte instruction by using the base/indexed addressing mode as follows:

lea bx, Squares
mov si, index
add si, si
mov ax, [bx][si]

Now bx contains the base address and si contains the index*2 value. Of course, this
just replaced a single four-byte instruction with a three-byte and a two-byte instruction,
hardly a good trade-off. However, you do not have to reload bx with the base address of
Squares for the next access. The following sequence is one byte shorter than the compara-
ble sequence that doesn’t load the base address into bx:

lea bx, Squares
mov si, index
add si, si
mov ax, [bx][si]
 .
 . ;Assumption: BX is left alone
 . ; through this code.
mov si, index2
add si, si
mov cx, [bx][si]

Of course the more accesses to Squares you make without reloading bx, the greater
your savings will be. Tricky little code sequences such as this one sometimes pay off hand-
somely. However, the savings depend entirely on which processor you’re using. Code
sequences that run faster on an 8086 might actually run slower on an 80486 (and vice
versa). Unfortunately, if speed is what you’re after there are no hard and fast rules. In fact,
it is very difficult to predict the speed of most instructions on the simple 8086, even more
so on processors like the 80486 and Pentium/80586 that offer pipelining, on-chip caches,
and even superscalar operation.

5.6.2 Multidimensional Arrays

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is
no magic addressing mode that lets you easily access elements of multidimensional
arrays. That’s going to take some work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a
good idea to figure out how to implement them in memory. The first problem is to figure
out how to store a multi-dimensional object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of char. This array
contains 16 bytes organized as four rows of four characters. Somehow you’ve got to draw
a correspondence with each of the 16 bytes in this array and 16 contiguous bytes in main
memory. Figure 5.2 shows one way to do this.

The actual mapping is not important as long as two things occur: (1) each element
maps to a unique memory location (that is, no two entries in the array occupy the same
memory locations) and (2) the mapping is consistent. That is, a given element in the array
always maps to the same memory location. So what you really need is a function with two
input parameters (row and column) that produces an offset into a linear array of sixteen
bytes.

Now any function that satisfies the above constraints will work fine. Indeed, you
could randomly choose a mapping as long as it was unique. However, what you really
want is a mapping that is efficient to compute at run time and works for any size array
(not just 4x4 or even limited to two dimensions). While there are a large number of possi-

Variables and Data Structures

Page 211

ble functions that fit this bill, there are two functions in particular that most programmers
and most high level languages use: row major ordering and column major ordering.

5.6.2.1 Row Major Ordering

Row major ordering assigns successive elements, moving across the rows and then
down the columns, to successive memory locations. The mapping is best described in
Figure 5.3.

Row major ordering is the method employed by most high level programming lan-
guages including Pascal, C, Ada, Modula-2, etc. It is very easy to implement and easy to
use in machine language (especially within a debugger such as CodeView). The conver-
sion from a two-dimensional structure to a linear array is very intuitive. You start with the

Figure 5.2 Mapping a 4 x 4 Array to Memory

0
1
2
3

0 1 2 3

Memory

Figure 5.3 Row Major Element Ordering

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;

Chapter 05

Page 212

first row (row number zero) and then concatenate the second row to its end. You then con-
catenate the third row to the end of the list, then the fourth row, etc. (see Figure 5.4).

For those who like to think in terms of program code, the following nested Pascal loop
also demonstrates how row major ordering works:

index := 0;
for colindex := 0 to 3 do

for rowindex := 0 to 3 do
begin

memory [index] := rowmajor [colindex][rowindex];
index := index + 1;

end;

The important thing to note from this code, that applies across the board to row major
order no matter how many dimensions it has, is that the rightmost index increases the
fastest. That is, as you allocate successive memory locations you increment the rightmost
index until you reach the end of the current row. Upon reaching the end, you reset the
index back to the beginning of the row and increment the next successive index by one
(that is, move down to the next row.). This works equally well for any number of dimen-
sions9. The following Pascal segment demonstrates row major organization for a 4x4x4
array:

index := 0;
for depthindex := 0 to 3 do

for colindex := 0 to 3 do
 for rowindex := 0 to 3 do begin

memory [index] := rowmajor [depthindex][colindex][rowindex];
index := index + 1;

 end;

The actual function that converts a list of index values into an offset doesn’t involve
loops or much in the way of fancy computations. Indeed, it’s a slight modification of the
formula for computing the address of an element of a single dimension array. The formula
to compute the offset for a two-dimension row major ordered array declared as
 A:array [0..3,0..3] of integer is

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array (A[0][0] in this
case) and Element_Size is the size of an individual element of the array, in bytes. Colindex is
the leftmost index, rowindex is the rightmost index into the array. Row_size is the number of

9. By the way, the number of dimensions of an array is its arity.

Figure 5.4 Another View of Row Major Ordering for a 4x4 Array

0 1 2 3

8 9 10 11

12 13 14 15

4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low Addresses High Addresses

Variables and Data Structures

Page 213

elements in one row of the array (four, in this case, since each row has four elements).
Assuming Element_Size is one, This formula computes the following offsets from the base
address:

Column Index Row Index Offset into Array

0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into memory is the
following:

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) *
Element_Size

Col_size is the number of items in a column, row_size is the number of items in a row. In
Pascal, if you’ve declared the array as “A:array [i..j] [k..l] [m..n] of type;” then row_size is equal
to n-m+1 and col_size is equal to l-k+1.

For a four dimensional array, declared as “A:array [g..h] [i..j] [k..l] [m..n] of type;” the for-
mula for computing the address of an array element is

Address =
Base + (((LeftIndex * depth_size + depthindex)*col_size+colindex) * row_size +
rowindex) * Element_Size

Depth_size is equal to i-j+1, col_size and row_size are the same as before. LeftIndex repre-
sents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic formula that
will compute the offset into memory for an array with any number of dimensions, how-
ever, you’ll rarely use more than four.

Another convenient way to think of row major arrays is as arrays of arrays. Consider
the following single dimension array definition:

A: array [0..3] of sometype;

Assume that sometype is the type “sometype = array [0..3] of char;”.

A is a single dimension array. Its individual elements happen to be arrays, but you can
safely ignore that for the time being. The formula to compute the address of an element of
a single dimension array is

Element_Address = Base + Index * Element_Size

In this case Element_Size happens to be four since each element of A is an array of four
characters. So what does this formula compute? It computes the base address of each row
in this 4x4 array of characters (see Figure 5.5).

Of course, once you compute the base address of a row, you can reapply the single
dimension formula to get the address of a particular element. While this doesn’t affect the
computation at all, conceptually it’s probably a little easier to deal with several single
dimension computations rather than a complex multidimensional array element address
computation.

Chapter 05

Page 214

Consider a Pascal array defined as “A:array [0..3] [0..3] [0..3] [0..3] [0..3] of char;” You can
view this five-dimension array as a single dimension array of arrays:

type
OneD = array [0..3] of char;
TwoD = array [0..3] of OneD;
ThreeD = array [0..3] of TwoD;
FourD = array [0..3] of ThreeD;

var
A : array [0..3] of FourD;

The size of OneD is four bytes. Since TwoD contains four OneD arrays, its size is 16
bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four ThreeDs,
so it is 256 bytes long. To compute the address of “A [b] [c] [d] [e] [f]” you could use the fol-
lowing steps:

• Compute the address of A [b] as “Base + b * size”. Here size is 256 bytes.
Use this result as the new base address in the next computation.

• Compute the address of A [b] [c] by the formula “Base + c*size”, where
Base is the value obtained immediately above and size is 64. Use the
result as the new base in the next computation.

• Compute the address of A [b] [c] [d] by “Base + d*size” with Base coming
from the above computation and size being 16.

• Compute the address of A [b] [c] [d] [e] with the formula “Base + e*size”
with Base from above and size being four. Use this value as the base for
the next computation.

• Finally, compute the address of A [b] [c] [d] [e] [f] using the formula “Base
+ f*size” where base comes from the above computation and size is one
(obviously you can simply ignore this final multiplication). The result you
obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae from above, but it
is easier to compute (using a single loop) as well. Suppose you have two arrays initialized
as follows

A1 = {256, 64, 16, 4, 1} and A2 = {b, c, d, e, f}

then the Pascal code to perform the element address computation becomes:

for i := 0 to 4 do
base := base + A1[i] * A2[i];

Presumably base contains the base address of the array before executing this loop. Note
that you can easily extend this code to any number of dimensions by simply initializing
A1 and A2 appropriately and changing the ending value of the for loop.

Figure 5.5 Viewing a 4x4 Array as an Array of Arrays

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

A[0]

A[1]

A[2]

A[3]

(A[0]) [0]
(A[0]) [1]
(A[0]) [2]
(A[0]) [3]

Each element
of A is four
bytes long.

Variables and Data Structures

Page 215

As it turns out, the computational overhead for a loop like this is too great to consider
in practice. You would only use an algorithm like this if you needed to be able to specify
the number of dimensions at run time. Indeed, one of the main reasons you won’t find
higher dimension arrays in assembly language is that assembly language displays the
inefficiencies associated with such access. It’s easy to enter something like “A [b,c,d,e,f]”
into a Pascal program, not realizing what the compiler is doing with the code. Assembly
language programmers are not so cavalier – they see the mess you wind up with when
you use higher dimension arrays. Indeed, good assembly language programmers try to
avoid two dimension arrays and often resort to tricks in order to access data in such an
array when its use becomes absolutely mandatory. But more on that a little later.

5.6.2.2 Column Major Ordering

Column major ordering is the other function frequently used to compute the address
of an array element. FORTRAN and various dialects of BASIC (e.g., Microsoft) use this
method to index arrays.

In row major ordering the rightmost index increased the fastest as you moved
through consecutive memory locations. In column major ordering the leftmost index
increases the fastest. Pictorially, a column major ordered array is organized as shown in
Figure 5.6.

The formulae for computing the address of an array element when using column
major ordering is very similar to that for row major ordering. You simply reverse the
indexes and sizes in the computation:

For a two-dimension column major array:

Element_Address = Base_Address + (rowindex * col_size + colindex) * Element_Size

For a three-dimension column major array:

Address = Base + ((rowindex*col_size+colindex) * depth_size + depthindex) *
Element_Size

For a four-dimension column major array:

Address = Base + (((rowindex * col_size + colindex)*depth_size+depthindex) *
Left_size + Leftindex) * Element_Size

Figure 5.6 Column Major Element Ordering

0
1
2
3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

A:array [0..3,0..3] of char;

Chapter 05

Page 216

The single Pascal loop provided for row major access remains unchanged (to access
A [b] [c] [d] [e] [f]):

for i := 0 to 4 do
base := base + A1[i] * A2[i];

Likewise, the initial values of the A1 array remain unchanged:

A1 = {256, 64, 16, 4, 1}

The only thing that needs to change is the initial values for the A2 array, and all you have
to do here is reverse the order of the indices:

A2 = {f, e, d, c, b}

5.6.2.3 Allocating Storage for Multidimensional Arrays

If you have an m x n array, it will have m * n elements and require m*n*Element_Size
bytes of storage. To allocate storage for an array you must reserve this amount of memory.
As usual, there are several different ways of accomplishing this task. This text will try to
take the approach that is easiest to read and understand in your programs.

Reconsider the dup operator for reserving storage. n dup (xxxx) replicates xxxx n times.
As you saw earlier, this dup operator allows not just one, but several items within the
parentheses and it duplicates everything inside the specified number of times. In fact, the
dup operator allows anything that you might normally expect to find in the operand field
of a byte statement including additional occurrences of the DUP operator. Consider the follow-
ing statement:

A byte 4 dup (4 dup (?))

The first dup operator repeats everything inside the parentheses four times. Inside
the parentheses the 4 DUP (?) operation tells MASM to set aside storage for four bytes.
Four copies of four bytes yields 16 bytes, the number necessary for a 4 x 4 array. Of course,
to reserve storage for this array you could have just as easily used the statement:

A byte 16 dup (?)

Either way the assembler is going to set aside 16 contiguous bytes in memory. As far as the
80x86 is concerned, there is no difference between these two forms. On the other hand, the
former version provides a better indication that A is a 4 x 4 array than the latter version.
The latter version looks like a single dimension array with 16 elements.

You can very easily extend this concept to arrays of higher arity as well. The declara-
tion for a three dimension array, A:array [0..2, 0..3, 0..4] of integer might be

A integer 3 dup (4 dup (5 dup (?)))

(of course, you will need the integer typedef word statement in your program for this to
work.)

As was the case with single dimension arrays, you may initialize every element of the
array to a specific value by replacing the question mark (?) with some particular value. For
example, to initialize the above array so that each element contains one you’d use the
code:

A integer 3 dup (4 dup (5 dup (1)))

If you want to initialize each element of the array to a different value, you’ll have to
enter each value individually. If the size of a row is small enough, the best way to
approach this task is to place the data for each row of an array on its own line. Consider
the following 4x4 array declaration:

A integer 0,1,2,3
integer 1,0,1,1
integer 5,7,2,2
integer 0,0,7,6

Variables and Data Structures

Page 217

Once again, the assembler doesn’t care where you split the lines, but the above is much
easier to identify as a 4x4 array than the following that emits the exact same data:

A integer 0,1,2,3,1,0,1,1,5,7,2,2,0,0,7,6

Of course, if you have a large array, an array with really large rows, or an array with
many dimensions, there is little hope for winding up with something reasonable. That’s
when comments that carefully explain everything come in handy.

5.6.2.4 Accessing Multidimensional Array Elements in Assembly Language

Well, you’ve seen the formulae for computing the address of an array element. You’ve
even looked at some Pascal code you could use to access elements of a multidimensional
array. Now it’s time to see how to access elements of those arrays using assembly lan-
guage.

The mov, add, and mul instructions make short work of the various equations that com-
pute offsets into multidimensional arrays. Let’s consider a two dimension array first:

; Note: TwoD’s row size is 16 bytes.

TwoD integer 4 dup (8 dup (?))
i integer ?
j integer ?

 . .
 . .
 . .

; To peform the operation TwoD[i,j] := 5; you’d use the code:

mov ax, 8 ;8 elements per row
mul i
add ax, j
add ax, ax ;Multiply by element size (2)
mov bx, ax ;Put in a register we can use
mov TwoD [bx], 5

Of course, if you have an 80386 chip (or better), you could use the following code10:

mov eax, 8 ;Zeros H.O. 16 bits of EAX.
mul i
add ax, j
mov TwoD[eax*2], 5

Note that this code does not require the use of a two register addressing mode on the
80x86. Although an addressing mode like TwoD [bx][si] looks like it should be a natural for
accessing two dimensional arrays, that isn’t the purpose of this addressing mode.

Now consider a second example that uses a three dimension array:

ThreeD integer 4 dup (4 dup (4 dup (?)))
i integer ?
j integer ?
k integer ?

 . .
 . .
 . .

; To peform the operation ThreeD[i,j,k] := 1; you’d use the code:

mov bx, 4 ;4 elements per column
mov ax, i
mul bx
add ax, j

10. Actually, there is an even better 80386 instruction sequence than this, but it uses instructions yet to be dis-
cussed.

Chapter 05

Page 218

mul bx ;4 elements per row
add ax, k
add ax, ax ;Multiply by element size (2)
mov bx, ax ;Put in a register we can use
mov ThreeD [bx], 1

Of course, if you have an 80386 or better processor, this can be improved somewhat by
using the following code:

mov ebx, 4
mov eax, ebx
mul i
add ax, j
mul bx
add k
mov ThreeD[eax*2], 1

5.6.3 Structures

The second major composite data structure is the Pascal record or C structure11. The
Pascal terminology is probably better, since it tends to avoid confusion with the more gen-
eral term data structure. However, MASM uses “structure” so it doesn’t make sense to
deviate from this. Furthermore, MASM uses the term record to denote something slightly
different, furthering the reason to stick with the term structure.

Whereas an array is homogeneous, whose elements are all the same, the elements in a
structure can be of any type. Arrays let you select a particular element via an integer
index. With structures, you must select an element (known as a field) by name.

The whole purpose of a structure is to let you encapsulate different, but logically
related, data into a single package. The Pascal record declaration for a student is probably
the most typical example:

student = record
Name: string [64];
Major: integer;
SSN: string[11];
Midterm1: integer;
Midterm2: integer;
Final: integer;
Homework: integer;
Projects: integer;

 end;

Most Pascal compilers allocate each field in a record to contiguous memory locations.
This means that Pascal will reserve the first 65 bytes for the name12, the next two bytes
hold the major code, the next 12 the Social Security Number, etc.

In assembly language, you can also create structure types using the MASM struct
statement. You would encode the above record in assembly language as follows:

student struct
Name char 65 dup (?)
Major integer ?
SSN char 12 dup (?)
Midterm1 integer ?
Midterm2 integer ?
Final integer ?
Homework integer ?
Projects integer ?
student ends

11. It also goes by some other names in other languages, but most people recognize at least one of these names.
12. Strings require an extra byte, in addition to all the characters in the string, to encode the length.

Variables and Data Structures

Page 219

Note that the structure ends with the ends (for end structure) statement. The label on the
ends statement must be the same as on the struct statement.

The field names within the structure must be unique. That is, the same name may not
appear two or more times in the same structure. However, all field names are local to that
structure. Therefore, you may reuse those field names elsewhere in the program13.

The struct directive only defines a structure type. It does not reserve storage for a struc-
ture variable. To actually reserve storage you need to declare a variable using the structure
name as a MASM statement, e.g.,

John student {}

The braces must appear in the operand field. Any initial values must appear between the
braces. The above declaration allocates memory as shown in Figure 5.7. :

If the label John corresponds to the base address of this structure, then the Name field is at
offset John+0, the Major field is at offset John+65, the SSN field is at offset John+67, etc.

To access an element of a structure you need to know the offset from the beginning of
the structure to the desired field. For example, the Major field in the variable John is at off-
set 65 from the base address of John. Therefore, you could store the value in ax into this
field using the instruction mov John[65], ax. Unfortunately, memorizing all the offsets to
fields in a structure defeats the whole purpose of using them in the first place. After all, if
you’ve got to deal with these numeric offsets why not just use an array of bytes instead of
a structure?

Well, as it turns out, MASM lets you refer to field names in a structure using the same
mechanism C and Pascal use: the dot operator. To store ax into the Major field, you could
use mov John.Major,ax instead of the previous instruction. This is much more readable and
certainly easier to use.

Note that the use of the dot operator does not introduce a new addressing mode. The
instruction mov John.Major,ax still uses the displacement only addressing mode. MASM
simply adds the base address of John with the offset to the Major field (65) to get the actual
displacement to encode into the instruction.

You may also specify default initial values when creating a structure. In the previous
example, the fields of the student structure were given indeterminate values by specifying
“?” in the operand field of each field’s declaration. As it turns out, there are two different
ways to specify an initial value for structure fields. Consider the following definition of a
“point” data structure:

Point struct
x word 0
y word 0
z word 0
Point ends

Whenever you declare a variable of type point using a statement similar to

CurPoint Point {}

13. You cannot redefine a fieldname as an equate or macro label. You may, however, reuse a field name as a state-
ment label. Also, note that versions of MASM prior to 6.0 do not support the ability to reuse structure field names.

Figure 5.7 Student Data Structure Storage in Memory

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

Chapter 05

Page 220

MASM automatically initializes the CurPoint.x, CurPoint.y, and CurPoint.z variables to zero.
This works out great in those cases where your objects usually start off with the same ini-
tial values14. Of course, it might turn out that you would like to initialize the X, Y, and Z
fields of the points you declare, but you want to give each point a different value. That is
easily accomplished by specifying initial values inside the braces:

Point1 point {0,1,2}
Point2 point {1,1,1}
Point3 point {0,1,1}

MASM fills in the values for the fields in the order that they appear in the operand field.
For Point1 above, MASM initializes the X field with zero, the Y field with one, and the Z
field with two.

The type of the initial value in the operand field must match the type of the corre-
sponding field in the structure definition. You cannot, for example, specify an integer con-
stant for a real4 field, nor could you specify a value greater than 255 for a byte field.

MASM does not require that you initialize all fields in a structure. If you leave a field
blank, MASM will use the specified default value (undefined if you specify “?” rather
than a default value).

5.6.4 Arrays of Structures and Arrays/Structures as Structure Fields

Structs may contain other structures or arrays as fields. Consider the following defini-
tion:

Pixel struct
Pt point {}
Color dword ?
Pixel ends

The definition above defines a single point with a 32 bit color component. When initializ-
ing an object of type Pixel, the first initializer corresponds to the Pt field, not the x-coordi-
nate field. The following definition is incorrect:

ThisPt Pixel {5,10}

The value of the first field (“5”) is not an object of type point. Therefore, the assembler gen-
erates an error when encountering this statement. MASM will allow you to initialize the
fields of ThisPt using declarations like the following:

ThisPt Pixel {,10}

ThisPt Pixel {{},10}

ThisPt Pixel {{1,2,3}, 10}

ThisPt Pixel {{1,,1}, 12}

The first and second examples above use the default values for the Pt field (x=0, y=0, z=0)
and set the Color field to 10. Note the use of braces to surround the initial values for the
point type in the second, third, and fourth examples. The third example above initializes
the x, y, and z fields of the Pt field to one, two, and three, respectively. The last example
initializes the x and z fields to one and lets the y field take on the initial value specified by
the Point structure (zero).

Accessing Pixel fields is very easy. Like a high level language you use a single period
to reference the Pt field and a second period to access the x, y, and z fields of point:

14. Note, of course, that the initial values for the x, y , and z fields need not all be zero. You could have initialized
the fields to 1, 2, and 3 just as easily.

Variables and Data Structures

Page 221

mov ax, ThisPt.Pt.X
 .
 .
 .
mov ThisPt.Pt.Y, 0
 .
 .
 .
mov ThisPt.Pt.Z, di
 .
 .
 .
mov ThisPt.Color, EAX

You can also declare arrays as structure fields. The following structure creates a data
type capable of representing an object with eight points (e.g., a cube):

Object8 struct
Pts point 8 dup (?)
Color dword 0
Object8 ends

This structure allocates storage for eight different points. Accessing an element of the Pts
array requires that you know the size of an object of type point (remember, you must mul-
tiply the index into the array by the size of one element, six in this particular case). Sup-
pose, for example, that you have a variable CUBE of type Object8. You could access
elements of the Pts array as follows:

; CUBE.Pts[i].X := 0;

mov ax, 6
mul i ;6 bytes per element.
mov si, ax
mov CUBE.Pts[si].X, 0

The one unfortunate aspect of all this is that you must know the size of each element
of the Pts array. Fortunately, MASM provides an operator that will compute the size of an
array element (in bytes) for you, more on that later.

5.6.5 Pointers to Structures

During execution, your program may refer to structure objects directly or indirectly
using a pointer. When you use a pointer to access fields of a structure, you must load one
of the 80x86’s pointer registers (si, di, bx, or bp on processors less than the 80386) with the
offset and es, ds, ss, or cs15 with the segment of the desired structure. Suppose you have
the following variable declarations (assuming the Object8 structure from the previous sec-
tion):

Cube Object8 {}
CubePtr dword Cube

CubePtr contains the address of (i.e., it is a pointer to) the Cube object. To access the Color
field of the Cube object, you could use an instruction like mov eax,Cube.Color. When access-
ing a field via a pointer you need to load the address of the object into a segment:pointer
register pair, such as es:bx. The instruction les bx,CubePtr will do the trick. After doing so,
you can access fields of the Cube object using the disp+bx addressing mode. The only
problem is “How do you specify which field to access?” Consider briefly, the following
incorrect code:

les bx, CubePtr
mov eax, es:[bx].Color

15. Add FS or GS to this list for the 80386 and later.

Chapter 05

Page 222

There is one major problem with the code above. Since field names are local to a structure
and it’s possible to reuse a field name in two or more structures, how does MASM deter-
mine which offset Color represents? When accessing structure members directly (.e.g.,
mov eax,Cube.Color) there is no ambiguity since Cube has a specific type that the assembler
can check. es:bx, on the other hand, can point at anything. In particular, it can point at any
structure that contains a Color field. So the assembler cannot, on its own, decide which off-
set to use for the Color symbol.

MASM resolves this ambiguity by requiring that you explicitly supply a type in this
case. Probably the easiest way to do this is to specify the structure name as a pseudo-field:

les bx, CubePtr
mov eax, es:[bx].Object8.Color

By specifying the structure name, MASM knows which offset value to use for the Color
symbol16.

5.7 Sample Programs

The following short sample programs demonstrate many of the concepts appearing in
this chapter.

5.7.1 Simple Variable Declarations

; Sample variable declarations
; This sample file demonstrates how to declare and access some simple
; variables in an assembly language program.
;
; Randall Hyde
;
;
; Note: global variable declarations should go in the "dseg" segment:

dseg segment para public 'data'

; Some simple variable declarations:

character byte ? ;"?" means uninitialized.
UnsignedIntVar word ?
DblUnsignedVar dword ?

;You can use the typedef statement to declare more meaningful type names:

integer typedef sword
char typedef byte
FarPtr typedef dword

; Sample variable declarations using the above types:

J integer ?
c1 char ?
PtrVar FarPtr ?

; You can tell MASM & DOS to initialize a variable when DOS loads the
; program into memory by specifying the initial value in the operand

16. Users of MASM 5.1 and other assemblers should keep in mind that field names are not local to the structure.
Instead, they must all be unique within a source file. As a result, such programs do not require the structure name
in the “dot path” for a particular field. Keep this in mind when converting older code to MASM 6.x.

Variables and Data Structures

Page 223

; field of the variable's declaration:

K integer 4
c2 char 'A'
PtrVar2 FarPtr L ;Initializes PtrVar2 with the

; address of L.

; You can also set aside more than one byte, word, or double word of
; storage using these directives. If you place several values in the
; operand field, separated by commas, the assembler will emit one byte,
; word, or dword for each operand:

L integer 0, 1, 2, 3
c3 char 'A', 0dh, 0ah, 0
PtrTbl FarPtr J, K, L

; The BYTE directive lets you specify a string of characters byte enclosing
; the string in quotes or apostrophes. The directive emits one byte of data
; for every character in the string (not including the quotes or apostrophes
; that delimit the string):

string byte "Hello world",0dh,0ah,0

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Some simple instructions that demonstrate how to access memory:

lea bx, L ;Point bx at first word in L.
mov ax, [bx];Fetch word at L.
add ax, 2[bx];Add in word at L+2 (the "1").
add ax, 4[bx];Add in word at L+4 (the "2").
add ax, 6[bx];Add in word at L+6 (the "3").
mul K ;Compute (0+1+2+3)*123.
mov J, ax ;Save away result in J.

les bx, PtrVar2;Loads es:di with address of L.
mov di, K ;Loads 4 into di
mov ax, es:[bx][di];Fetch value of L+4.

; Examples of some byte accesses:

mov c1, ' ' ;Put a space into the c1 var.
mov al, c2 ;c3 := c2
mov c3, al

Chapter 05

Page 224

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.2 Using Pointer Variables

; Using Pointer Variables in an Assembly Language Program
;
; This short sample program demonstrates the use of pointers in
; an assembly language program.
;
; Randall Hyde

dseg segment para public 'data'

; Some variables we will access indirectly (using pointers):

J word 0, 0, 0, 0
K word 1, 2, 3, 4
L word 5, 6, 7, 8

; Near pointers are 16-bits wide and hold an offset into the current data
; segment (dseg in this program). Far pointers are 32-bits wide and hold
; a complete segment:offset address. The following type definitions let
; us easily create near and far pointers

nWrdPtr typedef near ptr word
fWrdPtr typedef far ptr word

; Now for the actual pointer variables:

Ptr1 nWrdPtr ?
Ptr2 nWrdPtr K ;Initialize with K's address.
Ptr3 fWrdPtr L ;Initialize with L's segmented adrs.

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

Variables and Data Structures

Page 225

; Initialize Ptr1 (a near pointer) with the address of the J variable.

lea ax, J
mov Ptr1, ax

; Add the four words in variables J, K, and L together using pointers to
; these variables:

mov bx, Ptr1 ;Get near ptr to J's 1st word.
mov si, Ptr2 ;Get near ptr to K's 1st word.
les di, Ptr3 ;Get far ptr to L's 1st word.

mov ax, ds:[si] ;Get data at K+0.
add ax, es:[di] ;Add in data at L+0.
mov ds:[bx], ax ;Store result to J+0.

add bx, 2 ;Move to J+2.
add si, 2 ;Move to K+2.
add di, 2 ;Move to L+2.

mov ax, ds:[si] ;Get data at K+2.
add ax, es:[di] ;Add in data at L+2.
mov ds:[bx], ax ;Store result to J+2.

add bx, 2 ;Move to J+4.
add si, 2 ;Move to K+4.
add di, 2 ;Move to L+4.

mov ax, ds:[si] ;Get data at K+4.
add ax, es:[di] ;Add in data at L+4.
mov ds:[bx], ax ;Store result to J+4.

add bx, 2 ;Move to J+6.
add si, 2 ;Move to K+6.
add di, 2 ;Move to L+6.

mov ax, ds:[si] ;Get data at K+6.
add ax, es:[di] ;Add in data at L+6.
mov ds:[bx], ax ;Store result to J+6.

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Chapter 05

Page 226

5.7.3 Single Dimension Array Access

; Sample variable declarations
; This sample file demonstrates how to declare and access some single
; dimension array variables in an assembly language program.
;
; Randall Hyde

.386 ;Need to use some 80386
option segment:use16 ; addressing modes.

dseg segment para public 'data'

J word ?
K word ?
L word ?
M word ?

JD dword 0
KD dword 1
LD dword 2
MD dword 3

; Some simple uninitialized array declarations:

ByteAry byte 4 dup (?)
WordAry word 4 dup (?)
DwordAry dword 4 dup (?)
RealAry real8 4 dup (?)

; Some arrays with initialized values:

BArray byte 0, 1, 2, 3
WArray word 0, 1, 2, 3
DWArray dword 0, 1, 2, 3
RArray real8 0.0, 1.0, 2.0, 3.0

; An array of pointers:

PtrArray dword ByteAry, WordAry, DwordAry, RealAry

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Initialize the index variables. Note that these variables provide
; logical indices into the arrays. Don't forget that we've got to
; multiply these values by the element size when accessing elements of
; an array.

Variables and Data Structures

Page 227

mov J, 0
mov K, 1
mov L, 2
mov M, 3

; The following code shows how to access elements of the arrays using
; simple 80x86 addressing modes:

mov bx, J ;AL := ByteAry[J]
mov al, ByteAry[bx]

mov bx, K ;AX := WordAry[K]
add bx, bx ;Index*2 since this is a word array.
mov ax, WordAry[bx]

mov bx, L ;EAX := DwordAry[L]
add bx, bx ;Index*4 since this is a double
add bx, bx ; word array.
mov eax, DwordAry[bx]

mov bx, M ;BX := address(RealAry[M])
add bx, bx ;Index*8 since this is a quad
add bx, bx ; word array.
add bx, bx
lea bx, RealAry[bx];Base address + index*8.

; If you have an 80386 or later CPU, you can use the 386's scaled indexed
; addressing modes to simplify array access.

mov ebx, JD
mov al, ByteAry[ebx]

mov ebx, KD
mov ax, WordAry[ebx*2]

mov ebx, LD
mov eax, DwordAry[ebx*4]

mov ebx, MD
lea bx, RealAry[ebx*8]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.4 Multidimensional Array Access

; Multidimensional Array declaration and access
;

Chapter 05

Page 228

; Randall Hyde

.386 ;Need these two statements to
option segment:use16 ; use the 80386 register set.

dseg segment para public 'data'

; Indices we will use for the arrays.

J word 1
K word 2
L word 3

; Some two-dimensional arrays.
; Note how this code uses the "dup" operator to suggest the size
; of each dimension.

B2Ary byte 3 dup (4 dup (?))
W2Ary word 4 dup (3 dup (?))
D2Ary dword 2 dup (6 dup (?))

; 2D arrays with initialization.
; Note the use of data layout to suggest the sizes of each array.

B2Ary2 byte 0, 1, 2, 3
byte 4, 5, 6, 7
byte 8, 9, 10, 11

W2Ary2 word 0, 1, 2
word 3, 4, 5
word 6, 7, 8
word 9, 10, 11

D2Ary2 dword 0, 1, 2, 3, 4, 5
dword 6, 7, 8, 9, 10, 11

; A sample three dimensional array.

W3Ary word 2 dup (3 dup (4 dup (?)))

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; AL := B2Ary2[j,k]

mov bx, J ;index := (j*4+k)
add bx, bx ;j*2
add bx, bx ;j*4
add bx, K ;j*4+k
mov al, B2Ary2[bx]

Variables and Data Structures

Page 229

; AX := W2Ary2[j,k]

mov ax, J ;index := (j*3 + k)*2
mov bx, 3
mul bx ;(j*3)-- This destroys DX!
add ax, k ;(j*3+k)
add ax, ax ;(j*3+k)*2
mov bx, ax
mov ax, W2Ary2[bx]

; EAX := D2Ary[i,j]

mov ax, J ;index := (j*6 + k)*4
mov bx, 6
mul bx ;DX:AX := j*6, ignore overflow in DX.
add ax, k ;j*6 + k
add ax, ax ;(j*6 + k)*2
add ax, ax ;(j*6 + k)*4
mov bx, ax
mov eax, D2Ary[bx]

; Sample access of a three dimensional array.
;
; AX := W3Ary[J,K,L]

mov ax, J ;index := ((j*3 + k)*4 + l)*2
mov bx, 3
mul bx ;j*3
add ax, K ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
mov bx, ax
mov ax, W3Ary[bx]

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.5 Simple Structure Access

; Sample Structure Definitions and Accesses.
;
; Randall Hyde

Chapter 05

Page 230

dseg segment para public 'data'

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?
rm byte ?
mode ends

Instr1Adrs mode {};All fields uninitialized.
Instr2Adrs mode {}

; Some structures with initialized fields.

axbx mode {11b, 000b, 000b} ;"ax, ax" adrs mode.
axdisp mode {00b, 000b, 110b} ;"ax, disp" adrs mode.
cxdispbxsi mode {01b, 001b, 000b} ;"cx, disp8[bx][si]" mode.

; Near pointers to some structures:

sPtr1 word axdisp
sPtr2 word Instr2Adrs

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; To access fields of a structure variable directly, just use the "."
; operator like you would in Pascal or C:

mov al, axbx.modbits
mov Instr1Adrs.modbits, al

mov al, axbx.reg
mov Instr1Adrs.reg, al

mov al, axbx.rm
mov Instr1Adrs.rm, al

; When accessing elements of a structure indirectly (that is, using a
; pointer) you must specify the structure type name as the first
; "field" so MASM doesn't get confused:

mov si, sPtr1
mov di, sPtr2

mov al, ds:[si].mode.modbits
mov ds:[di].mode.modbits, al

Variables and Data Structures

Page 231

mov al, ds:[si].mode.reg
mov ds:[di].mode.reg, al

mov al, ds:[si].mode.rm
mov ds:[di].mode.rm, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.6 Arrays of Structures

; Arrays of Structures
;
; Randall Hyde

dseg segment para public 'data'

; A structure that defines an (x,y) coordinate.
; Note that the Point data type requires four bytes.

Point struct
X word ?
Y word ?
Point ends

; An uninitialized point:

Pt1 Point {}

; An initialized point:

Pt2 Point {12,45}

; A one-dimensional array of uninitialized points:

PtAry1 Point 16 dup ({}) ;Note the "{}" inside the parens.

; A one-dimensional array of points, all initialized to the origin.

PtAry1i Point 16 dup ({0,0})

Chapter 05

Page 232

; A two-dimensional array of points:

PtAry2 Point 4 dup (4 dup ({}))

; A three-dimensional array of points, all initialized to the origin.

PtAry3 Point 2 dup (3 dup (4 dup ({0,0})))

; A one-dimensional array of points, all initialized to different values:

iPtAry Point {0,0}, {1,2}, {3,4}, {5,6}

; Some indices for the arrays:

J word 1
K word 2
L word 3

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; PtAry1[J] := iPtAry[J]

mov bx, J ;Index := J*4 since there are four
add bx, bx ; bytes per array element (each
add bx, bx ; element contains two words).

mov ax, iPtAry[bx].X
mov PtAry1[bx].X, ax

mov ax, iPtAry[bx].Y
mov PtAry1[bx].Y, ax

; CX := PtAry2[K,L].X; DX := PtAry2[K,L].Y

mov bx, K ;Index := (K*4 + J)*4
add bx, bx ;K*2
add bx, bx ;K*4
add bx, J ;K*4 + J
add bx, bx ;(K*4 + J)*2
add bx, bx ;(K*4 + J)*4

mov cx, PtAry2[bx].X
mov dx, PtAry2[bx].Y

; PtAry3[j,k,l].X := 0

Variables and Data Structures

Page 233

mov ax, j ;Index := ((j*3 +k)*4 + l)*4
mov bx, 3
mul bx ;j*3
add ax, k ;j*3 + k
add ax, ax ;(j*3 + k)*2
add ax, ax ;(j*3 + k)*4
add ax, l ;(j*3 + k)*4 + l
add ax, ax ;((j*3 + k)*4 + l)*2
add ax, ax ;((j*3 + k)*4 + l)*4
mov bx, ax
mov PtAry3[bx].X, 0

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.7 Structures and Arrays as Fields of Another Structure

; Structures Containing Structures as fields
; Structures Containing Arrays as fields
;
; Randall Hyde

dseg segment para public 'data'

Point struct
X word ?
Y word ?
Point ends

; We can define a rectangle with only two points.
; The color field contains an eight-bit color value.
; Note: the size of a Rect is 9 bytes.

Rect struct
UpperLeft Point {}
LowerRight Point {}
Color byte ?
Rect ends

; Pentagons have five points, so use an array of points to
; define the pentagon. Of course, we also need the color
; field.
; Note: the size of a pentagon is 21 bytes.

Pent struct
Color byte ?
Pts Point 5 dup ({})
Pent ends

Chapter 05

Page 234

; Okay, here are some variable declarations:

Rect1 Rect {}
Rect2 Rect {{0,0}, {1,1}, 1}

Pentagon1 Pent {}
Pentagons Pent {}, {}, {}, {}

Index word 2

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; Rect1.UpperLeft.X := Rect2.UpperLeft.X

mov ax, Rect2.Upperleft.X
mov Rect1.Upperleft.X, ax

; Pentagon1 := Pentagons[Index]

mov ax, Index;Need Index*21
mov bx, 21
mul bx
mov bx, ax

; Copy the first point:

mov ax, Pentagons[bx].Pts[0].X
mov Pentagon1.Pts[0].X, ax

mov ax, Pentagons[bx].Pts[0].Y
mov Pentagon1.Pts[0].Y, ax

; Copy the second point:

mov ax, Pentagons[bx].Pts[2].X
mov Pentagon1.Pts[4].X, ax

mov ax, Pentagons[bx].Pts[2].Y
mov Pentagon1.Pts[4].Y, ax

; Copy the third point:

mov ax, Pentagons[bx].Pts[4].X
mov Pentagon1.Pts[8].X, ax

mov ax, Pentagons[bx].Pts[4].Y
mov Pentagon1.Pts[8].Y, ax

; Copy the fourth point:

mov ax, Pentagons[bx].Pts[6].X
mov Pentagon1.Pts[12].X, ax

Variables and Data Structures

Page 235

mov ax, Pentagons[bx].Pts[6].Y
mov Pentagon1.Pts[12].Y, ax

; Copy the fifth point:

mov ax, Pentagons[bx].Pts[8].X
mov Pentagon1.Pts[16].X, ax

mov ax, Pentagons[bx].Pts[8].Y
mov Pentagon1.Pts[16].Y, ax

; Copy the Color:

mov al, Pentagons[bx].Color
mov Pentagon1.Color, al

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

5.7.8 Pointers to Structures and Arrays of Structures

; Pointers to structures
; Pointers to arrays of structures
;
; Randall Hyde

.386 ;Need these two statements so
option segment:use16 ; we can use 80386 registers

dseg segment para public 'data'

; Sample structure.
; Note: size is seven bytes.

Sample struct
b byte ?
w word ?
d dword ?
Sample ends

; Some variable declarations:

OneSample Sample {}
SampleAry Sample 16 dup ({})

; Pointers to the above

Chapter 05

Page 236

OnePtr word OneSample ;A near pointer.
AryPtr dword SampleAry

; Index into the array:

Index word 8

dseg ends

; The following program demonstrates how to access each of the above
; variables.

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;These statements are provided by
mov ds, ax ; shell.asm to initialize the
mov es, ax ; segment register.

; AryPtr^[Index] := OnePtr^

mov si, OnePtr ;Get pointer to OneSample
les bx, AryPtr ;Get pointer to array of samples
mov ax, Index ;Need index*7
mov di, 7
mul di
mov di, ax

mov al, ds:[si].Sample.b
mov es:[bx][di].Sample.b, al

mov ax, ds:[si].Sample.w
mov es:[bx][di].Sample.w, ax

mov eax, ds:[si].Sample.d
mov es:[bx][di].Sample.d, eax

Quit: mov ah, 4ch ;Magic number for DOS
int 21h ; to tell this program to quit.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Variables and Data Structures

Page 237

5.8 Laboratory Exercises

In these laboratory exercises you will learn how to step through a program using
CodeView and observe the results. Knowing how to trace through a program is an impor-
tant skill to posses. There is no better way to learn assembly language than to single step
through a program and observe the actions of each instruction. Even if you already know
assembly language, tracing through a program with a debugger like CodeView is one of
the best ways to verify that your program is working properly.

In these lab exercises you will assemble the sample program provided in the previous
section. Then you will run the assembled program under CodeView and step through
each instruction in the program. For your lab report: you will include a listing of each pro-
gram and describe the operation of each statement including data loaded into any affected
registers or values stored away into memory.

The following paragraphs describe one experimental run – stepping through the
pgm5_1.asm program. Your lab report should contain similar information for all eight
sample programs.

To assemble your programs, use the ML command with the /Zi option. For example,
to assemble the first sample program you would use the following DOS command:

ml /Zi pgm5_1.asm

This command produces the pgm5_1.exe file that contains CodeView debugging informa-
tion. You can load this program into the CodeView debugger using the following com-
mand:

cv pgm5_1

Once you are inside CodeView, you can single step through the program by repeatedly
pressing the F8 key. Each time you press the F8 key, CodeView executes a single instruc-
tion in the program.

To better observe the results while stepping through your program, you should open
the register window. If it is not open already, you can open it by pressing the F2 key. As the
instructions you execute modify the registers, you can observe the changes.

All the sample programs begin with a three-instruction sequence that initializes the
DS and ES registers; pressing the F8 key three times steps over these instructions and (on
one system) loads the AX, ES, and DS registers with the value 1927h (this value will
change on different systems).

Single stepping over the lea bx, L instruction loads the value 0015h into bx. Single step-
ping over the group of instructions following the lea produces the following results:

mov ax, [bx] ;AX = 0
add ax, 2[bx] ;AX = 1
add ax, 4[bx] ;AX = 3
add ax, 6[bx] ;AX = 6
mul K ;AX = 18 (hex)
mov J, ax ;J is now equal to 18h.

Comments on the above instructions: this code loads bx with the base address of array L
and then proceeds to compute the sum of L[i], i=0..3 (0+1+2+3). It then multiples this sum
by K (4) and stores the result into J. Note that you can use the “dw J” command in the
command window to display J’s current value (the “J” must be upper case because Code-
View is case sensitive).

les bx, PtrVar2 ;BX = 0015, ES = 1927
mov di, K ;DI = 4
mov ax, es:[bx][di] ;AX = 2

Chapter 05

Page 238

Comments on the above code: The les instruction loads es:bx with the pointer variable
PtrVar2. This variable contains the address of the L variable. Then this code loads di with
the value of K and completes by loading the second element of L into ax.

mov c1, ' '
mov al, c2
mov c3, al

These three instructions simply store a space into byte variable c1 (verify with a “da c1”
command in the command window) and they copy the value in c2 (“A”) into the AL reg-
ister and the c3 variable (verified with “da c3” command).

For your lab report: assemble and step through pgm5_2.asm, pgm5_3.asm,
pgm5_4.asm, pgm5_5.asm, pgm5_6.asm, pgm5_7.asm, and pgm5_8.asm. Describe the
results in a fashion similar to the above.

5.9 Programming Projects

1) The PC’s video display is a memory mapped I/O device. That is, the display adapter maps
each character on the text display to a word in memory. The display is an 80x25 array of
words declared as follows:

display:array[0..24,0..79] of word;

Display[0,0] corresponds to the upper left hand corner of the screen, display[0,79] is the
upper right hand corner, display[24,0] is the lower left hand corner, and display[24,79] is
the lower right hand corner of the display.
The L.O. byte of each word holds the ASCII code of the character to appear on the screen.
The H.O. byte of each word contains the attribute byte (see “The PC Video Display” on
page 1247 for more details on the attribute byte). The base address of this array is B000:0
for monochrome displays and B800:0 for color displays.
The Chapter Five subdirectory contains a file named PGM5_1.ASM. This file is a skeletal
program that manipulates the PC’s video display. This program, when complete, writes a
series of period to the screen and then it writes a series of blues spaces to the screen. It con-
tains a main program that uses several instructions you probably haven’t seen yet. These
instructions essentially execute a for loop as follows:

for i:= 0 to 79 do
for j := 0 to 24 do

putscreen(i,j,value);

Inside this program you will find some comments that instruct you to supply the code
that stores the value in AX to location display[i,j]. Modify this program as described in its
comments and test the result.
For this project, you need to declare two word variables, I and J, in the data segment. Then
you will need to modify the “PutScreen” procedure. Inside this procedure, as directed by
the comments in the file, you will need to compute the index into the screen array and
then store the value in the ax register to location es:[bx+0] (assuming you’ve computed the
index into bx). Note that es:[0] is the base address of the video display in this procedure.
Check your code carefully before attempting to run it. If your code malfunctions, it may
crash the system and you will have to reboot. This program, if operating properly, will fill
the screen with periods and wait until you press a key. Then it will fill the screen with blue
spaces. You should probably execute the DOS “CLS” (clear screen) command after this
program executes properly. Note that there is a working version of this program named
p5_1.exe in the Chapter Five directory. You can run this program to check out it’s opera-
tion if you are having problems.

2) The Chapter Five subdirectory contains a file named PGM5_2.ASM. This file is a program
(except for two short subroutines) that generates mazes and solves them on the screen.
This program requires that you complete two subroutines: MazeAdrs and ScrnAdrs.
These two procedures appear at the beginning of the file; you should ignore the remainder

Variables and Data Structures

Page 239

of this program. When the program calls the MazeAdrs function, it passes an X coordinate
in the dx register and a Y-coordinate in the cx register. You need to compute the index into
an 27x82 array defined as follows:

maze:array[0..26, 0..81] of word;

Return the index in the ax register. Do not access the maze array; the calling code will do that for
you.

The ScrnAdrs function is almost identical to the MazeAdrs function except it computes an
index into a 25x80 array rather than a 27x82 array. As with MazeAdrs, the X-coordinate
will be in the dx register and the Y-coordinate will be in the cx register.

Complete these two functions, assemble the program, and run it. Be sure to check your
work over carefully. If you make any mistakes you will probably crash the system.

3) Create a program with a single dimension array of structures. Place at least four fields
(your choice) in the structure. Write a code segment to access element “i” (“i” being a
word variable) in the array.

4) Write a program which copies the data from a 3x3 array and stores the data into a second
3x3 array. For the first 3x3 array, store the data in row major order. For the second 3x3
array, store the data in column major order. Use nine sequences of instructions which fetch
the word at location (i,j) (i=0..2, j=0..2).

5) Rewrite the code sequence above just using MOV instructions. Read and write the array
locations directly, do not perform the array address computations.

5.10 Summary

This chapter presents an 80x86-centric view of memory organization and data struc-
tures. This certainly isn’t a complete course on data structures. This chapter discussed the
primitive and simple composite data types and how to declare and use them in your pro-
gram. Lots of additional information on the declaration and use of simple data types
appears later in this text.

One of the main goals of this chapter is to describe how to declare and use variables in
an assembly language program. In an assembly language program you can easily create
byte, word, double word, and other types of variables. Such scalar data types support
boolean, character, integer, real, and other single data types found in typical high level
languages. See:

• “Declaring Variables in an Assembly Language Program” on page 196
• “Declaring and using BYTE Variables” on page 198
• “Declaring and using WORD Variables” on page 200
• “Declaring and using DWORD Variables” on page 201
• “Declaring and using FWORD, QWORD, and TBYTE Variables” on

page 202
• “Declaring Floating Point Variables with REAL4, REAL8, and REAL10”

on page 202

For those who don’t like using variable type names like byte, word, etc., MASM lets
you create your own type names. You want to call them Integers rather than Words? No
problem, you can define your own type names use the typedef statement. See:

• “Creating Your Own Type Names with TYPEDEF” on page 203

Another important data type is the pointer. Pointers are nothing more than memory
addresses stored in variables (word or double word variables). The 80x86 CPUs support
two types of pointers – near and far pointers. In real mode, near pointers are 16 bits long
and contain the offset into a known segment (typically the data segment). Far pointers are
32 bits long and contain a full segment:offset logical address. Remember that you must
use one of the register indirect or indexed addressing modes to access the data referenced
by a pointer. For those who want to create their own pointer types (rather than simply

Chapter 05

Page 240

using word and dword to declare near and far pointers), the typedef instruction lets
you create named pointer types. See:

• “Pointer Data Types” on page 203

A composite data type is one made up from other data types. Examples of composite
data types abound, but two of the more popular composite data types are arrays and
structures (records). An array is a group of variables, all the same type. A program selects
an element of an array using an integer index into that array. Structures, on the other
hand, may contain fields whose types are different. In a program, you select the desired
field by supplying a field name with the dot operator. See:

• “Arrays” on page 206
• “Multidimensional Arrays” on page 210
• “Structures” on page 218
• “Arrays of Structures and Arrays/Structures as Structure Fields” on

page 220
• “Pointers to Structures” on page 221

Variables and Data Structures

Page 241

5.11 Questions

1) In what segment (8086) would you normally place your variables?

2) Which segment in the SHELL.ASM file normally corresponds to the segment containing
your variables?

3) Describe how to declare byte variables. Give several examples. What would you normally
use byte variables for in a program?

4) Describe how to declare word variables. Give several examples. Describe what you would
use them for in a program.

5) Repeat question 21 for double word variables.

6) Explain the purpose of the TYPEDEF statement. Give several examples of its use.

7) What is a pointer variable?

8) What is the difference between a near and a far pointer?

9) How do you access the object pointed at by a far pointer. Give an example using 8086
instructions.

10) What is a composite data type?

11) How do you declare arrays in assembly language? Give the code for the following arrays:

a) A two dimensional 4x4 array of bytes b) An array containing 128 double words

c) An array containing 16 words d) A 4x5x6 three dimensional array of words

12) Describe how you would access a single element of each of the above arrays. Provide the
necessary formulae and 8086 code to access said element (assume variable I is the index
into single dimension arrays, I & J provide the index into two dimension arrays, and I, J, &
K provide the index into the three dimensional array). Assume row major ordering, where
appropriate.

13) Provide the 80386 code, using the scaled indexing modes, to access the elements of the
above arrays.

14) Explain the difference between row major and column major array ordering.

15) Suppose you have a two-dimensional array whose values you want to initialize as fol-
lows:

Provide the variable declaration to accomplish this. Note: Do not use 8086 machine
instructions to initialize the array. Initialize the array in your data segment.

Date= Record
Month:integer;
Day:integer;
Year:integer;

end;

Time= Record
Hours:integer;
Minutes:integer;
Seconds:integer;

end;

VideoTape = record
Title:string[25];
ReleaseDate:Date;
Price:Real; (* Assume four byte reals *)

0 1 2

3 4 5

6 7 8

Chapter 05

Page 242

Length: Time;
Rating:char;

end;

TapeLibrary : array [0..127] of VideoTape; (*This is a variable!*)

17) Suppose ES:BX points at an object of type VideoTape. What is the instruction that properly
loads the Rating field into AL?

Page 243

The 80x86 Instruction Set Chapter Six

Until now, there has been little discussion of the instructions available on the 80x86
microprocessor. This chapter rectifies this situation. Note that this chapter is mainly for

reference

. It explains what each instruction does, it does not explain how to combine these
instructions to form complete assembly language programs. The rest of this book will
explain how to do that.

6.0 Chapter Overview

This chapter discusses the 80x86 real mode instruction set. Like any programming
language, there are going to be several instructions you use all the time, some you use
occasionally, and some you will rarely, if ever, use. This chapter organizes its presentation
by instruction class rather than importance. Since beginning assembly language program-
mers do not have to learn the entire instruction set in order to write meaningful assembly
language programs, you will probably not have to learn how every instruction operates.
The following list describes the instructions this chapter discusses. A “•” symbol marks
the important instructions in each group. If you learn only these instructions, you will
probably be able to write any assembly language program you want. There are many
additional instructions, especially on the 80386 and later processors. These additional
instructions make assembly language programming easier, but you do not need to know
them to begin writing programs.

80x86 instructions can be (roughly) divided into eight different classes:

1) Data movement instructions
•

 mov, lea, les , push, pop, pushf, popf

2) Conversions
•

cbw, cwd, xlat

3) Arithmetic instructions
•

 add, inc sub, dec, cmp, neg, mul, imul, div, idiv

4) Logical, shift, rotate, and bit instructions
•

 and, or, xor, not, shl, shr, rcl, rcr

5) I/O instructions
•

in, out

6) String instructions
•

 movs, stos, lods

7) Program flow control instructions
•

jmp, call, ret,

 conditional jumps
8) Miscellaneous instructions.

•

clc, stc, cmc

The following sections describe all the instructions in these groups and how they operate.

At one time a text such as this one would recommend against using the extended
80386 instruction set. After all, programs that use such instructions will not run properly
on 80286 and earlier processors. Using these additional instructions could limit the num-
ber of machines your code would run on. However, the 80386 processor is on the verge of
disappearing as this text is being written. You can safely assume that most systems will
contain an 80386sx or later processor. This text often uses the 80386 instruction set in vari-
ous example programs. Keep in mind, though, that this is only for convenience. There is
no program that appears in this text that could not be recoded using only 8088 assembly
language instructions.

A word of advice, particularly to those who learn only the instructions noted above:
as you read about the 80x86 instruction set you will discover that the individual 80x86
instructions are not very complex and have simple semantics. However, as you approach

Thi d t t d ith F M k 4 0 2

Chapter 06

Page 244

the end of this chapter, you may discover that you haven’t got a clue how to put these sim-
ple instructions together to form a complex program. Fear not, this is a common problem.
Later chapters will describe how to form complex programs from these simple instruc-
tions.

One quick note: this chapter lists many instructions as “available only on the 80286
and later processors.” In fact, many of these instructions were available on the 80186
microprocessor as well. Since few PC systems employ the 80186 microprocessor, this text
ignores that CPU. However, to keep the record straight...

6.1 The Processor Status Register (Flags)

The flags register maintains the current operating mode of the CPU and some instruc-
tion state information. Figure 6.1 shows the layout of the flags register.

The carry, parity, zero, sign, and overflow flags are special because you can test their
status (zero or one) with the

 set

cc

 and conditional jump instructions (see “The “Set on
Condition” Instructions” on page 281 and “The Conditional Jump Instructions” on
page 296). The 80x86 uses these bits, the

condition codes

, to make decisions during program
execution.

Various arithmetic, logical, and miscellaneous instructions affect the

overflow flag

.
After an arithmetic operation, this flag contains a one if the result does not fit in the signed
destination operand. For example, if you attempt to add the 16 bit signed numbers 7FFFh
and 0001h the result is too large so the CPU sets the overflow flag. If the result of the arith-
metic operation does not produce a signed overflow, then the CPU clears this flag.

Since the logical operations generally apply to unsigned values, the 80x86 logical
instructions simply clear the overflow flag. Other 80x86 instructions leave the overflow
flag containing an arbitrary value.

The 80x86 string instructions use the

direction flag

. When the direction flag is clear, the
80x86 processes string elements from low addresses to high addresses; when set, the CPU
processes strings in the opposite direction. See “String Instructions” on page 284 for addi-
tional details.

The

interrupt enable/disable flag

 controls the 80x86’s ability to respond to external
events known as interrupt requests. Some programs contain certain instruction sequences
that the CPU must not interrupt. The interrupt enable/disable flag turns interrupts on or
off to guarantee that the CPU does not interrupt those critical sections of code.

Figure 6.1 80x86 Flags Register

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

= Unused

The 80x86 Instruction Set

Page 245

The

trace flag

 enables or disables the 80x86 trace mode. Debuggers (such as CodeView)
use this bit to enable or disable the single step/trace operation. When set, the CPU inter-
rupts each instruction and passes control to the debugger software, allowing the debugger
to

single step

 through the application. If the trace bit is clear, then the 80x86 executes
instructions without the interruption. The 80x86 CPUs do not provide any instructions
that directly manipulate this flag. To set or clear the trace flag, you must:

• Push the flags onto the 80x86 stack,
• Pop the value into another register,
• Tweak the trace flag value,
• Push the result onto the stack, and then
• Pop the flags off the stack.

If the result of some computation is negative, the 80x86 sets the

sign flag

. You can test
this flag after an arithmetic operation to check for a negative result. Remember, a value is
negative if its H.O. bit is one. Therefore, operations on unsigned values will set the sign
flag if the result has a one in the H.O. position.

Various instructions set the

zero flag

 when they generate a zero result. You’ll often use
this flag to see if two values are equal (e.g., after subtracting two numbers, they are equal
if the result is zero). This flag is also useful after various logical operations to see if a spe-
cific bit in a register or memory location contains zero or one.

The

auxiliary carry flag

supports special binary coded decimal (BCD) operations. Since
most programs don’t deal with BCD numbers, you’ll rarely use this flag and even then
you’ll not access it directly. The 80x86 CPUs do not provide any instructions that let you
directly test, set, or clear this flag. Only the

 add, adc, sub, sbb, mul, imul, div, idiv,

and BCD
instructions manipulate this flag.

The

parity flag

 is set according to the parity of the L.O. eight bits of any data operation.
If an operation produces an even number of one bits, the CPU sets this flag. It clears this
flag if the operation yields an odd number of one bits. This flag is useful in certain data
communications programs, however, Intel provided it mainly to provide some compati-
bility with the older 8080

µ

P.

The

carry flag

 has several purposes. First, it denotes an unsigned overflow (much like
the overflow flag detects a signed overflow). You will also use it during multiprecision
arithmetic and logical operations. Certain bit test, set, clear, and invert instructions on the
80386 directly affect this flag. Finally, since you can easily clear, set, invert, and test it, it is
useful for various boolean operations. The carry flag has many purposes and knowing
when to use it, and for what purpose, can confuse beginning assembly language program-
mers. Fortunately, for any given instruction, the meaning of the carry flag is clear.

The use of these flags will become readily apparent in the coming sections and chap-
ters. This section is mainly a formal introduction to the individual flags in the register
rather than an attempt to explain the exact function of each flag. For more details on the
operation of each flag, keep reading...

6.2 Instruction Encodings

The 80x86 uses a binary encoding for each machine operation. While it is important to
have a general understanding of how the 80x86 encodes instructions, it is not important
that you memorize the encodings for all the instructions in the instruction set. If you were
to write an assembler or disassembler (debugger), you would definitely need to know the
exact encodings. For general assembly language programming, however, you won’t need
to know the exact encodings.

However, as you become more experienced with assembly language you will proba-
bly want to study the encodings of the 80x86 instruction set. Certainly you should be
aware of such terms as

opcode, mod-reg-r/m byte, displacement value

, and so on. Although
you do not need to memorize the parameters for each instruction, it is always a good idea
to know the lengths and cycle times for instructions you use regularly since this will help

Chapter 06

Page 246

you write better programs. Chapter Three and Chapter Four provided a detailed look at
instruction encodings for various instructions (80x86 and x86); such a discussion was
important because you do need to understand how the CPU encodes and executes
instructions. This chapter does not deal with such details. This chapter presents a higher
level view of each instruction and assumes that you don’t care how the machine treats bits
in memory. For those few times that you will need to know the binary encoding for a par-
ticular instruction, a complete listing of the instruction encodings appears in Appendix D.

6.3 Data Movement Instructions

The data movement instructions copy values from one location to another. These
instructions include

mov, xchg, lds, lea, les, lfs, lgs, lss, push, pusha, pushad, pushf, pushfd, pop,
popa, popad, popf, popfd, lahf,

and

 sahf

.

6.3.1 The MOV Instruction

The

mov

 instruction takes several different forms:

mov reg, reg

1

mov mem, reg
mov reg, mem
mov mem, immediate data
mov reg, immediate data
mov ax/al, mem
mov mem, ax/al
mov segreg, mem

16

mov segreg, reg

16

mov mem

16

, segreg
mov reg

16

, segreg

The last chapter discussed the

mov

 instruction in detail, only a few minor comments
are worthwhile here. First, there are variations of the

mov

 instruction that are faster and
shorter than other

mov

 instructions that do the same job. For example, both the

mov ax, mem

 and

 mov reg, mem

 instructions can load the

ax

 register from a memory loca-
tion. On all processors the first version is shorter. On the earlier members of the 80x86
family, it is faster as well.

There are two very important details to note about the

mov

 instruction. First, there is
no memory to memory move operation. The mod-reg-r/m addressing mode byte (see
Chapter Four) allows two register operands or a single register and a single memory oper-
and. There is no form of the

mov

 instruction that allows you to encode

two

 memory
addresses into the same instruction. Second, you cannot move immediate data into a seg-
ment register. The only instructions that move data into or out of a segment register have
mod-reg-r/m bytes associated with them; there is no format that moves an immediate
value into a segment register. Two common errors beginning programmers make are
attempting a memory to memory move and trying to load a segment register with a con-
stant.

The operands to the

mov

 instruction may be bytes, words, or double words

2

. Both
operands must be the same size or MASM will generate an error while assembling your
program. This applies to memory operands and register operands. If you declare a vari-
able,

 B

, using

byte

 and attempt to load this variable into the

ax

 register, MASM will com-
plain about a type conflict.

The CPU extends immediate data to the size of the destination operand (unless it is
too big to fit in the destination operand, which is an error). Note that you

can

 move an

1. This chapter uses “reg”, by itself, to denote any eight bit, sixteen bit, or (on the 80386 and later) 32 bit general
purpose CPU register (AL/AX/EAX, BL/BX/EBX, SI/ESI, etc.)
2. Double word operands are valid only on 80386 and later processors.

The 80x86 Instruction Set

Page 247

immediate value into a memory location. The same rules concerning size apply. However,
MASM cannot determine the size of certain memory operands. For example, does the
instruction

 mov [bx], 0

store an eight bit, sixteen bit, or thirty-two bit value? MASM can-
not tell, so it reports an error. This problem does

not

 exist when you move an immediate
value into a variable you’ve declared in your program. For example, if you’ve declared

B

as a byte variable, MASM knows to store an eight bit zero into

B

 for the instruction

mov B, 0

. Only those memory operands involving pointers with no variable operands suf-
fer from this problem. The solution is to explicitly tell MASM whether the operand is a
byte, word, or double word. You can accomplish this with the following instruction forms:

mov byte ptr [bx], 0
mov word ptr [bx], 0
mov dword ptr [bx], 0 (3)

(3) Available only on 80386 and later processors

For more details on the

 type

 ptr

 operator, see Chapter Eight.

Moves to and from segment registers are always 16 bits; the mod-reg-r/m operand
must be 16 bits or MASM will generate an error. Since you cannot load a constant directly
into a segment register, a common solution is to load the constant into an 80x86 general
purpose register and then copy it to the segment register. For example, the following two
instruction sequence loads the

es

 register with the value 40h:

mov ax, 40h
mov es, ax

Note that almost any general purpose register would suffice. Here,

ax

 was chosen arbi-
trarily.

The

mov

 instructions do not affect any flags. In particular, the 80x86 preserves the flag
values across the execution of a

mov

 instruction.

6.3.2 The XCHG Instruction

The

xchg

 (exchange) instruction swaps two values. The general form is

xchg operand

1

, operand

2

There are four specific forms of this instruction on the 80x86:

xchg reg, mem
xchg reg, reg
xchg ax, reg

16

xchg eax, reg

32

(3)

(3) Available only on 80386 and later processors

The first two general forms require two or more bytes for the opcode and
mod-reg-r/m bytes (a displacement, if necessary, requires additional bytes). The third and
fourth forms are special forms of the second that exchange data in the

(e)ax

 register with
another 16 or 32 bit register. The 16 bit form uses a single byte opcode that is shorter than
the other two forms that use a one byte opcode and a mod-reg-r/m byte.

Already you should note a pattern developing: the 80x86 family often provides
shorter and faster versions of instructions that use the ax register. Therefore, you should
try to arrange your computations so that they use the

(e)ax

 register as much as possible.
The

xchg

 instruction is a perfect example, the form that exchanges 16 bit registers is only
one byte long.

Note that the order of the

xchg

’s operands does not matter. That is, you could enter

xchg mem, reg

 and get the same result as

 xchg reg, mem

. Most modern assemblers will
automatically emit the opcode for the shorter

 xchg ax, reg

instruction if you specify

xchg reg, ax

.

Chapter 06

Page 248

Both operands must be the same size. On pre-80386 processors the operands may be
eight or sixteen bits. On 80386 and later processors the operands may be 32 bits long as
well.

The

xchg

 instruction does not modify any flags.

6.3.3 The LDS, LES, LFS, LGS, and LSS Instructions

The

lds, les, lfs, lgs

, and

lss

 instructions let you load a 16 bit general purpose register
and segment register pair with a single instruction. On the 80286 and earlier, the

lds

 and

les

 instructions are the only instructions that directly process values larger than 32 bits.
The general form is

LxS dest, source

These instructions take the specific forms:

lds reg

16

, mem

32

les reg

16

, mem

32

lfs reg16, mem32 (3)
lgs reg16, mem32 (3)
lss reg16, mem32 (3)

(3) Available only on 80386 and later processors

Reg16 is any general purpose 16 bit register and mem32 is a double word memory location
(declared with the dword statement).

These instructions will load the 32 bit double word at the address specified by mem32
into reg16 and the ds, es, fs, gs, or ss registers. They load the general purpose register from
the L.O. word of the memory operand and the segment register from the H.O. word. The
following algorithms describe the exact operation:

lds reg16, mem32:
reg16 := [mem32]
ds := [mem32 + 2]

les reg16, mem32:
reg16 := [mem32]
es := [mem32 + 2]

lfs reg16, mem32:
reg16 := [mem32]
fs := [mem32 + 2]

lgs reg16, mem32:
reg16 := [mem32]
gs := [mem32 + 2]

lss reg16, mem32:
reg16 := [mem32]
ss := [mem32 + 2]

Since the LxS instructions load the 80x86’s segment registers, you must not use these
instructions for arbitrary purposes. Use them to set up (far) pointers to certain data objects
as discussed in Chapter Four. Any other use may cause problems with your code if you
attempt to port it to Windows, OS/2 or UNIX.

Keep in mind that these instructions load the four bytes at a given memory location
into the register pair; they do not load the address of a variable into the register pair (i.e.,
this instruction does not have an immediate mode). To learn how to load the address of a
variable into a register pair, see Chapter Eight.

The LxS instructions do not affect any of the 80x86’s flag bits.

6.3.4 The LEA Instruction

The lea (Load Effective Address) instruction is another instruction used to prepare
pointer values. The lea instruction takes the form:

The 80x86 Instruction Set

Page 249

lea dest, source

The specific forms on the 80x86 are

lea reg16, mem
lea reg32, mem (3)

(3) Available only on 80386 and later processors.

It loads the specified 16 or 32 bit general purpose register with the effective address of
the specified memory location. The effective address is the final memory address obtained
after all addressing mode computations. For example, lea ax, ds:[1234h] loads the ax reg-
ister with the address of memory location 1234h; here it just loads the ax register with the
value 1234h. If you think about it for a moment, this isn’t a very exciting operation. After
all, the mov ax, immediate_data instruction can do this. So why bother with the lea instruc-
tion at all? Well, there are many other forms of a memory operand besides displace-
ment-only operands. Consider the following lea instructions:

lea ax, [bx]
 lea bx, 3[bx]
 lea ax, 3[bx]
 lea bx, 4[bp+si]
 lea ax, -123[di]

The lea ax, [bx] instruction copies the address of the expression [bx] into the ax regis-
ter. Since the effective address is the value in the bx register, this instruction copies bx’s
value into the ax register. Again, this instruction isn’t very interesting because mov can do
the same thing, even faster.

The lea bx,3[bx] instruction copies the effective address of 3[bx] into the bx register.
Since this effective address is equal to the current value of bx plus three, this lea instruction
effectively adds three to the bx register. There is an add instruction that will let you add
three to the bx register, so again, the lea instruction is superfluous for this purpose.

The third lea instruction above shows where lea really begins to shine. lea ax, 3[bx]
copies the address of the memory location 3[bx] into the ax register; i.e., it adds three with
the value in the bx register and moves the sum into ax. This is an excellent example of how
you can use the lea instruction to do a mov operation and an addition with a single instruc-
tion.

The final two instructions above, lea bx,4[bp+si] and lea ax,-123[di] provide additional
examples of lea instructions that are more efficient than their mov/add counterparts.

On the 80386 and later processors, you can use the scaled indexed addressing modes
to multiply by two, four, or eight as well as add registers and displacements together. Intel
strongly suggests the use of the lea instruction since it is much faster than a sequence of
instructions computing the same result.

The (real) purpose of lea is to load a register with a memory address. For example,
lea bx, 128[bp+di] sets up bx with the address of the byte referenced by 128[BP+DI]. As it
turns out, an instruction of the form mov al,[bx] runs faster than an instruction of the
form mov al,128[bp+di]. If this instruction executes several times, it is probably more effi-
cient to load the effective address of 128[bp+di] into the bx register and use the [bx] address-
ing mode. This is a common optimization in high performance programs.

The lea instruction does not affect any of the 80x86’s flag bits.

6.3.5 The PUSH and POP Instructions

The 80x86 push and pop instructions manipulate data on the 80x86’s hardware stack.
There are 19 varieties of the push and pop instructions3, they are

3. Plus some synonyms on top of these 19.

Chapter 06

Page 250

push reg16
pop reg16
push reg32 (3)
pop reg32 (3)
push segreg
pop segreg (except CS)
push memory
pop memory
push immediate_data (2)
pusha (2)
popa (2)
pushad (3)
popad (3)
pushf
popf
pushfd (3)
popfd (3)
enter imm, imm (2)
leave (2)

(2)- Available only on 80286 and later processors.
(3)- Available only on 80386 and later processors.

The first two instructions push and pop a 16 bit general purpose register. This is a
compact (one byte) version designed specifically for registers. Note that there is a second
form that provides a mod-reg-r/m byte that could push registers as well; most assemblers
only use that form for pushing the value of a memory location.

The second pair of instructions push or pop an 80386 32 bit general purpose register.
This is really nothing more than the push register instruction described in the previous
paragraph with a size prefix byte.

The third pair of push/pop instructions let you push or pop an 80x86 segment register.
Note that the instructions that push fs and gs are longer than those that push cs, ds, es, and
ss, see Appendix D for the exact details. You can only push the cs register (popping the cs
register would create some interesting program flow control problems).

The fourth pair of push/pop instructions allow you to push or pop the contents of a
memory location. On the 80286 and earlier, this must be a 16 bit value. For memory opera-
tions without an explicit type (e.g., [bx]) you must either use the pushw mnemonic or
explicitly state the size using an instruction like push word ptr [bx]. On the 80386 and later
you can push and pop 16 or 32 bit values4. You can use dword memory operands, you can
use the pushd mnemonic, or you can use the dword ptr operator to force 32 bit operation.
Examples:

push DblWordVar
push dword ptr [bx]
pushd dword

The pusha and popa instructions (available on the 80286 and later) push and pop all the
80x86 16 bit general purpose registers. Pusha pushes the registers in the following order:
ax, cx, dx, bx, sp, bp, si, and then di. Popa pops these registers in the reverse order. Pushad
and Popad (available on the 80386 and later) do the same thing on the 80386’s 32 bit regis-
ter set. Note that these “push all” and “pop all” instructions do not push or pop the flags
or segment registers.

The pushf and popf instructions allow you to push/pop the processor status register
(the flags). Note that these two instructions provide a mechanism to modify the 80x86’s
trace flag. See the description of this process earlier in this chapter. Of course, you can set
and clear the other flags in this fashion as well. However, most of the other flags you’ll
want to modify (specifically, the condition codes) provide specific instructions or other
simple sequences for this purpose.

Enter and leave push/pop the bp register and allocate storage for local variables on the
stack. You will see more on these instructions in a later chapter. This chapter does not con-

4. You can use the PUSHW and PUSHD mnemonics to denote 16 or 32 bit constant sizes.

The 80x86 Instruction Set

Page 251

sider them since they are not particularly useful outside the context of procedure entry
and exit.

 “So what do these instructions do?” you’re probably asking by now. The push instruc-
tions move data onto the 80x86 hardware stack and the pop instructions move data from
the stack to memory or to a register. The following is an algorithmic description of each
instruction:

push instructions (16 bits):

SP := SP - 2
[SS:SP] := 16 bit operand (store result at location SS:SP.)

pop instructions (16 bits):
16-bit operand := [SS:SP]
SP := SP + 2

push instructions (32 bits):
SP := SP - 4
[SS:SP] := 32 bit operand

pop instructions (32 bits):
32 bit operand := [SS:SP]
SP := SP + 4

You can treat the pusha/pushad and popa/popad instructions as equivalent to the corre-
sponding sequence of 16 or 32 bit push/pop operations (e.g., push ax, push cx, push dx,
push bx, etc.).

 Notice three things about the 80x86 hardware stack. First, it is always in the stack seg-
ment (wherever ss points). Second, the stack grows down in memory. That is, as you push
values onto the stack the CPU stores them into successively lower memory locations.
Finally, the 80x86 hardware stack pointer (ss:sp) always contains the address of the value
on the top of the stack (the last value pushed on the stack).

You can use the 80x86 hardware stack for temporarily saving registers and variables,
passing parameters to a procedure, allocating storage for local variables, and other uses.
The push and pop instructions are extremely valuable for manipulating these items on the
stack. You’ll get a chance to see how to use them later in this text.

Most of the push and pop instructions do not affect any of the flags in the 80x86 proces-
sor status register. The popf/popfd instructions, by their very nature, can modify all the flag
bits in the 80x86 processor status register (flags register). Pushf and pushfd push the flags
onto the stack, but they do not change any flags while doing so.

All pushes and pops are 16 or 32 bit operations. There is no (easy) way to push a sin-
gle eight bit value onto the stack. To push an eight bit value you would need to load it into
the H.O. byte of a 16 bit register, push that register, and then add one to the stack pointer.
On all processors except the 8088, this would slow future stack access since sp now con-
tains an odd address, misaligning any further pushes and pops. Therefore, most programs
push or pop 16 bits, even when dealing with eight bit values.

Although it is relatively safe to push an eight bit memory variable, be careful when
popping the stack to an eight bit memory location. Pushing an eight bit variable with
push word ptr ByteVar pushes two bytes, the byte in the variable ByteVar and the byte
immediately following it. Your code can simply ignore the extra byte this instruction
pushes onto the stack. Popping such values is not quite so straight forward. Generally, it
doesn’t hurt if you push these two bytes. However, it can be a disaster if you pop a value
and wipe out the following byte in memory. There are only two solutions to this problem.
First, you could pop the 16 bit value into a register like ax and then store the L.O. byte of
that register into the byte variable. The second solution is to reserve an extra byte of pad-
ding after the byte variable to hold the whole word you will pop. Most programs use the
former approach.

Chapter 06

Page 252

6.3.6 The LAHF and SAHF Instructions

The lahf (load ah from flags) and sahf (store ah into flags) instructions are archaic
instructions included in the 80x86’s instruction set to help improve compatibility with
Intel’s older 8080 µP chip. As such, these instructions have very little use in modern day
80x86 programs. The lahf instruction does not affect any of the flag bits. The sahf instruc-
tion, by its very nature, modifies the S, Z, A, P, and C bits in the processor status register.
These instructions do not require any operands and you use them in the following man-
ner:

sahf
lahf

Sahf only affects the L.O. eight bits of the flags register. Likewise, lahf only loads the
L.O. eight bits of the flags register into the AH register. These instructions do not deal with
the overflow, direction, interrupt disable, or trace flags. The fact that these instructions do
not deal with the overflow flag is an important limitation.

Sahf has one major use. When using a floating point processor (8087, 80287, 80387,
80486, Pentium, etc.) you can use the sahf instruction to copy the floating point status reg-
ister flags into the 80x86’s flag register. You’ll see this use in the chapter on floating point
arithmetic (see “Floating Point Arithmetic” on page 771).

6.4 Conversions

The 80x86 instruction set provides several conversion instructions. They include
movzx, movsx, cbw, cwd, cwde, cdq, bswap, and xlat. Most of these instructions sign or zero
extend values, the last two convert between storage formats and translate values via a
lookup table. These instructions take the general form:

movzx dest, src ;Dest must be twice the size of src.
movsx dest, src ;Dest must be twice the size of src.
cbw
cwd
cwde
cdq
bswap reg32
xlat ;Special form allows an operand.

6.4.1 The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions

These instructions zero and sign extend values. The cbw and cwd instructions are
available on all 80x86 processors. The movzx, movsx, cwde, and cdq instructions are avail-
able only on 80386 and later processors.

The cbw (convert byte to word) instruction sign extends the eight bit value in al to ax.
That is, it copies bit seven of AL throughout bits 8-15 of ax. This instruction is especially
important before executing an eight bit division (as you’ll see in the section “Arithmetic
Instructions” on page 255). This instruction requires no operands and you use it as fol-
lows:

cbw

The cwd (convert word to double word) instruction sign extends the 16 bit value in ax
to 32 bits and places the result in dx:ax. It copies bit 15 of ax throughout the bits in dx. It is
available on all 80x86 processors which explains why it doesn’t sign extend the value into
eax. Like the cbw instruction, this instruction is very important for division operations.
Cwd requires no operands and you use it as follows

cwd

The 80x86 Instruction Set

Page 253

The cwde instruction sign extends the 16 bit value in ax to 32 bits and places the result
in eax by copying bit 15 of ax throughout bits 16..31 of eax. This instruction is available
only on the 80386 and later processors. As with cbw and cwd the instruction has no oper-
ands and you use it as follows:

cwde

The cdq instruction sign extends the 32 bit value in eax to 64 bits and places the result
in edx:eax by copying bit 31 of eax throughout bits 0..31 of edx. This instruction is available
only on the 80386 and later. You would normally use this instruction before a long divi-
sion operation. As with cbw, cwd, and cwde the instruction has no operands and you use it
as follows:

cdq

If you want to sign extend an eight bit value to 32 or 64 bits using these instructions,
you could use sequences like the following:

; Sign extend al to dx:ax

cbw
cwd

; Sign extend al to eax

cbw
cwde

; Sign extend al to edx:eax

cbw
cwde
cdq

You can also use the movsx for sign extensions from eight to sixteen or thirty-two bits.

The movsx instruction is a generalized form of the cbw, cwd, and cwde instructions. It
will sign extend an eight bit value to a sixteen or thirty-two bits, or sign extend a sixteen
bit value to a thirty-two bits. This instruction uses a mod-reg-r/m byte to specify the two
operands. The allowable forms for this instruction are

movsx reg16, mem8
movsx reg16, reg8
movsx reg32, mem8
movsx reg32, reg8
movsx reg32, mem16
movsx reg32, reg16

Note that anything you can do with the cbw and cwde instructions, you can do with a
movsx instruction:

movsx ax, al ;CBW
movsx eax, ax ;CWDE
movsx eax, al ;CBW followed by CWDE

However, the cbw and cwde instructions are shorter and sometimes faster. This instruction
is available only on the 80386 and later processors. Note that there are not direct movsx
equivalents for the cwd and cdq instructions.

The movzx instruction works just like the movsx instruction, except it extends unsigned
values via zero extension rather than signed values through sign extension. The syntax is
the same as for the movsx instructions except, of course, you use the movzx mnemonic
rather than movsx.

Note that if you want to zero extend an eight bit register to 16 bits (e.g., al to ax) a sim-
ple mov instruction is faster and shorter than movzx. For example,

mov bh, 0

is faster and shorter than

movzx bx, bl

Of course, if you move the data to a different 16 bit register (e.g., movzx bx, al) the movzx
instruction is better.

Chapter 06

Page 254

Like the movsx instruction, the movzx instruction is available only on 80386 and later
processors. The sign and zero extension instructions do not affect any flags.

6.4.2 The BSWAP Instruction

The bswap instruction, available only on 80486 (yes, 486) and later processors, con-
verts between 32 bit little endian and big endian values. This instruction accepts only a sin-
gle 32 bit register operand. It swaps the first byte with the fourth and the second byte with
the third. The syntax for the instruction is

bswap reg32

where reg32 is an 80486 32 bit general purpose register.

The Intel processor families use a memory organization known as little endian byte
organization. In little endian byte organization, the L.O. byte of a multi-byte sequence
appears at the lowest address in memory. For example, bits zero through seven of a 32 bit
value appear at the lowest address; bits eight through fifteen appear at the second address
in memory; bits 16 through 23 appear in the third byte, and bits 24 through 31 appear in
the fourth byte.

Another popular memory organization is big endian. In the big endian scheme, bits
twenty-four through thirty-one appear in the first (lowest) address, bits sixteen through
twenty-three appear in the second byte, bits eight through fifteen appear in the third byte,
and bits zero through seven appear in the fourth byte. CPUs such as the Motorola 68000
family used by Apple in their Macintosh computer and many RISC chips employ the big
endian scheme.

Normally, you wouldn’t care about byte organization in memory since programs
written for an Intel processor in assembly language do not run on a 68000 processor. How-
ever, it is very common to exchange data between machines with different byte organiza-
tions. Unfortunately, 16 and 32 bit values on big endian machines do not produce correct
results when you use them on little endian machines. This is where the bswap instruction
comes in. It lets you easily convert 32 bit big endian values to 32 bit little endian values.

One interesting use of the bswap instruction is to provide access to a second set of 16
bit general purpose registers. If you are using only 16 bit registers in your code, you can
double the number of available registers by using the bswap instruction to exchange the
data in a 16 bit register with the H.O. word of a thirty-two bit register. For example, you
can keep two 16 bit values in eax and move the appropriate value into ax as follows:

< Some computations that leave a result in AX >

bswap eax

< Some additional computations involving AX >

bswap eax

< Some computations involving the original value in AX >

bswap eax

< Computations involving the 2nd copy of AX from above >

You can use this technique on the 80486 to obtain two copies of ax, bx, cx, dx, si, di, and
bp. You must exercise extreme caution if you use this technique with the sp register.

Note: to convert 16 bit big endian values to 16 bit little endian values just use the
80x86 xchg instruction. For example, if ax contains a 16 bit big endian value, you can con-
vert it to a 16 bit little endian value (or vice versa) using:

xchg al, ah

The bswap instruction does not affect any flags in the 80x86 flags register.

The 80x86 Instruction Set

Page 255

6.4.3 The XLAT Instruction

The xlat instruction translates the value in the al register based on a lookup table in
memory. It does the following:

temp := al+bx
al := ds:[temp]

that is, bx points at a table in the current data segment. Xlat replaces the value in al with the
byte at the offset originally in al. If al contains four, xlat replaces the value in al with the
fifth item (offset four) within the table pointed at by ds:bx. The xlat instruction takes the
form:

xlat

Typically it has no operand. You can specify one but the assembler virtually ignores it.
The only purpose for specifying an operand is so you can provide a segment override pre-
fix:

xlat es:Table

This tells the assembler to emit an es: segment prefix byte before the instruction. You must
still load bx with the address of Table; the form above does not provide the address of
Table to the instruction. Only the segment override prefix in the operand is significant.

The xlat instruction does not affect the 80x86’s flags register.

6.5 Arithmetic Instructions

The 80x86 provides many arithmetic operations: addition, subtraction, negation, mul-
tiplication, division/modulo (remainder), and comparing two values. The instructions
that handle these operations are add, adc, sub, sbb, mul, imul, div, idiv, cmp, neg, inc, dec, xadd,
cmpxchg, and some miscellaneous conversion instructions: aaa, aad, aam, aas, daa, and das.
The following sections describe these instructions in detail.

The generic forms for these instructions are

add dest, src dest := dest + src
adc dest, src dest := dest + src + C
SUB dest, src dest := dest - src
sbb dest, src dest := dest - src - C
mul src acc := acc * src
imul src acc := acc * src
imul dest, src1, imm_src dest := src1 * imm_src
imul dest, imm_src dest := dest * imm_src
imul dest, src dest := dest * src
div src acc := xacc /-mod src
idiv src acc := xacc /-mod src
cmp dest, src dest - src (and set flags)
neg dest dest := - dest
inc dest dest := dest + 1
dec dest dest := dest - 1
xadd dest, src (see text)
cmpxchg operand1, operand2 (see text)
cmpxchg8ax, operand (see text)
aaa (see text)
aad (see text)
aam (see text)
aas (see text)
daa (see text)
das (see text)

Chapter 06

Page 256

6.5.1 The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA

These instructions take the forms:

add reg, reg
add reg, mem
add mem, reg
add reg, immediate data
add mem, immediate data
add eax/ax/al, immediate data

adc forms are identical to ADD.

inc reg
inc mem
inc reg16
xadd mem, reg
xadd reg, reg
aaa
daa

Note that the aaa and daa instructions use the implied addressing mode and allow no
operands.

6.5.1.1 The ADD and ADC Instructions

The syntax of add and adc (add with carry) is similar to mov. Like mov, there are special
forms for the ax/eax register that are more efficient. Unlike mov, you cannot add a value to
a segment register with these instructions.

The add instruction adds the contents of the source operand to the destination oper-
and. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add com-
putes dest :=dest+source while adc computes dest :=dest+source+C where C represents
the value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves
exactly like the add instruction.

Both instructions affect the flags identically. They set the flags as follows:

• The overflow flag denotes a signed arithmetic overflow.
• The carry flag denotes an unsigned arithmetic overflow.
• The sign flag denotes a negative result (i.e., the H.O. bit of the result is

one).
• The zero flag is set if the result of the addition is zero.
• The auxiliary carry flag contains one if a BCD overflow out of the L.O.

nibble occurs.
• The parity flag is set or cleared depending on the parity of the L.O. eight

bits of the result. If there are an even number of one bits in the result, the
ADD instructions will set the parity flag to one (to denote even parity). If
there are an odd number of one bits in the result, the ADD instructions
clear the parity flag (to denote odd parity).

The add and adc instructions do not affect any other flags.

The add and adc instructions allow eight, sixteen, and (on the 80386 and later)
thirty-two bit operands. Both source and destination operands must be the same size. See
Chapter Nine if you want to add operands whose size is different.

Since there are no memory to memory additions, you must load memory operands
into registers if you want to add two variables together. The following code examples
demonstrate possible forms for the add instruction:

; J:= K + M

mov ax, K
add ax, M
mov J, ax

The 80x86 Instruction Set

Page 257

If you want to add several values together, you can easily compute the sum in a single
register:

; J := K + M + N + P

mov ax, K
add ax, M
add ax, N
add ax, P
mov J, ax

If you want to reduce the number of hazards on an 80486 or Pentium processor, you can
use code like the following:

mov bx, K
mov ax, M
add bx, N
add ax, P
add ax, bx
mov J, ax

One thing that beginning assembly language programmers often forget is that you
can add a register to a memory location. Sometimes beginning programmers even believe
that both operands have to be in registers, completely forgetting the lessons from Chapter
Four. The 80x86 is a CISC processor that allows you to use memory addressing modes
with various instructions like add. It is often more efficient to take advantages of the
80x86’s memory addressing capabilities

; J := K + J

mov ax, K ;This works because addition is
add J, ax ; commutative!

; Often, beginners will code the above as one of the following two sequences.
; This is unnecessary!

mov ax, J ;Really BAD way to compute
mov bx, K ; J := J + K.
add ax, bx
mov J, ax

mov ax, J ;Better, but still not a good way to
add ax, K ; compute J := J + K
mov J, ax

Of course, if you want to add a constant to a memory location, you only need a single
instruction. The 80x86 lets you directly add a constant to memory:

; J := J + 2

add J, 2

There are special forms of the add and adc instructions that add an immediate constant
to the al, ax, or eax register. These forms are shorter than the standard add reg, immediate
instruction. Other instructions also provide shorter forms when using these registers;
therefore, you should try to keep computations in the accumulator registers (al, ax, and
eax) as much as possible.

add bl, 2 ;Three bytes long
add al, 2 ;Two bytes long
add bx, 2 ;Four bytes long
add ax, 2 ;Three bytes long
etc.

Another optimization concerns the use of small signed constants with the add and adc
instructions. If a value is in the range -128,,+127, the add and adc instructions will sign
extend an eight bit immediate constant to the necessary destination size (eight, sixteen, or
thirty-two bits). Therefore, you should try to use small constants, if possible, with the add
and adc instructions.

Chapter 06

Page 258

6.5.1.2 The INC Instruction

The inc (increment) instruction adds one to its operand. Except for the carry flag, inc
sets the flags the same way as add operand, 1 would.

Note that there are two forms of inc for 16 or 32 bit registers. They are the inc reg and
 inc reg16 instructions. The inc reg and inc mem instructions are the same. This
instruction consists of an opcode byte followed by a mod-reg-r/m byte (see Appendix D
for details). The inc reg16 instruction has a single byte opcode. Therefore, it is shorter and
usually faster.

The inc operand may be an eight bit, sixteen bit, or (on the 80386 and later) thirty-two
bit register or memory location.

The inc instruction is more compact and often faster than the comparable add reg, 1 or
add mem, 1 instruction. Indeed, the inc reg16 instruction is one byte long, so it turns out that
two such instructions are shorter than the comparable add reg, 1 instruction; however, the
two increment instructions will run slower on most modern members of the 80x86 family.

The inc instruction is very important because adding one to a register is a very com-
mon operation. Incrementing loop control variables or indices into an array is a very com-
mon operation, perfect for the inc instruction. The fact that inc does not affect the carry
flag is very important. This allows you to increment array indices without affecting the
result of a multiprecision arithmetic operation (see “Arithmetic and Logical Operations”
on page 459 for more details about multiprecision arithmetic).

6.5.1.3 The XADD Instruction

Xadd (Exchange and Add) is another 80486 (and later) instruction. It does not appear
on the 80386 and earlier processors. This instruction adds the source operand to the desti-
nation operand and stores the sum in the destination operand. However, just before stor-
ing the sum, it copies the original value of the destination operand into the source
operand. The following algorithm describes this operation:

xadd dest, source

temp := dest
dest := dest + source
source := temp

The xadd sets the flags just as the add instruction would. The xadd instruction allows
eight, sixteen, and thirty-two bit operands. Both source and destination operands must be
the same size.

6.5.1.4 The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instruc-
tions support BCD arithmetic. Beyond this chapter, this text will not cover BCD or ASCII
arithmetic since it is mainly for controller applications, not general purpose programming
applications. BCD values are decimal integer coded in binary form with one decimal digit
(0..9) per nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O.
nibble of the byte should contain zero.

The aaa and daa instructions modify the result of a binary addition to correct it for
ASCII or decimal arithmetic. For example, to add two BCD values, you would add them
as though they were binary numbers and then execute the daa instruction afterwards to
correct the results. Likewise, you can use the aaa instruction to adjust the result of an
ASCII addition after executing an add instruction. Please note that these two instructions
assume that the add operands were proper decimal or ASCII values. If you add binary

The 80x86 Instruction Set

Page 259

(non-decimal or non-ASCII) values together and try to adjust them with these instruc-
tions, you will not produce correct results.

The choice of the name “ASCII arithmetic” is unfortunate, since these values are not
true ASCII characters. A name like “unpacked BCD” would be more appropriate. How-
ever, Intel uses the name ASCII, so this text will do so as well to avoid confusion. How-
ever, you will often hear the term “unpacked BCD” to describe this data type.

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the
value in al for BCD overflow. It works according to the following basic algorithm:

if ((al and 0Fh) > 9 or (AuxC5 =1)) then

if (8088 or 8086)6 then
al := al + 6

else
ax := ax + 6

endif

ah := ah + 1
AuxC := 1 ;Set auxilliary carry
Carry := 1 ; and carry flags.

else

AuxC := 0 ;Clear auxilliary carry
Carry := 0 ; and carry flags.

endif
al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly
one decimal digit per byte in a string of numbers. This text will not deal with BCD or
ASCII numeric strings, so you can safely ignore this instruction for now. Of course, you
can use the aaa instruction any time you need to use the algorithm above, but that would
probably be a rare situation.

The daa instruction functions like aaa except it handles packed BCD (binary code dec-
imal) values rather than the one digit per byte unpacked values aaa handles. As for aaa,
daa’s main purpose is to add strings of BCD digits (with two digits per byte). The algo-
rithm for daa is

if ((AL and 0Fh) > 9 or (AuxC = 1)) then

al := al + 6
AuxC := 1 ;Set Auxilliary carry.

endif
if ((al > 9Fh) or (Carry = 1)) then

al := al + 60h
Carry := 1; ;Set carry flag.

endif

6.5.2 The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS

The sub (subtract), sbb (subtract with borrow), dec (decrement), aas (ASCII adjust for
subtraction), and das (decimal adjust for subtraction) instructions work as you expect.
Their syntax is very similar to that of the add instructions:

sub reg, reg
sub reg, mem
sub mem, reg
sub reg, immediate data
sub mem, immediate data
sub eax/ax/al, immediate data

5. AuxC denotes the auxiliary carry flag in the flags register.
6. The 8086/8088 work differently from the later processors, but for all valid operands all 80x86 processors pro-
duce correct results.

Chapter 06

Page 260

sbb forms are identical to sub.

dec reg
dec mem
dec reg16
aas
das

The sub instruction computes the value dest := dest - src. The sbb instruction computes
dest := dest - src - C. Note that subtraction is not commutative. If you want to compute the
result for dest := src - dest you will need to use several instructions, assuming you need to
preserve the source operand).

One last subject worth discussing is how the sub instruction affects the 80x86 flags reg-
ister7. The sub, sbb, and dec instructions affect the flags as follows:

• They set the zero flag if the result is zero. This occurs only if the operands
are equal for sub and sbb. The dec instruction sets the zero flag only when
it decrements the value one.

• These instructions set the sign flag if the result is negative.
• These instructions set the overflow flag if signed overflow/underflow

occurs.
• They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.
• They set the parity flag according to the number of one bits appearing in

the result value.
• The sub and sbb instructions set the carry flag if an unsigned overflow

occurs. Note that the dec instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII num-
bers with one decimal digit (in the range 0..9) per byte. You would use this instruction
after a sub or sbb instruction on the ASCII value. This instruction uses the following algo-
rithm:

if ((al and 0Fh) > 9 or AuxC = 1) then
al := al - 6
ah := ah - 1
AuxC := 1 ;Set auxilliary carry
Carry := 1 ; and carry flags.

else
AuxC := 0 ;Clear Auxilliary carry
Carry := 0 ; and carry flags.

endif
al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the following
algorithm:

if ((al and 0Fh) > 9 or (AuxC = 1)) then
al := al -6
AuxC = 1

endif
if (al > 9Fh or Carry = 1) then

al := al - 60h
Carry := 1 ;Set the Carry flag.

endif

Since subtraction is not commutative, you cannot use the sub instruction as freely as
the add instruction. The following examples demonstrate some of the problems you may
encounter.

; J := K - J

mov ax, K ;This is a nice try, but it computes
sub J, ax ; J := J - K, subtraction isn’t

; commutative!

7. The SBB instruction affects the flags in a similar fashion, just don’t forget that SBB computes dest-source-C.

The 80x86 Instruction Set

Page 261

mov ax, K ;Correct solution.
sub ax, J
mov J, ax

; J := J - (K + M) -- Don’t forget this is equivalent to J := J - K - M

mov ax, K ;Computes AX := K + M
add ax, M
sub J, ax ;Computes J := J - (K + M)

mov ax, J ;Another solution, though less
sub ax, K ;Efficient
sub ax, M
mov J, ax

Note that the sub and sbb instructions, like add and adc, provide short forms to sub-
tract a constant from an accumulator register (al, ax, or eax). For this reason, you should
try to keep arithmetic operations in the accumulator registers as much as possible. The sub
and sbb instructions also provide a shorter form when subtracting constants in the range
-128..+127 from a memory location or register. The instruction will automatically sign
extend an eight bit signed value to the necessary size before the subtraction occurs. See
Appendix D for the details.

In practice, there really isn’t a need for an instruction that subtracts a constant from a
register or memory location – adding a negative value achieves the same result. Neverthe-
less, Intel provides a subtract immediate instruction.

After the execution of a sub instruction, the condition code bits (carry, sign, overflow,
and zero) in the flags register contain values you can test to see if one of sub’s operands is
equal, not equal, less than, less than or equal, greater than, or greater than or equal to the
other operand. See the cmp instruction for more details.

6.5.3 The CMP Instruction

The cmp (compare) instruction is identical to the sub instruction with one crucial dif-
ference – it does not store the difference back into the destination operand. The syntax for
the cmp instruction is very similar to sub, the generic form is

cmp dest, src

The specific forms are

cmp reg, reg
cmp reg, mem
cmp mem, reg
cmp reg, immediate data
cmp mem, immediate data
cmp eax/ax/al, immediate data

The cmp instruction updates the 80x86’s flags according to the result of the subtraction
operation (dest - src). You can test the result of the comparison by checking the appropri-
ate flags in the flags register. For details on how this is done, see “The “Set on Condition”
Instructions” on page 281 and “The Conditional Jump Instructions” on page 296.

Usually you’ll want to execute a conditional jump instruction after a cmp instruction.
This two step process, comparing two values and setting the flag bits then testing the flag
bits with the conditional jump instructions, is a very efficient mechanism for making deci-
sions in a program.

Probably the first place to start when exploring the cmp instruction is to take a look at
exactly how the cmp instruction affects the flags. Consider the following cmp instruction:

cmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending upon
the result of the computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero
result. Hence, you can use the zero flag to test for equality or inequality.

Chapter 06

Page 262

S: The sign flag is set to one if the result is negative. At first glance, you might think
that this flag would be set if ax is less than bx but this isn’t always the case. If
ax=7FFFh and bx=-1 (0FFFFh) subtracting ax from bx produces 8000h, which is
negative (and so the sign flag will be set). So, for signed comparisons anyway, the
sign flag doesn’t contain the proper status. For unsigned operands, consider
ax=0FFFFh and bx=1. Ax is greater than bx but their difference is 0FFFEh which is
still negative. As it turns out, the sign flag and the overflow flag, taken together,
can be used for comparing two signed values.

O: The overflow flag is set after a cmp operation if the difference of ax and bx pro-
duced an overflow or underflow. As mentioned above, the sign flag and the over-
flow flag are both used when performing signed comparisons.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a bor-
row. This occurs only when ax is less than bx where ax and bx are both unsigned
values.

The cmp instruction also affects the parity and auxiliary carry flags, but you’ll rarely
test these two flags after a compare operation. Given that the cmp instruction sets the flags
in this fashion, you can test the comparison of the two operands with the following flags:

cmp Oprnd1, Oprnd2

For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:
If ((S=0) and (O=1)) or ((S=1) and (O=0)) then Oprnd1 < Oprnd2 when using a signed comparison.
If ((S=0) and (O=0)) or ((S=1) and (O=1)) then Oprnd1 >= Oprnd2 when using a signed comparison.

To understand why these flags are set in this manner, consider the following exam-
ples:

Oprnd1 minus Oprnd2 S O
------ ------ - -

0FFFF (-1) - 0FFFE (-2) 0 0
08000 - 00001 0 1
0FFFE (-2) - 0FFFF (-1) 1 0
07FFF (32767) - 0FFFF (-1) 1 1

Remember, the cmp operation is really a subtraction, therefore, the first example above
computes (-1)-(-2) which is (+1). The result is positive and an overflow did not occur so
both the S and O flags are zero. Since (S xor O) is zero, Oprnd1 is greater than or equal to
Oprnd2.

In the second example, the cmp instruction would compute (-32768)-(+1) which is
(-32769). Since a 16-bit signed integer cannot represent this value, the value wraps around
to 7FFFh (+32767) and sets the overflow flag. Since the result is positive (at least within the
confines of 16 bits) the sign flag is cleared. Since (S xor O) is one here, Oprnd1 is less than
Oprnd2.

In the third example above, cmp computes (-2)-(-1) which produces (-1). No overflow
occurred so the O flag is zero, the result is negative so the sign flag is one. Since (S xor O)
is one, Oprnd1 is less than Oprnd2.

Table 27: Condition Code Settings After CMP

Unsigned operands: Signed operands:

Z: equality/inequality Z: equality/inequality

C: Oprnd1 < Oprnd2 (C=1)
 Oprnd1 >= Oprnd2 (C=0)

C: no meaning

S: no meaning S: see below

O: no meaning O: see below

The 80x86 Instruction Set

Page 263

In the fourth (and final) example, cmp computes (+32767)-(-1). This produces (+32768),
setting the overflow flag. Furthermore, the value wraps around to 8000h (-32768) so the
sign flag is set as well. Since (S xor O) is zero, Oprnd1 is greater than or equal to Oprnd2.

6.5.4 The CMPXCHG, and CMPXCHG8B Instructions

The cmpxchg (compare and exchange) instruction is available only on the 80486 and
later processors. It supports the following syntax:

cmpxchg reg, reg
cmpxchg mem, reg

The operands must be the same size (eight, sixteen, or thirty-two bits). This instruction
also uses the accumulator register; it automatically chooses al, ax, or eax to match the size
of the operands.

This instruction compares al, ax, or eax with the first operand and sets the zero flag if
they are equal. If so, then cmpxchg copies the second operand into the first. If they are not
equal, cmpxchg copies the first operand into the accumulator. The following algorithm
describes this operation:

cmpxchg operand1, operand2

if ({al/ax/eax} = operand1) then
8

zero := 1 ;Set the zero flag
operand1 := operand2

else

zero := 0 ;Clear the zero flag
{al/ax/eax} := operand1

endif

Cmpxchg supports certain operating system data structures requiring atomic opera-
tions9 and semaphores. Of course, if you can fit the above algorithm into your code, you
can use the cmpxchg instruction as appropriate.

Note: unlike the cmp instruction, the cmpxchg instruction only affects the 80x86 zero
flag. You cannot test other flags after cmpxchg as you could with the cmp instruction.

The Pentium processor supports a 64 bit compare and exchange instruction –
cmpxchg8b. It uses the syntax:

cmpxchg8b ax, mem64

This instruction compares the 64 bit value in edx:eax with the memory value. If they are
equal, the Pentium stores ecx:ebx into the memory location, otherwise it loads edx:eax
with the memory location. This instruction sets the zero flag according to the result. It
does not affect any other flags.

6.5.5 The NEG Instruction

The neg (negate) instruction takes the two’s complement of a byte or word. It takes a
single (destination) operation and negates it. The syntax for this instruction is

neg dest

It computes the following:

dest := 0 - dest

This effectively reverses the sign of the destination operand.

8. The choice of al, ax, or eax is made by the size of the operands. Both operands to cmpxchg must be the same
size.
9. An atomic operation is one that the system cannot interrupt.

Chapter 06

Page 264

If the operand is zero, its sign does not change, although this clears the carry flag.
Negating any other value sets the carry flag. Negating a byte containing -128, a word con-
taining -32,768, or a double word containing -2,147,483,648 does not change the operand,
but will set the overflow flag. Neg always updates the A, S, P, and Z flags as though you
were using the sub instruction.

The allowable forms are:

neg reg
neg mem

The operands may be eight, sixteen, or (on the 80386 and later) thirty-two bit values.

Some examples:

; J := - J

neg J

; J := -K
mov ax, K
neg ax
mov J, ax

6.5.6 The Multiplication Instructions: MUL, IMUL, and AAM

The multiplication instructions provide you with your first taste of irregularity in the
8086’s instruction set. Instructions like add, adc, sub, sbb, and many others in the 8086
instruction set use a mod-reg-r/m byte to support two operands. Unfortunately, there
aren’t enough bits in the 8086’s opcode byte to support all instructions, so the 8086 uses
the reg bits in the mod-reg-r/m byte as an opcode extension. For example, inc, dec, and
neg do not require two operands, so the 80x86 CPUs use the reg bits as an extension to the
eight bit opcode. This works great for single operand instructions, allowing Intel’s design-
ers to encode several instructions (eight, in fact) with a single opcode.

Unfortunately, the multiply instructions require special treatment and Intel’s design-
ers were still short on opcodes, so they designed the multiply instructions to use a single
operand. The reg field contains an opcode extension rather than a register value. Of
course, multiplication is a two operand function. The 8086 always assumes the accumula-
tor (al, ax, or eax) is the destination operand. This irregularity makes using multiplication
on the 8086 a little more difficult than other instructions because one operand has to be in
the accumulator. Intel adopted this unorthogonal approach because they felt that pro-
grammers would use multiplication far less often than instructions like add and sub.

One problem with providing only a mod-reg-r/m form of the instruction is that you
cannot multiply the accumulator by a constant; the mod-reg-r/m byte does not support
the immediate addressing mode. Intel quickly discovered the need to support multiplica-
tion by a constant and provide some support for this in the 80286 processor10. This was
especially important for multidimensional array access. By the time the 80386 rolled
around, Intel generalized one form of the multiplication operation allowing standard
mod-reg-r/m operands.

There are two forms of the multiply instruction: an unsigned multiplication (mul) and
a signed multiplication (imul). Unlike addition and subtraction, you need separate instruc-
tions for these two operations.

The multiply instructions take the following forms:

10. On the original 8086 chip multiplication by a constant was always faster using shifts, additions, and subtrac-
tions. Perhaps Intel’s designers didn’t bother with multiplication by a constant for this reason. However, the
80286 multiply instruction was faster than the 8086 multiply instruction, so it was no longer true that multiplica-
tion was slower and the corresponding shift, add, and subtract instructions.

The 80x86 Instruction Set

Page 265

Unsigned Multiplication:

mul reg
mul mem

Signed (Integer) Multiplication:

imul reg
imul mem
imul reg, reg, immediate (2)
imul reg, mem, immediate (2)
imul reg, immediate (2)
imul reg, reg (3)
imul reg, mem (3)

BCD Multiplication Operations:

aam

2- Available on the 80286 and later, only.
3- Available on the 80386 and later, only.

As you can see, the multiply instructions are a real mess. Worse yet, you have to use
an 80386 or later processor to get near full functionality. Finally, there are some restrictions
on these instructions not obvious above. Alas, the only way to deal with these instructions
is to memorize their operation.

Mul, available on all processors, multiplies unsigned eight, sixteen, or thirty-two bit
operands. Note that when multiplying two n-bit values, the result may require as many as
2*n bits. Therefore, if the operand is an eight bit quantity, the result will require sixteen
bits. Likewise, a 16 bit operand produces a 32 bit result and a 32 bit operand requires 64
bits for the result.

The mul instruction, with an eight bit operand, multiplies the al register by the oper-
and and stores the 16 bit result in ax. So

mul operand8
or imul operand8

computes:

ax := al * operand8

“*” represents an unsigned multiplication for mul and a signed multiplication for imul.

 If you specify a 16 bit operand, then mul and imul compute:

dx:ax := ax * operand16

“*” has the same meanings as above and dx:ax means that dx contains the H.O. word of the
32 bit result and ax contains the L.O. word of the 32 bit result.

 If you specify a 32 bit operand, then mul and imul compute the following:

edx:eax := eax * operand32

“*” has the same meanings as above and edx:eax means that edx contains the H.O. double
word of the 64 bit result and eax contains the L.O. double word of the 64 bit result.

If an 8x8, 16x16, or 32x32 bit product requires more than eight, sixteen, or thirty-two
bits (respectively), the mul and imul instructions set the carry and overflow flags.

Mul and imul scramble the A, P, S, and Z flags. Especially note that the sign and zero
flags do not contain meaningful values after the execution of these two instructions.

Imul (integer multiplication) operates on signed operands. There are many different
forms of this instruction as Intel attempted to generalize this instruction with successive
processors. The previous paragraphs describe the first form of the imul instruction, with a
single operand. The next three forms of the imul instruction are available only on the 80286
and later processors. They provide the ability to multiply a register by an immediate
value. The last two forms, available only on 80386 and later processors, provide the ability
to multiply an arbitrary register by another register or memory location. Expanded to
show allowable operand sizes, they are

Chapter 06

Page 266

imul operand1, operand2, immediate ;General form

imul reg16, reg16, immediate8
imul reg16, reg16, immediate16
imul reg16, mem16, immediate8
imul reg16, mem16, immediate16
imul reg16, immediate8
imul reg16, immediate16
imul reg32, reg32, immediate8 (3)
imul reg32, reg32, immediate32 (3)
imul reg32, mem32, immediate8 (3)
imul reg32, mem32, immediate32 (3)
imul reg32, immediate8 (3)
imul reg32, immediate32 (3)

3- Available on the 80386 and later, only.

The imul reg, immediate instructions are a special syntax the assembler provides. The
encodings for these instructions are the same as imul reg, reg, immediate. The assembler
simply supplies the same register value for both operands.

These instructions compute:

operand1 := operand2 * immediate
operand1 := operand1 * immediate

Besides the number of operands, there are several differences between these forms
and the single operand mul/imul instructions:

• There isn’t an 8x8 bit multiplication available (the immediate8 operands
simply provide a shorter form of the instruction. Internally, the CPU sign
extends the operand to 16 or 32 bits as necessary).

• These instructions do not produce a 2*n bit result. That is, a 16x16 multi-
ply produces a 16 bit result. Likewise, a 32x32 bit multiply produces a 32
bit result. These instructions set the carry and overflow flags if the result
does not fit into the destination register.

• The 80286 version of imul allows an immediate operand, the standard
mul/imul instructions do not.

The last two forms of the imul instruction are available only on 80386 and later proces-
sors. With the addition of these formats, the imul instruction is almost as general as the add
instruction11:

imul reg, reg
imul reg, mem

These instructions compute

reg := reg * reg
and reg := reg * mem

Both operands must be the same size. Therefore, like the 80286 form of the imul
instruction, you must test the carry or overflow flag to detect overflow. If overflow does
occur, the CPU loses the H.O. bits of the result.

Important Note: Keep in mind that the zero flag contains an indeterminate result after
executing a multiply instruction. You cannot test the zero flag to see if the result is zero
after a multiplication. Likewise, these instructions scramble the sign flag. If you need to
check these flags, compare the result to zero after testing the carry or overflow flags.

The aam (ASCII Adjust after Multiplication) instruction, like aaa and aas, lets you
adjust an unpacked decimal value after multiplication. This instruction operates directly
on the ax register. It assumes that you’ve multiplied two eight bit values in the range 0..9
together and the result is sitting in ax (actually, the result will be sitting in al since 9*9 is 81,
the largest possible value; ah must contain zero). This instruction divides ax by 10 and
leaves the quotient in ah and the remainder in al:

11. There are still some restrictions on the size of the operands, e.g., no eight bit registers, you have to consider.

The 80x86 Instruction Set

Page 267

ah := ax div 10
al := ax mod 10

Unlike the other decimal/ASCII adjust instructions, assembly language programs regu-
larly use aam since conversion between number bases uses this algorithm.

Note: the aam instruction consists of a two byte opcode, the second byte of which is
the immediate constant 10. Assembly language programmers have discovered that if you
substitute another immediate value for this constant, you can change the divisor in the
above algorithm. This, however, is an undocumented feature. It works in all varieties of
the processor Intel has produced to date, but there is no guarantee that Intel will support
this in future processors. Of course, the 80286 and later processors let you multiply by a
constant, so this trick is hardly necessary on modern systems.

There is no dam (decimal adjust for multiplication) instruction on the 80x86 processor.

Perhaps the most common use of the imul instruction is to compute offsets into multi-
dimensional arrays. Indeed, this is probably the main reason Intel added the ability to
multiply a register by a constant on the 80286 processor. In Chapter Four, this text used
the standard 8086 mul instruction for array index computations. However, the extended
syntax of the imul instruction makes it a much better choice as the following examples
demonstrate:

MyArray word 8 dup (7 dup (6 dup (?))) ;8x7x6 array.
J word ?
K word ?
M word ?

 .
 .
 .

; MyArray [J, K, M] := J + K - M

mov ax, J
add ax, K
sub ax, M

mov bx, J ;Array index :=
imul bx, 7 ; ((J*7 + K) * 6 + M) * 2
add bx, K
imul bx, 6
add bx, M
add bx, bx ;BX := BX * 2

mov MyArray[bx], ax

Don’t forget that the multiplication instructions are very slow; often an order of mag-
nitude slower than an addition instruction. There are faster ways to multiply a value by a
constant. See “Multiplying Without MUL and IMUL” on page 487 for all the details.

6.5.7 The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16
division or a 16/8 division. These instructions take the form:

div reg For unsigned division
div mem

idiv reg For signed division
idiv mem

aad ASCII adjust for division

The div instruction computes an unsigned division. If the operand is an eight bit oper-
and, div divides the ax register by the operand leaving the quotient in al and the remainder
(modulo) in ah. If the operand is a 16 bit quantity, then the div instruction divides the 32 bit
quantity in dx:ax by the operand leaving the quotient in ax and the remainder in . With 32
bit operands (on the 80386 and later) div divides the 64 bit value in edx:eax by the operand
leaving the quotient in eax and the remainder in edx.

Chapter 06

Page 268

You cannot, on the 80x86, simply divide one eight bit value by another. If the denomi-
nator is an eight bit value, the numerator must be a sixteen bit value. If you need to divide
one unsigned eight bit value by another, you must zero extend the numerator to sixteen
bits. You can accomplish this by loading the numerator into the al register and then mov-
ing zero into the ah register. Then you can divide ax by the denominator operand to pro-
duce the correct result. Failing to zero extend al before executing div may cause the 80x86 to
produce incorrect results!

When you need to divide two 16 bit unsigned values, you must zero extend the ax
register (which contains the numerator) into the dx register. Just load the immediate value
zero into the dx register12. If you need to divide one 32 bit value by another, you must zero
extend the eax register into edx (by loading a zero into edx) before the division.

When dealing with signed integer values, you will need to sign extend al to ax, ax to dx
or eax into edx before executing idiv. To do so, use the cbw, cwd, cdq, or movsx instructions. If
the H.O. byte or word does not already contain significant bits, then you must sign extend
the value in the accumulator (al/ax/eax) before doing the idiv operation. Failure to do so
may produce incorrect results.

There is one other catch to the 80x86’s divide instructions: you can get a fatal error
when using this instruction. First, of course, you can attempt to divide a value by zero.
Furthermore, the quotient may be too large to fit into the eax, ax, or al register. For exam-
ple, the 16/8 division “8000h / 2” produces the quotient 4000h with a remainder of zero.
4000h will not fit into eight bits. If this happens, or you attempt to divide by zero, the
80x86 will generate an int 0 trap. This usually means BIOS will print “division by zero” or
“divide error” and abort your program. If this happens to you, chances are you didn’t sign
or zero extend your numerator before executing the division operation. Since this error
will cause your program to crash, you should be very careful about the values you select
when using division.

The auxiliary carry, carry, overflow, parity, sign, and zero flags are undefined after a
division operation. If an overflow occurs (or you attempt a division by zero) then the
80x86 executes an INT 0 (interrupt zero).

Note that the 80286 and later processors do not provide special forms for idiv as they
do for imul. Most programs use division far less often than they use multiplication, so
Intel’s designers did not bother creating special instructions for the divide operation. Note
that there is no way to divide by an immediate value. You must load the immediate value
into a register or a memory location and do the division through that register or memory
location.

The aad (ASCII Adjust before Division) instruction is another unpacked decimal oper-
ation. It splits apart unpacked binary coded decimal values before an ASCII division oper-
ation. Although this text will not cover BCD arithmetic, the aad instruction is useful for
other operations. The algorithm that describes this instruction is

al := ah*10 + al
ah := 0

This instruction is quite useful for converting strings of digits into integer values (see the
questions at the end of this chapter).

The following examples show how to divide one sixteen bit value by another.

; J := K / M (unsigned)

mov ax, K ;Get dividend
mov dx, 0 ;Zero extend unsigned value in AX to DX.

< In practice, we should verify that M does not contain zero here >

div M
mov J, ax

; J := K / M (signed)

12. Or use the MOVZX instruction on the 80386 and later processors.

The 80x86 Instruction Set

Page 269

mov ax, K ;Get dividend
cwd ;Sign extend signed value in AX to DX.

< In practice, we should verify that M does not contain zero here >

idiv M
mov J, ax

; J := (K*M)/P

mov ax, K ;Note that the imul instruction produces
imul M ; a 32 bit result in DX:AX, so we don’t
idiv P ; need to sign extend AX here.
mov J, ax ;Hope and pray result fits in 16 bits!

6.6 Logical, Shift, Rotate and Bit Instructions

The 80x86 family provides five logical instructions, four rotate instructions, and three
shift instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror,
rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar. The 80386 and later processors
provide an even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shld, shrd, and the
conditional set instructions (setcc).

These instructions can manipulate bits, convert values, do logical operations, pack
and unpack data, and do arithmetic operations. The following sections describe each of
these instructions in detail.

6.6.1 The Logical Instructions: AND, OR, XOR, and NOT

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and
thirty-two bit versions of each instruction exist. The and, not, or, and xor instructions do the
following:

and dest, source ;dest := dest and source
or dest, source ;dest := dest or source
xor dest, source ;dest := dest xor source
not dest ;dest := not dest

The specific variations are

and reg, reg
and mem, reg
and reg, mem
and reg, immediate data
and mem, immediate data
and eax/ax/al, immediate data

or uses the same formats as AND
xor uses the same formats as AND

not register
not mem

Except not, these instructions affect the flags as follows:

• They clear the carry flag.
• They clear the overflow flag.
• They set the zero flag if the result is zero, they clear it otherwise.
• They copy the H.O. bit of the result into the sign flag.
• They set the parity flag according to the parity (number of one bits) in the

result.
• They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

Testing the zero flag after these instructions is particularly useful. The and instruction
sets the zero flag if the two operands do not have any ones in corresponding bit positions
(since this would produce a zero result); for example, if the source operand contained a

Chapter 06

Page 270

single one bit, then the zero flag will be set if the corresponding destination bit is zero, it
will be one otherwise. The or instruction will only set the zero flag if both operands con-
tain zero. The xor instruction will set the zero flag only if both operands are equal. Notice
that the xor operation will produce a zero result if and only if the two operands are equal.
Many programmers commonly use this fact to clear a sixteen bit register to zero since an
instruction of the form

xor reg16, reg16

is shorter than the comparable mov reg,0 instruction.

Like the addition and subtraction instructions, the and, or, and xor instructions provide
special forms involving the accumulator register and immediate data. These forms are
shorter and sometimes faster than the general “register, immediate” forms. Although one
does not normally think of operating on signed data with these instructions, the 80x86
does provide a special form of the “reg/mem, immediate” instructions that sign extend a
value in the range -128..+127 to sixteen or thirty-two bits, as necessary.

The instruction’s operands must all be the same size. On pre-80386 processors they
can be eight or sixteen bits. On 80386 and later processors, they may be 32 bits long as
well. These instructions compute the obvious bitwise logical operation on their operands,
see Chapter One for details on these operations.

You can use the and instruction to set selected bits to zero in the destination operand.
This is known as masking out data; see for more details. Likewise, you can use the or
instruction to force certain bits to one in the destination operand; see “Masking Opera-
tions with the OR Instruction” on page 491 for the details. You can use these instructions,
along with the shift and rotate instructions described next, to pack and unpack data. See
“Packing and Unpacking Data Types” on page 491 for more details.

6.6.2 The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD

The 80x86 supports three different shift instructions (shl and sal are the same instruc-
tion): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic
right). The 80386 and later processors provide two additional shifts: shld and shrd.

The shift instructions move bits around in a register or memory location. The general
format for a shift instruction is

shl dest, count
sal dest, count
shr dest, count
sar dest, count

Dest is the value to shift and count specifies the number of bit positions to shift. For exam-
ple, the shl instruction shifts the bits in the destination operand to the left the number of
bit positions specified by the count operand. The shld and shrd instructions use the format:

shld dest, source, count
shrd dest, source, count

The specific forms for these instructions are

shl reg, 1
shl mem, 1
shl reg, imm (2)
shl mem, imm (2)
shl reg, cl
shl mem, cl

sal is a synonym for shl and uses the same formats.
shr uses the same formats as shl.
sar uses the same formats as shl.

The 80x86 Instruction Set

Page 271

shld reg, reg, imm (3)
shld mem, reg, imm (3)
shld reg, reg, cl (3)
shld mem, reg, cl (3)

shrd uses the same formats as shld.

2- This form is available on 80286 and later processors only.
3- This form is available on 80386 and later processors only.

For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On
80286 and later processors you can use an eight bit immediate constant. Of course, the
value in cl or the immediate constant should be less than or equal to the number of bits in
the destination operand. It would be a waste of time to shift left al by nine bits (eight
would produce the same result, as you will soon see). Algorithmically, you can think of
the shift operations with a count other than one as follows:

for temp := 1 to count do
shift dest, 1

There are minor differences in the way the shift instructions treat the overflow flag when
the count is not one, but you can ignore this most of the time.

The shl, sal, shr, and sar instructions work on eight, sixteen, and thirty-two bit oper-
ands. The shld and shrd instructions work on 16 and 32 bit destination operands only.

6.6.2.1 SHL/SAL

The shl and sal mnemonics are synonyms. They represent the same instruction and
use identical binary encodings. These instructions move each bit in the destination oper-
and one bit position to the left the number of times specified by the count operand. Zeros
fill vacated positions at the L.O. bit; the H.O. bit shifts into the carry flag (see Figure 6.2).

The shl/sal instruction sets the condition code bits as follows:

• If the shift count is zero, the shl instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the oper-

and.
• The overflow flag will contain one if the two H.O. bits were different

prior to a single bit shift. The overflow flag is undefined if the shift count
is not one.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose
you have two nibbles in al and ah that you want to combine. You could use the following
code to do this:

shl ah, 4 ;This form requires an 80286 or later
or al, ah ;Merge in H.O. four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the shift
left operation automatically clears the L.O. four bits of ah before the or instruction). If the

Figure 6.2 Shift Left Operation

H.O Bit 4 3 2 1 0
0...C

Chapter 06

Page 272

H.O. four bits of al are not zero before this operation, you can easily clear them with an and
instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.
and al, 0Fh ;Clear H.O. four bits.
or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that
value by two, you can also use the shift left instruction for multiplication by powers of
two:

shl ax, 1 ;Equivalent to AX*2
shl ax, 2 ;Equivalent to AX*4
shl ax, 3 ;Equivalent to AX*8
shl ax, 4 ;Equivalent to AX*16
shl ax, 5 ;Equivlaent to AX*32
shl ax, 6 ;Equivalent to AX*64
shl ax, 7 ;Equivalent to AX*128
shl ax, 8 ;Equivalent to AX*256
etc.

Note that shl ax, 8 is equivalent to the following two instructions:

mov ah, al
mov al, 0

The shl/sal instruction multiplies both signed and unsigned values by two for each
shift. This instruction sets the carry flag if the result does not fit in the destination operand
(i.e., unsigned overflow occurs). Likewise, this instruction sets the overflow flag if the
signed result does not fit in the destination operation. This occurs when you shift a zero
into the H.O. bit of a negative number or you shift a one into the H.O. bit of a non-nega-
tive number.

6.6.2.2 SAR

 The sar instruction shifts all the bits in the destination operand to the right one bit,
replicating the H.O. bit (see Figure 6.3).

The sar instruction sets the flag bits as follows:

• If the shift count is zero, the sar instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the oper-

and.
• The overflow flag will contain zero if the shift count is one. Overflow can

never occur with this instruction. However, if the count is not one, the
value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The auxiliary carry flag is always undefined after the sar instruction.

The sar instruction’s main purpose is to perform a signed division by some power of
two. Each shift to the right divides the value by two. Multiple right shifts divide the previ-
ous shifted result by two, so multiple shifts produce the following results:

Figure 6.3 Arithmetic Shift Right Operation

...
H.O Bit 5 4 3 2 1 0

C

The 80x86 Instruction Set

Page 273

sar ax, 1 ;Signed division by 2
sar ax, 2 ;Signed division by 4
sar ax, 3 ;Signed division by 8
sar ax, 4 ;Signed division by 16
sar ax, 5 ;Signed division by 32
sar ax, 6 ;Signed division by 64
sar ax, 7 ;Signed division by 128
sar ax, 8 ;Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv
instruction always truncates towards zero while sar truncates results toward the smaller
result. For positive results, an arithmetic shift right by one position produces the same
result as an integer division by two. However, if the quotient is negative, idiv truncates
towards zero while sar truncates towards negative infinity. The following examples dem-
onstrate the difference:

mov ax, -15
cwd
mov bx, 2
idiv ;Produces -7

mov ax, -15
sar ax, 1 ;Produces -8

Keep this in mind if you use sar for integer division operations.

The sar ax, 8 instruction effectively copies ah into al and then sign extends al into ax.
This is because sar ax, 8 will shift ah down into al but leave a copy of ah’s H.O. bit in all the
bit positions of ah. Indeed, you can use the sar instruction on 80286 and later processors to
sign extend one register into another. The following code sequences provide examples of
this usage:

; Equivalent to CBW:

mov ah, al
sar ah, 7

; Equivalent to CWD:

mov dx, ax
sar dx, 15

; Equivalent to CDQ:

mov edx, eax
sar edx, 31

Of course it may seem silly to use two instructions where a single instruction might suf-
fice; however, the cbw, cwd, and cdq instructions only sign extend al into ax, ax into dx:ax,
and eax into edx:eax. Likewise, the movsx instruction copies its sign extended operand
into a destination operand twice the size of the source operand. The sar instruction lets
you sign extend one register into another register of the same size, with the second regis-
ter containing the sign extension bits:

; Sign extend bx into cx:bx

mov cx, bx
sar cx, 15

6.6.2.3 SHR

The shr instruction shifts all the bits in the destination operand to the right one bit
shifting a zero into the H.O. bit (see Figure 6.4).

The shr instruction sets the flag bits as follows:

• If the shift count is zero, the shr instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the oper-

and.
• If the shift count is one, the overflow flag will contain the value of the

H.O. bit of the operand prior to the shift (i.e., this instruction sets the

Chapter 06

Page 274

overflow flag if the sign changes). However, if the count is not one, the
value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result, which is always zero.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The auxiliary carry flag is always undefined after the shr instruction.

The shift right instruction is especially useful for unpacking data. For example, sup-
pose you want to extract the two nibbles in the al register, leaving the H.O. nibble in ah
and the L.O. nibble in al. You could use the following code to do this:

mov ah, al ;Get a copy of the H.O. nibble
shr ah, 4 ;Move H.O. to L.O. and clear H.O. nibble
and al, 0Fh ;Remove H.O. nibble from al

Since shifting an unsigned integer value to the right one position is equivalent to
dividing that value by two, you can also use the shift right instruction for division by
powers of two:

shr ax, 1 ;Equivalent to AX/2
shr ax, 2 ;Equivalent to AX/4
shr ax, 3 ;Equivalent to AX/8
shr ax, 4 ;Equivalent to AX/16
shr ax, 5 ;Equivlaent to AX/32
shr ax, 6 ;Equivalent to AX/64
shr ax, 7 ;Equivalent to AX/128
shr ax, 8 ;Equivalent to AX/256
etc.

Note that shr ax, 8 is equivalent to the following two instructions:

mov al, ah
mov ah, 0

Remember that division by two using shr only works for unsigned operands. If ax con-
tains -1 and you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as
you would expect. Use the sar instruction if you need to divide a signed integer by some
power of two.

6.6.2.4 The SHLD and SHRD Instructions

The shld and shrd instructions provide double precision shift left and right operations,
respectively. These instructions are available only on 80386 and later processors. Their
generic forms are

shld operand1, operand2, immediate
shld operand1, operand2, cl
shrd operand1, operand2, immediate
shrd operand1, operand2, cl

Operand2 must be a sixteen or thirty-two bit register. Operand1 can be a register or a mem-
ory location. Both operands must be the same size. The immediate operand can be a value
in the range zero through n-1, where n is the number of bits in the two operands; it speci-
fies the number of bits to shift.

The shld instruction shifts bits in operand1 to the left. The H.O. bit shifts into the carry
flag and the H.O. bit of operand2 shifts into the L.O. bit of operand1. Note that this instruc-

Figure 6.4 Shift Right Operation

...
H.O Bit 5 4 3 2 1 0

C0

The 80x86 Instruction Set

Page 275

tion does not modify the value of operand2, it uses a temporary copy of operand2 during
the shift. The immediate operand specifies the number of bits to shift. If the count is n,
then shld shifts bit n-1 into the carry flag. It also shifts the H.O. n bits of operand2 into the
L.O. n bits of operand1. Pictorially, the shld instruction appears in Figure 6.5.

The shld instruction sets the flag bits as follows:

• If the shift count is zero, the shld instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the

operand1.
• If the shift count is one, the overflow flag will contain one if the sign bit of

operand1 changes during the shift. If the count is not one, the overflow
flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

The shld instruction is useful for packing data from many different sources. For exam-
ple, suppose you want to create a word by merging the H.O. nibbles of four other words.
You could do this with the following code:

mov ax, Value4 ;Get H.O. nibble
shld bx, ax, 4 ;Copy H.O. bits of AX to BX.
mov ax, Value3 ;Get nibble #2.
shld bx, ax, 4 ;Merge into bx.
mov ax, Value2 ;Get nibble #1.
shld bx, ax, 4 ;Merge into bx.
mov ax, Value1 ;Get L.O. nibble
shld bx, ax, 4 ;BX now contains all four nibbles.

The shrd instruction is similar to shld except, of course, it shifts its bits right rather than
left. To get a clear picture of the shrd instruction, consider Figure 6.6.

Figure 6.5 Double Precision Shift Left Operation

Operand1
H.O Bit 4 3 2 1 0

...C

Temporary copy of Operand2
H.O Bit 4 3 2 1 0

...

Figure 6.6 Double Precision Shift Right Operation

...

Operand1
H.O Bit 5 4 3 2 1 0

C

...

Temporary Copy of Operand2
H.O Bit 5 4 3 2 1 0

Chapter 06

Page 276

The shrd instruction sets the flag bits as follows:

• If the shift count is zero, the shrd instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the

operand1.
• If the shift count is one, the overflow flag will contain one if the H.O. bit

of operand1 changes. If the count is not one, the overflow flag is unde-
fined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

Quite frankly, these two instructions would probably be slightly more useful if
Operand2 could be a memory location. Intel designed these instructions to allow fast mul-
tiprecision (64 bits, or more) shifts. For more information on such usage, see “Extended
Precision Shift Operations” on page 482.

The shrd instruction is marginally more useful than shld for packing data. For exam-
ple, suppose that ax contains a value in the range 0..99 representing a year (1900..1999), bx
contains a value in the range 1..31 representing a day, and cx contains a value in the range
1..12 representing a month (see “Bit Fields and Packed Data” on page 28). You can easily
use the shrd instruction to pack this data into dx as follows:

shrd dx, ax, 7
shrd dx, bx, 5
shrd dx, cx, 4

See Figure 6.7 for a blow-by-blow example.

6.6.3 The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the
bits shifted out of the operand by the rotate instructions recirculate through the operand.
They include rcl (rotate through carry left), rcr (rotate through carry right), rol (rotate left),
and ror (rotate right). These instructions all take the forms:

Figure 6.7 Packing Data with an SHRD Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y

After SHRD DX, AX, 7 Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D D D D Y Y Y Y Y Y Y

After SHRD DX, BX, 5 Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y

After SHRD DX, CX, 4 Instruction

The 80x86 Instruction Set

Page 277

rcl dest, count
rol dest, count
rcr dest, count
ror dest, count

The specific forms are

rcl reg, 1
rcl mem, 1
rcl reg, imm (2)
rcl mem, imm (2)
rcl reg, cl
rcl mem, cl

rol uses the same formats as rcl.
rcr uses the same formats as rcl.
ror uses the same formats as rcl.

2- This form is avialable on 80286 and later processors only.

6.6.3.1 RCL

The rcl (rotate through carry left), as its name implies, rotates bits to the left, through
the carry flag, and back into bit zero on the right (see Figure 6.8).

Note that if you rotate through carry an object n+1 times, where n is the number of
bits in the object, you wind up with your original value. Keep in mind, however, that
some flags may contain different values after n+1 rcl operations.

The rcl instruction sets the flag bits as follows:

• The carry flag contains the last bit shifted out of the H.O. bit of the oper-
and.

• If the shift count is one, rcl sets the overflow flag if the sign changes as a
result of the rotate. If the count is not one, the overflow flag is undefined.

• The rcl instruction does not modify the zero, sign, parity, or auxiliary
carry flags.

Important warning: unlike the shift instructions, the rotate instructions do not affect
the sign, zero, parity, or auxiliary carry flags. This lack of orthogonality can cause you lots
of grief if you forget it and attempt to test these flags after an rcl operation. If you need to
test one of these flags after an rcl operation, test the carry and overflow flags first (if neces-
sary) then compare the result to zero to set the other flags.

6.6.3.2 RCR

The rcr (rotate through carry right) instruction is the complement to the rcl instruction.
It shifts its bits right through the carry flag and back into the H.O. bit (see Figure 6.9).

This instruction sets the flags in a manner analogous to rcl:

• The carry flag contains the last bit shifted out of the L.O. bit of the oper-
and.

Figure 6.8 Rotate Through Carry Left Operation

H.O Bit 5 4 3 2 1 0

C

...

Chapter 06

Page 278

• If the shift count is one, then rcr sets the overflow flag if the sign changes
(meaning the values of the H.O. bit and carry flag were not the same
before the execution of the instruction). However, if the count is not one,
the value of the overflow flag is undefined.

• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry
flags.

Keep in mind the warning given for rcl above.

6.6.3.3 ROL

The rol instruction is similar to the rcl instruction in that it rotates its operand to the left
the specified number of bits. The major difference is that rol shifts its operand’s H.O. bit,
rather than the carry, into bit zero. Rol also copies the output of the H.O. bit into the carry
flag (see Figure 6.10).

The rol instruction sets the flags identically to rcl. Other than the source of the value
shifted into bit zero, this instruction behaves exactly like the rcl instruction. Don’t forget
the warning about the flags!

Like shl, the rol instruction is often useful for packing and unpacking data. For exam-
ple, suppose you want to extract bits 10..14 in ax and leave these bits in bits 0..4. The fol-
lowing code sequences will both accomplish this:

shr ax, 10
and ax, 1Fh

rol ax, 6
and ax, 1Fh

6.6.3.4 ROR

The ror instruction relates to the rcr instruction in much the same way that the rol
instruction relates to rcl. That is, it is almost the same operation other than the source of
the input bit to the operand. Rather than shifting the previous carry flag into the H.O. bit
of the destination operation, ror shifts bit zero into the H.O. bit (see Figure 6.11).

Figure 6.9 Rotate Through Carry Right Operation

H.O. Bit 5 4 3 2 1 0

C

...

Figure 6.10 Rotate Left Operation

H.O Bit 5 4 3 2 1 0

C

...

The 80x86 Instruction Set

Page 279

The ror instruction sets the flags identically to rcr. Other than the source of the bit
shifted into the H.O. bit, this instruction behaves exactly like the rcr instruction. Don’t for-
get the warning about the flags!

6.6.4 The Bit Operations

Bit twiddling is one of those operations easier done in assembly language than other
languages. And no wonder. Most high-level languages shield you from the machine rep-
resentation of the underlying data types13. Instructions like and, or, xor, not, and the shifts
and rotates make it possible to test, set, clear, invert, and align bit fields within strings of
bits. Even the C++ programming language, famous for its bit manipulation operators,
doesn’t provide the bit manipulation capabilities of assembly language.

The 80x86 family, particularly the 80386 and later processors, go much farther, though.
Besides the standard logical, shift, and rotate instructions, there are instructions to test bits
within an operand, to test and set, clear, or invert specific bits in an operand, and to search
for set bits. These instructions are

test dest, source
bt source, index
btc source, index
btr source, index
bts source, index
bsf dest, source
bsr dest, source

The specific forms are

test reg, reg
test reg, mem
test mem, reg (*)
test reg, imm
test mem, imm
test eax/ax/al, imm

bt reg, reg (3)
bt mem, reg (3)
bt reg, imm (3)
bt mem, imm (3)

btc uses the same formats as bt. (3)
btr uses the same formats as bt. (3)
bts uses the same formats as bt. (3)

bsf reg, reg (3)
bsr reg, mem (3)

bsr uses the same formats as bsf. (3)

3- This instruction is only available on 80386 and later processors.
*- This is the same instruction as test reg,mem

Note that the bt, btc, btr, bts, bsf, and bsr require 16 or 32 bit operands.

13. Indeed, this is one of the purposes of high level languages, to hide such low-level details.

Figure 6.11 Rotate Right Operation

H.O. Bit 5 4 3 2 1 0

C

...

Chapter 06

Page 280

The bit operations are useful when implementing (monochrome) bit mapped graphic
primitive functions and when implementing a set data type using bit maps.

6.6.4.1 TEST

The test instruction logically ands its two operands and sets the flags but does not
save the result. Test and and share the same relationship as cmp and sub. Typically, you
would use this instruction to see if a bit contains one. Consider the following instruction:

test al, 1

This instruction logically ands al with the value one. If bit zero of al contains a one, the
result is non-zero and the 80x86 clears the zero flag. If bit zero of al contains zero, then the
result is zero and the test operation sets the zero flag. You can test the zero flag after this
instruction to decide whether al contained zero or one in bit zero.

The test instruction can also check to see if one or more bits in a register or memory
location are non-zero. Consider the following instruction:

test dx, 105h

This instruction logically ands dx with the value 105h. This will produce a non-zero result
(and, therefore, clear the zero flag) if at least one of bits zero, two, or eight contain a one.
They must all be zero to set the zero flag.

The test instruction sets the flags identically to the and instruction:

• It clears the carry flag.
• It clears the overflow flag.
• It sets the zero flag if the result is zero, they clear it otherwise.
• It copies the H.O. bit of the result into the sign flag.
• It sets the parity flag according to the parity (number of one bits) in the

L.O. byte of the result.
• It scrambles the auxiliary carry flag.

6.6.4.2 The Bit Test Instructions: BT, BTS, BTR, and BTC

On an 80386 or later processor, you can use the bt instruction (bit test) to test a single
bit. Its second operand specifies the bit index into the first operand. Bt copies the
addressed bit into the carry flag. For example, the instruction

bt ax, 12

copies bit twelve of ax into the carry flag.

The bt/bts/btr/btc instructions only deal with 16 or 32 bit operands. This is not a limita-
tion of the instruction. After all, if you want to test bit three of the al register, you can just
as easily test bit three of the ax register. On the other hand, if the index is larger than the
size of a register operand, the result is undefined.

If the first operand is a memory location, the bt instruction tests the bit at the given off-
set in memory, regardless the value of the index. For example, if bx contains 65 then

bt TestMe, bx

will copy bit one of location TestMe+8 into the carry flag. Once again, the size of the oper-
and does not matter. For all intents and purposes, the memory operand is a byte and you
can test any bit after that byte with an appropriate index. The actual bit bt tests is at bit
position index mod 8 and at memory offset effective address + index/8.

The bts, btr, and btc instructions also copy the addressed bit into the carry flag. How-
ever, these instructions also set, reset (clear), or complement (invert) the bit in the first
operand after copying it to the carry flag. This provides test and set, test and clear, and test
and invert operations necessary for some concurrent algorithms.

The 80x86 Instruction Set

Page 281

The bt, bts, btr, and btc instructions do not affect any flags other than the carry flag.

6.6.4.3 Bit Scanning: BSF and BSR

The bsf (Bit Scan Forward) and bsr (Bit Scan Reverse) instructions search for the first or
last set bit in a 16 or 32 bit quantity. The general form of these instructions is

bsf dest, source
bsr dest, source

Bsf locates the first set bit in the source operand, searching from bit zero though the
H.O. bit. Bsr locates the first set bit searching from the H.O. bit down to the L.O. bit. If
these instructions locate a one, they clear the zero flag and store the bit index (0..31) into
the destination operand. If the source operand is zero, these instructions set the zero flag
and store an indeterminate value into the destination operand14.

To scan for the first bit containing zero (rather than one), make a copy of the source
operand and invert it (using not), then execute bsf or bsr on the inverted value. The zero
flag would be set after this operation if there were no zero bits in the original source value,
otherwise the destination operation will contain the position of the first bit containing
zero.

6.6.5 The “Set on Condition” Instructions

The set on condition (or setcc) instructions set a single byte operand (register or mem-
ory location) to zero or one depending on the values in the flags register. The general for-
mats for the setcc instructions are

setcc reg8
setcc mem8

Setcc represents a mnemonic appearing in the following tables. These instructions store a
zero into the corresponding operand if the condition is false, they store a one into the eight
bit operand if the condition is true.

14. On many of the processors, if the source operand is zero the CPU will leave the destination operand
unchanged. However, certain versions of the 80486 do scramble the destination operand, so you shouldn’t count
on it being unchanged if the source operand is zero.

Table 28: SETcc Instructions That Test Flags

Instruction Description Condition Comments

SETC Set if carry Carry = 1 Same as SETB, SETNAE

SETNC Set if no carry Carry = 0 Same as SETNB, SETAE

SETZ Set if zero Zero = 1 Same as SETE

SETNZ Set if not zero Zero = 0 Same as SETNE

SETS Set if sign Sign = 1

SETNS Set if no sign Sign = 0

SETO Set if overflow Ovrflw=1

SETNO Set if no overflow Ovrflw=0

SETP Set if parity Parity = 1 Same as SETPE

SETPE Set if parity even Parity = 1 Same as SETP

SETNP Set if no parity Parity = 0 Same as SETPO

SETPO Set if parity odd Parity = 0 Same as SETNP

Chapter 06

Page 282

The setcc instructions above simply test the flags without any other meaning attached
to the operation. You could, for example, use setc to check the carry flag after a shift,
rotate, bit test, or arithmetic operation. Likewise, you could use setnz instruction after a
test instruction to check the result.

The cmp instruction works synergistically with the setcc instructions. Immediately
after a cmp operation the processor flags provide information concerning the relative val-
ues of those operands. They allow you to see if one operand is less than, equal to, greater
than, or any combination of these.

There are two groups of setcc instructions that are very useful after a cmp operation.
The first group deals with the result of an unsigned comparison, the second group deals
with the result of a signed comparison.

The corresponding table for signed comparisons is

The setcc instructions are particularly valuable because they can convert the result of a
comparison to a boolean value (true/false or 0/1). This is especially important when

Table 29: SETcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

SETA Set if above (>) Carry=0, Zero=0 Same as SETNBE

SETNBE Set if not below or equal
(not <=)

Carry=0, Zero=0 Same as SETA

SETAE Set if above or equal (>=) Carry = 0 Same as SETNC, SETNB

SETNB Set if not below (not <) Carry = 0 Same as SETNC, SETAE

SETB Set if below (<) Carry = 1 Same as SETC, SETNAE

SETNAE Set if not above or equal
(not >=)

Carry = 1 Same as SETC, SETB

SETBE Set if below or equal (<=) Carry = 1 or Zero = 1 Same as SETNA

SETNA Set if not above (not >) Carry = 1 or Zero = 1 Same as SETBE

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ

Table 30: SETcc Instructions for Signed Comparisons

Instruction Description Condition Comments

SETG Set if greater (>) Sign = Ovrflw or Zero=0 Same as SETNLE

SETNLE Set if not less than or
equal (not <=)

Sign = Ovrflw or Zero=0 Same as SETG

SETGE Set if greater than or equal
(>=)

Sign = Ovrflw Same as SETNL

SETNL Set if not less than (not <) Sign = Ovrflw Same as SETGE

SETL Set if less than (<) Sign ≠ Ovrflw Same as SETNGE

SETNGE Set if not greater or equal
(not >=)

Sign ≠ Ovrflw Same as SETL

SETLE Set if less than or equal
(<=)

Sign ≠ Ovrflw or
Zero = 1

Same as SETNG

SETNG Set if not greater than (not
>)

Sign ≠ Ovrflw or
Zero = 1

Same as SETLE

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ

The 80x86 Instruction Set

Page 283

translating statements from a high level language like Pascal or C++ into assembly lan-
guage. The following example shows how to use these instructions in this manner:

; Bool := A <= B

mov ax, A ;Assume A and B are signed integers.
cmp ax, B
setle Bool ;Bool needs to be a byte variable.

Since the setcc instructions always produce zero or one, you can use the results with
the logical and and or instructions to compute complex boolean values:

; Bool := ((A <= B) and (D = E)) or (F <> G)

mov ax, A
cmp ax, B
setle bl
mov ax, D
cmp ax, E
sete bh
and bl, bh
mov ax, F
cmp ax, G
setne bh
or bl, bh
mov Bool, bh

For more examples, see “Logical (Boolean) Expressions” on page 467.

The setcc instructions always produce an eight bit result since a byte is the smallest
operand the 80x86 will operate on. However, you can easily use the shift and rotate
instructions to pack eight boolean values in a single byte. The following instructions com-
pare eight different values with zero and copy the “zero flag” from each comparison into
corresponding bits of al:

cmp Val7, 0
setne al ;Put first value in bit #0
cmp Val6, 0 ;Test the value for bit #6
setne ah ;Copy zero flag into ah register.
shr ah, 1 ;Copy zero flag into carry.
rcl al, 1 ;Shift carry into result byte.
cmp Val5, 0 ;Test the value for bit #5
setne ah
shr ah, 1
rcl al, 1
cmp Val4, 0 ;Test the value for bit #4
setne ah
shr ah, 1
rcl al, 1
cmp Val3, 0 ;Test the value for bit #3
setne ah
shr ah, 1
rcl al, 1
cmp Val2, 0 ;Test the value for bit #2
setne ah
shr ah, 1
rcl al, 1
cmp Val1, 0 ;Test the value for bit #1
setne ah
shr ah, 1
rcl al, 1
cmp Val0, 0 ;Test the value for bit #0
setne ah
shr ah, 1
rcl al, 1

; Now AL contains the zero flags from the eight comparisons.

Chapter 06

Page 284

6.7 I/O Instructions

The 80x86 supports two I/O instructions: in and out15. They take the forms:

in eax/ax/al, port
 in eax/ax/al, dx
 out port, eax/ax/al
 out dx, eax/ax/al

port is a value between 0 and 255.

The 80x86 supports up to 65,536 different I/O ports (requiring a 16 bit I/O address).
The port value above, however, is a single byte value. Therefore, you can only directly
address the first 256 I/O ports in the 80x86’s I/O address space. To address all 65,536 dif-
ferent I/O ports, you must load the address of the desired port (assuming it’s above 255)
into the dx register and access the port indirectly. The in instruction reads the data at the
specified I/O port and copies it into the accumulator. The out instruction writes the value
in the accumulator to the specified I/O port.

Please realize that there is nothing magical about the 80x86’s in and out instructions.
They’re simply another form of the mov instruction that accesses a different memory space
(the I/O address space) rather than the 80x86’s normal 1 Mbyte memory address space.

The in and out instructions do not affect any 80x86 flags.

Examples of the 80x86 I/O instructions:

in al, 60h ;Read keyboard port

mov dx, 378h ;Point at LPT1: data port
in al, dx ;Read data from printer port.
inc ax ;Bump the ASCII code by one.
out dx, al ;Write data in AL to printer port.

6.8 String Instructions

The 80x86 supports twelve string instructions:

• movs (move string)
• lods (load string element into the accumulator)
• stos (store accumulator into string element)
• scas (Scan string and check for match against the value in the accumula-

tor)
• cmps (compare two strings)
• ins (input a string from an I/O port)
• outs (output a string to an I/O port
• rep (repeat a string operation)
• repz (repeat while zero)
• repe (repeat while equal)
• repnz (repeat while not zero)
• repne (repeat while not equal)

You can use the movs, stos, scas, cmps, ins and outs instructions to manipulate a single ele-
ment (byte, word, or double word) in a string, or to process an entire string. Generally,
you would only use the lods instruction to manipulate a single item at a time.

These instructions can operate on strings of bytes, words, or double words. To specify
the object size, simply append a b, w, or d to the end of the instruction’s mnemonic, i.e.,
lodsb, movsw, cmpsd, etc. Of course, the double word forms are only available on 80386 and
later processors.

15. Actually, the 80286 and later processors support four I/O instructions, you’ll get a chance to see the other two
in the next section.

The 80x86 Instruction Set

Page 285

The movs and cmps instructions assume that ds:si contains the segmented address of a
source string and that es:di contains the segmented address of a destination string. The
lods instruction assumes that ds:si points at a source string, the accumulator (al/ax/eax) is
the destination location. The scas and stos instructions assume that es:di points at a desti-
nation string and the accumulator contains the source value.

The movs instruction moves one string element (byte, word, or dword) from memory
location ds:si to es:di. After moving the data, the instruction increments or decrements si
and di by one, two, or four if processing bytes, words, or dwords, respectively. The CPU
increments these registers if the direction flag is clear, the CPU decrements them if the
direction flag is set.

The movs instruction can move blocks of data around in memory. You can use it to
move strings, arrays, and other multi-byte data structures.

movs{b,w,d}: es:[di] := ds:[si]
if direction_flag = 0 then

si := si + size;
di := di + size;

else
si := si - size;
di := di - size;

endif;

Note: size is one for bytes, two for words, and four for dwords.

The cmps instruction compares the byte, word, or dword at location ds:si to es:di and
sets the processor flags accordingly. After the comparison, cmps increments or decrements
si and di by one, two, or four depending on the size of the instruction and the status of the
direction flag in the flags register.

cmps{b,w,d}: cmp ds:[si], es:[di]
if direction_flag = 0 then

si := si + size;
di := di + size;

else
si := si - size;
di := di - size;

endif;

The lods instruction moves the byte, word, or dword at ds:si into the al, ax, or eax reg-
ister. It then increments or decrements the si register by one, two, or four depending on
the instruction size and the value of the direction flag. The lods instruction is useful for
fetching a sequence of bytes, words, or double words from an array, performing some
operation(s) on those values and then processing the next element from the string.

lods{b,w,d}: eax/ax/al := ds:[si]
if direction_flag = 0 then

si := si + size;
else

si := si - size;
endif;

The stos instruction stores al, ax, or eax at the address specified by es:di. Again, di is
incremented or decremented according to the size of the instruction and the value of the
direction flag. The stos instruction has several uses. Paired with the lods instruction above,
you can load (via lods), manipulate, and store string elements. By itself, the stos instruction
can quickly store a single value throughout a multi-byte data structure.

stos{b,w,d}: es:[di] := eax/ax/al
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The scas instruction compares al, ax or eax against the value at location es:di and then
adjusts di accordingly. This instruction sets the flags in the processor status register just

Chapter 06

Page 286

like the cmp and cmps instructions. The scas instruction is great for searching for a particu-
lar value throughout some multi-byte data structure.

scas{b,w,d}: cmp eax/ax/al, es:[di]
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The ins instruction inputs a byte, word, or double word from the I/O port specified in
the dx register. It then stores the input value at memory location es:di and increments or
decrements di appropriately. This instruction is available only on 80286 and later proces-
sors.

ins{b,w,d}: es:[di] := port(dx)
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The outs instruction fetches the byte, word, or double word at address ds:si, incre-
ments or decrements si accordingly, and then outputs the value to the port specified in the
dx register.

outs{b,w,d}: port(dx) := ds:[si]
if direction_flag = 0 then

si := si + size;
else

si := si - size;
endif;

As explained here, the string instructions are useful, but it gets even better! When
combined with the rep, repz, repe, repnz, and repne prefixes, a single string instruction can
process an entire string. For more information on these prefixes see the chapter on strings.

6.9 Program Flow Control Instructions

The instructions discussed thus far execute sequentially; that is, the CPU executes
each instruction in the sequence it appears in your program. To write real programs
requires several control structures, not just the sequence. Examples include the if state-
ment, loops, and subroutine invocation (a call). Since compilers reduce all other languages
to assembly language, it should come as no surprise that assembly language supports the
instructions necessary to implement these control structures. 80x86 program control
instructions belong to three groups: unconditional transfers, conditional transfers, and
subroutine call and return instructions. The following sections describe these instructions:

6.9.1 Unconditional Jumps

 The jmp (jump) instruction unconditionally transfers control to another point in the
program. There are six forms of this instruction: an intersegment/direct jump, two intra-
segment/direct jumps, an intersegment/indirect jump, and two intrasegment/indirect
jumps. Intrasegment jumps are always between statements in the same code segment.
Intersegment jumps can transfer control to a statement in a different code segment.

These instructions generally use the same syntax, it is

jmp target

The assembler differentiates them by their operands:

jmp disp8 ;direct intrasegment, 8 bit displacement.
jmp disp16 ;direct intrasegment, 16 bit displacement.
jmp adrs32 ;direct intersegment, 32 bit segmented address.

The 80x86 Instruction Set

Page 287

jmp mem16 ;indirect intrasegment, 16 bit memory operand.
jmp reg16 ;register indirect intrasegment.
jmp mem32 ;indirect intersegment, 32 bit memory operand.

Intersegment is a synonym for far, intrasegment is a synonym for near.

The two direct intrasegment jumps differ only in their length. The first form consists
of an opcode and a single byte displacement. The CPU sign extends this displacement to
16 bits and adds it to the ip register. This instruction can branch to a location -128..+127
from the beginning of the next instruction following it (i.e., -126..+129 bytes around the
current instruction).

The second form of the intrasegment jump is three bytes long with a two byte dis-
placement. This instruction allows an effective range of -32,768..+32,767 bytes and can
transfer control to anywhere in the current code segment. The CPU simply adds the two
byte displacement to the ip register.

These first two jumps use a relative addressing scheme. The offset encoded as part of
the opcode byte is not the target address in the current code segment, but the distance to
the target address. Fortunately, MASM will compute the distance for you automatically, so
you do not have to compute this displacement value yourself. In many respects, these
instructions are really nothing more than add ip, disp instructions.

The direct intersegment jump is five bytes long, the last four bytes containing a seg-
mented address (the offset in the second and third bytes, the segment in the fourth and
fifth bytes). This instruction copies the offset into the ip register and the segment into the
cs register. Execution of the next instruction continues at the new address in cs:ip. Unlike
the previous two jumps, the address following the opcode is the absolute memory address
of the target instruction; this version does not use relative addressing. This instruction
loads cs:ip with a 32 bit immediate value.

For the three direct jumps described above, you normally specify the target address
using a statement label. A statement label is usually an identifier followed by a colon, usu-
ally on the same line as an executable machine instruction. The assembler determines the
offset of the statement after the label and automatically computes the distance from the
jump instruction to the statement label. Therefore, you do not have to worry about com-
puting displacements manually. For example, the following short little loop continuously
reads the parallel printer data port and inverts the L.O. bit. This produces a square wave
electrical signal on one of the printer port output lines:

mov dx, 378h ;Parallel printer port address.
LoopForever: in al, dx ;Read character from input port.

xor al, 1 ;Invert the L.O. bit.
out dx, al ;Output data back to port.
jmp LoopForever ;Repeat forever.

The fourth form of the unconditional jump instruction is the indirect intrasegment
jump instruction. It requires a 16 bit memory operand. This form transfers control to the
address within the offset given by the two bytes of the memory operand. For example,

WordVar word TargetAddress
 .
 .
 .
jmp WordVar

transfers control to the address specified by the value in the 16 bit memory location Word-
Var. This does not jump to the statement at address WordVar, it jumps to the statement at
the address held in the WordVar variable. Note that this form of the jmp instruction is
roughly equivalent to:

mov ip, WordVar

Although the example above uses a single word variable containing the indirect
address, you can use any valid memory address mode, not just the displacement only
addressing mode. You can use memory indirect addressing modes like the following:

jmp DispOnly ;Word variable

Chapter 06

Page 288

jmp Disp[bx] ;Disp is an array of words
jmp Disp[bx][si]
jmp [bx]16

etc.

Consider the indexed addressing mode above for a moment (disp[bx]). This addressing
mode fetches the word from location disp+bx and copies this value to the ip register; this
lets you create an array of pointers and jump to a specified pointer using an array index.
Consider the following example:

AdrsArray word stmt1, stmt2, stmt3, stmt4
 .
 .
 .
mov bx, I ;I is in the range 0..3
add bx, bx ;Index into an array of words.
jmp AdrsArray[bx];Jump to stmt1, stmt2, etc., depending

; on the value of I.

The important thing to remember is that the near indirect jump fetches a word from mem-
ory and copies it into the ip register; it does not jump to the memory location specified, it
jumps indirectly through the 16 bit pointer at the specified memory location.

The fifth jmp instruction transfers control to the offset given in a 16 bit general purpose
register. Note that you can use any general purpose register, not just bx, si, di, or bp. An
instruction of the form

jmp ax

is roughly equivalent to

mov ip, ax

Note that the previous two forms (register or memory indirect) are really the same
instruction. The mod and r/m fields of a mod-reg-r/m byte specify a register or memory
indirect address. See Appendix D for the details.

The sixth form of the jmp instruction, the indirect intersegment jump, has a memory
operand that contains a double word pointer. The CPU copies the double word at that
address into the cs:ip register pair. For example,

FarPointer dword TargetAddress
 .
 .
 .
jmp FarPointer

transfers control to the segmented address specified by the four bytes at address Far-
Pointer. This instruction is semantically identical to the (mythical) instruction

lcs ip, FarPointer ;load cs, ip from FarPointer

As for the near indirect jump described earlier, this far indirect jump lets you specify any
arbitrary (valid) memory addressing mode. You are not limited to the displacement only
addressing mode the example above uses.

MASM uses a near indirect or far indirect addressing mode depending upon the type
of the memory location you specify. If the variable you specify is a word variable, MASM
will automatically generate a near indirect jump; if the variable is a dword, MASM emits
the opcode for a far indirect jump. Some forms of memory addressing, unfortunately, do
not intrinsically specify a size. For example, [bx] is definitely a memory operand, but does
bx point at a word variable or a double word variable? It could point at either. Therefore,
MASM will reject a statement of the form:

jmp [bx]

MASM cannot tell whether this should be a near indirect or far indirect jump. To resolve
the ambiguity, you will need to use a type coercion operator. Chapter Eight will fully

16. Technically, this is syntactically incorrect because MASM cannot figure out the size of the memory operand.
Read on for the details.

The 80x86 Instruction Set

Page 289

describe type coercion operators, for now, just use one of the following two instructions
for a near or far jump, respectively:

jmp word ptr [bx]
jmp dword ptr [bx]

The register indirect addressing modes are not the only ones that could be type ambigu-
ous. You could also run into this problem with indexed and base plus index addressing
modes:

jmp word ptr 5[bx]
jmp dword ptr 9[bx][si]

For more information on the type coercion operators, see Chapter Eight.

In theory, you could use the indirect jump instructions and the setcc instructions to
conditionally transfer control to some given location. For example, the following code
transfers control to iftrue if word variable X is equal to word variable Y. It transfers control
to iffalse, otherwise.

JmpTbl word iffalse, iftrue
 .
 .
 .
mov ax, X
cmp ax, Y
sete bl
movzx ebx, bl
jmp JmpTbl[ebx*2]

As you will soon see, there is a much better way to do this using the conditional jump
instructions.

6.9.2 The CALL and RET Instructions

The call and ret instructions handle subroutine calls and returns. There are five differ-
ent call instructions and six different forms of the return instruction:

call disp16 ;direct intrasegment, 16 bit relative.
call adrs32 ;direct intersegment, 32 bit segmented address.
call mem16 ;indirect intrasegment, 16 bit memory pointer.
call reg16 ;indirect intrasegment, 16 bit register pointer.
call mem32 ;indirect intersegment, 32 bit memory pointer.

ret ;near or far return
retn ;near return
retf ;far return
ret disp ;near or far return and pop
retn disp ;near return and pop
retf disp ;far return and pop

The call instructions take the same forms as the jmp instructions except there is no short
(two byte) intrasegment call.

The far call instruction does the following:

• It pushes the cs register onto the stack.
• It pushes the 16 bit offset of the next instruction following the call onto

the stack.
• It copies the 32 bit effective address into the cs:ip registers. Since the call

instruction allows the same addressing modes as jmp, call can obtain the
target address using a relative, memory, or register addressing mode.

• Execution continues at the first instruction of the subroutine. This first
instruction is the opcode at the target address computed in the previous
step.

The near call instruction does the following:

Chapter 06

Page 290

• It pushes the 16 bit offset of the next instruction following the call onto
the stack.

• It copies the 16 bit effective address into the ip register. Since the call
instruction allows the same addressing modes as jmp, call can obtain the
target address using a relative, memory, or register addressing mode.

• Execution continues at the first instruction of the subroutine. This first
instruction is the opcode at the target address computed in the previous
step.

The call disp16 instruction uses relative addressing. You can compute the effective
address of the target by adding this 16 bit displacement with the return address (like the
relative jmp instructions, the displacement is the distance from the instruction following
the call to the target address).

The call adrs32 instruction uses the direct addressing mode. A 32 bit segmented
address immediately follows the call opcode. This form of the call instruction copies that
value directly into the cs:ip register pair. In many respects, this is equivalent to the imme-
diate addressing mode since the value this instruction copies into the cs:ip register pair
immediately follows the instruction.

Call mem16 uses the memory indirect addressing mode. Like the jmp instruction, this
form of the call instruction fetches the word at the specified memory location and uses that
word’s value as the target address. Remember, you can use any memory addressing mode
with this instruction. The displacement-only addressing mode is the most common form,
but the others are just as valid:

call CallTbl[bx] ;Index into an array of pointers.
call word ptr [bx] ;BX points at word to use.
call WordTbl[bx][si] ; etc.

Note that the selection of addressing mode only affects the effective address computation
for the target subroutine. These call instructions still push the offset of the next instruction
following the call onto the stack. Since these are near calls (they obtain their target address
from a 16 bit memory location), they all push a 16 bit return address onto the stack.

Call reg16 works just like the memory indirect call above, except it uses the 16 bit value
in a register for the target address. This instruction is really the same instruction as the call
mem16 instruction. Both forms specify their effective address using a mod-reg-r/m byte.
For the call reg16 form, the mod bits contain 11b so the r/m field specifies a register rather
than a memory addressing mode. Of course, this instruction also pushes the 16 bit offset
of the next instruction onto the stack as the return address.

The call mem32 instruction is a far indirect call. The memory address specified by this
instruction must be a double word value. This form of the call instruction fetches the 32 bit
segmented address at the computed effective address and copies this double word value
into the cs:ip register pair. This instruction also copies the 32 bit segmented address of the
next instruction onto the stack (it pushes the segment value first and the offset portion sec-
ond). Like the call mem16 instruction, you can use any valid memory addressing mode
with this instruction:

call DWordVar
call DwordTbl[bx]
call dword ptr [bx]
etc.

It is relatively easy to synthesize the call instruction using two or three other 80x86
instructions. You could create the equivalent of a near call using a push and a jmp instruc-
tion:

push <offset of instruction after jmp>
jmp subroutine

A far call would be similar, you’d need to add a push cs instruction before the two instruc-
tions above to push a far return address on the stack.

The ret (return) instruction returns control to the caller of a subroutine. It does so by
popping the return address off the stack and transferring control to the instruction at this

The 80x86 Instruction Set

Page 291

return address. Intrasegment (near) returns pop a 16 bit return address off the stack into the
ip register. An intersegment (far) return pops a 16 bit offset into the ip register and then a
16 bit segment value into the cs register. These instructions are effectively equal to the fol-
lowing:

retn: pop ip
retf: popd cs:ip

Clearly, you must match a near subroutine call with a near return and a far subroutine
call with a corresponding far return. If you mix near calls with far returns or vice versa,
you will leave the stack in an inconsistent state and you probably will not return to the
proper instruction after the call. Of course, another important issue when using the call
and ret instructions is that you must make sure your subroutine doesn’t push something
onto the stack and then fail to pop it off before trying to return to the caller. Stack prob-
lems are a major cause of errors in assembly language subroutines. Consider the following
code:

Subroutine: push ax
push bx
 .
 .
 .
pop bx
ret
 .
 .
 .
call Subroutine

The call instruction pushes the return address onto the stack and then transfers control to
the first instruction of subroutine. The first two push instructions push the ax and bx regis-
ters onto the stack, presumably in order to preserve their value because subroutine modi-
fies them. Unfortunately, a programming error exists in the code above, subroutine only
pops bx from the stack, it fails to pop ax as well. This means that when subroutine tries to
return to the caller, the value of ax rather than the return address is sitting on the top of the
stack. Therefore, this subroutine returns control to the address specified by the initial
value of the ax register rather than to the true return address. Since there are 65,536 differ-
ent values ax can have, there is a 1/65,536

th of a chance that your code will return to the real
return address. The odds are not in your favor! Most likely, code like this will hang up the
machine. Moral of the story – always make sure the return address is sitting on the stack
before executing the return instruction.

Like the call instruction, it is very easy to simulate the ret instruction using two 80x86
instructions. All you need to do is pop the return address off the stack and then copy it
into the ip register. For near returns, this is a very simple operation, just pop the near
return address off the stack and then jump indirectly through that register:

pop ax
jmp ax

Simulating a far return is a little more difficult because you must load cs:ip in a single
operation. The only instruction that does this (other than a far return) is the jmp mem32
instruction. See the exercises at the end of this chapter for more details.

There are two other forms of the ret instruction. They are identical to those above
except a 16 bit displacement follows their opcodes. The CPU adds this value to the stack
pointer immediately after popping the return address from the stack. This mechanism
removes parameters pushed onto the stack before returning to the caller. See “Passing
Parameters on the Stack” on page 581 for more details.

The assembler allows you to type ret without the “f” or “n” suffix. If you do so, the
assembler will figure out whether it should generate a near return or a far return. See the
chapter on procedures and functions for details on this.

Chapter 06

Page 292

6.9.3 The INT, INTO, BOUND, and IRET Instructions

The int (for software interrupt) instruction is a very special form of a call instruction.
Whereas the call instruction calls subroutines within your program, the int instruction calls
system routines and other special subroutines. The major difference between interrupt ser-
vice routines and standard procedures is that you can have any number of different proce-
dures in an assembly language program, while the system supports a maximum of 256
different interrupt service routines. A program calls a subroutine by specifying the address
of that subroutine; it calls an interrupt service routine by specifying the interrupt number
for that particular interrupt service routine. This chapter will only describe how to call an
interrupt service routine using the int, into, and bound instructions, and how to return from
an interrupt service routine using the iret instruction.

There are four different forms of the int instruction. The first form is

int nn

(where “nn” is a value between 0 and 255). It allows you to call one of 256 different inter-
rupt routines. This form of the int instruction is two bytes long. The first byte is the int
opcode. The second byte is immediate data containing the interrupt number.

Although you can use the int instruction to call procedures (interrupt service routines)
you’ve written, the primary purpose of this instruction is to make a system call. A system
call is a subroutine call to a procedure provided by the system, such as a DOS , PC-BIOS17,
mouse, or some other piece of software resident in the machine before your program
began execution. Since you always refer to a specific system call by its interrupt number,
rather than its address, your program does not need to know the actual address of the
subroutine in memory. The int instruction provides dynamic linking to your program. The
CPU determines the actual address of an interrupt service routine at run time by looking
up the address in an interrupt vector table. This allows the authors of such system routines
to change their code (including the entry point) without fear of breaking any older pro-
grams that call their interrupt service routines. As long as the system call uses the same
interrupt number, the CPU will automatically call the interrupt service routine at its new
address.

The only problem with the int instruction is that it supports only 256 different inter-
rupt service routines. MS-DOS alone supports well over 100 different calls. BIOS and
other system utilities provide thousands more. This is above and beyond all the interrupts
reserved by Intel for hardware interrupts and traps. The common solution most of the sys-
tem calls use is to employ a single interrupt number for a given class of calls and then pass
a function number in one of the 80x86 registers (typically the ah register). For example,
MS-DOS uses only a single interrupt number, 21h. To choose a particular DOS function,
you load a DOS function code into the ah register before executing the int 21h instruction.
For example, to terminate a program and return control to MS-DOS, you would normally
load ah with 4Ch and call DOS with the int 21h instruction:

mov ah, 4ch ;DOS terminate opcode.
int 21h ;DOS call

The BIOS keyboard interrupt is another good example. Interrupt 16h is responsible
for testing the keyboard and reading data from the keyboard. This BIOS routine provides
several calls to read a character and scan code from the keyboard, see if any keys are avail-
able in the system type ahead buffer, check the status of the keyboard modifier flags, and
so on. To choose a particular operation, you load the function number into the ah register
before executing int 16h. The following table lists the possible functions:

17. BIOS stands for Basic Input/Output System.

The 80x86 Instruction Set

Page 293

Table 31: BIOS Keyboard Support Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

0 al- ASCII character
ah- scan code

Read character. Reads next available character from
the system’s type ahead buffer. Wait for a keystroke if
the buffer is empty.

1 ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Checks to see if a character is available in the type
ahead buffer. Sets the zero flag if not key is available,
clears the zero flag if a key is available. If there is an
available key, this function returns the ASCII and scan
code value in ax. The value in ax is undefined if no key
is available.

2 al- shift flags Returns the current status of the shift flags in al. The
shift flags are defined as follows:

bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Alt key is down
bit 2: Ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

3 al = 5
bh = 0, 1, 2, 3 for
1/4, 1/2, 3/4, or 1
second delay
bl= 0..1Fh for
30/sec to 2/sec.

Set auto repeat rate. The bh register contains the
amount of time to wait before starting the autorepeat
operation, the bl register contains the autorepeat rate.

5 ch = scan code
cl = ASCII code

Store keycode in buffer. This function stores the value
in the cx register at the end of the type ahead buffer.
Note that the scan code in ch doesn’t have to corre-
spond to the ASCII code appearing in cl. This routine
will simply insert the data you provide into the system
type ahead buffer.

10h al- ASCII character
ah- scan code

Read extended character. Like ah=0 call, except this
one passes all key codes, the ah=0 call throws away
codes that are not PC/XT compatible.

11h ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Like the ah=01h call except this one does not throw
away keycodes that are not PC/XT compatible (i.e., the
extra keys found on the 101 key keyboard).

Chapter 06

Page 294

For example, to read a character from the system type ahead buffer, leaving the ASCII
code in al, you could use the following code:

mov ah, 0 ;Wait for key available, and then
int 16h ; read that key.
mov character, al ;Save character read.

Likewise, if you wanted to test the type ahead buffer to see if a key is available, without
reading that keystroke, you could use the following code:

mov ah, 1 ;Test to see if key is available.
int 16h ;Sets the zero flag if a key is not

; available.

For more information about the PC-BIOS and MS-DOS, see “MS-DOS, PC-BIOS, and File
I/O” on page 699.

The second form of the int instruction is a special case:

int 3

Int 3 is a special form of the interrupt instruction that is only one byte long. CodeView and
other debuggers use it as a software breakpoint instruction. Whenever you set a break-
point on an instruction in your program, the debugger will typically replace the first byte
of the instruction’s opcode with an int 3 instruction. When your program executes the int 3
instruction, this makes a “system call” to the debugger so the debugger can regain control
of the CPU. When this happens, the debugger will replace the int 3 instruction with the
original opcode.

While operating inside a debugger, you can explicitly use the int 3 instruction to stop
program executing and return control to the debugger. This is not, however, the normal way
to terminate a program. If you attempt to execute an int 3 instruction while running under
DOS, rather than under the control of a debugger program, you will likely crash the sys-
tem.

The third form of the int instruction is into. Into will cause a software breakpoint if the
80x86 overflow flag is set. You can use this instruction to quickly test for arithmetic over-
flow after executing an arithmetic instruction. Semantically, this instruction is equivalent
to

if overflow = 1 then int 4

12h al- shift flags
ah- extended shift
flags

Returns the current status of the shift flags in ax. The
shift flags are defined as follows:

bit 15: SysReq key pressed
bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down
bit 10:Right ctrl key is down
bit 9: Left alt key is down
bit 8: Left ctrl key is down
bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Either alt key is down (some machines, left only)
bit 2: Either ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

Table 31: BIOS Keyboard Support Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

The 80x86 Instruction Set

Page 295

You should not use this instruction unless you’ve supplied a corresponding trap handler
(interrupt service routine). Doing so would probably crash the system. .

The fourth software interrupt, provided by 80286 and later processors, is the bound
instruction. This instruction takes the form

bound reg, mem

and executes the following algorithm:

if (reg < [mem]) or (reg > [mem+sizeof(reg)]) then int 5

[mem] denotes the contents of the memory location mem and sizeof(reg) is two or four
depending on whether the register is 16 or 32 bits wide. The memory operand must be
twice the size of the register operand. The bound instruction compares the values using a
signed integer comparison.

Intel’s designers added the bound instruction to allow a quick check of the range of a
value in a register. This is useful in Pascal, for example, which checking array bounds
validity and when checking to see if a subrange integer is within an allowable range.
There are two problems with this instruction, however. On 80486 and Pentium/586 pro-
cessors, the bound instruction is generally slower than the sequence of instructions it
would replace18:

cmp reg, LowerBound
jl OutOfBounds
cmp reg, UpperBound
jg OutOfBounds

On the 80486 and Pentium/586 chips, the sequence above only requires four clock cycles
assuming you can use the immediate addressing mode and the branches are not taken19;
the bound instruction requires 7-8 clock cycles under similar circumstances and also
assuming the memory operands are in the cache.

A second problem with the bound instruction is that it executes an int 5 if the specified
register is out of range. IBM, in their infinite wisdom, decided to use the int 5 interrupt
handler routine to print the screen. Therefore, if you execute a bound instruction and the
value is out of range, the system will, by default, print a copy of the screen to the printer. If
you replace the default int 5 handler with one of your own, pressing the PrtSc key will
transfer control to your bound instruction handler. Although there are ways around this
problem, most people don’t bother since the bound instruction is so slow.

Whatever int instruction you execute, the following sequence of events follows:

• The 80x86 pushes the flags register onto the stack;
• The 80x86 pushes cs and then ip onto the stack;
• The 80x86 uses the interrupt number (into is interrupt #4, bound is inter-

rupt #5) times four as an index into the interrupt vector table and copies
the double word at that point in the table into cs:ip.

The int instructions vary from a call in two major ways. First, call instructions vary in
length from two to six bytes long, whereas int instructions are generally two bytes long (int
3, into, and bound are the exceptions). Second, and most important, the int instruction
pushes the flags and the return address onto the stack while the call instruction pushes
only the return address. Note also that the int instructions always push a far return
address (i.e., a cs value and an offset within the code segment), only the far call pushes
this double word return address.

Since int pushes the flags onto the stack you must use a special return instruction, iret
(interrupt return), to return from a routine called via the int instructions. If you return from
an interrupt procedure using the ret instruction, the flags will be left on the stack upon
returning to the caller. The iret instruction is equivalent to the two instruction sequence:
ret, popf (assuming, of course, that you execute popf before returning control to the
address pointed at by the double word on the top of the stack).

18. The next section describes the jg and jl instructions.
19. In general, one would hope that having a bounds violation is very rare.

Chapter 06

Page 296

The int instructions clear the trace (T) flag in the flags register. They do not affect any
other flags. The iret instruction, by its very nature, can affect all the flags since it pops the
flags from the stack.

6.9.4 The Conditional Jump Instructions

Although the jmp, call, and ret instructions provide transfer of control, they do not
allow you to make any serious decisions. The 80x86’s conditional jump instructions han-
dle this task. The conditional jump instructions are the basic tool for creating loops and
other conditionally executable statements like the if..then statement.

The conditional jumps test one or more flags in the flags register to see if they match
some particular pattern (just like the setcc instructions). If the pattern matches, control
transfers to the target location. If the match fails, the CPU ignores the conditional jump
and execution continues with the next instruction. Some instructions, for example, test the
conditions of the sign, carry, overflow, and zero flags. For example, after the execution of a
shift left instruction, you could test the carry flag to determine if it shifted a one out of the
H.O. bit of its operand. Likewise, you could test the condition of the zero flag after a test
instruction to see if any specified bits were one. Most of the time, however, you will prob-
ably execute a conditional jump after a cmp instruction. The cmp instruction sets the flags
so that you can test for less than, greater than, equality, etc.

Note: Intel’s documentation defines various synonyms or instruction aliases for many
conditional jump instructions. The following tables list all the aliases for a particular
instruction. These tables also list out the opposite branches. You’ll soon see the purpose of
the opposite branches.

Table 32: Jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

JC Jump if carry Carry = 1 JB, JNAE JNC

JNC Jump if no carry Carry = 0 JNB, JAE JC

JZ Jump if zero Zero = 1 JE JNZ

JNZ Jump if not zero Zero = 0 JNE JZ

JS Jump if sign Sign = 1 JNS

JNS Jump if no sign Sign = 0 JS

JO Jump if overflow Ovrflw=1 JNO

JNO Jump if no Ovrflw Ovrflw=0 JO

JP Jump if parity Parity = 1 JPE JNP

JPE Jump if parity even Parity = 1 JP JPO

JNP Jump if no parity Parity = 0 JPO JP

JPO Jump if parity odd Parity = 0 JNP JPE

The 80x86 Instruction Set

Page 297

On the 80286 and earlier, these instructions are all two bytes long. The first byte is a
one byte opcode followed by a one byte displacement. Although this leads to very com-
pact instructions, a single byte displacement only allows a range of ±128 bytes. There is a
simple trick you can use to overcome this limitation on these earlier processors:

• Whatever jump you’re using, switch to its opposite form. (given in the
tables above).

• Once you’ve selected the opposite branch, use it to jump over a jmp
instruction whose target address is the original target address.

For example, to convert:

jc Target

to the long form, use the following sequence of instructions:

Table 33: Jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

JA Jump if above (>) Carry=0,
Zero=0

JNBE JNA

JNBE Jump if not below or equal (not
<=)

Carry=0,
Zero=0

JA JBE

JAE Jump if above or equal (>=) Carry = 0 JNC, JNB JNAE

JNB Jump if not below (not <) Carry = 0 JNC, JAE JB

JB Jump if below (<) Carry = 1 JC, JNAE JNB

JNAE Jump if not above or equal (not
>=)

Carry = 1 JC, JB JAE

JBE Jump if below or equal (<=) Carry = 1 or
Zero = 1

JNA JNBE

JNA Jump if not above
(not >)

Carry = 1 or
Zero = 1

JBE JA

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE

Table 34: Jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite

JG Jump if greater (>) Sign = Ovrflw or Zero=0 JNLE JNG

JNLE Jump if not less than or equal
(not <=)

Sign = Ovrflw or Zero=0 JG JLE

JGE Jump if greater than or equal
(>=)

Sign = Ovrflw JNL JGE

JNL Jump if not less than (not <) Sign = Ovrflw JGE JL

JL Jump if less than (<) Sign ≠ Ovrflw JNGE JNL

JNGE Jump if not greater or equal
(not >=)

Sign ≠ Ovrflw JL JGE

JLE Jump if less than or equal (<=) Sign ≠ Ovrflw or
Zero = 1

JNG JNLE

JNG Jump if not greater than (not >) Sign ≠ Ovrflw or
Zero = 1

JLE JG

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE

Chapter 06

Page 298

jnc SkipJmp
 jmp Target
SkipJmp:

 If the carry flag is clear (NC=no carry), then control transfers to label SkipJmp, at the
same point you’d be if you were using the jc instruction above. If the carry flag is set when
encountering this sequence, control will fall through the jnc instruction to the jmp instruc-
tion that will transfer control to Target. Since the jmp instruction allows 16 bit displacement
and far operands, you can jump anywhere in the memory using this trick.

One brief comment about the “opposites” column is in order. As mentioned above,
when you need to manually extend a branch from ±128 you should choose the opposite
branch to branch around a jump to the target location. As you can see in the “aliases” col-
umn above, many conditional jump instructions have aliases. This means that there will
be aliases for the opposite jumps as well. Do not use any aliases when extending branches that
are out of range. With only two exceptions, a very simple rule completely describes how to
generate an opposite branch:

• If the second letter of the jcc instruction is not an “n”, insert an “n” after
the “j”. E.g., je becomes jne and jl becomes jnl.

• If the second letter of the jcc instruction is an “n”, then remove that “n”
from the instruction. E.g., jng becomes jg, jne becomes je.

The two exceptions to this rule are jpe (jump parity even) and jpo (jump parity odd). These
exceptions cause few problems because (a) you’ll hardly ever need to test the parity flag,
and (b) you can use the aliases jp and jnp synonyms for jpe and jpo. The “N/No N” rule
applies to jp and jnp.

Though you know that jge is the opposite of jl, get in the habit of using jnl rather than
jge. It’s too easy in an important situation to start thinking “greater is the opposite of less”
and substitute jg instead. You can avoid this confusion by always using the “N/No N”
rule.

MASM 6.x and many other modern 80x86 assemblers will automatically convert out
of range branches to this sequence for you. There is an option that will allow you to dis-
able this feature. For performance critical code that runs on 80286 and earlier processors,
you may want to disable this feature so you can fix the branches yourself. The reason is
quite simple, this simple fix always wipes out the pipeline no matter which condition is
true since the CPU jumps in either case. One thing nice about conditional jumps is that
you do not flush the pipeline or the prefetch queue if you do not take the branch. If one
condition is true far more often than the other, you might want to use the conditional
jump to transfer control to a jmp nearby, so you can continue to fall through as before. For
example, if you have a je target instruction and target is out of range, you could convert it
to the following code:

je GotoTarget
 .
 .
 .

GotoTarget: jmp Target

Although a branch to target now requires executing two jumps, this is much more effi-
cient than the standard conversion if the zero flag is normally clear when executing the je
instruction.

The 80386 and later processor provide an extended form of the conditional jump that
is four bytes long, with the last two bytes containing a 16 bit displacement. These condi-
tional jumps can transfer control anywhere within the current code segment. Therefore,
there is no need to worry about manually extending the range of the jump. If you’ve told
MASM you’re using an 80386 or later processor, it will automatically choose the two byte
or four byte form, as necessary. See Chapter Eight to learn how to tell MASM you’re using
an 80386 or later processor.

The 80x86 Instruction Set

Page 299

The 80x86 conditional jump instruction give you the ability to split program flow into
one of two paths depending upon some logical condition. Suppose you want to increment
the ax register if bx is or equal to cx. You can accomplish this with the following code:

cmp bx, cx
jne SkipStmts
inc ax

SkipStmts:

The trick is to use the opposite branch to skip over the instructions you want to execute if
the condition is true. Always use the “opposite branch (N/no N)” rule given earlier to
select the opposite branch. You can make the same mistake choosing an opposite branch
here as you could when extending out of range jumps.

You can also use the conditional jump instructions to synthesize loops. For example,
the following code sequence reads a sequence of characters from the user and stores each
character in successive elements of an array until the user presses the Enter key (carriage
return):

mov di, 0
ReadLnLoop: mov ah, 0 ;INT 16h read key opcode.

int 16h
mov Input[di], al
inc di
cmp al, 0dh ;Carriage return ASCII code.
jne ReadLnLoop
mov Input[di-1],0;Replace carriage return with zero.

For more information concerning the use of the conditional jumps to synthesize IF state-
ments, loops, and other control structures, see “Control Structures” on page 521.

Like the setcc instructions, the conditional jump instructions come in two basic cate-
gories – those that test specific process flag values (e.g., jz, jc, jno) and those that test some
condition (less than, greater than, etc.). When testing a condition, the conditional jump
instructions almost always follow a cmp instruction. The cmp instruction sets the flags so
you can use a ja, jae, jb, jbe, je, or jne instruction to test for unsigned less than, less than or
equal, equality, inequality, greater than, or greater than or equal. Simultaneously, the cmp
instruction sets the flags so you can also do a signed comparison using the jl, jle, je, jne, jg,
and jge instructions.

The conditional jump instructions only test flags, they do not affect any of the 80x86
flags.

6.9.5 The JCXZ/JECXZ Instructions

The jcxz (jump if cx is zero) instruction branches to the target address if cx contains
zero. Although you can use it anytime you need to see if cx contains zero, you would nor-
mally use it before a loop you’ve constructed with the loop instructions. The loop instruc-
tion can repeat a sequence of operations cx times. If cx equals zero, loop will repeat the
operation 65,536 times. You can use jcxz to skip over such a loop when cx is zero.

The jecxz instruction, available only on 80386 and later processors, does essentially the
same job as jcxz except it tests the full ecx register. Note that the jcxz instruction only
checks cx, even on an 80386 in 32 bit mode.

There are no “opposite” jcxz or jecxz instructions. Therefore, you cannot use “N/No
N” rule to extend the jcxz and jecxz instructions. The easiest way to solve this problem is to
break the instruction up into two instructions that accomplish the same task:

jcxz Target
becomes

test cx, cx ;Sets the zero flag if cx=0
je Target

Chapter 06

Page 300

Now you can easily extend the je instruction using the techniques from the previous sec-
tion.

The test instruction above will set the zero flag if and only if cx contains zero. After all,
if there are any non-zero bits in cx, logically anding them with themselves will produce a
non-zero result. This is an efficient way to see if a 16 or 32 bit register contains zero. In fact,
this two instruction sequence is faster than the jcxz instruction on the 80486 and later pro-
cessors. Indeed, Intel recommends the use of this sequence rather than the jcxz instruction
if you are concerned with speed. Of course, the jcxz instruction is shorter than the two
instruction sequence, but it is not faster. This is a good example of an exception to the rule
“shorter is usually faster.”

The jcxz instruction does not affect any flags.

6.9.6 The LOOP Instruction

This instruction decrements the cx register and then branches to the target location if
the cx register does not contain zero. Since this instruction decrements cx then checks for
zero, if cx originally contained zero, any loop you create using the loop instruction will
repeat 65,536 times. If you do not want to execute the loop when cx contains zero, use jcxz
to skip over the loop.

There is no “opposite” form of the loop instruction, and like the jcxz/jecxz instructions
the range is limited to ±128 bytes on all processors. If you want to extend the range of this
instruction, you will need to break it down into discrete components:

; “loop lbl” becomes:

dec cx
jne lbl

You can easily extend this jne to any distance.

There is no eloop instruction that decrements ecx and branches if not zero (there is a
loope instruction, but it does something else entirely). The reason is quite simple. As of the
80386, Intel’s designers stopped wholeheartedly supporting the loop instruction. Oh, it’s
there to ensure compatibility with older code, but it turns out that the dec/jne instructions
are actually faster on the 32 bit processors. Problems in the decoding of the instruction and
the operation of the pipeline are responsible for this strange turn of events.

Although the loop instruction’s name suggests that you would normally create loops
with it, keep in mind that all it is really doing is decrementing cx and branching to the tar-
get address if cx does not contain zero after the decrement. You can use this instruction
anywhere you want to decrement cx and then check for a zero result, not just when creat-
ing loops. Nonetheless, it is a very convenient instruction to use if you simply want to
repeat a sequence of instructions some number of times. For example, the following loop
initializes a 256 element array of bytes to the values 1, 2, 3, ...

mov ecx, 255
ArrayLp: mov Array[ecx], cl

loop ArrayLp
mov Array[0], 0

The last instruction is necessary because the loop does not repeat when cx is zero. There-
fore, the last element of the array that this loop processes is Array[1], hence the last instruc-
tion.

The loop instruction does not affect any flags.

6.9.7 The LOOPE/LOOPZ Instruction

Loope/loopz (loop while equal/zero, they are synonyms for one another) will branch to
the target address if cx is not zero and the zero flag is set. This instruction is quite useful

The 80x86 Instruction Set

Page 301

after cmp or cmps instruction, and is marginally faster than the comparable 80386/486
instructions if you use all the features of this instruction. However, this instruction plays
havoc with the pipeline and superscalar operation of the Pentium so you’re probably bet-
ter off sticking with discrete instructions rather than using this instruction. This instruc-
tion does the following:

cx := cx - 1
if ZeroFlag = 1 and cx ≠ 0, goto target

The loope instruction falls through on one of two conditions. Either the zero flag is
clear or the instruction decremented cx to zero. By testing the zero flag after the loop
instruction (with a je or jne instruction, for example), you can determine the cause of ter-
mination.

This instruction is useful if you need to repeat a loop while some value is equal to
another, but there is a maximum number of iterations you want to allow. For example, the
following loop scans through an array looking for the first non-zero byte, but it does not
scan beyond the end of the array:

mov cx, 16 ;Max 16 array elements.
mov bx, -1 ;Index into the array (note next inc).

SearchLp: inc bx ;Move on to next array element.
cmp Array[bx], 0 ;See if this element is zero.
loope SearchLp ;Repeat if it is.
je AllZero ;Jump if all elements were zero.

Note that this instruction is not the opposite of loopnz/loopne. If you need to extend
this jump beyond ±128 bytes, you will need to synthesize this instruction using discrete
instructions. For example, if loope target is out of range, you would need to use an instruc-
tion sequence like the following:

jne quit
dec cx
je Quit2
jmp Target

quit: dec cx ;loope decrements cx, even if ZF=0.
quit2:

The loope/loopz instruction does not affect any flags.

6.9.8 The LOOPNE/LOOPNZ Instruction

This instruction is just like the loope/loopz instruction in the previous section except
loopne/loopnz (loop while not equal/not zero) repeats while cx is not zero and the zero flag
is clear. The algorithm is

cx := cx - 1
if ZeroFlag = 0 and cx ≠ 0, goto target

You can determine if the loopne instruction terminated because cx was zero or if the
zero flag was set by testing the zero flag immediately after the loopne instruction. If the
zero flag is clear at that point, the loopne instruction fell through because it decremented cx
to zero. Otherwise it fell through because the zero flag was set.

This instruction is not the opposite of loope/loopz. If the target address is out of range,
you will need to use an instruction sequence like the following:

je quit
dec cx
je Quit2
jmp Target

quit: dec cx ;loopne decrements cx, even if ZF=1.
quit2:

You can use the loopne instruction to repeat some maximum number of times while
waiting for some other condition to be true. For example, you could scan through an array
until you exhaust the number of array elements or until you find a certain byte using a
loop like the following:

Chapter 06

Page 302

mov cx, 16 ;Maximum # of array elements.
mov bx, -1 ;Index into array.

LoopWhlNot0: inc bx ;Move on to next array element.
cmp Array[bx],0 ;Does this element contain zero?
loopne LoopWhlNot0 ;Quit if it does, or more than 16 bytes.

Although the loope/loopz and loopne/loopnz instructions are slower than the individual
instruction from which they could be synthesized, there is one main use for these instruc-
tion forms where speed is rarely important; indeed, being faster would make them less
useful – timeout loops during I/O operations. Suppose bit #7 of input port 379h contains
a one if the device is busy and contains a zero if the device is not busy. If you want to out-
put data to the port, you could use code like the following:

mov dx, 379h
WaitNotBusy: in al, dx ;Get port

test al, 80h ;See if bit #7 is one
jne WaitNotBusy ;Wait for “not busy”

The only problem with this loop is that it is conceivable that it would loop forever. In
a real system, a cable could come unplugged, someone could shut off the peripheral
device, and any number of other things could go wrong that would hang up the system.
Robust programs usually apply a timeout to a loop like this. If the device fails to become
busy within some specified amount of time, then the loop exits and raises an error condi-
tion. The following code will accomplish this:

mov dx, 379h ;Input port address
mov cx, 0 ;Loop 65,536 times and then quit.

WaitNotBusy: in al, dx ;Get data at port.
test al, 80h ;See if busy
loopne WaitNotBusy ;Repeat if busy and no time out.
jne TimedOut ;Branch if CX=0 because we timed out.

You could use the loope/loopz instruction if the bit were zero rather than one.

The loopne/loopnz instruction does not affect any flags.

6.10 Miscellaneous Instructions

There are various miscellaneous instructions on the 80x86 that don’t fall into any cate-
gory above. Generally these are instructions that manipulate individual flags, provide
special processor services, or handle privileged mode operations.

There are several instructions that directly manipulate flags in the 80x86 flags register.
They are

• clc Clears the carry flag
• stc Sets the carry flag
• cmc Complements the carry flag
• cld Clears the direction flag
• std Sets the direction flag
• cli Clears the interrupt enable/disable flag
• sti Sets the interrupt enable/disable flag

Note: you should be careful when using the cli instruction in your programs. Improper use
could lock up your machine until you cycle the power.

The nop instruction doesn’t do anything except waste a few processor cycles and take
up a byte of memory. Programmers often use it as a place holder or a debugging aid. As it
turns out, this isn’t a unique instruction, it’s just a synonym for the xchg ax, ax instruc-
tion.

 The hlt instruction halts the processor until a reset, non-maskable interrupt, or other
interrupt (assuming interrupts are enabled) comes along. Generally, you shouldn’t use
this instruction on the IBM PC unless you really know what you are doing. This instruction
is not equivalent to the x86 halt instruction. Do not use it to stop your programs.

The 80x86 Instruction Set

Page 303

The 80x86 provides another prefix instruction, lock, that, like the rep instruction,
affects the following instruction. However, this instruction has little meaning on most PC
systems. Its purpose is to coordinate systems that have multiple CPUs. As systems
become available with multiple processors, this prefix may finally become valuable20. You
need not be too concerned about this here.

The Pentium provides two additional instructions of interest to real-mode DOS pro-
grammers. These instructions are cpuid and rdtsc. If you load eax with zero and execute the
cpuid instruction, the Pentium (and later processors) will return the maximum value cpuid
allows as a parameter in eax. For the Pentium, this value is one. If you load the eax register
with one and execute the cpuid instruction, the Pentium will return CPU identification
information in eax. Since this instruction is of little value until Intel produces several addi-
tional chips in the family, there is no need to consider it further, here.

The second Pentium instruction of interest is the rdtsc (read time stamp counter)
instruction. The Pentium maintains a 64 bit counter that counts clock cycles starting at
reset. The rdtsc instruction copies the current counter value into the edx:eax register pair.
You can use this instruction to accurately time sequences of code.

Besides the instructions presented thus far, the 80286 and later processors provide a
set of protected mode instructions. This text will not consider those protected most instruc-
tions that are useful only to those who are writing operating systems. You would not even
use these instructions in your applications when running under a protected mode operat-
ing system like Windows, UNIX, or OS/2. These instructions are reserved for the individ-
uals who write such operating systems and drivers for them.

6.11 Sample Programs

The following sample programs demonstrate the use of the various instructions
appearing in this chapter.

6.11.1 Simple Arithmetic I

; Simple Arithmetic
; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?
dseg ends

20. There are multiprocessor systems that have multiple Pentium chips installed. However, these systems gener-
ally use both CPUs only while running Windows NT, OS/2, or some other operating system that support sym-
metrical multiprocessing.

Chapter 06

Page 304

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Compute L := j+k and u3 := u1+u2

mov ax, J
add ax, K
mov L, ax

mov ax, u1 ;Note that we use the "ADD"
add ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := j-k and u3 := u1-u2

mov ax, J
sub ax, K
mov L, ax

mov ax, u1 ;Note that we use the "SUB"
sub ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := -L

neg L

; Compute L := -J

mov ax, J ;Of course, you would only use the
neg ax ; NEG instruction on signed values.
mov L, ax

; Compute K := K + 1 using the INC instruction.

inc K

; Compute u2 := u2 + 1 using the INC instruction.
; Note that you can use INC for signed and unsigned values.

inc u2

; Compute J := J - 1 using the DEC instruction.

dec J

; Compute u2 := u2 - 1 using the DEC instruction.
; Note that you can use DEC for signed and unsigned values.

dec u2

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

The 80x86 Instruction Set

Page 305

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.2 Simple Arithmetic II

; Simple Arithmetic
; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Extended multiplication using 8086 instructions.
;
; Note that there are separate multiply instructions for signed and
; unsigned operands.
;
; L := J * K (ignoring overflow)

mov ax, J
imul K ;Computes DX:AX := AX * K
mov L, ax ;Ignore overflow into DX.

; u3 := u1 * u2

Chapter 06

Page 306

mov ax, u1
mul u2 ;Computes DX:AX := AX * U2
mov u3, ax ;Ignore overflow in DX.

; Extended division using 8086 instructions.
;
; Like multiplication, there are separate instructions for signed
; and unsigned operands.
;
; It is absolutely imperative that these instruction sequences sign
; extend or zero extend their operands to 32 bits before dividing.
; Failure to do so will may produce a divide error and crash the
; program.
;
; L := J div K

mov ax, J
cwd ;*MUST* sign extend AX to DX:AX!
idiv K ;AX := DX:AX/K, DX := DX:AX mod K
mov L, ax

; u3 := u1/u2

mov ax, u1
mov dx, 0 ;Must zero extend AX to DX:AX!
div u2 ;AX := DX:AX/u2, DX := DX:AX mod u2
mov u3, ax

; Special forms of the IMUL instruction available on 80286, 80386, and
; later processors. Technically, these instructions operate on signed
; operands only, however, they do work fine for unsigned operands as well.
; Note that these instructions produce a 16-bit result and set the overflow
; flag if overflow occurs.
;
; L := J * 10 (80286 and later only)

imul ax, J, 10;AX := J*10
mov L, ax

; L := J * K (80386 and later only)

mov ax, J
imul ax, K
mov L, ax

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.3 Logical Operations

; Logical Operations
; This program demonstrates the AND, OR, XOR, and NOT instructions

The 80x86 Instruction Set

Page 307

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some variables we can use:

j word 0FF00h
k word 0FFF0h
l word ?

c1 byte 'A'
c2 byte 'a'

LowerMask byte 20h

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Compute L := J and K (bitwise AND operation):

mov ax, J
and ax, K
mov L, ax

; Compute L := J or K (bitwise OR operation):

mov ax, J
or ax, K
mov L, ax

; Compute L := J xor K (bitwise XOR operation):

mov ax, J
xor ax, K
mov L, ax

; Compute L := not L (bitwise NOT operation):

not L

; Compute L := not J (bitwise NOT operation):

mov ax, J
not ax
mov L, ax

; Clear bits 0..3 in J:

and J, 0FFF0h

; Set bits 0..3 in K:

or K, 0Fh

; Invert bits 4..11 in L:

xor L, 0FF0h

; Convert the character in C1 to lower case:

Chapter 06

Page 308

mov al, c1
or al, LowerMask
mov c1, al

; Convert the character in C2 to upper case:

mov al, c2
and al, 5Fh ;Clears bit 5.
mov c2, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.4 Shift and Rotate Operations

; Shift and Rotate Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?
rm byte ?
mode ends

Adrs1 mode {11b, 100b, 111b}
modregrm byte ?

var1 word 1
var2 word 8000h
var3 word 0FFFFh
var4 word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Shifts and rotates directly on memory locations:
;
; var1 := var1 shl 1

shl var1, 1

The 80x86 Instruction Set

Page 309

; var1 := var1 shr 1

shr var1, 1

; On 80286 and later processors, you can shift by more than one bit at
; at time:

shl var1, 4
shr var1, 4

; The arithmetic shift right instruction retains the H.O. bit after each
; shift. The following SAR instruction sets var2 to 0FFFFh

sar var2, 15

; On all processors, you can specify a shift count in the CL register.
; The following instruction restores var2 to 8000h:

mov cl, 15
shl var2, cl

; You can use the shift and rotate instructions, along with the logical
; instructions, to pack and unpack data. For example, the following
; instruction sequence extracts bits 10..13 of var3 and leaves
; this value in var4:

mov ax, var3
shr ax, 10 ;Move bits 10..13 to 0..3.
and ax, 0Fh ;Keep only bits 0..3.
mov var4, ax

; You can use the rotate instructions to compute this value somewhat faster
; on older processors like the 80286.

mov ax, var3
rol ax, 6 ;Six rotates rather than 10 shifts.
and ax, 0Fh
mov var4, ax

; You can use the shift and OR instructions to easily merge separate fields
; into a single value. For example, the following code merges the mod, reg,
; and r/m fields (maintained in separate bytes) into a single mod-reg-r/m
; byte:

mov al, Adrs1.modbits
shl al, 3
or al, Adrs1.reg
shl al, 3
or al, Adrs1.rm
mov modregrm, al

; If you've only got and 8086 or 8088 chip, you'd have to use code like the
; following:

mov al, Adrs1.modbits;Get mod field
shl al, 1
shl al, 1
or al, Adrs1.reg;Get reg field
mov cl, 3
shl al, cl ;Make room for r/m field.
or al, Adrs1.rm ;Merge in r/m field.
mov modregrm, al ;Save result away.

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

Chapter 06

Page 310

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.5 Bit Operations and SETcc Instructions

; Bit Operations and SETcc Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
u1 uint 2
u2 uint 2
Result byte ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize some variables

mov j, -2
mov k, 2

; The SETcc instructions store a one or zero into their operand if the
; specified condition is true or false, respectively. The TEST instruction
; logically ANDs its operands and sets the flags accordingly (in particular,
; TEST sets/clears the zero flag if there is/isn't a zero result). We can
; use these two facts to copy a single bit (zero extended) to a byte operand.

test j, 11000b ;Test bits 4 and 5.
setne Result ;Result=1 if bits 4 or 5 of J are 1.

test k, 10b ;Test bit #1.
sete Result ;Result=1 if bit #1 = 0.

; The SETcc instructions are particularly useful after a CMP instruction.
; You can set a boolean value according to the result of the comparison.
;
; Result := j <= k

mov ax, j
cmp ax, k

The 80x86 Instruction Set

Page 311

setle Result ;Note that "le" is for signed values.

; Result := u1 <= u2

mov ax, u1
cmp ax, u2
setbe Result ;Note that "be" is for unsigned values.

; One thing nice about the boolean results that the SETcc instructions
; produce is that we can AND, OR, and XOR them and get the same results
; one would expect in a HLL like C, Pascal, or BASIC.
;
; Result := (j < k) and (u1 > u2)

mov ax, j
cmp ax, k
setl bl ;Use "l" for signed comparisons.

mov ax, u1
cmp ax, u2
seta al ;Use "a" for unsigned comparisons.

and al, bl ;Logically AND the two boolean results
mov Result, al ; and store the result away.

; Sometimes you can use the shift and rotate instructions to test to see
; if a specific bit is set. For example, SHR copies bit #0 into the carry
; flag and SHL copies the H.O. bit into the carry flag. We can easily test
; these bits as follows:
;
; Result := bit #15 of J.

mov ax, j
shl ax, 1
setc Result

; Result := bit #0 of u1:

mov ax, u1
shr ax, 1
setc Result

; If you don't have an 80386 or later processor and cannot use the SETcc
; instructions, you can often simulate them. Consider the above two
; sequences rewritten for the 8086:

;
; Result := bit #15 of J.

mov ax, j
rol ax, 1 ;Copy bit #15 to bit #0.
and al, 1 ;Strip other bits.
mov Result, al

; Result := bit #0 of u1:

mov ax, u1
and al, 1 ;Strip unnecessary bits.
mov Result, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

Chapter 06

Page 312

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.6 String Operations

; String Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

String1 byte "String",0
String2 byte 7 dup (?)

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; The string instructions let you easily copy data from one array to
; another. If the direction flag is clear, the movsb instruction
; does the equivalent of the following:
;
; mov es:[di], ds:[si]
; inc si
; inc di
;
; The following code copies the seven bytes from String1 to String2:

cld ;Required if you want to INC SI/DI

lea si, String1
lea di, String2

movsb ;String2[0] := String1[0]
movsb ;String2[1] := String1[1]
movsb ;String2[2] := String1[2]
movsb ;String2[3] := String1[3]
movsb ;String2[4] := String1[4]
movsb ;String2[5] := String1[5]
movsb ;String2[6] := String1[6]

; The following code sequence demonstrates how you can use the LODSW and
; STOWS instructions to manipulate array elements during the transfer.
; The following code computes
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.
;
; Of course, it would be far more efficient to put the following code
; into a loop, but that will come later.

lea si, Array1
lea di, Array2

The 80x86 Instruction Set

Page 313

lodsw
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.7 Conditional Jumps

; Unconditional Jumps

.386
option segment:use16

dseg segment para public 'data'

; Pointers to statements in the code segment

Chapter 06

Page 314

IndPtr1 word IndTarget2
IndPtr2 dword IndTarget3

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; JMP instructions transfer control to the
; location specified in the operand field.
; This is typically a label that appears
; in the program.
;
; There are many variants of the JMP
; instruction. The first is a two-byte
; opcode that transfers control to +/-128
; bytes around the current instruction:

jmp CloseLoc
nop

CloseLoc:

; The next form is a three-byte instruction
; that allows you to jump anywhere within
; the current code segment. Normally, the
; assembler would pick the shortest version
; of a given JMP instruction, the "near ptr"
; operand on the following instruction
; forces a near (three byte) JMP:

jmp near ptr NearLoc
nop

NearLoc:

; The third form to consider is a five-byte
; instruction that provides a full segmented
; address operand. This form of the JMP
; instruction lets you transfer control any-
; where in the program, even to another
; segment. The "far ptr" operand forces
; this form of the JMP instruction:

jmp far ptr FarLoc
nop

FarLoc:

; You can also load the target address of a
; near JMP into a register and jump indirectly
; to the target location. Note that you can
; use any 80x86 general purpose register to
; hold this address; you are not limited to
; the BX, SI, DI, or BP registers.

lea dx, IndTarget
jmp dx
nop

IndTarget:

The 80x86 Instruction Set

Page 315

; You can even jump indirect through a memory
; variable. That is, you can jump though a
; pointer variable directly without having to
; first load the pointer variable into a reg-
; ister (Chapter Eight describes why the following
; labels need two colons).

jmp IndPtr1
nop

IndTarget2::

; You can even execute a far jump indirect
; through memory. Just specify a dword
; variable in the operand field of a JMP
; instruction:

jmp IndPtr2
nop

IndTarget3::

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.8 CALL and INT Instructions

; CALL and INT Instructions

.386
option segment:use16

dseg segment para public 'data'

; Some pointers to our subroutines:

SPtr1 word Subroutine1
SPtr2 dword Subroutine2

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Subroutine1 proc near
ret

Subroutine1 endp

Subroutine2 proc far
ret

Subroutine2 endp

Chapter 06

Page 316

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Near call:

call Subroutine1

; Far call:

call Subroutine2

; Near register-indirect call:

lea cx, Subroutine1
call cx

; Near memory-indirect call:

call SPtr1

; Far memory-indirect call:

call SPtr2

; INT transfers control to a routine whose
; address appears in the interrupt vector
; table (see the chapter on interrupts for
; details on the interrupt vector table).
; The following call tells the PC's BIOS
; to print theASCII character in AL to the
; display.

mov ah, 0eh
mov al, 'A'
int 10h

; INTO generates an INT 4 if the 80x86
; overflow flag is set. It becomes a
; NOP if the overflow flag is clear.
; You can use this instruction after
; an arithmetic operation to quickly
; test for a fatal overflow. Note:
; the following sequence does *not*
; generate an overflow. Do not modify
; it so that it does unless you add an
; INT 4 interrupt service routine to
; the interrupt vector table

mov ax, 2
add ax, 4
into

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

The 80x86 Instruction Set

Page 317

end Main

6.11.9 Conditional Jumps I

; Conditional JMP Instructions, Part I

.386
option segment:use16

dseg segment para public 'data'
J sword ?
K sword ?
L sword ?
dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; 8086 conditional jumps are limited to
; +/- 128 bytes because they are only
; two bytes long (one byte opcode, one
; byte displacement).

.8086
ja lbl
nop

lbl:

; MASM 6.x will automatically extend out of
; range jumps. The following are both
; equivalent:

ja lbl2
byte 150 dup (0)

lbl2:
jna Temp
jmp lbl3

Temp:
byte 150 dup (0)

lbl3:

; The 80386 and later processors support a
; special form of the conditional jump
; instructions that allow a two-byte displace-
; ment, so MASM 6.x will assemble the code
; to use this form if you've specified an
; 80386 processor.

.386
ja lbl4
byte 150 dup (0)

lbl4:

; The conditional jump instructions work
; well with the CMP instruction to let you
; execute certain instruction sequences
; only if a condition is true or false.
;
; if (J <= K) then
; L := L + 1
; else L := L - 1

mov ax, J

Chapter 06

Page 318

cmp ax, K
jnle DoElse
inc L
jmp ifDone

DoElse: dec L
ifDone:

; You can also use a conditional jump to
; create a loop in an assembly language
; program:
;
; while (j >= k) do begin
;
; j := j - 1;
; k := k + 1;
; L := j * k;
; end;

WhlLoop: mov ax, j
cmp ax, k
jnge QuitLoop

dec j
inc k
mov ax, j
imul ax, k
mov L, ax
jmp WhlLoop

QuitLoop:

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.10 Conditional Jump Instructions II

; Conditional JMP Instructions, Part II

.386
option segment:use16

dseg segment para public 'data'

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

String1 byte "This string contains lower case characters",0
String2 byte 128 dup (0)

j sword 5
k sword 6

Result byte ?

dseg ends

The 80x86 Instruction Set

Page 319

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; You can use the LOOP instruction to repeat a sequence of statements
; some specified number of times in an assembly language program.
; Consider the code taken from EX6_5.ASM that used the string
; instructions to produce a running product:
;
; The following code uses a loop instruction to compute:
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.

cld
lea si, Array1
lea di, Array2
mov dx, 1 ;Initialize for 1st time.
mov cx, 8 ;Eight elements in the arrays.

LoopHere:lodsw
imul ax, dx
mov dx, ax
stosw
loop LoopHere

; The LOOPNE instruction is quite useful for controlling loops that
; stop on some condition or when the loop exceeds some number of
; iterations. For example, suppose string1 contains a sequence of
; characters that end with a byte containing zero. If you wanted to
; convert those characters to upper case and copy them to string2,
; you could use the following code. Note how this code ensures that
; it does not copy more than 127 characters from string1 to string2
; since string2 only has enough storage for 127 characters (plus a
; zero terminating byte).

lea si, String1
lea di, String2
mov cx, 127 ;Max 127 chars to string2.

CopyStrLoop: lodsb ;Get char from string1.
cmp al, 'a' ;See if lower case
jb NotLower ;Characters are unsigned.
cmp al, 'z'
ja NotLower
and al, 5Fh ;Convert lower->upper case.

NotLower:
stosb
cmp al, 0 ;See if zero terminator.
loopne CopyStrLoop ;Quit if al or cx = 0.

; If you do not have an 80386 (or later) CPU and you would like the
; functionality of the SETcc instructions, you can easily achieve
; the same results using code like the following:
;
; Result := J <= K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K

Chapter 06

Page 320

jnle Skip1
mov Result, 1 ;Set to 1 if J <= K.

Skip1:

; Result := J = K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K
jne Skip2
mov Result, 1

Skip2:

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.12 Laboratory Exercises

In this set of laboratory exercises you will be writing programs in IBM/L – Instruction
BenchMarking Language. The IBM/L system lets you time certain instruction sequences to
see how long they take to execute.

6.12.1 The IBM/L System

IBM/L lets you time sequences of instructions to see how much time they really take
to execute. The cycle timings in most 80x86 assembly language books are horribly inaccu-
rate as they assume the absolute best case. IBM/L lets you try out some instruction
sequences and see how much time they actually take. This is an invaluable tool to use
when optimizing a program. You can try several different instruction sequences that pro-
duce the same result and see which sequence executes fastest.

IBM/L uses the system 1/18th second clock and measures most executions in terms
of clock ticks. Therefore, it would be totally useless for measuring the speed of a single
instruction (since all instructions execute in much less than 1/18th second). IBM/L works
by repeatedly executing a code sequence thousands (or millions) of times and measuring
that amount of time. IBM/L automatically subtracts away the loop overhead time.

IBM/L is a compiler which translates a source language into an assembly language
program. Assembling and running the resulting program benchmarks the instructions
specified in the IBM/L source code and produces relative timings for different instruction
sequences. An IBM/L source program consists of some short assembly language
sequences and some control statements which describe how to measure the performance
of the assembly sequences. An IBM/L program takes the following form:

#data

The 80x86 Instruction Set

Page 321

<variable declarations>
#enddata

#unravel <integer constant>
#repetitions <integer constant>
#code (“title”)
%init

<initial instructions whose time does not count>
%eachloop

<Instructions repeated once on each loop, ignoring time>
%discount

<instructions done for each sequence, ignoring time>
%do

<statements to time>
#endcode

<Additional #code..#endcode sections>

#end

Note: the %init, %eachloop, and %discount sections are optional.

IBM/L programs begin with an optional data section. The data section begins with a
line containing “#DATA” and ends with a line containing “#ENDDATA”. All lines
between these two lines are copied to an output assembly language program inside the
dseg data segment. Typically you would put global variables into the program at this
point.

Example of a data section:
#DATA
I word ?
J word ?
K dword ?
ch byte ?
ch2 byte ?
#ENDDATA

These lines would be copied to a data segment the program IBM/L creates. These
names are available to all #code..#endcode sequences you place in the program.

 Following the data section are one or more code sections. A code section consists of
optional #repetition and #unravel statements followed by the actual #code..#endcode
sections.

The #repetition statement takes the following form:

#repetition integer_constant

(The “#” must be in column one). The integer constant is a 32-bit value, so you can specify
values in the range zero through two billion. Typical values are generally less than a few
hundred thousand, even less on slower machines. The larger this number is, the more
accurate the timing will be; however, larger repetition values also cause the program
IBM/L generates to run much slower.

This statement instructs IBM/L to generate a loop which repeats the following code
segment integer_constant times. If you do not specify any repetitions at all, the default is
327,680. Once you set a repetitions value, that value remains in effect for all following
code sequences until you explicitly change it again. The #repetition statement must
appear outside the #code..#endcode sequence and affects the #code section(s) following
the #repetition statement.

If you are interested in the straight-line execution times for some instruction(s), plac-
ing those instructions in a tight loop may dramatically affect IBM/L’s accuracy. Don’t for-
get, executing a control transfer instruction (necessary for a loop) flushes the pre-fetch
queue and has a big effect on execution times. The #unravel statement lets you copy a
block of code several times inside the timing loop, thereby reducing the overhead of the
conditional jump and other loop control instructions. The #unravel statement takes the
following form:

#unravel count

Chapter 06

Page 322

(The “#” must be in column one). Count is a 16-bit integer constant that specifies the num-
ber of times IBM/L copies the code inside the repetition loop.

Note that the specified code sequence in the #code section will actually execute (count
* integer_constant) times, since the #unravel statement repeats the code sequence count
times inside the loop.

In its most basic form, the #code section looks like the following:

#CODE (“Title”)
 %DO

<assembly statements>
#ENDCODE

The title can be any string you choose. IBM/L will display this title when printing the
timing results for this code section. IBM/L will take the specified assembly statements
and output them inside a loop (multiple times if the #unravel statement is present). At
run time the assembly language source file will time this code and print a time, in clock
ticks, for one execution of this sequence.

Example:

#unravel 16 16 copies of code inside the loop
#repetitions 960000 Do this 960,000 times
#code (“MOV AX, 0 Instruction”)
%do
 mov ax, 0
#endcode

The above code would generate an assembly language program which executes the
mov ax,0 instruction 16 * 960000 times and report the amount of time that it would take.

Most IBM/L programs have multiple code sections. New code sections can immedi-
ately follow the previous ones, e.g.,

#unravel 16 16 copies of code inside loop
#repetitions 960000 Do the following code 960000 times
#code (“MOV AX, 0 Instruction”)
%do

mov ax, 0
#endcode

#code (“XOR AX, AX Instruction”)
%do

xor ax, ax
 #ENDCODE

The above sequence would execute the mov ax, 0 and xor ax, ax instructions 16*960000
times and report the amount of time necessary to execute these instructions. By compar-
ing the results you can determine which instruction sequence is fastest.

Any statement that begins with a semicolon in column one is a comment which
IBM/L ignores. It does not write this comment to the assembly language output file.

All IBM/L programs must end with a #end statement. Therefore, the correct form of
the program above is

#unravel 16
#repetitions 960000
#code (“MOV AX, 0 Instruction”)
%do

mov ax, 0
#endcode
#code (“XOR AX, AX Instruction”)
%do

xor ax, ax
#ENDCODE
#END

An example of a complete IBM/L program using all of the techniques we’ve seen so
far is

The 80x86 Instruction Set

Page 323

#data
even

i word ?
byte ?

j word ?
#enddata

#unravel 16
#repetitions 32, 30000
#code (“Aligned Word MOV”)
%do

mov ax, i
#endcode

#code (“Unaligned word MOV”)
%do

mov ax, j
#ENDCODE
#END

 There are a couple of optional sections which may appear between the #code and the
%do statements. The first of these is %init which begins an initialization section. IBM/L
emits initialization sections before the loop, executes this code only once. It does not count
their execution time when timing the loop. This lets you set up important values prior to
running a test which do not count towards the timing. E.g.,

#data
i dword ?
#enddata
#repetitions 100000
#unravel 1
#code
%init

mov word ptr i, 0
mov word ptr i+2, 0

%do
mov cx, 200

lbl: inc word ptr i
 jnz NotZero
 inc word ptr i+2
NotZero: loop lbl
#endcode
#end

Sometimes you may want to use the #repetitions statement to repeat a section of
code several times. However, there may be some statements that you only want to execute
once on each loop (that is, without copying the code several times in the loop). The
%eachloop section allows this. Note that IBM/L does not count the time consumed by the
code executed in the %eachloop section in the final timing.

Example:

#data
i word ?
j word ?
#enddata

#repetitions 40000
#unravel 128
#code
%init -- The following is executed only once

mov i, 0
mov j, 0

%eachloop -- The following is executed 40000 times, not 128*40000 times

 inc j

%do -- The following is executed 128 * 40000 times

inc i

#endcode

Chapter 06

Page 324

#end

In the above code, IBM/L only counts the time required to increment i. It does not time
the instructions in the %init or %eachloop sections.

The code in the %eachloop section only executes once per loop iteration. Even if you
use the #unravel statement (the inc i instruction above, for example, executes 128 times
per loop iteration because of #unravel). Sometimes you may want some sequence of
instructions to execute like those in the %do section, but not count their time. The %dis-
count section allows for this. Here is the full form of an IBM/L source file:

#DATA
<data declarations>

#ENDDATA
#REPETITIONS value1, value2
#UNRAVEL count
#CODE
%INIT

<Initialization code, executed only once>
%EACHLOOP

<Loop initialization code, executed once on each pass>
%DISCOUNT

<Untimed statements, executed once per repetition>
%DO

<The statements you want to time>
#ENDCODE
<additional code sections>
#END

To use this package you need several files. IBML.EXE is the executable program. You
run it as follows:

c:> IBML filename.IBM

This reads an IBML source file (filename.IBM, above) and writes an assembly lan-
guage program to the standard output. Normally you would use I/O redirection to cap-
ture this program as follows:

c:> IBML filename.IBM >filename.ASM

Once you create the assembly language source file, you can assemble and run it. The
resulting EXE file will display the timing results.

To properly run the IBML program, you must have the IBMLINC.A file in the current
working directory. This is a skeleton assembly language source file into which IBM/L
inserts your assembly source code. Feel free to modify this file as you see fit. Keep in
mind, however, that IBM/L expects certain markers in the file (currently “;##”) where it
will insert the code. Be careful how you deal with these existing markers if you modify the
IBMLINC.A file.

The output assembly language source file assumes the presence of the UCR Standard
Library for 80x86 Assembly Language Programmers. In particular, it needs the STDLIB
include files (stdlib.a) and the library file (stdlib.lib).

In Chapter One of this lab manual you should have learned how to set up the Stan-
dard Library files on your hard disk. These must be present in the current directory (or in
your INCLUDE/LIB environment paths) or MASM will not be able to properly assemble
the output assembly language file. For more information on the UCR Standard Library,
see Chapter Seven.

The following are some IBM/L source files to give you a flavor of the language.

; IBML Sample program: TESTMUL.IBM.
; This code compares the execution
; time of the MUL instruction vs.
; various shift and add equivalents.

#repetitions 480000
#unravel 1

The 80x86 Instruction Set

Page 325

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Multiply by 15 using IMUL”)
%do

.286
mov cx, 128
mov bx, 15

MulLoop1: mov ax, cx
imul bx
loop MulLoop1

#endcode

; Do the same test using the extended IMUL
; instruction on 80286 and later processors.

#code (“Multiplying by 15 using IMUL”)
%do

mov cx, 128
MulLoop2: mov ax, cx

imul ax, 15
loop MulLoop2

#endcode

; Now multiply by 15 using a shift by four
; bits and a subtract.

#code (“Multiplying by 15 using shifts and sub”)
%init
%do

mov cx, 128
MulLoop3: mov ax, cx

mov bx, ax
shl ax, 4
sub ax, bx
loop MulLoop3

#endcode
#end

Output from TESTMUL.IBM:

 IBM/L 2.0

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to ±2.

CPU: 80486

Computing Overhead: Multiply by 15 using IMUL
Testing: Multiply by 15 using IMUL
Multiply by 15 using IMUL :370
Computing Overhead: Multiplying by 15 using IMUL
Testing: Multiplying by 15 using IMUL
Multiplying by 15 using IMUL :370
Computing Overhead: Multiplying by 15 using shifts and sub
Testing: Multiplying by 15 using shifts and sub
Multiplying by 15 using shifts and sub :201

; IBML Sample program MOVs.
; A comparison of register-register
; moves with register-memory moves

#data
i word ?
j word ?
k word ?
l word ?
#enddata

Chapter 06

Page 326

#repetitions 30720000
#unravel 1

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Register-Register moves, no Hazards”)
%do

mov bx, ax
mov cx, ax
mov dx, ax
mov si, ax
mov di, ax
mov bp, ax

#endcode

#code (“Register-Register moves, with Hazards”)
%do

mov bx, ax
mov cx, bx
mov dx, cx
mov si, dx
mov di, si
mov bp, di

#endcode

#code (“Memory-Register moves, no Hazards”)
%do

mov ax, i
mov bx, j
mov cx, k
mov dx, l
mov ax, i
mov bx, j

#endcode

#code (“Register-Memory moves, no Hazards”)
%do

mov i, ax
mov j, bx
mov k, cx
mov l, dx
mov i, ax
mov j, bx

#endcode
#end

 IBM/L 2.0

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to Ò 2.

CPU: 80486

Computing Overhead: Register-Register moves, no Hazards
Testing: Register-Register moves, no Hazards
Register-Register moves, no Hazards :25
Computing Overhead: Register-Register moves, with Hazards
Testing: Register-Register moves, with Hazards
Register-Register moves, with Hazards :51
Computing Overhead: Memory-Register moves, no Hazards
Testing: Memory-Register moves, no Hazards
Memory-Register moves, no Hazards :67
Computing Overhead: Register-Memory moves, no Hazards
Testing: Register-Memory moves, no Hazards
Register-Memory moves, no Hazards :387

The 80x86 Instruction Set

Page 327

6.12.2 IBM/L Exercises

The Chapter Six directory contains several sample IBM/L programs (the *.ibm files)..
Ex6_1.ibm tests three sequences that compute the absolute value of an integer. Ex6_2.ibm
tests three different ways to do a shl left by eight bits. Ex6_3.ibm tests accessing word data
at even and odd addresses. Ex6_4.ibm compares the amount of time it takes to load es:bx
from a memory location with the time it takes to load es:bx with a constant. Ex6_5.ibm
compares the amount of time it takes to swap two registers with and without the XCHG
instruction. Ex6_6.ibm compares the multiply instruction against shift & add versions.
Ex6_7.ibm compares the speed of register-register move instruction against register-mem-
ory move instructions.

Compile each of these IBM/L programs with a DOS command that takes the form:

ibml ex6_1.ibm >ex6_1.asm

For your lab report: IBM/L writes its output to the standard output device. So use the
redirection operator to send this output to a file. Once you’ve created the file, assemble it
with MASM and execute the result. Include the IBM/L program listing and the results in
your lab report. For additional credit: write your own IBM/L programs to test certain
instruction sequences. Include the IBM/L source code in your lab report along with your
results.

Warning: to get the most accurate results, you should not run the assembly language
programs IBM/L creates under Windows or any other multitasking operating system. For
best results, run the output of IBM/L under DOS.

6.13 Programming Projects

1) Write a short “GetLine” routine which reads up to 80 characters from the user and places
these characters in successive locations in a buffer in your data segment. Use the INT 16h
and INT 10h system BIOS calls described in this chapter to input and output the charac-
ters typed by the user. Terminate input upon encountering a carriage return (ASCII code
0Dh) or after the user types the 80th character. Be sure to count the number of characters
actually typed by the user for later use. There is a “shell” program specifically designed
for this project on the companion CD-ROM (proj6_1.asm).

2) Modify the above routine so that it properly handles the backspace character (ASCII code
08h). Whenever the user presses a backspace key, you should remove the previous key-
stroke from the input buffer (unless there are no previous characters in the input buffer, in
which case you ignore the backspace).

3) You can use the XOR operation to encrypt and decrypt data. If you XOR all the characters in
a message with some value you will effectively scramble that message. You can retrieve the
original message by XOR’ing the characters in the message with the same value again.
Modify the code in Program #2 so that it encrypts each byte in the message with the value
0Fh and displays the encrypted message to the screen. After displaying the message,
decrypt it by XOR’ing with 0Fh again and display the decrypted message. Note that you
should use the count value computed by the “GetLine” code to determine how many
characters to process.

4) Write a “PutString” routine that prints the characters pointed at by the es:di register pair.
This routine should print all characters up to (but not including) a zero terminating byte.
This routine should preserve all registers it modifies. There is a “shell” program specifi-
cally designed for this project on the companion CD-ROM (proj6_4.asm).

5) To output a 16-bit integer value as the corresponding string of decimal digits, you can use
the following algorithm:

Chapter 06

Page 328

if value = 0 then write(‘0’)
else begin

DivVal := 10000;
while (Value mod DivVal) = 0 do begin

Value := Value mod DivVal;
DivVal := DivVal div 10;

end;

while (DivVal > 1) do begin

write (chr(Value div DivVal + 48)); (* 48 = ‘0’ *)
Value := Value mod DivVal;
DivVal := DivVal div 10;

end;
end;

Provide a short routine that takes an arbitrary value in ax and outputs it as the corre-
sponding decimal string. Use the int 10h instruction to output the characters to the dis-
play. You can use the “shell” program provided on the companion CD-ROM to begin this
project (proj6_5.asm).

6) To input a 16-bit integer from the keyboard, you need to use code that uses the following
algorithm:

Value := 0
repeat

getchar(ch);
if (ch >= ‘0’) and (ch <= ‘9’) then begin

Value := Value * 10 + ord(ch) - ord(‘0’);
end;

until (ch < ‘0’) or (ch > ‘9’);

Use the INT 16h instruction (described in this chapter) to read characters from the key-
board. Use the output routine in program #4 to display the input result. You can use the
“shell” file proj6_6.asm to start this project.

6.14 Summary

The 80x86 processor family provides a rich CISC (complex instruction set computer)
instruction set. Members of the 80x86 processor family are generally upward compatible,
meaning successive processors execute all the instructions of the previous chips. Pro-
grams written for an 80x86 will generally run on all members of the family, programs
using new instructions on the 80286 will run on the 80286 and later processors, but not on
the 8086. Likewise, programs that take advantage of the new instructions on the 80386 will
run on the 80386 and later processors, but not on the earlier processors. And so on.

The processors described in this chapter include the 8086/8088, the 80286, the 80386,
the 80486, and the Pentium (80586). Intel also produced an 80186, but this processor was
not used extensively in personal computers21.

The 80x86 instruction set is most easily broken down into eight categories, see

• “Data Movement Instructions” on page 246.
• “Conversions” on page 252.
• “Arithmetic Instructions” on page 255.
• “Logical, Shift, Rotate and Bit Instructions” on page 269.
• “I/O Instructions” on page 284.
• “String Instructions” on page 284.

21. A few PCs actually used this CPU. Control applications were the biggest user of this CPU, however. The 80186
includes most of the 80286 specific instructions described in this chapter. It does not include the protected mode
instructions of the 80286.

The 80x86 Instruction Set

Page 329

• “Program Flow Control Instructions” on page 286.
• “Miscellaneous Instructions” on page 302.

Many instructions affect various flag bits in the 80x86 flags register. Some instructions
can test these flags as though they were boolean values. The flags also denote relation-
ships after a comparison such as equality, less than, and greater than. To learn about these
flags and how to test them in your programs, consult

• “The Processor Status Register (Flags)” on page 244.
• “The “Set on Condition” Instructions” on page 281.
• “The Conditional Jump Instructions” on page 296.

There are several instructions on the 80x86 that transfer data between registers and
memory. These instructions are the ones assembly language programmers use most often.
The 80x86 provides many such instructions to help you write fast, efficient, programs. For
the details, read

• “Data Movement Instructions” on page 246.
• “The MOV Instruction” on page 246.
• “The XCHG Instruction” on page 247.
• “The LDS, LES, LFS, LGS, and LSS Instructions” on page 248.
• “The LEA Instruction” on page 248.
• “The PUSH and POP Instructions” on page 249.
• “The LAHF and SAHF Instructions” on page 252.

The 80x86 provides several instructions to convert data from one form to another.
There are special instructions for sign extension, zero extension, table translation, and
big/little endian conversion.

• See “The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions”
on page 252.

• See “The BSWAP Instruction” on page 254.
• See “The XLAT Instruction” on page 255.

The 80x86 arithmetic instructions provide all the common integer operations: addi-
tion, multiplication, subtraction, division, negation, comparisons, increment, decrement,
and various instructions to help with BCD arithmetic: AAA, AAD, AAM, AAS, DAA, and
DAS. For information on these instructions, see

• “Arithmetic Instructions” on page 255.
• “The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA”

on page 256.
• “The ADD and ADC Instructions” on page 256.
• “The INC Instruction” on page 258.
• “The XADD Instruction” on page 258.
• “The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS” on

page 259.
• “The CMP Instruction” on page 261.
• “The CMPXCHG, and CMPXCHG8B Instructions” on page 263
• “The NEG Instruction” on page 263.
• “The Multiplication Instructions: MUL, IMUL, and AAM” on page 264.
• “The Division Instructions: DIV, IDIV, and AAD” on page 267.

The 80x86 also provides a rich set of logical, shift, rotate, and bit operations. These
instructions manipulate the bits in their operands allowing you to logically AND, OR,
XOR, and NOT values, rotate and shift bits within an operand, test and set/clear/invert
bits in an operand, and set an operand to zero or one depending on the state of the flags
register. For more information, see

• “Logical, Shift, Rotate and Bit Instructions” on page 269.
• “The Logical Instructions: AND, OR, XOR, and NOT” on page 269.
• “The Rotate Instructions: RCL, RCR, ROL, and ROR” on page 276.
• “The Bit Operations” on page 279.
• “The “Set on Condition” Instructions” on page 281.

Chapter 06

Page 330

There are a couple of I/O instruction in the 80x86 instruction set, IN and OUT. These
are really special forms of the MOV instruction that operate on the 80x86 I/O address
space rather than the memory address space. You typically use these instructions to access
hardware registers on peripheral devices. This chapter discusses these instruction at

• “I/O Instructions” on page 284.

The 80x86 family provides a large repertoire of instructions that manipulate strings of
data. These instructions include movs, lods, stos, scas, cmps, ins, outs, rep, repz, repe, repnz,
and repne. For more information, see

• “String Instructions” on page 284

The transfer of control instructions on the 80x86 let you create loops, subroutines, con-
ditional sequences and do many other tests. To learn about these instructions, read

• “Program Flow Control Instructions” on page 286.
• “Unconditional Jumps” on page 286.
• “The CALL and RET Instructions” on page 289.
• “The INT, INTO, BOUND, and IRET Instructions” on page 292.
• “The Conditional Jump Instructions” on page 296.
• “The JCXZ/JECXZ Instructions” on page 299.
• “The LOOP Instruction” on page 300.
• “The LOOPE/LOOPZ Instruction” on page 300.
• “The LOOPNE/LOOPNZ Instruction” on page 301

This chapter finally discusses various miscellaneous instructions. These instructions
directly manipulate flags in the flags register, provide certain processor services, or per-
form protected mode operations. This Chapter only mentioned the protected mode
instructions. Since you do not normally use them in application (non-O/S) programs, you
don’t really need to know much about them. See

• “Miscellaneous Instructions” on page 302

The 80x86 Instruction Set

Page 331

6.15 Questions

1) Provide an example that shows that it requires n+1 bits to hold the sum of two n-bit
binary values.

2) ADC and SBB can be forced to behave exactly like ADD and SUB by inserting some other
instruction before ADC and SBB. What instruction must be inserted in front of ADC to
make it behave like ADD? In front of SBB to make it behave like SUB?

3) Given that you can manipulate data items on the top of stack using PUSH and POP,
explain how you could modify a return address on the top of stack so that a RET instruc-
tion will cause the 80x86 to return two bytes beyond the original return address.

4) Provide four different ways to add two to the value in the BX register. No way should
require more than two instructions (hint, there are at least six ways of doing this!)

5) Assume that the target addresses for the following conditional jumps are beyond the
range of a short branch. Modify each of these instructions so that they perform the proper
operation (i.e., can jump the entire distance):

a) JS Label1 b) JE Label2 c) JZ Label3

d) JC Label4 e) JBE There f) JG Label5

6) Explain the difference between the carry flag and the overflow flag.

7) When do you typically use the CBW and CWD instructions to sign extend a value?

8) What is the difference between a “MOV reg, immediate” instruction and a “LEA reg,
address” instruction?

9) What does the INT nn instruction push onto the stack that the CALL FAR instruction does
not?

10) What is the JCXZ instruction typically used for?

11) Explain the operation of the LOOP, LOOPE/LOOPZ, and LOOPNE/LOOPNZ instruc-
tions.

12) Which registers (other than the flag register) are affected by the MUL, IMUL, DIV, and
IDIV instructions?

13) List three differences between the “DEC AX” and the “SUB AX, 1” instructions.

14) Which of the shift, rotate, and logical instructions do not affect the zero flag?

15) Why does the SAR instruction always clear the overflow flag?

16) On the 80386 the IMUL instruction is almost totally orthogonal (generalized). Almost.
Give some examples of forms allowed by the ADD instruction for which there are no com-
parable IMUL instructions.

17) Why didn’t Intel generalize the IDIV instruction as they did the IMUL instruction?

18) What instruction(s) would you need to use to read the eight bit value at I/O address 378h?
Please give the specific instructions to do this.

19) Which flag(s) does the 80x86 use to check for unsigned arithmetic overflow?

20) Which flag(s) let you check for signed overflow?.

21) Which flag(s) does the 80x86 use to test the following unsigned conditions? How must the
flags be set for the condition to be true?

a) equal b) not equal c) less than

d) less than or equal e) greater than f) greater than or equal

22) Repeat the above question for a signed comparison.

23) Explain the operation of the 80x86 CALL and RET instructions. Describe step-by-step
what each variant of these instructions.

Chapter 06

Page 332

24) The following sequence exchanges the values between the two memory variables I and J:

xchg ax, i
xchg ax, j
xchg ax, i

On the 80486, the “MOV reg, mem” and “MOV mem, reg” instructions take one cycle (under
the right conditions) whereas the “XCHG reg, mem” instruction takes three cycles. Provide
a faster sequence for the ‘486 than the above.

25) On the 80386 the “MOV reg, mem” instruction requires four cycles, the “MOV mem, reg”
requires two cycles, and the “XCHG reg, mem” instruction requires five cycles. Provide a
faster sequence of the memory exchange problem in question 24 for the 80386.

26) On the 80486, the “MOV acc, mem” and “MOV reg, mem” instructions all take only one cycle
to execute (under the right conditions). Assuming all other things equal, why would you
want to use the “MOV acc,mem” form rather than the “MOV reg,mem” form to load a value
into AL/AX/EAX?

27) Which instructions perform 32 bit loads on the pre-80386 processors?

28) How could you use the PUSH and POP instructions to preserve the AX register between
two points in your code?

29) If, immediately upon entering a subroutine, you execute a “pop ax” instruction, what
value will you have in the AX register?

30) What is one major use for the SAHF instruction?

31) What is the difference between CWD and CWDE?

32) The BSWAP instruction will convert 32 bit big endian values to 32 bit little endian values.
What instruction can you use to convert 16 bit big endian to 16 bit little endian values?

33) What instruction could you use to convert 32 bit little endian values to 32 bit big endian
values?

34) Explain how you could use the XLAT instruction to convert an alphabetic character in the
AL register from lower case to upper case (assuming it is lower case) and leave all other
values in AL unchanged.

35) What instruction is CMP most similar to?

36) What instruction is TEST most similar to?

37) What does the NEG instruction do?

38) Under what two circumstances will the DIV and IDIV instructions fail?

39) What is the difference between RCL and ROL?

40) Write a short code segment, using the LOOP instruction, that calls the “CallMe” subrou-
tine 25 times.

41) On the 80486 and Pentium CPUs the LOOP instruction is not as fast as the discrete
instructions that perform the same operation. Rewrite the code above to produce a faster
executing program on the 80486 and Pentium chips.

42) How do you determine the “opposite jump” for a conditional jump. Why is this algorithm
preferable?

43) Give an example of the BOUND instruction. Explain what your example will do.

44) What is the difference between the IRET and RET (far) instructions?

45) The BT (Bit Test) instruction copies a specific bit into the carry flag. If the specified bit is
one, it sets the carry flag, if the bit is zero, it clears the carry flag. Suppose you want to
clear the carry flag if the bit was zero and set it otherwise. What instruction could you exe-
cute after BT to accomplish this?

46) You can simulate a far return instruction using a double word variable and two 80x86
instructions. What is the two instruction sequence that will accomplish this?

Page 333

The UCR Standard Library Chapter Seven

Most programming languages provide several “built-in” functions to reduce the effort
needed to write a program. Traditionally, assembly language programmers have not had
access to a standard set of commonly used subroutines for their programs; hence, assem-
bly language programmers’ productivity has been quite low because they are constantly
“reinventing the wheel” in every program they write. The UCR Standard Library for
80x86 programmers provides such a set of routines. This chapter discusses a small subset
of the routines available in the library. After reading this chapter, you should peruse the
documentation accompanying the standard library routines.

7.0 Chapter Overview

This chapter provides a basic introduction to the functions available in the UCR Stan-
dard Librfary for 80x86 assembly language programmers. This brief introduction covers
the following subjects:

• The UCR Standard Library for 80x86 Assembly Language Programmers.
• Memory management routines.
• Input routines.
• Output routines.
• Conversions.
• Predefined constants and macros.

7.1 An Introduction to the UCR Standard Library

The “UCR Standard Library for 80x86 Assembly Language Programmers” is a set of
assembly language subroutines patterned after the “C” standard library. Among other
things, the standard library includes procedures to handle input, output, conversions, var-
ious comparisons and checks, string handling, memory management, character set opera-
tors, floating point operations, list handling, serial port I/O, concurrency and coroutines,
and pattern matching.

This chapter will not attempt to describe every routine in the library. First of all, the
Library is constantly changing so such a description would quickly become outdated. Sec-
ond, some of the library routines are for advanced programmers only and are beyond the
scope of this text. Finally, there are hundreds of routines in the library. Attempting to
describe them all here would be a major distraction from the real job at hand– learning
assembly language.

Therefore, this chapter will cover the few necessary routines that will get you up and
running with the least amount of effort. Note that the full documentation for the library, as
well as the source code and several example files are on the companion diskette for this
text. A reference guide appears in the appendices of this text. You can also find the latest
version of the UCR Standard Library on many on-line services, BBSes, and from many
shareware software houses. It is also available via anonymous FTP on the internet.

When using the UCR Standard Library you should always use the SHELL.ASM file
provided as the “skeleton” of a new program. This file sets up the necessary segments,
provides the proper

include

directives, and initializes necessary Library routines for you.
You should not attempt to create a new program from scratch unless you are very familiar
with the internal operation of the Standard Library.

Note that most of the Standard Library routines use macros rather than the

call

instruction for invocation. You cannot, for example, directly

call

the

putc

routine. Instead,

Thi d t t d ith F M k 4 0 2

Chapter 07

Page 334

you invoke the

putc

macro that includes a call to the

sl_putc

procedure (“SL” stands for
“Standard Library”).

If you choose not to use the SHELL.ASM file, your program must include several
statements to activate the standard library and satisfy certain requirements for the stan-
dard library. Please see the documentation accompanying the standard library if you
choose to go this route. Until you gain some more experience with assembly language
programming, you should always use the SHELL.ASM file as the starting point for your
programs.

7.1.1 Memory Management Routines: MEMINIT, MALLOC, and FREE

The Standard Library provides several routines that manage free memory in the

heap

.
They give assembly language programmers the ability to dynamically allocate memory
during program execution and return this memory to the system when the program no
longer needs it. By dynamically allocating and freeing blocks of memory, you can make
efficient use of memory on a PC.

The

meminit

routine initializes the memory manager and you must call it before any
routine that uses the memory manager. Since many Standard Library routines use the
memory manager, you should call this procedure early in the program. The
“SHELL.ASM” file makes this call for you.

The

malloc

routine allocates storage on the heap and returns a pointer to the block it
allocates in the

es:di

registers. Before calling

malloc

you need to load the size of the block
(in bytes) into the

cx

register. On return,

malloc

sets the carry flag if an error occurs (insuffi-
cient memory). If the carry is clear,

es:di

points at a block of bytes the size you’ve specified:

mov cx, 1024 ;Grab 1024 bytes on the heap
malloc ;Call MALLOC
jc MallocError ;If memory error.
mov word ptr PNTR, DI ;Save away pointer to block.
mov word ptr PNTR+2, ES

When you call

malloc

, the memory manager promises that the block it gives you is free
and clear and it will not reallocate that block until you explicitly free it. To return a block
of memory back to the memory manager so you can (possibly) re-use that block of mem-
ory in the future, use the

free

Library routine.

free

expects you to pass the pointer returned
by

malloc

:

les di, PNTR ;Get pointer to free
free ;Free that block
jc BadFree

As usual for most Standard Library routines, if the

free

routine has some sort of diffi-
culty it will return the carry flag set to denote an error.

7.1.2 The Standard Input Routines: GETC, GETS, GETSM

While the Standard Library provides several input routines, there are three in particu-
lar you will use all the time:

getc

(get a character),

gets

(get a string), and

getsm

(get a mal-
loc’d string).

Getc

reads a single character from the keyboard and returns that character in the

al

register. It returns end of file (EOF) status in the

ah

register (zero means EOF did not
occur, one means EOF did occur). It does not modify any other registers. As usual, the
carry flag returns the error status. You do not need to pass

getc

any values in the registers.

Getc

does not

echo

 the input character to the display screen. You must explicitly print the
character if you want it to appear on the output monitor.

The following example program continually loops until the user presses the Enter
key:

The UCR Standard Library

Page 335

; Note: “CR” is a symbol that appears in the “consts.a”
; header file. It is the value 13 which is the ASCII code
; for the carriage return character

Wait4Enter: getc
cmp al, cr
jne Wait4Enter

The

gets

routine reads an entire line of text from the keyboard. It stores each succes-
sive character of the input line into a byte array whose base address you pass in the

es:di

register pair. This array must have room for at least 128 bytes. The

gets

routine will read
each character and place it in the array except for the carriage return character.

Gets

termi-
nates the input line with a zero byte (which is compatible with the Standard Library string
handling routines).

Gets

echoes each character you type to the display device, it also han-
dles simple line editing functions such as backspace. As usual,

gets

returns the carry set if
an error occurs. The following example reads a line of text from the standard input device
and then counts the number of characters typed. This code is tricky, note that it initializes
the count and pointer to -1 prior to entering the loop and then immediately increments
them by one. This sets the count to zero and adjusts the pointer so that it points at the first
character in the string. This simplification produces slightly more efficient code than the
straightforward solution would produce:

DSEG segment

MyArray byte 128 dup (?)

DSEG ends

CSEG segment

 .
 .
 .

; Note: LESI is a macro (found in consts.a) that loads
; ES:DI with the address of its operand. It expands to the
; code:
;
; mov di, seg operand
; mov es, di
; mov di, offset operand
;
; You will use the macro quite a bit before many Standard
; Library calls.

lesi MyArray ;Get address of inp buf.
gets ;Read a line of text.
mov ah, -1 ;Save count here.
lea bx, -1[di] ;Point just before string.

CountLoop: inc ah ;Bump count by one.
inc bx ;Point at next char in str.
cmp byte ptr es:[bx], 0
jne CoutLoop

; Now AH contains the number of chars in the string.

 .
 .
 .

The

getsm

routine also reads a string from the keyboard and returns a pointer to that
string in

es:di.

The difference between

gets

and

getsm

is that you do not have to pass the
address of an input buffer in

es:di

.

Getsm

automatically allocates storage on the heap with
a call to

malloc

and returns a pointer to the buffer in

es:di

. Don’t forget that you must call

meminit

at the beginning of your program if you use this routine. The SHELL.ASM skele-
ton file calls

meminit

for you. Also, don’t forget to call

free

to return the storage to the heap
when you’re done with the input line.

getsm ;Returns pointer in ES:DI

 .
 .
 .

free ;Return storage to heap.

Chapter 07

Page 336

7.1.3 The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT,
and PRINTF

The Standard Library provides a wide array of output routines, far more than you will
see here. The following routines are representative of the routines you’ll find in the
Library.

Putc

outputs a single character to the display device. It outputs the character appear-
ing in the

al

register. It does not affect any registers unless there is an error on output (the
carry flag denotes error/no error, as usual). See the Standard Library documentation for
more details.

Putcr

outputs a “newline” (carriage return/line feed combination) to the standard out-
put. It is completely equivalent to the code:

mov al, cr ;CR and LF are constants
putc ; appearing in the consts.a
mov al, lf ; header file.
putc

The

puts

(put a string) routine prints the zero terminated string at which

es:di

points

1

.
Note that

puts

does

not

 automatically output a newline after printing the string. You must
either put the carriage return/line feed characters at the end of the string or call

putcr

after
calling

puts

if you want to print a newline after the string.

Puts

does not affect any registers
(unless there is an error). In particular, it does not change the value of the

es:di

registers.
The following code sequence uses this fact:

getsm ;Read a string
puts ;Print it
putcr ;Print a new line
free ;Free the memory for string.

Since the routines above preserve

es:di

(except, of course,

getsm

), the call to

free

deallocates
the memory allocated by the call to

getsm

.

The

puth

routine prints the value in the

al

register as exactly two hexadecimal digits,
including a leading zero byte if the value is in the range 0..Fh. The following loop reads a
sequence of keys from the keyboard and prints their ASCII values until the user presses
the Enter key:

KeyLoop: getc
cmp al, cr
je Done
puth
putcr
jmp KeyLoop

Done:

The

puti

routine prints the value in

ax

as a signed 16 bit integer. The following code
fragment prints the sum of

 I

 and

 J

 to the display:

mov ax, I
add ax, J
puti
putcr

Putu

 is similar to

puti

 except it outputs

unsigned

 integer values rather than signed integers.

Routines like

puti

 and

putu

 always output numbers using the minimum number of
possible print positions. For example,

puti

 uses three print positions on the string to print
the value 123. Sometimes, you may want to force these output routines to print their val-
ues using a fixed number of print positions, padding any extra positions with spaces. The

putisize

 and

putusize

 routines provide this capability. These routines expect a numeric
value in

ax

 and a field width specification in

cx

. They will print the number in a field

1. A zero terminated string is a sequence of characters ending with a zero byte. This is the standard character
string format the Standard Library uses.

The UCR Standard Library

Page 337

width of

at least

cx

 positions. If the value in

cx

 is larger than the number of print position
the value requires, these routines will right justify the number in a field of

cx

 print posi-
tions. If the value in

cx

 is less than the number of print positions the value requires, these
routines ignore the value in

cx

 and use however many print positions the number
requires.

; The following loop prints out the values of a 3x3 matrix in matrix form:
; On entry, bx points at element [0,0] of a row column matrix.

mov dx, 3 ;Repeat for each row.
PrtMatrix: mov ax, [bx] ;Get first element in this
row.

mov cx, 7 ;Use seven print positions.
putisize ;Print this value.
mov ax, 2[bx] ;Get the second element.
putisize ;CX is still seven.
mov ax, 4[bx] ;Get the third element.
putisize
putcr ;Output a new line.
add bx, 6 ;Move on to next row.
dec dx ;Repeat for each row.
jne PrtMatrix

The

print

routine is one of the most-often called procedures in the library. It prints the
zero terminated string that immediately follows the call to print:

print
byte “Print this string to the display”,cr,lf,0

The example above prints the string “Print this string to the display” followed by a new line.
Note that print will print whatever characters immediately follow the call to print, up to the
first zero byte it encounters. In particular, you can print the newline sequence and any
other control characters as shown above. Also note that you are not limited to printing one
line of text with the print routine:

print
byte “This example of the PRINT routine”,cr,lf
byte “prints several lines of text.”,cr,lf
byte “Also note,”,cr,lf,”that the source lines ”
byte “do not have to correspond to the output.”
byte cr,lf
byte 0

The above displays:

This example of the PRINT routine
prints several lines of text.
Also note,
that the source lines do not have to correspond to the output.

It is very important that you not forget about that zero terminating byte. The print rou-
tine begins executing the first 80x86 machine language instruction following that zero ter-
minating byte. If you forget to put the zero terminating byte after your string, the print
routine will gladly eat up the instruction bytes following your string (printing them) until
it finds a zero byte (zero bytes are common in assembly language programs). This will
cause your program to misbehave and is a big source of errors beginning programmers
have when they use the print routine. Always keep this in mind.

Printf, like its “C” namesake, provides formatted output capabilities for the Standard
Library package. A typical call to printf always takes the following form:

printf
byte “format string”,0
dword operand1, operand2, ..., operandn

 The format string is comparable to the one provided in the “C” programming lan-
guage. For most characters, printf simply prints the characters in the format string up to the
terminating zero byte. The two exceptions are characters prefixed by a backslash (“\”)
and characters prefixed by a percent sign (“%”). Like C’s printf, the Standard Library’s printf

Chapter 07

Page 338

uses the backslash as an escape character and the percent sign as a lead-in to a format
string.

Printf uses the escape character (“\”) to print special characters in a fashion similar to,
but not identical to C’s printf. The Standard Library’s printf routine supports the following
special characters:

• \r Print a carriage return (but no line feed)
• \n Print a new line character (carriage return/line feed).
• \b Print a backspace character.
• \t Print a tab character.
• \l Print a line feed character (but no carriage return).
• \f Print a form feed character.
• \\ Print the backslash character.
• \% Print the percent sign character.
• \0xhh Print ASCII code hh, represented by two hex digits.

 C users should note a couple of differences between Standard Library’s escape
sequences and C’s. First, use “\%” to print a percent sign within a format string, not
“%%”. C doesn’t allow the use of “\%” because the C compiler processes “\%” at compile
time (leaving a single “%” in the object code) whereas printf processes the format string at
run-time. It would see a single “%” and treat it as a format lead-in character. The Standard
Library’s printf, on the other hand, processes both the “\” and “%” at run-time, therefore it
can distinguish “\%”.

Strings of the form “\0xhh” must contain exactly two hex digits. The current printf
routine isn’t robust enough to handle sequences of the form “\0xh” which contain only a
single hex digit. Keep this in mind if you find printf chopping off characters after you
print a value.

There is absolutely no reason to use any hexadecimal escape character sequence
except “\0x00”. Printf grabs all characters following the call to printf up to the terminating
zero byte (which is why you’d need to use “\0x00” if you want to print the null character,
printf will not print such values). The Standard Library’s printf routine doesn’t care
how those characters got there. In particular, you are not limited to using a single string
after the printf call. The following is perfectly legal:

printf
byte “This is a string”,13,10
byte “This is on a new line”,13,10
byte “Print a backspace at the end of this line:”
byte 8,13,10,0

 Your code will run a tiny amount faster if you avoid the use of the escape character
sequences. More importantly, the escape character sequences take at least two bytes. You
can encode most of them as a single byte by simply embedding the ASCII code for that
byte directly into the code stream. Don’t forget, you cannot embed a zero byte into the
code stream. A zero byte terminates the format string. Instead, use the “\0x00” escape
sequence.

Format sequences always begin with “%”. For each format sequence, you must pro-
vide a far pointer to the associated data immediately following the format string, e.g.,

printf
byte “%i %i”,0
dword i,j

 Format sequences take the general form “%s\cn^f” where:

The UCR Standard Library

Page 339

• “%” is always the “%” character. Use “\%” if you actually want to print a
percent sign.

• s is either nothing or a minus sign (“-”).
• “\c” is also optional, it may or may not appear in the format item. “c”

represents any printable character.
• “n” represents a string of 1 or more decimal digits.
• “^” is just the caret (up-arrow) character.
• “f” represents one of the format characters: i, d, x, h, u, c, s, ld, li, lx, or lu.

 The “s”, “\c”, “n”, and “^” items are optional, the “%” and “f” items must be present.
Furthermore, the order of these items in the format item is very important. The “\c” entry,
for example, cannot precede the “s” entry. Likewise, the “^” character, if present, must fol-
low everything except the “f” character(s).

The format characters i, d, x, h, u, c, s, ld, li, lx, and lu control the output format for the
data. The i and d format characters perform identical functions, they tell printf to print the
following value as a 16 bit signed decimal integer. The x and h format characters instruct
printf to print the specified value as a 16 bit or 8-bit hexadecimal value (respectively). If you
specify u, printf prints the value as a 16-bit unsigned decimal integer. Using c tells printf to
print the value as a single character. S tells printf that you’re supplying the address of a
zero-terminated character string, printf prints that string. The ld, li, lx, and lu entries are
long (32-bit) versions of d/i, x, and u. The corresponding address points at a 32-bit value
that printf will format and print to the standard output.

The following example demonstrates these format items:

 printf
byte “I= %i, U= %u, HexC= %h, HexI= %x, C= %c, “

 dbyte “S= %s”,13,10
 byte “L= %ld”,13,10,0
 dword i,u,c,i,c,s,l

 The number of far addresses (specified by operands to the “dd” pseudo-opcode)
must match the number of “%” format items in the format string. Printf counts the number
of “%” format items in the format string and skips over this many far addresses following
the format string. If the number of items do not match, the return address for printf will be
incorrect and the program will probably hang or otherwise malfunction. Likewise (as for
the print routine), the format string must end with a zero byte. The addresses of the items
following the format string must point directly at the memory locations where the speci-
fied data lies.

When used in the format above, printf always prints the values using the minimum
number of print positions for each operand. If you want to specify a minimum field
width, you can do so using the “n” format option. A format item of the format “%10d”
prints a decimal integer using at least ten print positions. Likewise, “%16s” prints a string
using at least 16 print positions. If the value to print requires more than the specified num-
ber of print positions, printf will use however many are necessary. If the value to print
requires fewer, printf will always print the specified number, padding the value with
blanks. Printf will print the value right justified in the print field (regardless of the data’s
type). If you want to print the value left justified in the output file, use the “-” format char-
acter as a prefix to the field width, e.g.,

 printf
 byte “%-17s”,0
 dword string

In this example, printf prints the string using a 17 character long field with the string left
justified in the output field.

 By default, printf blank fills the output field if the value to print requires fewer print
positions than specified by the format item. The “\c” format item allows you to change
the padding character. For example, to print a value, right justified, using “*” as the pad-
ding character you would use the format item “%*10d”. To print it left justified you
would use the format item “%-*10d”. Note that the “-” must precede the “*”. This is a
limitation of the current version of the software. The operands must appear in this order.

Chapter 07

Page 340

Normally, the address(es) following the printf format string must be far pointers to the
actual data to print.

 On occasion, especially when allocating storage on the heap (using malloc), you may
not know (at assembly time) the address of the object you want to print. You may have
only a pointer to the data you want to print. The “^” format option tells printf that the far
pointer following the format string is the address of a pointer to the data rather than the
address of the data itself. This option lets you access the data indirectly.

Note: unlike C, Standard Library’s printf routine does not support floating point out-
put. Putting floating point into printf would increase the size of this routine a tremendous
amount. Since most people don’t need the floating point output facilities, it doesn’t
appear here. There is a separate routine, printff, that includes floating point output.

The Standard Library printf routine is a complex beast. However, it is very flexible and
extremely useful. You should spend the time to master its major functions. You will be
using this routine quite a bit in your assembly language programs.

The standard output package provides many additional routines besides those men-
tioned here. There simply isn’t enough room to go into all of them in this chapter. For
more details, please consult the Standard Library documentation.

7.1.4 Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize

The puti, putu, and putl routines output the numeric strings using the minimum number
of print positions necessary. For example, puti uses three character positions to print the
value -12. On occasion, you may need to specify a different field width so you can line up
columns of numbers or achieve other formatting tasks. Although you can use printf to
accomplish this goal, printf has two major drawbacks – it only prints values in memory
(i.e., it cannot print values in registers) and the field width you specify for printf must be a
constant2. The putisize, putusize, and putlsize routines overcome these limitations.

Like their puti, putu, and putl counterparts, these routines print signed integer,
unsigned integer, and 32-bitsigned integer values. They expect the value to print in the ax
register (putisize and putusize) or the dx:ax register pair (putlsize). They also expect a mini-
mum field width in the cx register. As with printf, if the value in the cx register is smaller
than the number of print positions that the number actually needs to print, putisize, putu-
size, and putlsize will ignore the value in cx and print the value using the minimum neces-
sary number of print positions.

7.1.5 Output Field Size Routines: Isize, Usize, and Lsize

Once in a while you may want to know the number of print positions a value will
require before actually printing that value. For example, you might want to compute the
maximum print width of a set of numbers so you can print them in columnar format auto-
matically adjusting the field width for the largest number in the set. The isize, usize, and
lsize routines do this for you.

The isize routine expects a signed integer in the ax register. It returns the minimum
field width of that value (including a position for the minus sign, if necessary) in the ax
register. Usize computes the size of the unsigned integer in ax and returns the minimum
field width in the ax register. Lsize computes the minimum width of the signed integer in
dx:ax (including a position for the minus sign, if necessary) and returns this width in the ax
register.

2. Unless you are willing to resort to self-modifying code.

The UCR Standard Library

Page 341

7.1.6 Conversion Routines: ATOx, and xTOA

The Standard Library provides several routines to convert between string and
numeric values. These include atoi, atoh, atou, itoa, htoa, wtoa, and utoa (plus others). The
ATOx routines convert an ASCII string in the appropriate format to a numeric value and
leave that value in ax or al. The ITOx routines convert the value in al/ax to a string of digits
and store this string in the buffer whose address is in es:di3. There are several variations on
each routine that handle different cases. The following paragraphs describe each routine.

The atoi routine assumes that es:di points at a string containing integer digits (and,
perhaps, a leading minus sign). They convert this string to an integer value and return the
integer in ax. On return, es:di still points at the beginning of the string. If es:di does not
point at a string of digits upon entry or if an overflow occurs, atoi returns the carry flag set.
Atoi preserves the value of the es:di register pair. A variant of atoi, atoi2, also converts an
ASCII string to an integer except it does not preserve the value in the di register. The atoi2
routine is particularly useful if you need to convert a sequence of numbers appearing in
the same string. Each call to atoi2 leaves the di register pointing at the first character
beyond the string of digits. You can easily skip over any spaces, commas, or other delim-
iter characters until you reach the next number in the string; then you can call atoi2 to con-
vert that string to a number. You can repeat this process for each number on the line.

Atoh works like the atoi routine, except it expects the string to contain hexadecimal
digits (no leading minus sign). On return, ax contains the converted 16 bit value and the
carry flag denotes error/no error. Like atoi, the atoh routine preserves the values in the
es:di register pair. You can call atoh2 if you want the routine to leave the di register pointing
at the first character beyond the end of the string of hexadecimal digits.

Atou converts an ASCII string of decimal digits in the range 0..65535 to an integer
value and returns this value in ax. Except that the minus sign is not allowed, this routine
behaves just like atoi. There is also an atou2 routine that does not preserve the value of the
di register; it leaves di pointing at the first character beyond the string of decimal digits.

Since there is no geti, geth, or getu routines available in the Standard Library, you will
have to construct these yourself. The following code demonstrates how to read an integer
from the keyboard:

print
byte “Enter an integer value:”,0
getsm
atoi ;Convert string to an integer in AX
free ;Return storage allocated by getsm
print
byte “You entered “,0
puti ;Print value returned by ATOI.
putcr

The itoa, utoa, htoa, and wtoa routines are the logical inverse to the atox routines. They
convert numeric values to their integer, unsigned, and hexadecimal string representa-
tions. There are several variations of these routines depending upon whether you want
them to automatically allocate storage for the string or if you want them to preserve the di
register.

Itoa converts the 16 bit signed integer in ax to a string and stores the characters of this
string starting at location es:di. When you call itoa, you must ensure that es:di points at a
character array large enough to hold the resulting string. Itoa requires a maximum of
seven bytes for the conversion: five numeric digits, a sign, and a zero terminating byte.
Itoa preserves the values in the es:di register pair, so upon return es:di points at the begin-
ning of the string produced by itoa.

Occasionally, you may not want to preserve the value in the di register when calling
the itoa routine. For example, if you want to create a single string containing several con-

3. There are also a set of xTOAM routines that automatically allocate storage on the heap for you.

Chapter 07

Page 342

verted values, it would be nice if itoa would leave di pointing at the end of the string rather
than at the beginning of the string. The itoa2 routine does this for you; it will leave the di
register pointing at the zero terminating byte at the end of the string. Consider the follow-
ing code segment that will produce a string containing the ASCII representations for three
integer variables, Int1, Int2, and Int3:

; Assume es:di already points at the starting location to store the converted
; integer values

mov ax, Int1
itoa2 ;Convert Int1 to a string.

; Okay, output a space between the numbers and bump di so that it points
; at the next available position in the string.

mov byte ptr es:[di], ‘ ‘
inc di

; Convert the second value.

mov ax, Int2
itoa2
mov byte ptr es:[di], ‘ ‘
inc di

; Convert the third value.

mov ax, Int3
itoa2

; At this point, di points at the end of the string containing the
; converted values. Hopefully you still know where the start of the
; string is so you can manipulate it!

Another variant of the itoa routine, itoam, does not require you to initialize the es:di
register pair. This routine calls malloc to automatically allocate the storage for you. It
returns a pointer to the converted string on the heap in the es:di register pair. When you
are done with the string, you should call free to return its storage to the heap.

; The following code fragment converts the integer in AX to a string and prints
; this string. Of course, you could do this same operation with PUTI, but this
; code does demonstrate how to call itoam.

itoam ;Convert integer to string.
puts ;Print the string.
free ;Return storage to the heap.

The utoa, utoa2, and utoam routines work just like itoa, itoa2, and itoam, except they con-
vert the unsigned integer value in ax to a string. Note that utoa and utoa2 require, at most,
six bytes since they never output a sign character.

Wtoa, wtoa2, and wtoam convert the 16 bit value in ax to a string of exactly four hexa-
decimal characters plus a zero terminating byte. Otherwise, they behave exactly like itoa,
itoa2, and itoam. Note that these routines output leading zeros so the value is always four
digits long.

The htoa, htoa2, and htoam routines are similar to the wtoa, wtoa2, and wtoam routines.
However, the htox routines convert the eight bit value in al to a string of two hexadecimal
characters plus a zero terminating byte.

The Standard Library provides several other conversion routines as well as the ones
mentioned in this section. See the Standard Library documentation in the appendices for
more details.

7.1.7 Routines that Test Characters for Set Membership

The UCR Standard Library provides many routines that test the character in the al reg-
ister to see if it falls within a certain set of characters. These routines all return the status in
the zero flag. If the condition is true, they return the zero flag set (so you can test the con-

The UCR Standard Library

Page 343

dition with a je instruction). If the condition is false, they clear the zero flag (test this con-
dition with jne). These routines are

• IsAlNum- Checks to see if al contains an alphanumeric character.
• IsXDigit- Checks al to see if it contains a hexadecimal digit character.
• IsDigit- Checks al to see if it contains a decimal digit character.
• IsAlpha- Checks al to see if it contains an alphabetic character.
• IsLower- Checks al to see if it contains a lower case alpha character.
• IsUpper- Checks al to see if it contains an upper case alpha character.

7.1.8 Character Conversion Routines: ToUpper, ToLower

The ToUpper and ToLower routines check the character in the al register. They will
convert the character in al to the appropriate alphabetic case.

If al contains a lower case alphabetic character, ToUpper will convert it to the equiva-
lent upper case character. If al contains any other character, ToUpper will return it
unchanged.

If al contains an upper case alphabetic character, ToLower will convert it to the equiva-
lent lower case character. If the value is not an upper case alphabetic character ToLower
will return it unchanged.

7.1.9 Random Number Generation: Random, Randomize

The Standard Library Random routine generates a sequence of pseudo-random num-
bers. It returns a random value in the ax register on each call. You can treat this value as a
signed or unsigned value since Random manipulates all 16 bits of the ax register.

You can use the div and idiv instructions to force the output of random to a specific
range. Just divide the value random returns by some number n and the remainder of this
division will be a value in the range 0..n-1. For example, to compute a random number in
the range 1..10, you could use code like the following:

random ;Get a random number in range 0..65535.
sub dx, dx ;Zero extend to 16 bits.
mov bx, 10 ;Want value in the range 1..10.
div bx ;Remainder goes to dx!
inc dx ;Convert 0..9 to 1..10.

; At this point, a random number in the range 1..10 is in the dx register.

The random routine always returns the same sequence of values when a program
loads from disk and executes. Random uses an internal table of seed values that it stores as
part of its code. Since these values are fixed, and always load into memory with the pro-
gram, the algorithm that random uses will always produce the same sequence of values
when a program containing it loads from the disk and begins running. This might not
seem very “random” but, in fact, this is a nice feature since it is very difficult to test a pro-
gram that uses truly random values. If a random number generator always produces the
same sequence of numbers, any tests you run on that program will be repeatable.

Unfortunately, there are many examples of programs that you may want to write (e.g.,
games) where having repeatable results is not acceptable. For these applications you can
call the randomize routine. Randomize uses the current value of the time of day clock to gen-
erate a nearly random starting sequence. So if you need a (nearly) unique sequence of ran-
dom numbers each time your program begins execution, call the randomize routine once
before ever calling the random routine. Note that there is little benefit to calling the random-
ize routine more than once in your program. Once random establishes a random starting
point, further calls to randomize will not improve the quality (randomness) of the numbers
it generates.

Chapter 07

Page 344

7.1.10 Constants, Macros, and other Miscellany

When you include the “stdlib.a” header file, you are also defining certain macros (see
Chapter Eight for a discussion of macros) and commonly used constants. These include
the following:

NULL = 0 ;Some common ASCII codes
BELL = 07 ;Bell character
bs = 08 ;Backspace character
tab = 09 ;Tab character
lf = 0ah ;Line feed character
cr = 0dh ;Carriage return

In addition to the constants above, “stdlib.a” also defines some useful macros including
ExitPgm, lesi, and ldxi. These macros contain the following instructions:

; ExitPgm- Returns control to MS-DOS

ExitPgm macro
mov ah, 4ch ;DOS terminate program opcode
int 21h ;DOS call.
endm

; LESI ADRS-
; Loads ES:DI with the address of the specified operand.

lesi macro adrs
mov di, seg adrs
mov es, di
mov di, offset adrs
endm

; LDXI ADRS-
; Loads DX:SI with the address of the specified operand.

ldxi macro adrs
mov dx, seg adrs
mov si, offset adrs
endm

The lesi and ldxi macros are especially useful for load addresses into es:di or dx:si before
calling various standard library routines (see Chapter Seven for details about macros).

7.1.11 Plus more!

The Standard Library contains many, many, routines that this chapter doesn’t even
mention. As you get time, you should read through the documentation for the Standard
Library and find out what’s available. The routines mentioned in this chapter are the ones
you will use right away. This text will introduce new Standard Library routines as they are
needed.

7.2 Sample Programs

The following programs demonstrate some common operations that use the Standard
Library.

The UCR Standard Library

Page 345

7.2.1 Stripped SHELL.ASM File

; Sample Starting SHELL.ASM file
;
; Randall Hyde
; Version 1.0
; 2/6/96
;
; This file shows what the SHELL.ASM file looks like without
; the superfluous comments that explain where to place objects
; in the source file. Your programs should likewise begin
; with a stripped version of the SHELL.ASM file. After all,
; the comments in the original SHELL.ASM file are four *your*
; consumption, not to be read by someone who sees the program
; you wind up writing.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

7.2.2 Numeric I/O

; Pgm7_2.asm - Numeric I/O.
;
; Randall Hyde
; 2/6/96
;
; The standard library routines do not provide simple to use numeric input
; routines. This code demonstrates how to read decimal and hexadecimal values
; from the user using the Getsm, ATOI, ATOU, ATOH, IsDigit, and IsXDigit
routines.

Chapter 07

Page 346

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

inputLine byte 128 dup (0)

SignedInteger sword ?
UnsignedInt word ?
HexValue word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Read a signed integer value from the user.

InputInteger: print
byte "Input a signed integer value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

mov bx, -1
SkipSpcs1: inc bx

cmp inputLine[bx], ' ' ;Skip over any spaces.
je SkipSpcs1

cmp inputLine[bx], '-' ;See if it's got a minus sign
jne NoSign
inc bx ;Skip if a negative number

NoSign: dec bx ;Back up one place.
TestDigs: inc bx ;Move on to next char

mov al, inputLine[bx]
IsDigit ;See if it's a decimal digit.
je TestDigs ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodDec ; reasonable character.
cmp inputLine[bx], ','
je GoodDec
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodDec
printf
byte "'%s' is an illegal signed integer. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputInteger

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodDec: ATOI ;Do the conversion
mov SignedInteger, ax ;Save the value away.

; Read an unsigned integer value from the user.

InputUnsigned: print
byte "Input an unsigned integer value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

; Note the sneakiness in the following code. It starts with an index of -2
; and then increments it by one. When accessing data in this loop it compares

The UCR Standard Library

Page 347

; against locatoin inputLine[bx+1] which effectively starts bx at zero. In the
; "TestUnsigned" loop below, this code increments bx again so that bx then
; contains the index into the string when the action is occuring.

mov bx, -2
SkipSpcs2: inc bx

cmp inputLine[bx+1], ' ' ;Skip over any spaces.
je SkipSpcs2

TestUnsigned: inc bx ;Move on to next char
mov al, inputLine[bx]
IsDigit ;See if it's a decimal digit.
je TestUnsigned ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodUnSigned ; reasonable character.
cmp inputLine[bx], ','
je GoodUnsigned
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodUnsigned
printf
byte "'%s' is an illegal unsigned integer. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputUnsigned

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodUnsigned: ATOU ;Do the conversion
mov UnsignedInt, ax ;Save the value away.

; Read a hexadecimal value from the user.

InputHex: print
byte "Input a hexadecimal value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

; The following code uses the same sneaky trick as the code above.

mov bx, -2
SkipSpcs3: inc bx

cmp inputLine[bx+1], ' ' ;Skip over any spaces.
je SkipSpcs3

TestHex: inc bx ;Move on to next char
mov al, inputLine[bx]
IsXDigit ;See if it's a hex digit.
je TestHex ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodHex ; reasonable character.
cmp inputLine[bx], ','
je GoodHex
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodHex
printf
byte "'%s' is an illegal hexadecimal value. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputHex

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodHex: ATOH ;Do the conversion
mov HexValue, ax ;Save the value away.

; Display the results:

printf

Chapter 07

Page 348

byte "Values input:",cr,lf
byte "Signed: %4d",cr,lf
byte "Unsigned: %4d",cr,lf
byte "Hex: %4x",cr,lf,0
dword SignedInteger, UnsignedInt, HexValue

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

7.3 Laboratory Exercises

The UCR Standard Library for 80x86 Assembly Language Programmers is available,
nearly ready to use, on the companion CD-ROM. In this set of laboratory exercises you
will learn how to install the Standard Library on a local hard disk and access the library
within your programs.

7.3.1 Obtaining the UCR Standard Library

A recent version of the UCR Standard Library for 80x86 Assembly language program-
mers appears on the companion CD-ROM. There are, however, periodic updates to the
library, so it is quite possible that the version on the CD-ROM is out of date. For most of
the projects and examples in this textbook, the version appearing on the CD-ROM is prob-
ably sufficient4. However, if you want to use the Standard Library to develop your own
assembly language software you’ll probably want to have the latest version of the library.

The official repository for the UCR Standard library is the ftp.cs.ucr.edu ftp site at the
University of California, Riverside. If you have Internet/ftp access, you can download the
latest copy of the standard library directly from UCR using an anonymous ftp account. To
obtain the software over the internet, follow these steps:

• Running your ftp program, connect to ftp.cs.ucr.edu.
• When the system asks for your login name, use anonymous.
• When the system asks for your password, use your full login name (e.g.,

something that looks like name@machine.domain).
• At this point, you should be logged onto the system. Switch to the

\pub\pc\ibmpcdir using a “cd pub\pc\ibmpcdir” UNIX command.
• The Standard Library files are compressed binary files. Therefore, you

must switch ftp to its binary (vs. ASCII) mode before downloading the
files. On a standard ftp program you would enter a “binary” command to
accomplish this. Check the documentation for your ftp program to see
how to do this. The default for download is usually ASCII. If you
download the standard library files in ASCII mode, they will probably
fail to uncompress properly.

• In the \pub\pc\ibmpcdir subdirectory you should find several files (gen-
erally five but there may be more). Using the appropriate ftp commands
(e.g., get or mget), copy these files to your local system.

• Log off the UCR ftp computer and quit your ftp program.

4. Indeed, the only reason to get an update for this text would be to obtain bug fixes.

The UCR Standard Library

Page 349

• If you have been running ftp on a UNIX system, you will need to transfer
the files you’ve downloaded to a PC running DOS or Windows. Consult
your instructor or local UNIX system administrator for details.

• That’s it! You’ve now downloaded the latest version of the Standard
Library.

If you do not have Internet access, or there is some problem accessing the ftp site at
UCR, you can probably locate a copy of the Standard Library at other ftp sites, on other
BBSes, or from a shareware vendor. Keep in mind, however, that software you find at
other sites may be quite old (indeed, they may have older versions than that appearing on
the companion CD-ROM).

For your lab report: If you successfully downloaded the latest version of the library,
describe the process you went through. Also, describe the files that you downloaded from
the ftp site. If there were any “readme” files you downloaded, read them and describe
their content in your lab report.

7.3.2 Unpacking the Standard Library

To reduce disk storage requirements and download time, the UCR Standard Library is
compressed. Once you download the files from an ftp site or some other service, you will
have to uncompress the files in order to use them. Note: there is a compressed version of
the Standard Library on the companion CD-ROM in the event you do not have Internet
access and could not download the files in the previous exercises. See the Chapter Seven
subdirectory on the companion CD-ROM. Decompressing the Standard Library is nearly
an automatic process. Just follow these steps:

• Create a directory on your local hard disk (usually C:) named “STDLIB”.5

Switch to this subdirectory using the command “CD C:\STDLIB”.
• Copy the files you downloaded (or the files off the companion CD-ROM

in the STDLIB\DIST subdirectory) into the STDLIB subdirectory you’ve
just created.

• Execute the DOS command “PATH=C:\STDLIB”.
• Execute the “UNPACK.BAT” batch file by typing “UNPACK” at the DOS

command line prompt.
• Sit back and watch the show. Everything else is automatic.
• You should reboot after unpacking the standard library or reset the path

to its original value.

If you did not set the path to include the STDLIB directory, the UNPACK.BAT file will
report several errors and it will not properly unpack the files. It will delete the compressed
files from the disk. Therefore, make sure you save a copy of the files you downloaded on a
floppy disk or in a different directory when unpacking the Standard Library. Doing so will
save you from having to download the STDLIB files again if something goes wrong dur-
ing the decompression phase.

For your lab report: Describe the directory structure that unpacking the standard
library produces.

7.3.3 Using the Standard Library

When you unpack the Standard Library files, the UNPACK.BAT program leaves a
(full) copy of the SHELL.ASM file sitting in the STDLIB subdirectory. This should be a
familiar file since you’ve been using SHELL.ASM as a skeletal assembly language pro-
gram in past projects. This particular version of SHELL.ASM is a “full” version since it

5. If you are doing this on computer systems in your school’s laboratories, they may ask you to use a different sub-
directory since the Standard Library may already be installed on the machines.

Chapter 07

Page 350

contains several comments that explain where user-written code and variables should go
in the file. As a general rule, it is very bad programming style to leave these comments in
your SHELL.ASM file. Once you’ve read these comments and figured out the layout of the
SHELL.ASM file, you should delete those comments from any program you write based
on the SHELL.ASM file.

For your lab report: include a modified version of the SHELL.ASM file with the
superfluous comments removed.

At the beginning of the SHELL.ASM file, you will find the following two statements:

include stdlib.a
includelib stdlib.lib

The first statement tells MASM to read the definitions for the standard library routines
from the STDLIB.A include file (see Chapter Eight for a description of include files). The
second statement tells MASM to pass the name of the STDLIB.LIB object code file on to
the linker so it can link your program with the code in the Standard Library. The exact
nature of these two statements is unimportant at this time; however, to use the Standard
Library routines, MASM needs to be able to find these two files at assembly and link time.
By default, MASM assumes that these two files are in the current subdirectory whenever
you assemble a program based on SHELL.ASM. Since this is not the case, you will have to
execute two special DOS commands to tell MASM where it can find these files. The two
commands are

set include=c:\stdlib\include
set lib=c:\stdlib\lib

If you do not execute these commands at least once prior to using MASM with
SHELL.ASM for the first time, MASM will report an error (that it cannot find the
STDLIB.A file) and abort the assembly.

For your lab report: Execute the DOS commands “SET INCLUDE=C:\” and “SET
LIB=C:\”6 and then attempt to assemble SHELL.ASM using the DOS command:

ml shell.asm

Report the error in your lab report. Now execute

SET INCLUDE=C:\STDLIB\INCLUDE

Assemble SHELL.ASM again and report any errors. Finally, execute LIB set command and
assemble your program (hopefully) without error.

If you want to avoid having to execute the SET commands every time you sit down to
program in assembly language, you can always add these set commands to your
autoexec.bat file. If you do this, the system will automatically execute these commands
whenever you turn it on.

Other programs (like MASM and Microsoft C++) may also be using SET LIB and SET
INCLUDE commands. If there are already SET INCLUDE or SET LIB commands in your
autoexec.bat file, you should append the Standard Library entrys to the end of the existing
command like the following:

set include=c:\MASM611\include;c:\STDLIB\INCLUDE
set lib=c:\msvc\lib;C:\STDLIB\LIB

7.3.4 The Standard Library Documentation Files

There are several hundred routines in the UCR Standard Library; far more than this
chapter can reasonably document. The “official” source of documentation for the UCR
Standard Library is a set of text files appearing in the C:\STDLIB\DOC directory. These
files are text files (that you can read with any text editor) that describe the use of each of

6. These command deactivate any current LIB or INCLUDE strings in the environment variables.

The UCR Standard Library

Page 351

the Standard Library routines. If you have any questions about a subroutine or you want
to find out what routines are available, you should read the files in this subdirectory.

The documentation consists of several text files organized by routine classification.
For example, one file describes output routines, another describes input routines, and yet
another describes the string routines. The SHORTREF.TXT file provides a quick synopsis
of the entire library. This is a good starting point for information about the routines in the
library.

For your lab report: include the names of the text files appearing in the documenta-
tion directory. Provide the names of several routines that are docuemented within each
file.

7.4 Programming Projects

1) Write any program of your choice that uses at least fifteen different UCR Standard Library
routines. Consult the appendix in your textbook and the STDLIB\DOC directory for
details on the various StdLib routines. At least five of the routines you choose should not
appear in this chapter. Learn those routines yourself by studying the UCR StdLib docu-
mentation.

2) Write a program that demonstrates the use of each of the format options in the PRINTF
StdLib routine.

3) Write a program that reads 16 signed integers from a user and stores these values into a
4x4 matrix. The program should then print the 4x4 matrix in matrix form (i.e., four rows of
four numbers with each column nicely aligned).

4) Modify the program in problem (3) above so that figures out which number requires the
largest number of print positions and then it outputs the matrix using this value plus one
as the field width for all the numbers in the matrix. For example, if the largest number in
the matrix is 1234, then the program would print the numbers in the matrix using a mini-
mum field width of five.

7.5 Summary

This chapter introduced several assembler directives and pseudo-opcodes supported
by MASM. It also briefly discussed some routines in the UCR Standard Library for 80x86
Assembly Language Programmers. This chapter, by no means, is a complete description
of what MASM or the Standard Library has to offer. It does provide enough information
to get you going.

To help you write assembly language programs with a minimum of fuss, this text
makes extensive use of various routines from the UCR Standard Library for 80x86 Assem-
bly Language Programmers. Although this chapter could not possibly begin to cover all
the Standard Library routines, it does discuss many of the routines that you’ll use right
away. This text will discuss other routines as necessary.

• See “An Introduction to the UCR Standard Library” on page 333.
• See “Memory Management Routines: MEMINIT, MALLOC, and FREE”

on page 334.
• See “The Standard Input Routines: GETC, GETS, GETSM” on page 334.
• See “The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI,

PRINT, and PRINTF” on page 336.
• See “Conversion Routines: ATOx, and xTOA” on page 341.
• “Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize”

on page 340
• “Output Field Size Routines: Isize, Usize, and Lsize” on page 340
• “Routines that Test Characters for Set Membership” on page 342

Chapter 07

Page 352

• “Character Conversion Routines: ToUpper, ToLower” on page 343
• “Random Number Generation: Random, Randomize” on page 343
• “Constants, Macros, and other Miscellany” on page 344
• See“Plus more!” on page 344.

The UCR Standard Library

Page 353

7.6 Questions

1. What file should you use to begin your programs when writing code that uses the UCR
Standard Library?

2. What routine allocates storage on the heap?

3. What routine would you use to print a single character?

4. What routines allow you to print a literal string of characters to the display?

5. The Standard Library does not provide a routine to read an integer from the user. Describe
how to use the GETS and ATOI routines to accomplish this task.

6. What is the difference between the GETS and GETSM routines?

7. What is the difference between the ATOI and ATOI2 routines?

8. What does the ITOA routine do? Describe input and output values.

Chapter 07

Page 354

Page 355

MASM: Directives & Pseudo-Opcodes Chapter Eight

Statements like

mov ax,0

and

add ax,bx

are meaningless to the microprocessor. As
arcane as these statements appear, they are still human readable forms of 80x86 instruc-
tions. The 80x86 responds to commands like B80000 and 03C3. An assembler is a program
that converts strings like

mov ax,0

 to 80x86 machine code like “B80000”. An assembly lan-
guage program consists of statements like

mov ax,0

. The assembler converts an assembly
language source file to machine code – the binary equivalent of the assembly language
program. In this respect, the assembler program is much like a compiler, it reads an ASCII
source file from the disk and produces a machine language program as output. The major
difference between a compiler for a high level language (HLL) like Pascal and an assem-
bler is that the compiler usually emits several machine instructions for each Pascal state-
ment. The assembler generally emits a single machine instruction for each assembly
language statement.

Attempting to write programs in machine language (i.e., in binary) is not particularly
bright. This process is very tedious, prone to mistakes, and offers almost no advantages
over programming in assembly language. The only major disadvantage to assembly lan-
guage over pure machine code is that you must first assemble and link a program before
you can execute it. However, attempting to assemble the code by hand would take far
longer than the small amount of time that the assembler takes to perform the conversion
for you.

There is another disadvantage to learning assembly language. An assembler like
Microsoft's Macro Assembler (MASM) provides a large number of features for assembly
language programmers. Although learning about these features takes a fair amount of
time, they are so useful that it is well worth the effort.

8.0 Chapter Overview

Like Chapter Six, much of the information in this chapter is reference material. Like
any reference section, some knowledge is essential, other material is handy, but optional,
and some material you may never use while writing programs. The following list outlines
the information in this text. A “•” symbol marks the essential material. The “

❏

” symbol
marks the optional and lesser used subjects.

• Assembly language statement source format

 ❏

The location counter
• Symbols and identifiers
• Constants
• Procedure declarations

 ❏

Segments in an assembly language program
• Variables
• Symbol types
• Address expressions (later subsections contain advanced material)

 ❏

Conditional assembly

 ❏

Macros

 ❏

Listing directives

 ❏

Separate assembly

8.1 Assembly Language Statements

Assembly language statements in a source file use the following format:

{Label} {Mnemonic {Operand}} {;Comment}

Thi d t t d ith F M k 4 0 2

Chapter 08

Page 356

Each entity above is a field. The four fields above are the

label field

, the

mnemonic field

,
the

operand field

, and the

comment field

.

The label field is (usually) an optional field containing a symbolic label for the current
statement. Labels are used in assembly language, just as in HLLs, to mark lines as the tar-
gets of GOTOs (jumps). You can also specify variable names, procedure names, and other
entities using symbolic labels. Most of the time the label field is optional, meaning a label
need be present only if you want a label on that particular line. Some mnemonics, how-
ever, require a label, others do not allow one. In general, you should always begin your
labels in column one (this makes your programs easier to read).

A mnemonic is an instruction name (e.g.,

mov

,

add

, etc.). The word mnemonic means
memory aid.

mov

is much easier to remember than the binary equivalent of the

mov

instruction! The braces denote that this item is optional. Note, however, that you cannot
have an operand without a mnemonic.

The mnemonic field contains an assembler instruction. Instructions are divided into
three classes: 80x86 machine instructions, assembler directives, and pseudo opcodes.
80x86 instructions, of course, are assembler mnemonics that correspond to the actual
80x86 instructions introduced in Chapter Six.

Assembler directives are special instructions that provide information to the assem-
bler but do not generate any code. Examples include the

segment

directive,

equ

,

assume

,
and

end

. These mnemonics are not valid 80x86 instructions. They are messages to the
assembler, nothing else.

A pseudo-opcode is a message to the assembler, just like an assembler directive, how-
ever a pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include

byte

,

word

,

dword

,

qword

, and

tbyte

. These instructions emit the bytes of data specified by
their operands but they are not true 80X86 machine instructions.

The operand field contains the operands, or parameters, for the instruction specified
in the mnemonic field. Operands never appear on lines by themselves. The type and
number of operands (zero, one, two, or more) depend entirely on the specific instruction.

The comment field allows you to annotate each line of source code in your program.
Note that the comment field always begins with a semicolon. When the assembler is pro-
cessing a line of text, it completely ignores everything on the source line following a semi-
colon

1

.

Each assembly language statement appears on its own line in the source file. You can-
not have multiple assembly language statements on a single line. On the other hand,
since all the fields in an assembly language statement are optional, blank lines are fine.
You can use blank lines anywhere in your source file. Blank lines are useful for spacing
out certain sections of code, making them easier to read.

The Microsoft Macro Assembler is a free form assembler. The various fields of an
assembly language statement may appear in any column (as long as they appear in the
proper order). Any number of spaces or tabs can separate the various fields in the state-
ment. To the assembler, the following two code sequences are identical:

__

mov ax, 0
mov bx, ax
add ax, dx
mov cx, ax

 __

mov ax, 0
 mov bx, ax
 add ax, dx

mov cx, ax

__

1. Unless, of course, the semicolon appears inside a string constant.

Directives and Pseudo Opcodes

Page 357

The first code sequence is much easier to read than the second (if you don't think so,
perhaps you should go see a doctor!). With respect to readability, the judicial use of spac-
ing within your program can make all the difference in the world.

Placing the labels in column one, the mnemonics in column 17 (two tabstops), the
operand field in column 25 (the third tabstop), and the comments out around column 41
or 49 (five or six tabstops) produces the best looking listings. Assembly language pro-
grams are hard enough to read as it is. Formatting your listings to help make them easier
to read will make them much easier to maintain.

You may have a comment on the line by itself. In such a case, place the semicolon in
column one and use the entire line for the comment, examples:

; The following section of code positions the cursor to the upper
; left hand position on the screen:

 mov X, 0
 mov Y, 0

; Now clear from the current cursor position to the end of the
; screen to clear the video display:

; etc.

8.2 The Location Counter

Recall that all addresses in the 80x86's memory space consist of a segment address
and an offset within that segment. The assembler, in the process of converting your
source file into object code, needs to keep track of offsets within the current segment. The

location counter

 is an assembler variable that handles this.

Whenever you create a segment in your assembly language source file (see segments
later in this chapter), the assembler associates the current location counter value with it.
The location counter contains the current offset into the segment. Initially (when the
assembler first encounters a segment) the location counter is set to zero. When encounter-
ing instructions or pseudo-opcodes, MASM increments the location counter for each byte
written to the object code file. For example, MASM increments the location counter by
two after encountering

mov ax, bx

 since this instruction is two bytes long.

The value of the location counter varies throughout the assembly process. It changes
for each line of code in your program that emits object code. We will use the term location
counter to mean the value of the location counter at a particular statement before generat-
ing any code. Consider the following assembly language statements:

0 : or ah, 9
3 : and ah, 0c9h
6 : xor ah, 40h
9 : pop cx
A : mov al, cl
C : pop bp
D : pop cx
E : pop dx
F : pop ds
10: ret

The

or

,

and

, and

xor

instructions are all three bytes long; the

mov

instruction is two
bytes long; the remaining instructions are all one byte long. If these instructions appear at
the beginning of a segment, the location counter would be the same as the numbers that
appear immediately to the left of each instruction above. For example, the

or

instruction
above begins at offset zero. Since the

or

instruction is three bytes long, the next instruc-
tion (

and

) follows at offset three. Likewise,

and

is three bytes long, so

xor

follows at offset
six, etc..

Chapter 08

Page 358

8.3 Symbols

Consider the

jmp

instruction for a moment. This instruction takes the form:

jmp target

Target

 is the destination address. Imagine how painful it would be if you had to actually
specify the target memory address as a numeric value. If you've ever programmed in
BASIC (where line numbers are the same thing as statement labels) you've experienced
about 10% of the trouble you would have in assembly language if you had to specify the
target of a

jmp

by an address.

To illustrate, suppose you wanted to jump to some group of instructions you've yet to
write. What is the address of the target instruction? How can you tell until you've written
every instruction before the target instruction? What happens if you change the program
(remember, inserting and deleting instructions will cause the location counter values for
all the following instructions within that segment to change). Fortunately, all these prob-
lems are of concern only to machine language programmers. Assembly language pro-
grammers can deal with addresses in a much more reasonable fashion – by using
symbolic addresses.

A

symbol

,

identifier,

or

label

 , is a name associated with some particular value. This
value can be an offset within a segment, a constant, a string, a segment address, an offset
within a record, or even an operand for an instruction. In any case, a label provides us
with the ability to represent some otherwise incomprehensible value with a familiar, mne-
monic, name.

A symbolic name consists of a sequence of letters, digits, and special characters, with
the following restrictions:

• A symbol cannot begin with a numeric digit.
• A name can have any combination of upper and lower case alphabetic

characters. The assembler treats upper and lower case equivalently.
• A symbol may contain any number of characters, however only the first

31 are used. The assembler ignores all characters beyond the 31st.
• The _, $, ?, and @ symbols may appear anywhere within a symbol. How-

ever, $ and ? are special symbols; you cannot create a symbol made up
solely of these two characters.

• A symbol cannot match any name that is a reserved symbol. The follow-
ing symbols are reserved:

%out .186 .286 .286P
.287 .386 .386P .387
.486 .486P .8086 .8087
.ALPHA .BREAK .CODE .CONST
.CREF .DATA .DATA? .DOSSEG
.ELSE .ELSEIF .ENDIF .ENDW
.ERR .ERR1 .ERR2 .ERRB
.ERRDEF .ERRDIF .ERRDIFI .ERRE
.ERRIDN .ERRIDNI .ERRNB .ERRNDEF
.ERRNZ .EXIT .FARDATA .FARDATA?
.IF .LALL .LFCOND .LIST
.LISTALL .LISTIF .LISTMACRO .LISTMACROALL
.MODEL .MSFLOAT .NO87 .NOCREF
.NOLIST .NOLISTIF .NOLISTMACRO .RADIX
.REPEAT .UNTIL .SALL .SEQ
.SFCOND .STACK .STARTUP .TFCOND
.UNTIL .UNTILCXZ .WHILE .XALL
.XCREF .XLIST ALIGN ASSUME
BYTE CATSTR COMM COMMENT
DB DD DF DOSSEG
DQ DT DW DWORD
ECHO ELSE ELSEIF ELSEIF1
ELSEIF2 ELSEIFB ELSEIFDEF ELSEIFDEF
ELSEIFE ELSEIFIDN ELSEIFNB ELSEIFNDEF

Directives and Pseudo Opcodes

Page 359

END ENDIF ENDM ENDP
ENDS EQU EVEN EXITM
EXTERN EXTRN EXTERNDEF FOR
FORC FWORD GOTO GROUP
IF IF1 IF2 IFB
IFDEF IFDIF IFDIFI IFE
IFIDN IFIDNI IFNB IFNDEF
INCLUDE INCLUDELIB INSTR INVOKE
IRP IRPC LABEL LOCAL
MACRO NAME OPTION ORG
PAGE POPCONTEXT PROC PROTO
PUBLIC PURGE PUSHCONTEXT QWORD
REAL4 REAL8 REAL10 RECORD
REPEAT REPT SBYTE SDWORD
SEGMENT SIZESTR STRUC STRUCT
SUBSTR SUBTITLE SUBTTL SWORD
TBYTE TEXTEQU TITLE TYPEDEF
UNION WHILE WORD

In addition, all valid 80x86 instruction names and register names are reserved as well.
Note that this list applies to Microsoft's Macro Assembler version 6.0. Earlier versions of
the assembler have fewer reserved words. Later versions may have more.

Some examples of valid symbols include:

L1 Bletch RightHere
Right_Here Item1 __Special
$1234 @Home $_@1
Dollar$ WhereAmI? @1234

$1234 and @1234 are perfectly valid, strange though they may seem.

Some examples of illegal symbols include:

1TooMany - Begins with a digit.
Hello.There - Contains a period in the middle of the symbol.
$ - Cannot have $ or ? by itself.
LABEL - Assembler reserved word.
Right Here - Symbols cannot contain spaces.
Hi,There - or other special symbols besides _, ?, $, and @.

Symbols, as mentioned previously, can be assigned numeric values (such as location
counter values), strings, or even whole operands. To keep things straightened out, the
assembler assigns a type to each symbol. Examples of types include near, far, byte, word,
double word, quad word, text, and strings. How you declare labels of a certain type is the
subject of much of the rest of this chapter. For now, simply note that the assembler always
assigns some type to a label and will tend to complain if you try to use a label at some
point where it does not allow that type of label.

8.4 Literal Constants

The Microsoft Macro Assembler (MASM) is capable of processing five different types
of constants: integers, packed binary coded decimal integers, real numbers, strings, and
text. In this chapter we'll consider integers, reals, strings, and text only. For more infor-
mation about packed BCD integers please consult the Microsoft Macro Assembler Pro-
grammer's Guide.

A

literal constant

 is one whose value is implicit from the characters that make up the
constant. Examples of literal constants include:

• 123
• 3.14159
• “Literal String Constant”
• 0FABCh
• ‘A’
• <Text Constant>

Chapter 08

Page 360

Except for the last example above, most of these literal constants should be reasonably
familiar to anyone who has written a program in a high level language like Pascal or C++.
Text constants are special forms of strings that allow textual substitution during assembly.

A literal constant’s representation corresponds to what we would normally expect for
its “real world value.” Literal constants are also known as

non symbolic constants

 since they
use the value’s actual representation, rather than some symbolic name, within your pro-
gram. MASM also lets you define symbolic, or

manifest

, constants in a program, but more
on that later.

8.4.1 Integer Constants

An integer constant is a numeric value that can be specified in binary, decimal, or
hexadecimal

2

. The choice of the base (or radix) is up to you. The following table shows
the legal digits for each radix:

To differentiate between numbers in the various bases, you use a suffix character. If
you terminate a number with a “b” or “B”, then MASM assumes that it is a binary num-
ber. If it contains any digits other than zero or one the assembler will generate an error. If
the suffix is “t”, “T”, “d” or “D”, then the assembler assumes that the number is a decimal
(base 10) value. A suffix of “h” or “H” will select the hexadecimal radix.

All integer constants must begin with a decimal digit, including hexadecimal con-
stants. To represent the value “FDED” you must specify 0FDEDh. The leading decimal
digit is required by the assembler so that it can differentiate between symbols and
numeric constants; remember, “FDEDh” is a perfectly valid symbol to the Microsoft
Macro Assembler.

Examples:

0F000h 12345d 0110010100b
 1234h 100h 08h

If you do not specify a suffix after your numeric constants, the assembler uses the cur-
rent default radix. Initially, the default radix is decimal. Therefore, you can usually spec-
ify decimal values without the trailing “D” character. The

radix

assembler directive can be
used to change the default radix to some other base. The

.radix

instruction takes the fol-
lowing form:

.radix

base

;Optional comment

Base

 is a decimal value between 2 and 16.

The .

radix

 statement takes effect as soon as MASM encounters it in the source file. All
the statements before the .

radix

 statement will use the previous default base for numeric
constants. By sprinkling multiple .

radix

 instructions throughout your source file, you can
switch the default base amongst several values depending upon what's most convenient
at each point in your program.

Generally, decimal is fine as the default base so the .

radix

 instruction doesn't get used
much. However, faced with entering a gigantic table of hexadecimal values, you can save

2. Actually, you can also specify the octal (base 8) radix. We will not use octal in this text.

Table 35: Digits Used With Each Radix

Name Base Valid Digits

Binary 2 0 1

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Directives and Pseudo Opcodes

Page 361

a lot of typing by temporarily switching to base 16 before the table and switching back to
decimal after the table. Note: if the default radix is hexadecimal, you should use the “T”
suffix to denote decimal values since MASM will confuse the “D” suffix with a hexadeci-
mal digit.

8.4.2 String Constants

A string constant is a sequence of characters surrounded by apostrophes or quotation
marks.

Examples:

"This is a string"
 'So is this'

You may freely place apostrophes inside string constants enclosed by quotation marks
and vice versa. If you want to place an apostrophe inside a string delimited by apostro-
phes, you must place a pair of apostrophes next to each other in the string, e.g.,

'Doesn''t this look weird?'

Quotation marks appearing within a string delimited by quotes must also be doubled up,
e.g.,

 "Microsoft claims ""Our software is very fast."" Do you believe them?"

Although you can double up apostrophes or quotes as shown in the examples above,
the easiest way to include these characters in a string is to use the

other

 character as the
string delimiter:

“Doesn’t this look weird?”
‘Microsoft claims “Our software is very fast.” Do you believe them?’

The only time it would be absolutely necessary to double up quotes or apostrophes in a
string is if that string contained

both

 symbols. This rarely happens in real programs.

Like the C and C++ programming languages, there is a subtle difference between a
character value and a string value. A single character (that is, a string of length one) may
appear anywhere MASM allows an integer constant or a string. If you specify a character
constant where MASM expects an integer constant, MASM uses the ASCII code of that
character as the integer value. Strings (whose length is greater than one) are allowed only
within certain contexts.

8.4.3 Real Constants

Within certain contexts, you can use floating point constants. MASM allows you to
express floating point constants in one of two forms: decimal notation or scientific nota-
tion. These forms are quite similar to the format for real numbers that Pascal, C, and other
HLLs use.

The decimal form is just a sequence of digits containing a decimal point in some posi-
tion of the number:

1.0 3.14159 625.25 -128.0 0.5

Scientific notation is also identical to the form used by various HLLs:

1e5 1.567e-2 -6.02e-10 5.34e+12

The exact range of precision of the numbers depend on your particular floating point
package. However, MASM generally emits binary data for the above constants that is
compatible with the 80x87 numeric coprocessors. This form corresponds to the numeric
format specified by the IEEE standard for floating point values. In particular, the constant
1.0 is not the binary equivalent of the integer one.

Chapter 08

Page 362

8.4.4 Text Constants

Text constants are not the same thing as string constants. A textual constant substi-
tutes verbatim during the assembly process. For example, the characters

5[bx]

could be a
textual constant associated with the symbol VAR1. During assembly, an instruction of the
form

mov ax, VAR1

would be converted to the instruction

mov ax, 5[bx]

.

Textual equates are quite useful in MASM because MASM often insists on long strings
of text for some simple assembly language operands. Using text equates allows you to
simplify such operands by substituting some string of text for a single identifier in a state-
ment.

A text constant consists of a sequence of characters surrounded by the “<“ and “>”
symbols. For example the text constant

5[bx]

would normally be written as

<5[bx]>

. When
the text substitution occurs, MASM strips the delimiting “<“ and “>” characters.

8.5 Declaring Manifest Constants Using Equates

A manifest constant is a symbol name that represents some fixed quantity during the
assembly process. That is, it is a symbolic name that represents some value. Equates are the
mechanism MASM uses to declare symbolic constants. Equates take three basic forms:

symbol equ expression
symbol = expression
symbol textequ expression

The expression operand is typically a numeric expression or a text string. The symbol is
given the value and type of the expression. The equ and “=” directives have been with
MASM since the beginning. Microsoft added the textequ directive starting with MASM 6.0.

The purpose of the “=” directive is to define symbols that have an integer (or single
character) quantity associated with them. This directive does not allow real, string, or text
operands. This is the primary directive you should use to create numeric symbolic con-
stants in your programs. Some examples:

NumElements = 16
 .
 .
 .

Array byte NumElements dup (?)
 .
 .
 .

mov cx, NumElements
mov bx, 0

ClrLoop: mov Array[bx], 0
inc bx
loop ClrLoop

The textequ directive defines a text substitution symbol. The expression in the operand
field must be a text constant delimited with the “<“ and “>” symbols. Whenever MASM
encounters the symbol within a statement, it substitutes the text in the operand field for
the symbol. Programmers typically use this equate to save typing or to make some code
more readable:

Count textequ <6[bp]>
DataPtr textequ <8[bp]>

 .
 .
 .

les bx, DataPtr ;Same as les bx, 8[bp]
mov cx, Count ;Same as mov cx, 6[bp]
mov al, 0

ClrLp: mov es:[bx], al
inc bx
loop ClrLp

Directives and Pseudo Opcodes

Page 363

Note that it is perfectly legal to equate a symbol to a blank operand using an equate like
the following:

BlankEqu textequ <>

The purpose of such an equate will become clear in the sections on conditional assembly
and macros.

The equ directive provides almost a superset of the capabilities of the “=” and textequ
directives. It allows operands that are numeric, text, or string literal constants. The follow-
ing are all legal uses of the equ directive:

One equ 1
Minus1 equ -1
TryAgain equ 'Y'
StringEqu equ “Hello there”
TxtEqu equ <4[si]>

 .
 .
 .

HTString byte StringEqu ;Same as HTString equ “Hello there”
 .
 .
 .

mov ax, TxtEqu ;Same as mov ax, 4[si]
 .
 .
 .

mov bl, One ;Same as mov bl, 1
cmp al, TryAgain ;Same as cmp al, ‘Y’

Manifest constants you declare with equates help you parameterize a program. If you
use the same value, string, or text, multiple times within a program, using a symbolic
equate will make it very easy to change that value in future modifications to the program.
Consider the following example:

Array byte 16 dup (?)
 .
 .
 .

mov cx, 16
mov bx, 0

ClrLoop: mov Array[bx], 0
inc bx
loop ClrLoop

If you decide you want Array to have 32 elements rather than 16, you will need to search
throughout your program an locate every reference to this data and adjust the literal con-
stants accordingly. Then there is the possibility that you missed modifying some particu-
lar section of code, introducing a bug into your program. On the other hand, if you use the
NumElements symbolic constant shown earlier, you would only have to change a single
statement in your program, reassemble it, and you would be in business; MASM would
automatically update all references using NumElements.

MASM lets you redefine symbols declared with the “=” directive. That is, the follow-
ing is perfectly legal:

SomeSymbol = 0
.
.
.

SomeSymbol = 1

Since you can change the value of a constant in the program, the symbol’s scope (where
the symbol has a particular value) becomes important. If you could not redefine a symbol,
one would expect the symbol to have that constant value everywhere in the program.
Given that you can redefine a constant, a symbol’s scope cannot be the entire program.
The solution MASM uses is the obvious one, a manifest constant’s scope is from the point
it is defined to the point it is redefined. This has one important ramification – you must
declare all manifest constants with the “=” directive before you use that constant. Of course, once
you redefine a symbolic constant, the previous value of that constant is forgotten. Note
that you cannot redefine symbols you declare with the textequ or equ directives.

Chapter 08

Page 364

8.6 Processor Directives

By default, MASM will only assemble instructions that are available on all members of
the 80x86 family. In particular, this means it will not assemble instructions that are not
available on the 8086 and 8088 microprocessors. By generating an error for non-8086
instructions, MASM prevents the accidental use of instructions that are not available on
various processors. This is great unless, of course, you actually want to use those instruc-
tions available on processors beyond the 8086 and 8088. The processor directives let you
enable the assembly of instructions available on later processors.

The processor directives are

.8086 .8087 .186 .286 .287

.286P .386 .387 .386P .486

.486P .586 .586P

None of these directives accept any operands.

The processor directives enable all instructions available on a given processor. Since
the 80x86 family is upwards compatible, specifying a particular processor directive
enables all instructions on that processor and all earlier processors as well.

The .8087, .287, and .387 directives activate the floating point instruction set for the
given floating point coprocessors. However, the .8086 directive also enables the 8087
instruction set; likewise, .286 enables the 80287 instruction set and .386 enables the 80387
floating point instruction set. About the only purpose for these FPU (floating point unit)
directives is to allow 80287 instructions with the 8086 or 80186 instruction set or 80387
instruction with the 8086, 80186, or 80286 instruction set.

The processor directives ending with a “P” allow assembly of privileged mode instruc-
tions. Privileged mode instructions are only useful to those writing operating systems,
certain device drivers, and other advanced system routines. Since this text does not dis-
cuss privileged mode instructions, there is little need to discuss these privileged mode
directives further.

The 80386 and later processors support two types of segments when operating in pro-
tected mode – 16 bit segments and 32 bit segments. In real mode, these processors support
only 16 bit segments. The assembler must generate subtly different opcodes for 16 and 32
bit segments. If you’ve specified a 32 bit processor using .386, .486, or .586, MASM gener-
ates instructions for 32 bit segments by default. If you attempt to run such code in real
mode under MS-DOS, you will probably crash the system. There are two solutions to this
problem. The first is to specify use16 as an operand to each segment you create in your
program. The other solution is slightly more practical, simply put the following statement
after the 32 bit processor directive:

option segment:use16

This directive tells MASM to generate 16 bit segments by default, rather than 32 bit seg-
ments.

Note that MASM does not require an 80486 or Pentium processor if you specify the
.486 or .586 directives. The assembler itself is written in 80386 code3 so you only need an
80386 processor to assemble any program with MASM. Of course, if you use 80486 or Pen-
tium processor specific instructions, you will need an 80486 or Pentium processor to run
the assembled code.

You can selectively enable or disable various instruction sets throughout your pro-
gram. For example, you can turn on 80386 instructions for several lines of code and then
return back to 8086 only instructions. The following code sequence demonstrates this:

3. Starting with version 6.1.

Directives and Pseudo Opcodes

Page 365

.386 ;Begin using 80386 instructions
 .
 . ;This code can have 80386 instrs.
 .
.8086 ;Return back to 8086-only instr set.
 .
 . ;This code can only have 8086 instrs.
 .

It is possible to write a routine that detects, at run-time, what processor a program is actu-
ally running on. Therefore, you can detect an 80386 processor and use 80386 instructions.
If you do not detect an 80386 processor, you can stick with 8086 instructions. By selectively
turning 80386 instructions on in those sections of your program that executes if an 80386
processor is present, you can take advantage of the additional instructions. Likewise, by
turning off the 80386 instruction set in other sections of your program, you can prevent
the inadvertent use of 80386 instructions in the 8086-only portion of the program.

8.7 Procedures

Unlike HLLs, MASM doesn't enforce strict rules on exactly what constitutes a proce-
dure4. You can call a procedure at any address in memory. The first ret instruction
encountered along that execution path terminates the procedure. Such expressive free-
dom, however, is often abused yielding programs that are very hard to read and maintain.
Therefore, MASM provides facilities to declare procedures within your code. The basic
mechanism for declaring a procedure is:

procname proc {NEAR or FAR}

<statements>

procname endp

 As you can see, the definition of a procedure looks similar to that for a segment. One
difference is that procname (that is the name of the procedure you're defining) must be a
unique identifier within your program. Your code calls this procedure using this name, it
wouldn't do to have another procedure by the same name; if you did, how would the pro-
gram determine which routine to call?

Proc allows several different operands, though we will only consider three: the single
keyword near, the single keyword far, or a blank operand field5. MASM uses these oper-
ands to determine if you're calling this procedure with a near or far call instruction. They
also determine which type of ret instruction MASM emits within the procedure. Consider
the following two procedures:

NProc proc near
mov ax, 0
ret

NProc endp

FProc proc far
mov ax, 0FFFFH
ret

FProc endp

and:

call NPROC
call FPROC

The assembler automatically generates a three-byte (near) call for the first call instruc-
tion above because it knows that NProc is a near procedure. It also generates a five-byte
(far) call instruction for the second call because FProc is a far procedure. Within the proce-

4. “Procedure” in this text means any program unit such as procedure, subroutine, subprogram, function, opera-
tor, etc.
5. Actually, there are many other possible operands but we will not consider them in this text.

Chapter 08

Page 366

dures themselves, MASM automatically converts all ret instructions to near or far returns
depending on the type of routine.

Note that if you do not terminate a proc/endp section with a ret or some other transfer
of control instruction and program flow runs into the endp directive, execution will con-
tinue with the next executable instruction following the endp. For example, consider the
following:

Proc1 proc
mov ax, 0

Proc1 endp

Proc2 proc
mov bx, 0FFFFH
ret

Proc2 endp

 If you call Proc1, control will flow on into Proc2 starting with the mov bx,0FFFFh
instruction. Unlike high level language procedures, an assembly language procedure does
not contain an implicit return instruction before the endp directive. So always be aware of
how the proc/endp directives work.

There is nothing special about procedure declarations. They're a convenience pro-
vided by the assembler, nothing more. You could write assembly language programs for
the rest of your life and never use the proc and endp directives. Doing so, however, would
be poor programming practice. Proc and endp are marvelous documentation features
which, when properly used, can help make your programs much easier to read and main-
tain.

MASM versions 6.0 and later treat all statement labels inside a procedure as local. That
is, you cannot refer directly to those symbols outside the procedure. For more details, see
“How to Give a Symbol a Particular Type” on page 385.

8.8 Segments

All programs consist of one or more segments. Of course, while your program is run-
ning, the 80x86’s segment registers point at the currently active segments. On 80286 and
earlier processors, you can have up to four active segments at once (code, data, extra, and
stack); on the 80386 and later processors, there are two additional segment registers: fs and
gs. Although you cannot access data in more than four or six segments at any one given
instant, you can modify the 80x86’s segment registers and point them at other segments in
memory under program control. This means that a program can access more than four or
six segments. The question is “how do you create these different segments in a program
and how do you access them at run-time?”

Segments, in your assembly language source file, are defined with the segment and
ends directives. You can put as many segments as you like in your program. Well, actually
you are limited to 65,536 different segments by the 80x86 processors and MASM probably
doesn’t even allow that many, but you will probably never exceed the number of seg-
ments MASM allows you to put in your program.

When MS-DOS begins execution of your program, it initializes two segment registers.
It points cs at the segment containing your main program and it points ss at your stack
segment. From that point forward, you are responsible for maintaining the segment regis-
ters yourself.

To access data in some particular segment, an 80x86 segment register must contain the
address of that segment. If you access data in several different segments, your program
will have to load a segment register with that segment’s address before accessing it. If you
are frequently accessing data in different segments, you will spend considerable time
reloading segment registers. Fortunately, most programs exhibit locality of reference
when accessing data. This means that a piece of code will likely access the same group of
variables many times during a given time period. It is easy to organize your programs so

Directives and Pseudo Opcodes

Page 367

that variables you often access together appear in the same segment. By arranging your
programs in this manner, you can minimize the number of times you need to reload the
segment registers. In this sense, a segment is nothing more than a cache of often accessed
data.

In real mode, a segment can be up to 64 Kilobytes long. Most pure assembly language
programs use less than 64K code, 64K global data, and 64K stack space. Therefore, you can
often get by with no more than three or four segments in your programs. In fact, the
SHELL.ASM file (containing the skeletal assembly language program) only defines four
segments and you will generally only use three of them. If you use the SHELL.ASM file as
the basis for your programs, you will rarely need to worry about segmentation on the
80x86. On the other hand, if you want to write complex 80x86 programs, you will need to
understand segmentation.

A segment in your file should take the following form6:

segmentname segment {READONLY} {align} {combine} {use} {'class'}

statements

segmentname ends

The following sections describe each of the operands to the segment directive.

Note: segmentation is a concept that many beginning assembly language program-
mers find difficult to understand. Note that you do not have to completely understand
segmentation to begin writing 80x86 assembly language programs. If you make a copy of
the SHELL.ASM file for each program you write, you can effectively ignore segmentation
issues. The main purpose of the SHELL.ASM file is to take care of the segmentation details
for you. As long as you don’t write extremely large programs or use a vast amount of
data, you should be able to use SHELL.ASM and forget about segmentation. Nonetheless,
eventually you may want to write larger assembly language programs, or you may want
to write assembly language subroutines for a high level language like Pascal or C++. At
that point you will need to know quite a bit about segmentation. The bottom line is this,
you can get by without having to learn about segmentation right now, but sooner or later
you will need to understand it if you intend to continue writing 80x86 assembly language
code.

8.8.1 Segment Names

The segment directive requires a label in the label field. This label is the segment’s
name. MASM uses segment names for three purposes: to combine segments, to determine
if a segment override prefix is necessary, and to obtain the address of a segment. You must
also specify the segment’s name in the label field of the ends directive that ends the seg-
ment.

If the segment name is not unique (i.e., you've defined it somewhere else in the pro-
gram), the other uses must also be segment definitions. If there is another segment with
this same name, then the assembler treats this segment definition as a continuation of the
previous segment using the same name. Each segment has its own location counter value
associated with it. When you begin a new segment (that is, one whose name has not yet
appeared in the source file) MASM creates a new location counter variable, initially zero,
for the segment. If MASM encounters a segment definition that is a continuation of a pre-
vious segment, then MASM uses the value of the location counter at the end of that previ-
ous segment. E.g.,

6. MASM 5.0 and later also provide simplified segment directives. In MASM 5.0 they actually were simplified. Since
then Microsoft has enhanced them over and over again. Today they are quite complex beasts. They are useful for
simplifying the interface between assembly and HLLs. However, we will ignore those directives.

Chapter 08

Page 368

CSEG segment
mov ax, bx
ret

CSEG ends

DSEG segment
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment
mov ax, 10
add ax, Item1
ret

CSEG ends
end

The first segment (CSEG) starts with a location counter value of zero. The mov ax,bx
instruction is two bytes long and the ret instruction is one byte long, so the location
counter is three at the end of the segment. DSEG is another three byte segment, so the
location counter associated with DSEG also contains three at the end of the segment. The
third segment has the same name as the first segment (CSEG), therefore the assembler will
assume that they are the same segment with the second occurrence simply being an exten-
sion of the first. Therefore, code placed in the second CSEG segment will be assembled
starting at offset three within CSEG – effectively continuing the code in the first CSEG seg-
ment.

Whenever you specify a segment name as an operand to an instruction, MASM will
use the immediate addressing mode and substitute the address of that segment for its
name. Since you cannot load an immediate value into a segment register with a single
instruction, loading the segment address into a segment register typically takes two
instructions. For example, the following three instructions appear at the beginning of the
SHELL.ASM file, they initialize the ds and es registers so they point at the dseg segment:

mov ax, dseg ;Loads ax with segment address of dseg.
mov ds, ax ;Point ds at dseg.
mov es, ax ;Point es at dseg.

The other purpose for segment names is to provide the segment component of a vari-
able name. Remember, 80x86 addresses contain two components: a segment and an offset.
Since the 80x86 hardware defaults most data references to the data segment, it is common
practice among assembly language programmers to do the same thing; that is, not bother
to specify a segment name when accessing variables in the data segment. In fact, a full
variable reference consists of the segment name, a colon, and the offset name:

mov ax, dseg:Item1
mov dseg:Item2, ax

Technically, you should prefix all your variables with the segment name in this fashion.
However, most programmers don’t bother because of the extra typing involved. Most of
the time you can get away with this; however, there are a few times when you really will
need to specify the segment name. Fortunately, those situations are rare and only occur in
very complex programs, not the kind you’re likely to run into for a while.

It is important that you realize that specifying a segment name before a variable’s
name does not mean that you can access data in a segment without having some segment
register pointing at that segment. Except for the jmp and call instructions, there are no
80x86 instructions that let you specify a full 32 bit segmented direct address. All other
memory references use a segment register to supply the segment component of the
address.

8.8.2 Segment Loading Order

Segments normally load into memory in the order that they appear in your source file.
In the example above, DOS would load the CSEG segment into memory before the DSEG

Directives and Pseudo Opcodes

Page 369

segment. Even though the CSEG segment appears in two parts, both before and after
DSEG. CSEG's declaration before any occurrence of DSEG tells DOS to load the entire
CSEG segment into memory before DSEG. To load DSEG before CSEG, you could use the
following program:

DSEG segment public
DSEG ends

CSEG segment public
mov ax, bx
ret

CSEG ends

DSEG segment public
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment public
mov ax, 10
add ax, Item1
ret

CSEG ends
end

The empty segment declaration for DSEG doesn't emit any code. The location counter
value for DSEG is zero at the end of the segment definition. Hence it's zero at the begin-
ning of the next DSEG segment, exactly as it was in the previous version of this program.
However, since the DSEG declaration appears first in the program, DOS will load it into
memory first.

The order of appearance is only one of the factors controlling the loading order. For
example, if you use the “.alpha” directive, MASM will organize the segments alphabeti-
cally rather than in order of first appearance. The optional operands to the segment direc-
tive also control segment loading order. These operands are the subject of the next section.

8.8.3 Segment Operands

The segment directive allows six different items in the operand field: an align operand,
a combine operand, a class operand, a readonly operand, a “uses” operand, and a size
operand. Three of these operands control how DOS loads the segment into memory, the
other three control code generation.

8.8.3.1 The ALIGN Type

The align parameter is one of the following words: byte, word, dword, para, or page.
These keywords instruct the assembler, linker, and DOS to load the segment on a byte,
word, double word, paragraph, or page boundary. The align parameter is optional. If one
of the above keywords does not appear as a parameter to the segment directive, the
default alignment is paragraph (a paragraph is a multiple of 16 bytes).

Aligning a segment on a byte boundary loads the segment into memory starting at the
first available byte after the last segment. Aligning on a word boundary will start the seg-
ment at the first byte with an even address after the last segment. Aligning on a dword
boundary will locate the current segment at the first address that is an even multiple of
four after the last segment.

For example, if segment #1 is declared first in your source file and segment #2 imme-
diate follows and is byte aligned, the segments will be stored in memory as follows (see
Figure 8.1).

Chapter 08

Page 370

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment byte
 .
 .
 .

seg2 ends

If segments one and two are declared as below, and segment #2 is word aligned, the
segments appear in memory as show in Figure 8.2.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment word
 .
 .
 .

seg2 ends

Another example: if segments one and two are as below, and segment #2 is double
word aligned, the segments will be stored in memory as shown in Figure 8.3.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment dword
 .
 .
 .

seg2 ends

Figure 8.1 Segment with Byte Alignment

Segment #1

Segment #2

Absolutely no wasted space between
segments one and two.

Low Memory:

High Memory:

Figure 8.2 Segment with Word Alignment

Segment #1

Segment #2

With WORD alignment, Segment #2 always begins
on an even byte boundary and you may waste a
byte of storage between the segments.

Low Memory:

High Memory:

Directives and Pseudo Opcodes

Page 371

Since the 80x86's segment registers always point at paragraph addresses, most seg-
ments are aligned on a 16 byte paragraph (para) boundary. For the most part, your seg-
ments should always be aligned on a paragraph boundary unless you have a good reason
to choose otherwise.

For example, if segments one and two are declared as below, and segment #2 is para-
graph aligned, DOS will store the segments in memory as shown in Figure 8.4.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment para
 .
 .
 .

seg2 ends

Page boundary alignment forces the segment to begin at the next address that is an
even multiple of 256 bytes. Certain data buffers may require alignment on 256 (or 512)
byte boundaries. The page alignment option can be useful in this situation.

For example, if segments one and two are declared as below, and segment #2 is page
aligned, the segments will be stored in memory as shown in Figure 8.5

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment page
 .
 .
 .

seg2 ends

Figure 8.3 Segment with DWord Alignment

Segment #1

Segment #2

With DWORD alignment, Segment #2 always begins
on an double word boundary and you may waste one,
two, or three bytes of storage between the segments.

Low Memory:

High Memory:

Figure 8.4 Segment with Paragraph Alignment

Segment #1

Segment #2

With PARA alignment, Segment #2 always begins
on a paragraph boundary and you may waste up to
fifteen bytes of storage between the segments.

Low Memory:

High Memory:

Chapter 08

Page 372

If you choose any alignment other than byte, the assembler, linker, and DOS may
insert several dummy bytes between the two segments, so that the segment is properly
aligned. Since the 80x86 segment registers must always point at a paragraph address (that
is, they must be paragraph aligned), you might wonder how the processor can address a
segment that is aligned on a byte, word, or double word boundary. It's easy. Whenever
you specify a segment alignment which forces the segment to begin at an address that is
not a paragraph boundary, the assembler/linker will assume that the segment register
points at the previous paragraph address and the location counter will begin at some off-
set into that segment other than zero. For example, suppose that segment #1 above ends
at physical address 10F87h and segment #2 is byte aligned. The code for segment #2 will
begin at segment address 10F80h. However, this will overlap segment #1 by eight bytes.
To overcome this problem, the location counter for segment #2 will begin at 8, so the seg-
ment will be loaded into memory just beyond segment #1.

If segment #2 is byte aligned and segment #1 doesn't end at an even paragraph
address, MASM adjusts the starting location counter for segment #2 so that it can use the
previous paragraph address to access it (see Figure 8.6).

Since the 80x86 requires all segments to start on a paragraph boundary in memory, the
Microsoft Assembler (by default) assumes that you want paragraph alignment for your
segments. The following segment definition is always aligned on a paragraph boundary:

CSEG segment
mov ax, bx
ret

CSEG ends
end

Figure 8.5 Segment with Page Alignment

Segment #1

Segment #2

With PAGE alignment, Segment #2 always begins
on a 256 byte boundary and you may waste up to
255 bytes of storage between the segments.

Low Memory:

High Memory:

Figure 8.6 Paragraph Alignment of Segments

Segment #1

Segment #2

Low Memory:

High Memory:

10F80h

10F90h

The segment register associated with Segment #2 actually
points up here.

But the code in Segment #2 begins at offset eight so
it can load into memory starting at segment 10F8h
without overlapping any data in segment #1

Directives and Pseudo Opcodes

Page 373

8.8.3.2 The COMBINE Type

The combine type controls the order that segments with the same name are written out
to the object code file produced by the assembler. To specify the combine type you use
one of the keywords public, stack, common, memory, or at. Memory is a synonym for public
provided for compatibility reasons; you should always use public rather than memory. Com-
mon and at are advanced combine types that won't be considered in this text. The stack
combine type should be used with your stack segments (see “The SHELL.ASM File” on
page 170 for an example). The public combine type should be used with most everything
else.

The public and stack combine types essentially perform the same operation. They con-
catenate segments with the same name into a single contiguous segment, just as described
earlier. The difference between the two is the way that DOS handles the initialization of
the stack segment and stack pointer registers. All programs should have at least one stack
type segment (or the linker will generate a warning); the rest should all be public . MS-DOS
will automatically point the stack segment register at the segment you declare with the
stack combine type when it loads the program into memory.

If you do not specify a combine type, then the assembler will not concatenate the seg-
ments when producing the object code file. In effect, the absence of any combine type
keyword produces a private combine type by default. Unless the class types are the same
(see the next section), each segment will be emitted as MASM encounters it in the source
file. For example, consider the following program:

CSEG segment public
mov ax, 0
mov VAR1, ax

CSEG ends

DSEG segment public
I word ?
DSEG ends

CSEG segment public
mov bx, ax
ret

CSEG ends

DSEG segment public
J word ?
DSEG ends

end

This program section will produce the same code as:

CSEG segment public
mov ax, 0
mov VAR1, ax
mov bx, ax
ret

CSEG ends

DSEG segment public
I word ?
J word ?
DSEG ends

end

The assembler automatically joins all segments that have the same name and are pub-
lic. The reason the assembler allows you to separate the segments like this is for conve-
nience. Suppose you have several procedures, each of which requires certain variables.
You could declare all the variables in one segment somewhere, but this is often distract-
ing. Most people like to declare their variables right before the procedure that uses them.
By using the public combine type with the segment declaration, you may declare your
variables right before using them and the assembler will automatically move those vari-
able declarations into the proper segment when assembling the program. For example,

Chapter 08

Page 374

CSEG segment public

; This is procedure #1

DSEG segment public

;Local vars for proc #1.

VAR1 word ?
DSEG ends

mov AX, 0
mov VAR1, AX
mov BX, AX
ret

; This is procedure #2

DSEG segment public
I word ?
J word ?
DSEG ends

mov ax, I
add ax, J
ret

CSEG ends
end

Note that you can nest segments any way you please. Unfortunately, Microsoft's
Macro Assembler scoping rules do not work the same way as a HLL like Pascal. Normally,
once you define a symbol within your program, it is visible everywhere else in the pro-
gram7.

8.8.4 The CLASS Type

The final operand to the segment directive is usually the class type. The class type
specifies the ordering of segments that do not have the same segment name. This operand
consists of a symbol enclosed by apostrophes (quotation marks are not allowed here).
Generally, you should use the following names: CODE (for segments containing program
code); DATA (for segments containing variables, constant data, and tables); CONST (for
segments containing constant data and tables); and STACK (for a stack segment). The fol-
lowing program section illustrates their use:

CSEG segment public 'CODE'
mov ax, bx
ret

CSEG ends

DSEG segment public 'DATA'
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment public 'CODE'
mov ax, 10
add AX, Item1
ret

CSEG ends

SSEG segment stack 'STACK'
STK word 4000 dup (?)
SSEG ends

C2SEG segment public 'CODE'
ret

C2SEG ends
end

7. The major exception are statement labels within a procedure.

Directives and Pseudo Opcodes

Page 375

The actual loading procedure is accomplished as follows. The assembler locates the
first segment in the file. Since it's a public combined segment, MASM concatenates all
other CSEG segments to the end of this segment. Finally, since its combine class is 'CODE',
MASM appends all segments (C2SEG) with the same class afterwards. After processing
these segments, MASM scans the source file for the next uncombined segment and repeats
the process. In the example above, the segments will be loaded in the following order:
CSEG, CSEG (2nd occurrence), C2SEG, DSEG, and then SSEG. The general rule concerning
how your files will be loaded into memory is the following:

• (1) The assembler combines all public segments that have the same name.
• (2) Once combined, the segments are output to the object code file in the

order of their appearance in the source file. If a segment name appears
twice within a source file (and it's public), then the combined segment
will be output to the object code file at the position denoted by the first
occurrence of the segment within the source file.

• (3) The linker reads the object code file produced by the assembler and
rearranges the segments when creating the executable file. The linker
begins by writing the first segment found in the object code file to the
.EXE file. Then it searches throughout the object code file for every seg-
ment with the same class name. Such segments are sequentially written
to the .EXE file.

• (4) Once all the segments with the same class name as the first segment
are emitted to the .EXE file, the linker scans the object code file for the
next segment which doesn't belong to the same class as the previous seg-
ment(s). It writes this segment to the .EXE file and repeats step (3) for
each segment belonging to this class.

• (5) Finally, the linker repeats step (4) until it has linked all the segments in
the object code file.

8.8.5 The Read-only Operand

If readonly is the first operand of the segment directive, the assembler will generate an
error if it encounters any instruction that attempts to write to this segment. This is most
useful for code segments, though is it possible to imagine a read-only data segment. This
option does not actually prevent you from writing to this segment at run-time. It is very
easy to trick the assembler and write to this segment anyway. However, by specifying
readonly you can catch some common programming errors you would otherwise miss.
Since you will rarely place writable variables in your code segments, it’s probably a good
idea to make your code segments readonly.

Example of READONLY operand:

seg1 segment readonly para public ‘DATA’
 .
 .
 .

seg1 ends

8.8.6 The USE16, USE32, and FLAT Options

When working with an 80386 or later processor, MASM generates different code for
16 versus 32 bit segments. When writing code to execute in real mode under DOS, you
must always use 16 bit segments. Thirty-two bit segments are only applicable to programs
running in protected mode. Unfortunately, MASM often defaults to 32 bit mode whenever
you select an 80386 or later processor using a directive like .386, .486, or .586 in your pro-
gram. If you want to use 32 bit instructions, you will have to explicitly tell MASM to use
16 bit segments. The use16, use32, and flat operands to the segment directive let you specify
the segment size.

Chapter 08

Page 376

For most DOS programs, you will always want to use the use16 operand. This tells
MASM that the segment is a 16 bit segment and it assembles the code accordingly. If you
use one of the directives to activate the 80386 or later instruction sets, you should put use16 in all
your code segments or MASM will generate bad code.

Example of use16 operand:

seg1 segment para public use16 ‘data’
 .
 .
 .

seg1 ends

The use32 and flat operands tell MASM to generate code for a 32 bit segment. Since
this text does not deal with protected mode programming, we will not consider these
options. See the MASM Programmer’s Guide for more details.

If you want to force use16 as the default in a program that allows 80386 or later
instructions, there is one way to accomplish this. Place the following directive in your pro-
gram before any segments:

.option segment:use16

8.8.7 Typical Segment Definitions

Has the discussion above left you totally confused? Don't worry about it. Until
you're writing extremely large programs, you needn't concern yourself with all the oper-
ands associated with the segment directive. For most programs, the following three seg-
ments should prove sufficient:

DSEG segment para public 'DATA'

; Insert your variable definitions here

DSEG ends

CSEG segment para public use16 'CODE'

; Insert your program instructions here

CSEG ends

SSEG segment para stack 'STACK'
stk word 1000h dup (?)
EndStk equ this word
SSEG ends

end

The SHELL.ASM file automatically declares these three segments for you. If you
always make a copy of the SHELL.ASM file when writing a new assembly language pro-
gram, you probably won’t need to worry about segment declarations and segmentation in
general.

8.8.8 Why You Would Want to Control the Loading Order

Certain DOS calls require that you pass the length of your program as a parameter.
Unfortunately, computing the length of a program containing several segments is a very
difficult process. However, when DOS loads your program into memory, it will load the
entire program into a contiguous block of RAM. Therefore, to compute the length of your
program, you need only know the starting and ending addresses of your program. By
simply taking the difference of these two values, you can compute the length of your pro-
gram.

In a program that contains multiple segments, you will need to know which segment
was loaded first and which was loaded last in order to compute the length of your pro-
gram. As it turns out, DOS always loads the program segment prefix, or PSP, into mem-

Directives and Pseudo Opcodes

Page 377

ory just before the first segment of your program. You must consider the length of the PSP
when computing the length of your program. MS-DOS passes the segment address of the
PSP in the ds register. So computing the difference of the last byte in your program and
the PSP will produce the length of your program. The following code segment computes
the length of a program in paragraphs:

CSEG segment public 'CODE'
mov ax, ds ;Get PSP segment address
sub ax, seg LASTSEG ;Compute difference

; AX now contains the length of this program (in paragraphs)
 .
 .
 .

CSEG ends

; Insert ALL your other segments here.

LASTSEG segment para public 'LASTSEG'
LASTSEG ends

end

8.8.9 Segment Prefixes

When the 80x86 references a memory operand, it usually references a location within
the current data segment8. However, you can instruct the 80x86 microprocessor to refer-
ence data in one of the other segments using a segment prefix before an address expres-
sion.

A segment prefix is either ds:, cs:, ss:, es:, fs:, or gs:. When used in front of an address
expression, a segment prefix instructs the 80x86 to fetch its memory operand from the
specified segment rather than the default segment. For example, mov ax, cs:I[bx] loads the
accumulator from address I+bx within the current code segment. If the cs: prefix were absent,
this instruction would normally load the data from the current data segment. Likewise,
mov ds:[bp],ax stores the accumulator into the memory location pointed at by the bp regis-
ter in the current data segment (remember, whenever using bp as a base register it points
into the stack segment).

Segment prefixes are instruction opcodes. Therefore, whenever you use a segment
prefix you are increasing the length (and decreasing the speed) of the instruction utilizing
the segment prefix. Therefore, you don't want to use segment prefixes unless you have a
good reason to do so.

8.8.10 Controlling Segments with the ASSUME Directive

The 80x86 generally references data items relative to the ds segment register (or stack
segment). Likewise, all code references (jumps, calls, etc.) are always relative to the cur-
rent code segment. There is only one catch – how does the assembler know which seg-
ment is the data segment and which is the code segment (or other segment)? The segment
directive doesn't tell you what type of segment it happens to be in the program. Remem-
ber, a data segment is a data segment because the ds register points at it. Since the ds register
can be changed at run time (using an instruction like mov ds,ax), any segment can be a
data segment. This has some interesting consequences for the assembler. When you spec-
ify a segment in your program, not only must you tell the CPU that a segment is a data
segment9, but you must also tell the assembler where and when that segment is a data (or
code/stack/extra/F/G) segment. The assume directive provides this information to the
assembler.

8. The exception, of course, are those instructions and addressing modes that use the stack segment by default
(e.g., push/pop and addressing modes that use bp or sp).
9. By loading DS with the address of that segment.

Chapter 08

Page 378

The assume directive takes the following form:

assume {CS:seg} {DS:seg} {ES:seg} {FS:seg} {GS:seg} {SS:seg}

The braces surround optional items, you do not type the braces as part of these oper-
ands. Note that there must be at least one operand. Seg is either the name of a segment
(defined with the segment directive) or the reserved word nothing. Multiple operands in
the operand field of the assume directive must be separated by commas. Examples of
valid assume directives:

assume DS:DSEG
assume CS:CSEG, DS:DSEG, ES:DSEG, SS:SSEG
assume CS:CSEG, DS:NOTHING

The assume directive tells the assembler that you have loaded the specified segment
register(s) with the segment addresses of the specified value. Note that this directive
does not modify any of the segment registers, it simply tells the assembler to assume
the segment registers are pointing at certain segments in the program. Like the proces-
sor selection and equate directives, the assume directive modifies the assembler’s behav-
ior from the point MASM encounters it until another assume directive changes the stated
assumption.

Consider the following program:

DSEG1 segment para public 'DATA'
var1 word ?
DSEG1 ends

DSEG2 segment para public 'DATA'
var2 word ?
DSEG2 ends

CSEG segment para public 'CODE'
assume CS:CSEG, DS:DSEG1, ES:DSEG2
mov ax, seg DSEG1
mov ds, ax
mov ax, seg DSEG2
mov es, ax

mov var1, 0
mov var2, 0
 .
 .
 .
assume DS:DSEG2
mov ax, seg DSEG2
mov ds, ax
mov var2, 0
 .
 .
 .

CSEG ends
end

 Whenever the assembler encounters a symbolic name, it checks to see which segment
contains that symbol. In the program above, var1 appears in the DSEG1 segment and var2
appears in the DSEG2 segment. Remember, the 80x86 microprocessor doesn't know about
segments declared within your program, it can only access data in segments pointed at by
the cs, ds, es, ss, fs, and gs segment registers. The assume statement in this program tells
the assembler the ds register points at DSEG1 for the first part of the program and at
DSEG2 for the second part of the program.

When the assembler encounters an instruction of the form mov var1,0, the first thing it
does is determine var1's segment. It then compares this segment against the list of
assumptions the assembler makes for the segment registers. If you didn't declare var1 in
one of these segments, then the assembler generates an error claiming that the program
cannot access that variable. If the symbol (var1 in our example) appears in one of the cur-
rently assumed segments, then the assembler checks to see if it is the data segment. If so,
then the instruction is assembled as described in the appendices. If the symbol appears in

Directives and Pseudo Opcodes

Page 379

a segment other than the one that the assembler assumes ds points at, then the assembler
emits a segment override prefix byte, specifying the actual segment that contains the data.

In the example program above, MASM would assemble mov VAR1,0 without a seg-
ment prefix byte. MASM would assemble the first occurrence of the mov VAR2,0 instruc-
tion with an es: segment prefix byte since the assembler assumes es, rather than ds, is
pointing at segment DSEG2. MASM would assemble the second occurrence of this instruc-
tion without the es: segment prefix byte since the assembler, at that point in the source file,
assumes that ds points at DSEG2. Keep in mind that it is very easy to confuse the assem-
bler. Consider the following code:

CSEG segment para public 'CODE'
assume CS:CSEG, DS:DSEG1, ES:DSEG2
mov ax, seg DSEG1
mov ds, ax
 .
 .
 .

jmp SkipFixDS

assume DS:DSEG2

FixDS: mov ax, seg DSEG2
mov ds, ax

SkipFixDS:
 .
 .
 .

CSEG ends
end

Notice that this program jumps around the code that loads the ds register with the
segment value for DSEG2. This means that at label SkipFixDS the ds register contains a
pointer to DSEG1, not DSEG2. However, the assembler isn't bright enough to realize this
problem, so it blindly assumes that ds points at DSEG2 rather than DSEG1. This is a disas-
ter waiting to happen. Because the assembler assumes you're accessing variables in
DSEG2 while the ds register actually points at DSEG1, such accesses will reference mem-
ory locations in DSEG1 at the same offset as the variables accessed in DSEG2. This will
scramble the data in DSEG1 (or cause your program to read incorrect values for the vari-
ables assumed to be in segment DSEG2).

For beginning programmers, the best solution to the problem is to avoid using multi-
ple (data) segments within your programs as much as possible. Save the multiple seg-
ment accesses for the day when you’re prepared to deal with problems like this. As a
beginning assembly language programmer, simply use one code segment, one data seg-
ment, and one stack segment and leave the segment registers pointing at each of these
segments while your program is executing. The assume directive is quite complex and
can get you into a considerable amount of trouble if you misuse it. Better not to bother
with fancy uses of assume until you are quite comfortable with the whole idea of assembly
language programming and segmentation on the 80x86.

The nothing reserved word tells the assembler that you haven't the slightest idea where
a segment register is pointing. It also tells the assembler that you're not going to access
any data relative to that segment register unless you explicitly provide a segment prefix to
an address. A common programming convention is to place assume directives before all
procedures in a program. Since segment pointers to declared segments in a program
rarely change except at procedure entry and exit, this is the ideal place to put assume
directives:

Chapter 08

Page 380

assume ds:P1Dseg, cs:cseg, es:nothing
Procedure1 proc near

push ds ;Preserve DS
push ax ;Preserve AX
mov ax, P1Dseg ;Get pointer to P1Dseg into the
mov ds, ax ; ds register.
 .
 .
 .

pop ax ;Restore ax’s value.
pop ds ;Restore ds’ value.
ret

Procedure1 endp

The only problem with this code is that MASM still assumes that ds points at P1Dseg
when it encounters code after Procedure1. The best solution is to put a second assume
directive after the endp directive to tell MASM it doesn’t know anything about the value in
the ds register:

 .
 .
 .

ret
Procedure1 endp

assume ds:nothing

Although the next statement in the program will probably be yet another assume directive
giving the assembler some new assumptions about ds (at the beginning of the procedure
that follows the one above), it’s still a good idea to adopt this convention. If you fail to put
an assume directive before the next procedure in your source file, the assume ds:nothing
statement above will keep the assembler from assuming you can access variables in
P1Dseg.

Segment override prefixes always override any assumptions made by the assembler.
mov ax, cs:var1 always loads the ax register with the word at offset var1 within the current
code segment, regardless of where you've defined var1. The main purpose behind the seg-
ment override prefixes is handling indirect references. If you have an instruction of the
form mov ax,[bx] the assembler assumes that bx points into the data segment. If you really
need to access data in a different segment you can use a segment override, thusly,
mov ax, es:[bx].

In general, if you are going to use multiple data segments within your program, you
should use full segment:offset names for your variables. E.g., mov ax, DSEG1:I and
mov bx,DSEG2:J. This does not eliminate the need to load the segment registers or make
proper use of the assume directive, but it will make your program easier to read and help
MASM locate possible errors in your program.

The assume directive is actually quite useful for other things besides just setting the
default segment. You’ll see some more uses for this directive a little later in this chapter.

8.8.11 Combining Segments: The GROUP Directive

Most segments in a typical assembly language program are less than 64 Kilobytes
long. Indeed, most segments are much smaller than 64 Kilobytes in length. When MS-DOS
loads the program’s segments into memory, several of the segments may fall into a single
64K region of memory. In practice, you could combine these segments into a single seg-
ment in memory. This might possibly improve the efficiency of your code if it saves hav-
ing to reload segment registers during program execution.

So why not simply combine such segments in your assembly language code? Well, as
the next section points out, maintaining separate segments can help you structure your
programs better and help make them more modular. This modularity is very important in
your programs as they get more complex. As usual, improving the structure and modular-
ity of your programs may cause them to become less efficient. Fortunately, MASM pro-
vides a directive, group, that lets you treat two segments as the same physical segment
without abandoning the structure and modularity of your program.

Directives and Pseudo Opcodes

Page 381

The group directive lets you create a new segment name that encompasses the seg-
ments it groups together. For example, if you have two segments named “Module1Data”
and “Module2Data” that you wish to combine into a single physical segment, you could
use the group directive as follows:

ModuleData group Module1Data, Module2Data

The only restriction is that the end of the second module’s data must be no more than 64
kilobytes away from the start of the first module in memory. MASM and the linker will not
automatically combine these segments and place them together in memory. If there are
other segments between these two in memory, then the total of all such segments must be
less than 64K in length. To reduce this problem, you can use the class operand to the seg-
ment directive to tell the linker to combine the two segments in memory by using the
same class name:

ModuleData group Module1Data, Module2Data

Module1Data segment para public ‘MODULES’
 .
 .
 .

Module1Data ends
 .
 .
 .

Module2Data segment byte public ‘MODULES’
 .
 .
 .

Module2Data ends

With declarations like those above, you can use “ModuleData” anywhere MASM allows a
segment name, as the operand to a mov instruction, as an operand to the assume directive,
etc. The following example demonstrates the usage of the ModuleData segment name:

assume ds:ModuleData
Module1Proc proc near

push ds ;Preserve ds’ value.
push ax ;Preserve ax’s value.
mov ax, ModuleData ;Load ds with the segment

address
mov ds, ax ; of ModuleData.
 .
 .
 .

pop ax ;Restore ax’s and ds’ values.
pop ds
ret

Module1Proc endp
assume ds:nothing

Of course, using the group directive in this manner hasn’t really improved the code.
Indeed, by using a different name for the data segment, one could argue that using group
in this manner has actually obfuscated the code. However, suppose you had a code
sequence that needed to access variables in both the Module1Data and Module2Data seg-
ments. If these segments were physically and logically separate you would have to load
two segment registers with the addresses of these two segments in order to access their
data concurrently. This would cost you a segment override prefix on all the instructions
that access one of the segments. If you cannot spare an extra segment register, the situa-
tion will be even worse, you’ll have to constantly load new values into a single segment
register as you access data in the two segments. You can avoid this overhead by combin-
ing the two logical segments into a single physical segment and accessing them through
their group rather than individual segment names.

If you group two or more segments together, all you’re really doing is creating a
pseudo-segment that encompasses the segments appearing in the group directive’s oper-
and field. Grouping segments does not prevent you from accessing the individual seg-
ments in the grouping list. The following code is perfectly legal:

Chapter 08

Page 382

assume ds:Module1Data
mov ax, Module1Data
mov ds, ax
 .

< Code that accesses data in Module1Data >
 .
assume ds:Module2Data
mov ax, Module2Data
mov ds, ax
 .

< Code that accesses data in Module2Data >
 .
assume ds:ModuleData
mov ax, ModuleData
mov ds, ax
 .

< Code that accesses data in both Module1Data and Module2Data >
 .
 .
 .

When the assembler processes segments, it usually starts the location counter value
for a given segment at zero. Once you group a set of segments, however, an ambiguity
arises; grouping two segments causes MASM and the linker to concatenate the variables
of one or more segments to the end of the first segment in the group list. They accomplish
this by adjusting the offsets of all symbols in the concatenated segments as though they
were all symbols in the same segment. The ambiguity exists because MASM allows you to
reference a symbol in its segment or in the group segment. The symbol has a different off-
set depending on the choice of segment. To resolve the ambiguity, MASM uses the follow-
ing algorithm:

• If MASM doesn’t know that a segment register is pointing at the symbol’s
segment or a group containing that segment, MASM generates an error.

• If an assume directive associates the segment name with a segment regis-
ter but does not associate a segment register with the group name, then
MASM uses the offset of the symbol within its segment.

• If an assume directive associates the group name with a segment register
but does not associate a segment register with the symbol’s segment
name, MASM uses the offset of the symbol with the group.

• If an assume directive provides segment register association with both the
symbol’s segment and its group, MASM will pick the offset that would
not require a segment override prefix. For example, if the assume direc-
tive specifies that ds points at the group name and es points at the seg-
ment name, MASM will use the group offset if the default segment
register would be ds since this would not require MASM to emit a seg-
ment override prefix opcode. If either choice results in the emission of a
segment override prefix, MASM will choose the offset (and segment over-
ride prefix) associated with the symbol’s segment.

MASM uses the algorithm above if you specify a variable name without a segment
prefix. If you specify a segment register override prefix, then MASM may choose an arbi-
trary offset. Often, this turns out to be the group offset. So the following instruction
sequence, without an assume directive telling MASM that the BadOffset symbol is in seg1
may produce bad object code:

DataSegs group Data1, Data2, Data3
 .
 .
 .

Data2 segment
 .
 .
 .

BadOffset word ?
 .
 .
 .

Data2 ends
 .
 .
 .

Directives and Pseudo Opcodes

Page 383

assume ds:nothing, es:nothing, fs:nothing, gs:nothing
mov ax, Data2 ;Force ds to point at data2

despite
mov ds, ax ; the assume directive above.

mov ax, ds:BadOffset ;May use the offset from
DataSegs

; rather than Data2!

If you want to force the correct offset, use the variable name containing the complete seg-
ment:offset address form:

; To force the use of the offset within the DataSegs group use an instruction
; like the following:

mov ax, DataSegs:BadOffset

; To force the use of the offset within Data2, use:

mov ax, Data2:BadOffset

You must use extra care when working with groups within your assembly language
programs. If you force MASM to use an offset within some particular segment (or group)
and the segment register is not pointing at that particular segment or group, MASM may
not generate an error message and the program will not execute correctly. Reading the off-
sets MASM prints in the assembly listing will not help you find this error. MASM always
displays the offsets within the symbol’s segment in the assembly listing. The only way to
really detect that MASM and the linker are using bad offsets is to get into a debugger like
CodeView and look at the actual machine code bytes produced by the linker and loader.

8.8.12 Why Even Bother With Segments?

After reading the previous sections, you’re probably wondering what possible good
could come from using segments in your programs. To be perfectly frank, if you use the
SHELL.ASM file as a skeleton for the assembly language programs you write, you can get
by quite easily without ever worrying about segments, groups, segment override prefixes,
and full segment:offset names. As a beginning assembly language programmer, it’s proba-
bly a good idea to ignore much of this discussion on segmentation until you are much
more comfortable with 80x86 assembly language programming. However, there are three
reasons you’ll want to learn more about segmentation if you continue writing assembly
language programs for any length of time: the real-mode 64K segment limitation, pro-
gram modularity, and interfacing with high level languages.

When operating in real mode, segments can be a maximum of 64 kilobytes long. If
you need to access more than 64K of data or code in your programs, you will need to use
more than one segment. This fact, more than any other reason, has dragged programmers
(kicking and screaming) into the world of segmentation. Unfortunately, this is as far as
many programmers get with segmentation. They rarely learn more than just enough
about segmentation to write a program that accesses more than 64K of data. As a result,
when a segmentation problem occurs because they don’t fully understand the concept,
they blame segmentation for their problems and they avoid using segmentation as much
as possible.

This is too bad because segmentation is a powerful memory management tool that
lets you organize your programs into logical entities (segments) that are, in theory, inde-
pendent of one another. The field of software engineering studies how to write correct,
large programs. Modularity and independence are two of the primary tools software engi-
neers use to write large programs that are correct and easy to maintain. The 80x86 family
provides, in hardware, the tools to implement segmentation. On other processors, seg-
mentation is enforced strictly by software. As a result, it is easier to work with segments
on the 80x86 processors.

Chapter 08

Page 384

Although this text does not deal with protected mode programming, it is worth point-
ing out that when you operate in protected mode on 80286 and later processors, the 80x86
hardware can actually prevent one module from accessing another module’s data (indeed,
the term “protected mode” means that segments are protected from illegal access). Many
debuggers available for MS-DOS operate in protected mode allowing you to catch array
and segment bounds violations. Soft-ICE and Bounds Checker from NuMega are exam-
ples of such products. Most people who have worked with segmentation in a protected
mode environment (e.g., OS/2 or Windows) appreciate the benefits that segmentation
offers.

Another reason for studying segmentation on the 80x86 is because you might want to
write an assembly language function that a high level language program can call. Since
the HLL compiler makes certain assumptions about the organization of segments in mem-
ory, you will need to know a little bit about segmentation in order to write such code.

8.9 The END Directive

The end directive terminates an assembly language source file. In addition to telling
MASM that it has reached the end of an assembly language source file, the end directive’s
optional operand tells MS-DOS where to transfer control when the program begins execu-
tion; that is, you specify the name of the main procedure as an operand to the end direc-
tive. If the end directive’s operand is not present, MS-DOS will begin execution starting at
the first byte in the .exe file. Since it is often inconvenient to guarantee that your main pro-
gram begins with the first byte of object code in the .exe file, most programs specify a
starting location as the operand to the end directive. If you are using the SHELL.ASM file
as a skeleton for your assembly language programs, you will notice that the end directive
already specifies the procedure main as the starting point for the program.

If you are using separate assembly and you’re linking together several different object
code files (see “Managing Large Programs” on page 425), only one module can have a
main program. Likewise, only one module should specify the starting location of the pro-
gram. If you specify more than one starting location, you will confuse the linker and it will
generate an error.

8.10 Variables

Global variable declarations use the byte/sbyte/db, word/sword/dw, dword/sdword/dd,
qword/dq, and tbyte/dt pseudo-opcodes. Although you can place your variables in any seg-
ment (including the code segment), most beginning assembly language programmers
place all their global variables in a single data segment..

A typical variable declaration takes the form:

varname byte initial_value

Varname is the name of the variable you're declaring and initial_value is the initial value you
want that variable to have when the program begins execution. “?” is a special initial
value. It means that you don't want to give a variable an initial value. When DOS loads a
program containing such a variable into memory, it does not initialize this variable to any
particular value.

The declaration above reserves storage for a single byte. This could be changed to any
other variable type by simply changing the byte mnemonic to some other appropriate
pseudo-opcode.

For the most part, this text will assume that you declare all variables in a data segment,
that is, a segment that the 80x86's ds register will point at. In particular, most of the pro-
grams herein will place all variables in the DSEG segment (CSEG is for code, DSEG is for
data, and SSEG is for the stack). See the SHELL.ASM program in Chapter Four for more
details on these segments.

Directives and Pseudo Opcodes

Page 385

Since Chapter Five covers the declaration of variables, data types, structures, arrays,
and pointers in depth, this chapter will not waste any more time discussing this subject.
Refer to Chapter Five for more details.

8.11 Label Types

One unusual feature of Intel syntax assemblers (like MASM) is that they are strongly
typed. A strongly typed assembler associates a certain type with symbols declared appear-
ing in the source file and will generate a warning or an error message if you attempt to use
that symbol in a context that doesn't allow its particular type. Although unusual in an
assembler, most high level languages apply certain typing rules to symbols declared in the
source file. Pascal, of course, is famous for being a strongly typed language. You cannot,
in Pascal, assign a string to a numeric variable or attempt to assign an integer value to a
procedure label. Intel, in designing the syntax for 8086 assembly language, decided that
all the reasons for using a strongly typed language apply to assembly language as well as
Pascal. Therefore, standard Intel syntax 80x86 assemblers, like MASM, impose certain
type restrictions on the use of symbols within your assembly language programs.

8.11.1 How to Give a Symbol a Particular Type

Symbols, in an 80x86 assembly language program, may be one of eight different prim-
itive types: byte, word, dword, qword, tbyte, near, far, and abs (constant)10. Anytime you
define a label with the byte, word, dword, qword, or tbyte pseudo-opcodes, MASM associates
the type of that pseudo-opcode with the label. For example, the following variable decla-
ration will create a symbol of type byte:

BVar byte ?

Likewise, the following defines a dword symbol:

DWVar dword ?

Variable types are not limited to the primitive types built into MASM. If you create
your own types using the typedef or struct directives MASM will associate those types with
any associated variable declarations.

You can define near symbols (also known as statement labels) in a couple of different
ways. First, all procedure symbols declared with the proc directive (with either a blank
operand field11 or near in the operand field) are near symbols. Statement labels are also
near symbols. A statement label takes the following form:

label: instr

Instr represents an 80x86 instruction12. Note that a colon must follow the symbol. It is not
part of the symbol, the colon informs the assembler that this symbol is a statement label
and should be treated as a near typed symbol.

Statement labels are often the targets of jump and loop instructions. For example,
consider the following code sequence:

mov cx, 25
Loop1: mov ax, cx

call PrintInteger
loop Loop1

10. MASM also supports an FWORD type. FWORD is for programmers working in 32-bit protected mode. This
text will not consider that type.
11. Note: if you are using the simplified directives, a blank operand field might not necessarily imply that the pro-
cedure is near. If your program does not contain a “.MODEL” directive, however, blank operand fields imply a
near type.
12. The mnemonic “instr” is optional. You may also place a statement label on a line by itself. The assembler
assigns the location counter of the next instruction in the program to the symbol.

Chapter 08

Page 386

The loop instruction decrements the cx register and transfers control to the instruction
labelled by Loop1 until cx becomes zero.

Inside a procedure, statement labels are local. That is, the scope of statement labels
inside a procedure are visible only to code inside that procedure. If you want to make a
symbol global to a procedure, place two colons after the symbol name. In the example
above, if you needed to refer to Loop1 outside of the enclosing procedure, you would use
the code:

mov cx, 25
Loop1:: mov ax, cx

call PrintInteger
loop Loop1

Generally, far symbols are the targets of jump and call instructions. The most common
method programmers use to create a far label is to place far in the operand field of a proc
directive. Symbols that are simply constants are normally defined with the equ directive.
You can also declare symbols with different types using the equ and extrn/extern/externdef
directives. An explanation of the extrn directives appears in the section “Managing Large
Programs” on page 425.

If you declare a numeric constant using an equate, MASM assigns the type abs (abso-
lute, or constant) to the system. Text and string equates are given the type text. You can
also assign an arbitrary type to a symbol using the equ directive, see “Type Operators” on
page 392 for more details.

8.11.2 Label Values

Whenever you define a label using a directive or pseudo-opcode, MASM gives it a
type and a value. The value MASM gives the label is usually the current location counter
value. If you define the symbol with an equate the equate’s operand usually specifies the
symbol’s value. When encountering the label in an operand field, as with the loop instruc-
tion above, MASM substitutes the label’s value for the label.

8.11.3 Type Conflicts

Since the 80x86 supports strongly typed symbols, the next question to ask is “What
are they used for?” In a nutshell, strongly typed symbols can help verify proper operation
of your assembly language programs. Consider the following code sections:

DSEG segment public 'DATA'
 .
 .
 .

I byte ?
 .
 .
 .

DSEG ends

CSEG segment public 'CODE'
 .
 .
 .

mov ax, I
 .
 .
 .

CSEG ends
end

The mov instruction in this example is attempting to load the ax register (16 bits) from
a byte sized variable. Now the 80x86 microprocessor is perfectly capable of this operation.
It would load the al register from the memory location associated with I and load the ah
register from the next successive memory location (which is probably the L.O. byte of
some other variable). However, this probably wasn't the original intent. The person who

Directives and Pseudo Opcodes

Page 387

wrote this code probably forgot that I is a byte sized variable and assumed that it was a
word variable – which is definitely an error in the logic of the program.

MASM would never allow an instruction like the one above to be assembled without
generating a diagnostic message. This can help you find errors in your programs, particu-
larly difficult-to-find errors. On occasion, advanced assembly language programmers may
want to execute a statement like the one above. MASM provides certain coercion opera-
tors that bypass MASM's safety mechanisms and allow illegal operations (see “Coercion”
on page 390).

8.12 Address Expressions

An address expression is an algebraic expression that produces a numeric result that
MASM merges into the displacement field of an instruction. An integer constant is proba-
bly the simplest example of an address expression. The assembler simply substitutes the
value of the numeric constant for the specified operand. For example, the following
instruction fills the immediate data fields of the mov instruction with zeros:

mov ax, 0

Another simple form of an addressing mode is a symbol. Upon encountering a sym-
bol, MASM substitutes the value of that symbol. For example, the following two state-
ments emit the same object code as the instruction above:

Value equ 0
mov ax, Value

An address expression, however, can be much more complex than this. You can use vari-
ous arithmetic and logical operators to modify the basic value of some symbols or con-
stants.

Keep in mind that MASM computes address expressions during assembly, not at run
time. For example, the following instruction does not load ax from location Var and add
one to it:

mov ax, Var1+1

Instead, this instruction loads the al register with the byte stored at the address of Var1
plus one and then loads the ah register with the byte stored at the address of Var1 plus
two.

Beginning assembly language programmers often confuse computations done at
assembly time with those done at run time. Take extra care to remember that MASM com-
putes all address expressions at assembly time!

8.12.1 Symbol Types and Addressing Modes

Consider the following instruction:

jmp Location

Depending on how the label Location is defined, this jmp instruction will perform one
of several different operations. If you'll look back at the chapter on the 80x86 instruction
set, you'll notice that the jmp instruction takes several forms. As a recap, they are

jmp label (short)
jmp label (near)
jmp label (far)
jmp reg (indirect near, through register)
jmp mem/reg (indirect near, through memory)
jmp mem/reg (indirect far, thorugh memory)

Notice that MASM uses the same mnemonic (jmp) for each of these instructions; how
does it tell them apart? The secret lies with the operand. If the operand is a statement
label within the current segment, the assembler selects one of the first two forms depend-

Chapter 08

Page 388

ing on the distance to the target instruction. If the operand is a statement label within a
different segment, then the assembler selects jmp (far) label. If the operand following the
jmp instruction is a register, then MASM uses the indirect near jmp and the program jumps
to the address in the register. If a memory location is selected, the assembler uses one of
the following jumps:

• NEAR if the variable was declared with word/sword/dw
• FAR if the variable was declared with dword/sdword/dd

An error results if you've used byte/sbyte/db, qword/dq, or tbyte/dt or some other type.

If you've specified an indirect address, e.g., jmp [bx], the assembler will generate an
error because it cannot determine if bx is pointing at a word or a dword variable. For
details on how you specify the size, see the section on coercion in this chapter.

8.12.2 Arithmetic and Logical Operators

MASM recognizes several arithmetic and logical operators. The following tables pro-
vide a list of such operators:

Table 36: Arithmetic Operators

Operator Syntax Description

+ +expr Positive (unary)

- -expr Negation (unary)

+ expr + expr Addition

- expr - expr Subtraction

* expr * expr Multiplication

/ expr / expr Division

MOD expr MOD expr Modulo (remainder)

[] expr [expr] Addition (index operator)

Table 37: Logical Operators

Operator Syntax Description

SHR expr SHR expr Shift right

SHL expr SHL expr Shift left

NOT NOT expr Logical (bit by bit) NOT

AND expr AND expr Logical AND

OR expr OR expr Logical OR

XOR expr XOR expr Logical XOR

Table 38: Relational Operators

Operator Syntax Description

EQ expr EQ expr True (0FFh) if equal, false (0) otherwise

NE expr NE expr True (0FFh) if not equal, false (0) otherwise

LT expr LT expr True (0FFh) if less, false (0) otherwise

LE expr LE expr True (0FFh) if less or equal, false (0) otherwise

GT expr GT expr True (0FFh) if greater, false (0) otherwise

GE expr GE expr True (0FFh) if greater or equal, false (0) otherwise

Directives and Pseudo Opcodes

Page 389

You must not confuse these operators with 80x86 instructions! The addition operator
adds two values together, their sum becomes an operand to an instruction. This addition
is performed when assembling the program, not at run time. If you need to perform an
addition at execution time, use the add or adc instructions.

You're probably wondering “What are these operators used for?” The truth is, not
much. The addition operator gets used quite a bit, the subtraction somewhat, the compar-
isons once in a while, and the rest even less. Since addition and subtraction are the only
operators beginning assembly language programmers regularly employ, this discussion
considers only those two operators and brings up the others as required throughout this
text.

The addition operator takes two forms: expr+expr or expr[expr]. For example, the fol-
lowing instruction loads the accumulator, not from memory location COUNT, but from the
very next location in memory:

mov al, COUNT+1

The assembler, upon encountering this statement, will compute the sum of COUNT’s
address plus one. The resulting value is the memory address for this instruction. As you
may recall, the mov al, memory instruction is three bytes long and takes the form:

Opcode | L. O. Displacement Byte | H. O. Displacement Byte

The two displacement bytes of this instruction contain the sum COUNT+1.

The expr[expr] form of the addition operation is for accessing elements of arrays. If
AryData is a symbol that represents the address of the first element of an array, AryData[5]
represents the address of the fifth byte into AryData. The expression AryData+5 produces
the same result, and either could be used interchangeably, however, for arrays the
expr[expr] form is a little more self documenting. One trap to avoid: expr1[expr2][expr3]
does not automatically index (properly) into a two dimensional array for you. This sim-
ply computes the sum expr1+expr2+expr3.

The subtraction operator works just like the addition operator, except it computes the
difference rather than the sum. This operator will become very important when we deal
with local variables in Chapter 11.

Take care when using multiple symbols in an address expression. MASM restricts the
operations you can perform on symbols to addition and subtraction and only allows the
following forms:

Expression: Resulting type:

reloc + const Reloc, at address specified.

reloc - const Reloc, at address specified.

reloc - reloc Constant whose value is the number of bytes between
the first and second operands. Both variables must
physically appear in the same segment in the
current source file.

Reloc stands for relocatable symbol or expression. This can be a variable name, a statement
label, a procedure name, or any other symbol associated with a memory location in the
program. It could also be an expression that produces a relocatable result. MASM does not
allow any operations other than addition and subtraction on expressions whose resulting
type is relocatable. You cannot, for example, compute the product of two relocatable sym-
bols.

The first two forms above are very common in assembly language programs. Such an
address expression will often consist of a single relocatable symbol and a single constant
(e.g., “var + 1”). You won’t use the third form very often, but it is very useful once in a
while. You can use this form of an address expression to compute the distance, in bytes,
between two points in your program. The procsize symbol in the following code, for exam-
ple, computes the size of Proc1:

Chapter 08

Page 390

Proc1 proc near
push ax
push bx
push cx
mov cx, 10
lea bx, SomeArray
mov ax, 0

ClrArray: mov [bx], ax
add bx, 2
loop ClrArray
pop cx
pop bx
pop ax
ret

Proc1 endp

procsize = $ - Proc1

“$” is a special symbol MASM uses to denote the current offset within the segment (i.e.,
the location counter). It is a relocatable symbol, as is Proc1, so the equate above computes
the difference between the offset at the start of Proc1 and the end of Proc1. This is the
length of the Proc1 procedure, in bytes.

The operands to the operators other than addition and subtraction must be constants
or an expression yielding a constant (e.g., “$-Proc1” above produces a constant value).
You’ll mainly use these operators in macros and with the conditional assembly directives.

8.12.3 Coercion

Consider the following program segment:

DSEG segment public 'DATA'
I byte ?
J byte ?
DSEG ends

CSEG segment
 .
 .
 .
mov al, I
mov ah, J
 .
 .
 .

CSEG ends

Since I and J are adjacent, there is no need to use two mov instructions to load al and ah, a
simple mov ax, I instruction would do the same thing. Unfortunately, the assembler will
balk at mov ax, I since I is a byte. The assembler will complain if you attempt to treat it as a
word. As you can see, however, there are times when you'd probably like to treat a byte
variable as a word (or treat a word as a byte or double word, or treat a double word as a
something else).

Temporarily changing the type of a label for some particular occurrence is coercion.
Expressions can be coerced to a different type using the MASM ptr operator. You use the
ptr operator as follows:

 type PTR expression

Type is any of byte, word, dword, tbyte, near, far, or other type and expression is any general
expression that is the address of some object. The coercion operator returns an expression
with the same value as expression, but with the type specified by type. To handle the above
problem you'd use the assembly language instruction:

mov ax, word ptr I

Directives and Pseudo Opcodes

Page 391

This instructs the assembler to emit the code that will load the ax register with the word at
address I. This will, of course, load al with I and ah with J.

Code that uses double word values often makes extensive use of the coercion opera-
tor. Since lds and les are the only 32-bit instructions on pre-80386 processors, you cannot
(without coercion) store an integer value into a 32-bit variable using the mov instruction
on those earlier CPUs. If you've declared DBL using the dword pseudo-opcode, then an
instruction of the form mov DBL,ax will generate an error because it's attempting to move a
16 bit quantity into a 32 bit variable. Storing values into a double word variable requires
the use of the ptr operator. The following code demonstrates how to store the ds and bx
registers into the double word variable DBL:

mov word ptr DBL, bx
mov word ptr DBL+2, ds

You will use this technique often as various UCR Standard Library and MS-DOS calls
return a double word value in a pair of registers.

Warning: If you coerce a jmp instruction to perform a far jump to a near label, other
than performance degradation (the far jmp takes longer to execute), your program will
work fine. If you coerce a call to perform a far call to a near subroutine, you're headed for
trouble. Remember, far calls push the cs register onto the stack (with the return address).
When executing a near ret instruction, the old cs value will not be popped off the stack,
leaving junk on the stack. The very next pop or ret instruction will not operate properly
since it will pop the cs value off the stack rather than the original value pushed onto the
stack13.

 Expression coercion can come in handy at times. Other times it is essential. How-
ever, you shouldn't get carried away with coercion since data type checking is a powerful
debugging tool built in to MASM. By using coercion, you override this protection pro-
vided by the assembler. Therefore, always take care when overriding symbol types with
the ptr operator.

One place where you'll need coercion is with the mov memory, immediate instruction.
Consider the following instruction:

mov [bx], 5

Unfortunately, the assembler has no way of telling whether bx points at a byte, word, or
double word item in memory14. The value of the immediate operand isn't of any use.
Even though five is a byte quantity, this instruction might be storing the value 0005h into a
word variable, or 00000005 into a double word variable. If you attempt to assemble this
statement, the assembler will generate an error to the effect that you must specify the size
of the memory operand. You can easily accomplish this using the byte ptr, word ptr, and
dword ptr operators as follows:

mov byte ptr [bx], 5 ;For a byte variable
mov word ptr [bx], 5 ;For a word variable
mov dword ptr [bx], 5 ;For a dword variable

Lazy programmers might complain that typing strings like “word ptr” or “far ptr” is too
much work. Wouldn’t it have been nice had Intel chosen a single character symbol rather
than these long phrases? Well, quit complaining and remember the textequ directive. With
the equate directive you can substitute a long string like “word ptr” for a short symbol.
You’ll find equates like the following in many programs, including several in this text:

byp textequ <byte ptr> ;Remember, “bp” is a reserved symbol!
wp textequ <word ptr>
dp textequ <dword ptr>
np textequ <near ptr>
fp textequ <far ptr>

With equates like the above, you can use statements like the following:

13. The situation when you force a near call to a far procedure is even worse. See the exercises for more details.
14. Actually, you can use the assume directive to tell MASM what bx is pointing at. See the MASM reference man-
uals for details.

Chapter 08

Page 392

mov byp [bx], 5
mov ax, wp I
mov wp DBL, bx
mov wp DBL+2, ds

8.12.4 Type Operators

The “xxxx ptr” coercion operator is an example of a type operator. MASM expressions
possess two major attributes: a value and a type. The arithmetic, logical, and relational
operators change an expression's value. The type operators change its type. The previous
section demonstrated how the ptr operator could change an expression's type. There are
several additional type operators as well.

Table 39: Type Operators

Operator Syntax Description

PTR byte ptr expr
word ptr expr
dword ptr expr
qword ptr expr
tbyte ptr expr
near ptr expr
far ptr expr

Coerce expr to point at a byte.
Coerce expr to point at a word.
Coerce expr to point at a dword.
Coerce expr to point at a qword.
Coerce expr to point at a tbyte.
Coerce expr to a near value.
Coerce expr to a far value.

short short expr expr must be within ±128 bytes of the current jmp
instruction (typically a JMP instruction). This operator
forces the JMP instruction to be two bytes long (if pos-
sible).

this this type Returns an expression of the specified type whose
value is the current location counter.

seg seg label Returns the segment address portion of label.

offset offset label Returns the offset address portion of label.

.type type label Returns a byte that indicates whether this symbol is a
variable, statement label, or structure name. Super-
ceded by opattr.

opattr opattr label Returns a 16 bit value that gives information about
label.

length length variable Returns the number of array elements for a single
dimension array. If a multi-dimension array, this opera-
tor returns the number of elements for the first dimen-
sion.

lengthof lengthof variable Returns the number of items in array variable.

type type symbol Returns a expression whose type is the same as symbol
and whose value is the size, in bytes, for the specified
symbol.

size size variable Returns the number of bytes allocated for single
dimension array variable. Useless for multi-dimension
arrays. Superceded by sizeof.

sizeof sizeof variable Returns the size, in bytes, of array variable.

low low expr Returns the L.O. byte of expr.

lowword lowword expr Returns the L.O. word of expr.

high high expr Returns the H.O. byte of expr.

highword highword expr Returns the H.O. word of expr.

Directives and Pseudo Opcodes

Page 393

The short operator works exclusively with the jmp instruction. Remember, there are
two jmp direct near instructions, one that has a range of 128 bytes around the jmp, one that
has a range of 32,768 bytes around the current instruction. MASM will automatically gen-
erate a short jump if the target address is up to 128 bytes before the current instruction.
This operator is mainly present for compatibility with old MASM (pre-6.0) code.

The this operator forms an expression with the specified type whose value is the cur-
rent location counter. The instruction mov bx, this word, for example, will load the bx regis-
ter with the value 8B1Eh, the opcode for mov bx, memory. The address this word is the
address of the opcode for this very instruction! You mostly use the this operator with the
equ directive to give a symbol some type other than constant. For example, consider the
following statement:

HERE equ this near

This statement assigns the current location counter value to HERE and sets the type of
HERE to near. This, of course, could have been done much easier by simply placing the
label HERE: on the line by itself. However, the this operator with the equ directive does
have some useful applications, consider the following:

WArray equ this word
BArray byte 200 dup (?)

In this example the symbol BArray is of type byte. Therefore, instructions accessing BArray
must contain byte operands throughout. MASM would flag a mov ax, BArray+8 instruction
as an error. However, using the symbol WArray lets you access the same exact memory
locations (since WArray has the value of the location counter immediately before encoun-
tering the byte pseudo-opcode) so mov ax,WArray+8 accesses location BArray+8. Note that
the following two instructions are identical:

mov ax, word ptr BArray+8
mov ax, WArray+8

The seg operator does two things. First, it extracts the segment portion of the speci-
fied address, second, it converts the type of the specified expression from address to con-
stant. An instruction of the form mov ax, seg symbol always loads the accumulator with
the constant corresponding to the segment portion of the address of symbol. If the symbol
is the name of a segment, MASM will automatically substitute the paragraph address of
the segment for the name. However, it is perfectly legal to use the seg operator as well.
The following two statements are identical if dseg is the name of a segment:

mov ax, dseg
mov ax, seg dseg

Offset works like seg, except it returns the offset portion of the specified expression
rather than the segment portion. If VAR1 is a word variable, mov ax, VAR1 will always
load the two bytes at the address specified by VAR1 into the ax register. The
mov ax, offset VAR1 instruction, on the other hand, loads the offset (address) of VAR1 into
the ax register. Note that you can use the lea instruction or the mov instruction with the off-
set operator to load the address of a scalar variable into a 16 bit register. The following two
instructions both load bx with the address of variable J:

mov bx, offset J
lea bx, J

The lea instruction is more flexible since you can specify any memory addressing mode,
the offset operator only allows a single symbol (i.e., displacement only addressing). Most
programmers use the mov form for scalar variables and the lea instructor for other
addressing modes. This is because the mov instruction was faster on earlier processors.

One very common use for the seg and offset operators is to initialize a segment and
pointer register with the segmented address of some object. For example, to load es:di
with the address of SomeVar, you could use the following code:

mov di, seg SomeVar
mov es, di
mov di, offset SomeVar

Chapter 08

Page 394

Since you cannot load a constant directly into a segment register, the code above copies
the segment portion of the address into di and then copies di into es before copying the off-
set into di. This code uses the di register to copy the segment portion of the address into es
so that it will affect as few other registers as possible.

Opattr returns a 16 bit value providing specific information about the expression that
follows it. The .type operator is an older version of opattr that returns the L.O. eight bits of
this value. Each bit in the value of these operators has the following meaning:

The language bits are for programmers writing code that interfaces with high level lan-
guages like C++ or Pascal. Such programs use the simplified segment directives and
MASM’s HLL features.

You would normally use these values with MASM’s conditional assembly directives
and macros. This allows you to generate different instruction sequences depending on the
type of a macro parameter or the current assembly configuration. For more details, see
“Conditional Assembly” on page 397 and “Macros” on page 400.

The size, sizeof, length, and lengthof operators compute the sizes of variables (including
arrays) and return that size and their value. You shouldn’t normally use size and length.
The sizeof and lengthof operators have superceded these operators. Size and length do not
always return reasonable values for arbitrary operands. MASM 6.x includes them to
remain compatible with older versions of the assembler. However, you will see an exam-
ple later in this chapter where you can use these operators.

The sizeof variable operator returns the number of bytes directly allocated to the speci-
fied variable. The following examples illustrate the point:

a1 byte ? ;SIZEOF(a1) = 1
a2 word ? ;SIZEOF(a2) = 2
a4 dword ? ;SIZEOF(a4) = 4
a8 real8 ? ;SIZEOF(a8) = 8
ary0 byte 10 dup (0) ;SIZEOF(ary0) = 10
ary1 word 10 dup (10 dup (0)) ;SIZEOF(ary1) = 200

You can also use the sizeof operator to compute the size, in bytes, of a structure or other
data type. This is very useful for computing an index into an array using the formula from
Chapter Four:

Element_Address := base_address + index*Element_Size

You may obtain the element size of an array or structure using the sizeof operator. So if
you have an array of structures, you can compute an index into the array as follows:

Table 40: OPATTR/.TYPE Return Value

Bit(s) Meaning

0 References a label in the code segment if set.

1 References a memory variable or relocatable data object if set.

2 Is an immediate (absolute/constant) value if set.

3 Uses direct memory addressing if set.

4 Is a register name, if set.

5 References no undefined symbols and there is no error, if set.

6 Is an SS: relative reference, if set.

7 References an external name.

8-10 000 - no language type
001 - C/C++ language type
010 - SYSCALL language type
011 - STDCALL language type
100 - Pascal language type
101 - FORTRAN language type
110 - BASIC language type

Directives and Pseudo Opcodes

Page 395

.286 ;Allow 80286 instructions.
s struct

<some number of fields>
s ends

 .
 .
 .

array s 16 dup ({}) ;An array of 16 “s” elements

 .
 .
 .

imul bx, I, sizeof s ;Compute BX := I * elementsize
mov al, array[bx].fieldname

You can also apply the sizeof operator to other data types to obtain their size in bytes.
For example, sizeof byte returns 1, sizeof word returns two, and sizeof dword returns 4. Of
course, applying this operator to MASM’s built-in data types is questionable since the size
of those objects is fixed. However, if you create your own data types using typedef, it
makes perfect sense to compute the size of the object using the sizeof operator:

integer typedef word
Array integer 16 dup (?)

 .
 .
 .

imul bx, bx, sizeof integer
 .
 .
 .

In the code above, sizeof integer would return two, just like sizeof word. However, if you
change the typedef statement so that integer is a dword rather than a word, the sizeof integer
operand would automatically change its value to four to reflect the new size of an integer.

The lengthof operator returns the total number of elements in an array. For the Array
variable above, lengthof Array would return 16. If you have a two dimensional array,
lengthof returns the total number of elements in that array.

When you use the lengthof and sizeof operators with arrays, you must keep in mind
that it is possible for you to declare arrays in ways that MASM can misinterpret. For
example, the following statements all declare arrays containing eight words:

A1 word 8 dup (?)

A2 word 1, 2, 3, 4, 5, 6, 7, 8

; Note:the “\” is a “line continuation” symbol. It tells MASM to append
; the next line to the end of the current line.

A3 word 1, 2, 3, 4, \
5, 6, 7, 8

A4 word 1, 2, 3, 4
word 5, 6, 7, 8

Applying the sizeof and lengthof operators to A1, A2, and A3 produces sixteen (sizeof)
and eight (lengthof). However, sizeof(A4) produces eight and lengthof(A4) produces four.
This happens because MASM thinks that the arrays begin and end with a single data dec-
laration. Although the A4 declaration sets aside eight consecutive words, just like the
other three declarations above, MASM thinks that the two word directives declare two
separate arrays rather than a single array. So if you want to initialize the elements of a
large array or a multidimensional array and you also want to be able to apply the lengthof
and sizeof operators to that array, you should use A3’s form of declaration rather than A4’s.

The type operator returns a constant that is the number of bytes of the specified oper-
and. For example, type(word) returns the value two. This revelation, by itself, isn’t particu-
larly interesting since the size and sizeof operators also return this value. However, when
you use the type operator with the comparison operators (eq, ne, le, lt, gt, and ge), the
comparison produces a true result only if the types of the operands are the same. Consider
the following definitions:

Chapter 08

Page 396

Integer typedef word
J word ?
K sword ?
L integer ?
M word ?

byte type (J) eq word ;value = 0FFh
byte type (J) eq sword ;value = 0
byte type (J) eq type (L) ;value = 0FFh
byte type (J) eq type (M) ;value = 0FFh
byte type (L) eq integer ;value = 0FFh
byte type (K) eq dword ;value = 0

Since the code above typedef’d Integer to word, MASM treats integers and words as the
same type. Note that with the exception of the last example above, the value on either side
of the eq operator is two. Therefore, when using the comparison operations with the type
operator, MASM compares more than just the value. Therefore, type and sizeof are not syn-
onymous. E.g.,

byte type (J) eq type (K) ;value = 0
byte (sizeof J) equ (sizeof K) ;value = 0FFh

The type operator is especially useful when using MASM’s conditional assembly direc-
tives. See “Conditional Assembly” on page 397 for more details.

The examples above also demonstrate another interesting MASM feature. If you use a
type name within an expression, MASM treats it as though you’d entered “type(name)”
where name is a symbol of the given type. In particular, specifying a type name returns the
size, in bytes, of an object of that type. Consider the following examples:

Integer typedef word
s struct
d dword ?
w word ?
b byte ?
s ends

byte word ;value = 2
byte sword ;value = 2
byte byte ;value = 1
byte dword ;value = 4
byte s ;value = 7
byte word eq word ;value = 0FFh
byte word eq sword ;value = 0
byte b eq dword ;value = 0
byte s eq byte ;value = 0
byte word eq Integer ;value = 0FFh

The high and low operators, like offset and seg, change the type of expression from
whatever it was to a constant. These operators also affect the value of the expression –
they decompose it into a high order byte and a low order byte. The high operator extracts
bits eight through fifteen of the expression, the low operator extracts and returns bits zero
through seven. Highword and lowword extract the H.O. and L.O. 16 bits of an expression (see
Figure 8.7).

You can extract bits 16-23 and 24-31 using expressions of the form low(highword(expr))
and high(highword(expr))15, respectively.

8.12.5 Operator Precedence

Although you will rarely need to use a complex address expression employing more
than two operands and a single operator, the need does arise on occasion. MASM sup-
ports a simple operator precedence convention based on the following rules:

• MASM executes operators of a higher precedence first.

15. The parentheses make this expression more readable, they are not required.

Directives and Pseudo Opcodes

Page 397

• Operators of an equal precedence are left associative and evaluate from
left to right.

• Parentheses override the normal precedence.

Parentheses should only surround expressions. Some operators, like sizeof and
lengthof, require type names, not expressions. They do not allow you to put parentheses
around the name. Therefore, “(sizeof X)” is legal, but “sizeof(X)” is not. Keep this in mind
when using parentheses to override operator precedence in an expression. If MASM gen-
erates an error, you may need to rearrange the parentheses in your expression.

As is true for expressions in a high level language, it is a good idea to always use
parentheses to explicitly state the precedence in all complex address expressions (complex
meaning that the expression has more than one operator). This generally makes the
expression more readable and helps avoid precedence related bugs.

8.13 Conditional Assembly

MASM provides a very powerful conditional assembly facility. With conditional
assembly, you can decide, based on certain conditions, whether MASM will assemble the
code. There are several conditional assembly directives, the following section covers most
of them.

Table 41: Operator Precedence

Precedence Operators

(Highest)

1 length, lengthof, size, sizeof, (), [], < >

2 . (structure field name operator)

3 CS: DS: ES: FS: GS: SS: (Segment override prefixes)

4 ptr offset set type opattr this

5 high, low, highword, lowword

6 + - (unary)

7 * / mod shl shr

8 + - (binary)

9 eq ne lt le gt ge

10 not

11 and

12 or xor

13 short .type

(Lowest)

Figure 8.7 HIGHWORD, LOWWORD, HIGH, and LOW Operators

31 23 15 7 0

LOW extracts these
eight bits from an
expression.

HIGH extracts these
eight bits from an
expression.

LOWWORD extracts these 16 bits
from an expression.

HIGHWORD extracts these 16 bits
from an expression.

Chapter 08

Page 398

It is important that you realize that these directives evaluate their expressions at
assembly time, not at run time. The if conditional assembly directive is not the same as a
Pascal or C “if” statement. If you are familiar with C, the #ifdef directive in C is roughly
equivalent to some of MASM’s conditional assembly directives.

MASM’s conditional assembly directives are important because they let you generate
different object code for different operating environments and different situations. For
example, suppose you want to write a program that will run on all machines but you
would like to optimize the code for 80386 and later processors. Obviously, you cannot exe-
cute 80386 code on an 8086 processor, so how can you solve this problem?

One possible solution is to determine the processor type at run time and execute dif-
ferent sections of code in the program depending on the presence or absence of a 386 or
later CPU. The problem with this approach is that your program needs to contain two
code sequences – an optimal 80386 sequence and a compatible 8086 sequence. On any
given system the CPU will only execute one of these code sequences in the program, so
the other sequence will be wasting memory and may have adverse affects on any cache in
the system.

A second possibility is to write two versions of the code, one that uses only 8086
instructions and one that uses the full 80386 instruction set. During installation, the user
(or the installation program) selects the 80386 version if they have an 80386 or later pro-
cessor. Otherwise they select the 8086 version. While this marginally increases the cost of
the software since it will require more disk space, the program will consume less memory
while running. The problem with this approach is that you will need to maintain two sep-
arate versions of the program. If you correct a bug in the 8086 version of the code, you will
probably need to correct that same bug in the 80386 program. Maintaining multiple
source files is a difficult task.

A third solution is to use conditional assembly. With conditional assembly, you can
merge the 8086 and 80386 versions of the code into the same source file. During assembly,
you can conditionally choose whether MASM assembles the 8086 or the 80386 version. By
assembling the code twice, you can produce an 8086 and an 80386 version of the code.
Since both versions of the code appear in the same source file, the program will be much
easier to maintain since you will not have to correct the same bug in two separate source
files. You may need to correct the same bug twice in two separate code sequences in the
program, but generally the bug will appear in two adjacent code sequences, so it is less
likely that you will forget to make the change in both places.

MASM’s conditional assembly directives are especially useful within macros. They can
help you produce efficient code when a macro would normally produce sub-optimal
code. For more information about macros and how you can use conditional assembly
within a macro, see “Macros” on page 400.

Macros and conditional assembly actually provide “a programming language within
a programming language.” Macros and conditional assembly let you write programs (in
the “macro language”) that write segments of assembly language code for you. This intro-
duces an independent way to generate bugs in your application programs. Not only can a
bug develop in your assembly language code, you can also introduce bugs in your macro
code (e.g., conditional assembly), that wind up producing bugs in your assembly lan-
guage code. Keep in mind that if you get too sophisticated when using conditional assem-
bly, you can produce programs that are very difficult to read, understand, and debug.

8.13.1 IF Directive

The if directive uses the following syntax:

if expression
<sequence of statements>

else ;This is optional!
<sequence of statements>

endif

Directives and Pseudo Opcodes

Page 399

MASM evaluates expression. If it is a non-zero value, then MASM will assemble the
statements between the if and else directives (or endif, if the else isn't present). If the
expression evaluates to zero (false) and an else section is present, MASM will assemble the
statements between the else directive and the endif directive. If the else section is not
present and expression evaluates to false, then MASM will not assemble any of the code
between the if and endif directives.

The important thing to remember is that expression has to be an expression that MASM
can evaluate at assembly time. That is, it must evaluate to a constant. Manifest constants
(equates) and values that MASM’s type operators produce are commonly found in if direc-
tive expressions. For example, suppose you want to assemble code for two different pro-
cessors as described above. You could use statements like the following:

Processor = 80386 ;Set to 8086 for 8086-only code
.
.
.

if Processor eq 80386
shl ax, 4
else ;Must be 8086 processor.
mov cl, 4
shl ax, cl
endif

There are other ways to accomplish this same thing. MASM provides built-in variables
that tell you if you are assembling code for some specific processor. More on that later.

8.13.2 IFE directive

The ife directive is used exactly like the if directive, except it assembles the code after
the ife directive only if the expression evaluates to zero (false), rather than true (non-zero).

8.13.3 IFDEF and IFNDEF

These two directives require a single symbol as the operand. Ifdef will assemble the
associated code if the symbol is defined, Ifndef will assemble the associated code if the
symbol isn't defined. Use else and endif to terminate the conditional assembly sequences.

These directives are especially popular for including or not including code in an
assembly language program to handle certain special cases. For example, you could use
statements like the following to include debugging statements in your code:

ifdef DEBUG

<place debugging statements here>

endif

To activate the debugging code, simply define the symbol DEBUG somewhere at the
beginning of your program (before the first ifdef referencing DEBUG). To automatically
eliminate the debugging code, simply delete the definition of DEBUG. You may define
DEBUG using a simple statement like:

DEBUG = 0

Note that the value you assign to DEBUG is unimportant. Only the fact that you have
defined (or have not defined) this symbol is important.

8.13.4 IFB, IFNB

These directives, useful mainly in macros (see “Macros” on page 400) check to see if
an operand is blank (ifb) or not blank (ifnb). Consider the following code:

Chapter 08

Page 400

Blank textequ <>
NotBlank textequ <not blank>

ifb Blank
<this code will assemble>
endif

ifb NotBlank
<this code will not>
endif

The ifnb works in an opposite manner to ifb. That is, it would assemble the statements
above that ifb does not and vice versa.

8.13.5 IFIDN, IFDIF, IFIDNI, and IFDIFI

These conditional assembly directives take two operands and process the associated
code if the operands are identical (ifidn), different (ifdif), identical ignoring case (ifidni), or
different ignoring case (ifdifi). The syntax is

ifidn op1, op2
<statements to assemble if <op1> = <op2>>

endif

ifdif op1, op2
<statements to assemble if <op1> ≠ <op2>>

endif

ifidni op1, op2
<statements to assemble if <op1> = <op2>>

endif

ifdifi op1, op2
<statements to assemble if <op1> ≠ <op2>>

endif

The difference between the IFxxx and IFxxxI statements above is that the IFxxxI state-
ments ignore differences in alphabetic case when comparing operands.

8.14 Macros

A macro is like a procedure that inserts a block of statements at various points in your
program during assembly. There are three general types of macros that MASM supports:
procedural macros, functional macros, and looping macros. Along with conditional
assembly, these tools provide the traditional if, loop, procedure, and function constructs
found in many high level languages. Unlike the assembly instructions you write, the con-
ditional assembly and macro language constructs execute during assembly. The conditional
assembly and macros statements do not exist when your assembly language program is
running. The purpose of these statements is to control which statements MASM assembles
into your final “.exe” file. While the conditional assembly directives select or omit certain
statements for assembly, the macro directives let you emit repetitive sequences of instruc-
tions to an assembly language file like high level language procedures and loops let you
repetitively execute sequences of high level language statements.

8.14.1 Procedural Macros

The following sequence defines a macro:

name macro {parameter1 {parameter2 {,...}}}
 <statements>

endm

Directives and Pseudo Opcodes

Page 401

Name must be a valid and unique symbol in the source file. You will use this identifier
to invoke the macro. The (optional) parameter names are placeholders for values you
specify when you invoke the macro; the braces above denote the optional items, they
should not actually appear in your source code. These parameter names are local to the
macro and may appear elsewhere in the program.

Example of a macro definition:

COPY macro Dest, Source
mov ax, Source
mov Dest, ax
endm

This macro will copy the word at the source address to the word at the destination
address. The symbols Dest and Source are local to the macro and may appear elsewhere in
the program.

Note that MASM does not immediately assemble the instructions between the macro
and endm directives when MASM encounters the macro. Instead, the assembler stores the
text corresponding to the macro into a special table (called the symbol table). MASM
inserts these instructions into your program when you invoke the macro.

To invoke (use) a macro, simply specify the macro name as a MASM mnemonic.
When you do this, MASM will insert the statements between the macro and endm direc-
tives into your code at the point of the macro invocation. If your macro has parameters,
MASM will substitute the actual parameters appearing as operands for the formal param-
eters appearing in the macro definition. MASM does a straight textual substitution, just as
though you had created text equates for the parameters.

Consider the following code that uses the COPY macro defined above:

call SetUpX
copy Y, X
add Y, 5

This program segment will issue a call to SetUpX (which, presumably, does something
to the variable X) then invokes the COPY macro, that copies the value in the variable X into
the variable Y. Finally, it adds five to the value contained in variable Y.

Note that this instruction sequence is absolutely identical to:

call SetUpX
mov ax, X
mov Y, ax
add Y, 5

In some instances using macros can save a considerable amount of typing in your pro-
grams. For example, suppose you want to access elements of various two dimensional
arrays. As you may recall, the formula to compute the row-major address for an array ele-
ment is

element address = base address + (First Index * Row Size + Second Index) * element size

Suppose you want write some assembly code that achieves the same result as the follow-
ing C code:

int a[16][7], b[16][7], x[7][16];
int i,j;

for (i=0; i<16; i = i + 1)
for (j=0; j < 7; j = j + 1)

x[j][i] = a[i][j]*b[15-i][j];

The 80x86 code for this sequence is rather complex because of the number of array
accesses. The complete code is

Chapter 08

Page 402

.386 ;Uses some 286 & 386 instrs.
option segment:use16;Required for real mode programs
 .
 .
 .

a sword 16 dup (7 dup (?))
b sword 16 dup (7 dup (?))
x sword 7 dup (16 dup (?))

 .
 .
 .

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

mov I, 0 ;Initialize I loop index with zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I loop.

mov J, 0 ;Initialize J loop index with zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J loop.

imul bx, I, 7 ;Compute index for a[i][j].
add bx, J
add bx, bx ;Element size is two bytes.
mov ax, A[bx] ;Get a[i][j]

mov bx, 15 ;Compute index for b[15-I][j].
sub bx, I
imul bx, 7
add bx, J
add bx, bx ;Element size is two bytes.
imul ax, b[bx] ;Compute a[i][j] * b[16-i][j]

imul bx, J, 16 ;Compute index for X[J][I]
add bx, I
add bx, bx
mov X[bx], ax ;Store away result.

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

This is a lot of code for only five C/C++ statements! If you take a close look at this code,
you’ll notice that a large number of the statements simply compute the index into the
three arrays. Furthermore, the code sequences that compute these array indices are very
similar. If they were exactly the same, it would be obvious we could write a macro to
replace the three array index computations. Since these index computations are not identi-
cal, one might wonder if it is possible to create a macro that will simplify this code. The
answer is yes; by using macro parameters it is very easy to write such a macro. Consider
the following code:

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

NDX2 macro Index1, Index2, RowSize
imul bx, Index1, RowSize
add bx, Index2
add bx, bx
endm

mov I, 0 ;Initialize I loop index with zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I loop.

mov J, 0 ;Initialize J loop index with zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J loop.

NDX2 I, J, 7
mov ax, A[bx] ;Get a[i][j]

Directives and Pseudo Opcodes

Page 403

mov bx, 15 ;Compute index for b[15-I][j].
sub bx, I
NDX2 bx, J, 7
imul ax, b[bx] ;Compute a[i][j] * b[15-i][j]

NDX2 J, I, 16
mov X[bx], ax ;Store away result.

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

One problem with the NDX2 macro is that you need to know the row size of an array
(since it is a macro parameter). In a short example like this one, that isn’t much of a prob-
lem. However, if you write a large program you can easily forget the sizes and have to
look them up or, worse yet, “remember” them incorrectly and introduce a bug into your
program. One reasonable question to ask is if MASM could figure out the row size of the
array automatically. The answer is yes.

MASM’s length operator is a holdover from the pre-6.0 days. It was supposed to return
the number of elements in an array. However, all it really returns is the first value appear-
ing in the array’s operand field. For example, (length a) would return 16 given the defini-
tion for a above. MASM corrected this problem by introducing the lengthof operator that
properly returns the total number of elements in an array. (Lengthof a), for example, prop-
erly returns 112 (16 * 7). Although the (length a) operator returns the wrong value for our
purposes (it returns the column size rather than the row size), we can use its return value
to compute the row size using the expression (lengthof a)/(length a). With this knowledge,
consider the following two macros:

; LDAX-This macro loads ax with the word at address Array[Index1][Index2]
; Assumptions: You’ve declared the array using a statement like
; Array word Colsize dup (RowSize dup (?))
; and the array is stored in row major order.
;
; If you specify the (optional) fourth parameter, it is an 80x86
; machine instruction to substitute for the MOV instruction that
; loads AX from Array[bx].

LDAX macro Array, Index1, Index2, Instr
imul bx, Index1, (lengthof Array) / (length Array)
add bx, Index2
add bx, bx

; See if the caller has supplied the fourth operand.

ifb <Instr>
mov ax, Array[bx] ;If not, emit a MOV instr.
else
instr ax, Array[bx] ;If so, emit user instr.
endif
endm

; STAX-This macro stores ax into the word at address Array[Index1][Index2]
; Assumptions: Same as above

STAX macro Array, Index1, Index2
imul bx, Index1, (lengthof Array) / (length Array)
add bx, Index2
add bx, bx
mov Array[bx], ax
endm

With the macros above, the original program becomes:

Chapter 08

Page 404

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

mov I, 0 ;Initialize I loop index with
zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I
loop.

mov J, 0 ;Initialize J loop index with
zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J
loop.

ldax A, I, J ;Fetch A[I][J]
mov bx, 16 ;Compute 16-I.
sub bx, I
ldax b, bx, J, imul ;Multiply in B[16-I][J].
stax x, J, I ;Store to X[J][I]

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

As you can plainly see, the code for the loops above is getting shorter and shorter by
using these macros. Of course, the entire code sequence is actually longer because the mac-
ros represent more lines of code that they save in the original program. However, that is
an artifact of this particular program. In general, you’d probably have more than three
array accesses; furthermore, you can always put the LDAX and STAX macros in a library
file and automatically include them anytime you’re dealing with two dimensional arrays.
Although, technically, your program might actually contain more assembly language
statements if you include these macros in your code, you only had to write those macros
once. After that, it takes very little effort to include the macros in any new program.

We can shorten this code sequence even more using some additional macros. How-
ever, there are a few additional topics to cover before we can do that, so keep reading.

8.14.2 Macros vs. 80x86 Procedures

Beginning assembly language programmers often confuse macros and procedures. A
procedure is a single section of code that you call from various points in the program. A
macro is a sequence of instructions that MASM replicates in your program each time you
use the macro. Consider the following two code fragments:

Proc_1 proc near
mov ax, 0
mov bx, ax
mov cx, 5
ret

Proc_1 endp

Macro_1 macro
mov ax, 0
mov bx, ax
mov cx, 5
endm

call Proc_1
 .
 .

call Proc_1
 .
 .

Macro_1
 .
 .

Macro_1

Directives and Pseudo Opcodes

Page 405

 Although the macro and procedure produce the same result, they do it in different
ways. The procedure definition generates code when the assembler encounters the proc
directive. A call to this procedure requires only three bytes. At execution time, the 80x86:

• encounters the call instruction,
• pushes the return address onto the stack,
• jumps to Proc_1,
• executes the code therein,
• pops the return address off the stack, and
• returns to the calling code.

The macro, on the other hand, does not emit any code when processing the statements
between the macro and endm directives. However, upon encountering Macro_1 in the mne-
monic field, MASM will assemble every statement between the macro and endm directives
and emit that code to the output file. At run time, the CPU executes these instructions
without the call/ret overhead.

The execution of a macro expansion is usually faster than the execution of the same
code implemented with a procedure. However, this is another example of the classic
speed/space trade-off. Macros execute faster by eliminating the call/return sequence.
However, the assembler copies the macro code into your program at each macro invoca-
tion. If you have a lot of macro invocations within your program, it will be much larger
than the same program that uses procedures.

Macro invocations and procedure invocations are considerably different. To invoke a
macro, you simply specify the macro name as though it were an instruction or directive.
To invoke a procedure you need to use the call instruction. In many contexts it is unfortu-
nate that you use two separate invocation mechanisms for such similar operations. The
real problem occurs if you want to switch a macro to a procedure or vice versa. It might be
that you’ve been using macro expansion for a particular operation, but now you’ve
expanded the macro so many times it makes more sense to use a procedure. Maybe just
the opposite is true, you’ve been using a procedure but you want to expand the code
in-line to improve it’s performance. The problem with either conversion is that you will
have to find every invocation of the macro or procedure call and modify it. Modifying the
procedure or macro is easy, but locating and changing all the invocations can be quite a bit
of work. Fortunately, there is a very simple technique you can use so procedure calls share
the same syntax as macro invocation. The trick is to create a macro or a text equate for
each procedure you write that expands into a call to that procedure. For example, suppose
you write a procedure ClearArray that zeros out arrays. When writing the code, you could
do the following:

ClearArray textequ <call $$ClearArray>
$$ClearArray proc near

 .
 .
 .

$$ClearArray endm

To call the ClearArray procedure, you’d simply use a statement like the following:
 .
 .
 .

<Set up parameters for ClearArray>
ClearArray
 .
 .
 .

If you ever change the $$ClearArray procedure to a macro, all you need to do is name it
ClearArray and dispose of the textequ for the procedure. Conversely, if you already have a
macro and you want to convert it to a procedure, Simply name the procedure $$procname
and create a text equate that emits a call to this procedure. This allows you to use the same
invocation syntax for procedures or macros.

This text won’t normally use the technique described above, except for the UCR Stan-
dard Library routines. This is not because this isn’t a good way to invoke procedures.
Some people have trouble differentiating macros and procedures, so this text will use

Chapter 08

Page 406

explicit calls to help avoid that confusion. Standard Library calls are an exception because
using macro invocations is the standard way to call these routines.

8.14.3 The LOCAL Directive

Consider the following macro definition:

LJE macro Dest
jne SkipIt
jmp Dest

SkipIt:
endm

This macro does a “long jump if equal”. However, there is one problem with it. Since
MASM copies the macro text verbatim (allowing, of course, for parameter substitution),
the symbol SkipIt will be redefined each time the LJE macro appears. When this happens,
the assembler will generate a multiple definition error. To overcome this problem, the
local directive can be used to define a local symbol within the macro. Consider the follow-
ing macro definition:

LJE macro Dest
local SkipIt
jne SkipIt
jmp Dest

SkipIt:
endm

In this macro definition, SkipIt is a local symbol. Therefore, the assembler will gener-
ate a new copy of SkipIt each time you invoke the macro. This will prevent MASM from
generating an error.

The local directive, if it appears within your macro definition, must appear immedi-
ately after the macro directive. If you need multiple local symbols, you can specify several
of them in the local directive’s operand field. Simply separate each symbol with a comma:

IFEQUAL macro a, b
local ElsePortion, Done
mov ax, a
cmp ax, b
jne ElsePortion
inc bx
jmp Done

ElsePortion: dec bx
Done:

endm

8.14.4 The EXITM Directive

The exitm directive immediately terminates the expansion of a macro, exactly as
though MASM encountered endm. MASM ignores all text from the exitm directive to the
endm.

You're probably wondering why anyone would ever use the exitm directive. After all,
if MASM ignores all text between exitm and endm, why bother sticking an exitm directive
into your macro in the first place? The answer is conditional assembly. Conditional
assembly can be used to conditionally execute the exitm directive, thereby allowing further
macro expansion under certain conditions, consider the following:

Bytes macro Count
byte Count
if Count eq 0
exitm
endif
byte Count dup (?)
endm

Directives and Pseudo Opcodes

Page 407

Of course, this simple example could have been coded without using the exitm direc-
tive (the conditional assembly directive is all we require), but it does demonstrate how the
exitm directive can be used within a conditional assembly sequence to control its influence.

8.14.5 Macro Parameter Expansion and Macro Operators

Since MASM does a textual substitution for macro parameters when you invoke a
macro, there are times when a macro invocation might not produce the results you expect.
For example, consider the following (admittedly dumb) macro definition:

Index = 8

; Problem- This macro attempts to load AX with the element of a word
; array specified by the macro’s parameter. This parameter
; must be an assembly-time constant.

Problem macro Parameter
mov ax, Array[Parameter*2]
endm
 .
 .
 .

Problem 2
 .
 .
 .

Problem Index+2

When MASM expands the first invocation of Problem above, it produces the instruction:

mov ax, Array[2*2]

Okay, so far so good. This code loads element two of Array into ax. However, consider the
expansion of the second invocation to Problem, above:

mov ax, Array[Index+2*2]

Because MASM’s address expressions support operator precedence (see “Operator Prece-
dence” on page 396), this macro expansion will not produce the correct result. It will
access the sixth element of Array (at index 12) rather than the tenth element at index 20.

The problem above occurs because MASM simply replaces a formal parameter by the
actual parameter’s text, not the actual parameter’s value. This pass by name parameter pass-
ing mechanism should be familiar to long-time C and C++ programmers who use the
#define statement. If you think that macro (pass by name) parameters work just like Pascal
and C’s pass by value parameters, you are setting yourself up for eventual disaster.

One possible solution, that works well for macros like the above, is to put parentheses
around macro parameters that occur within expressions inside the macro. Consider the
following code:

Problem macro Parameter
mov ax, Array[(Parameter)*2]
endm
 .
 .
 .

Problem Index+2

This macro invocation expands to

mov ax, Array[(Index+2)*2]

This produces the expected result.

Textual parameter substitution is but one problem you’ll run into when using macros.
Another problem occurs because MASM has two types of assembly time values: numeric
and text. Unfortunately, MASM expects numeric values in some contexts and text values
in others. They are not fully interchangeable. Fortunately, MASM provides a set of opera-
tors that let you convert between one form and the other (if it is possible to do so). To

Chapter 08

Page 408

understand the subtle differences between these two types of values, look at the following
statements:

Numeric = 10+2
Textual textequ <10+2>

MASM evaluates the numeric expression “10+2” and associates the value twelve with the
symbol Numeric. For the symbol Textual, MASM simply stores away the string “10+2” and
substitutes it for Textual anywhere you use it in an expression.

In many contexts, you could use either symbol. For example, the following two state-
ments both load ax with twelve:

mov ax, Numeric ;Same as mov ax, 12
mov ax, Textual ;Same as mov ax, 10+2

However, consider the following two statements:

mov ax, Numeric*2 ;Same as mov ax, 12*2
mov ax, Textual*2 ;Same as mov ax, 10+2*2

As you can see, the textual substitution that occurs with text equates can lead to the same
problems you encountered with textual substitution of macro parameters.

MASM will automatically convert a text object to a numeric value, if the conversion is
necessary. Other than the textual substitution problem described above, you can use a text
value (whose string represents a numeric quantity) anywhere MASM requires a numeric
value.

Going the other direction, numeric value to text value, is not automatic. Therefore,
MASM provides an operator you can use to convert numeric data to textual data: the “%”
operator. This expansion operator forces an immediate evaluation of the following expres-
sion and then it converts the result of the expression into a string of digits. Look at these
invocations of the Problem macro:

Problem 10+2 ;Parameter is “10+2”
Problem %10+2 ;Parameter is “12”

In the second example above, the text expansion operator instructs MASM to evaluate the
expression “10+2” and convert the resulting numeric value to a text value consisting of
the digits that represent the value twelve. Therefore, these two macro expand into the fol-
lowing statements (respectively):

mov ax, Array[10+2*2] ;Problem 10+2 expansion
mov ax, Array[12*2] ;Problem %10+2 expansion

MASM provides a second operator, the substitution operator that lets you expand
macro parameter names where MASM does not normally expect a symbol. The substitu-
tion operator is the ampersand (“&”) character. If you surround a macro parameter name
with ampersands inside a macro, MASM will substitute the parameter’s text regardless of
the location of the symbol. This lets you expand macro parameters whose names appear
inside other identifiers or inside literal strings. The following macro demonstrates the use
of this operator:

DebugMsg macro Point, String
Msg&String& byte “At point &Point&: &String&”

endm
 .
 .
 .
DebugMsg 5, <Assertion fails>

The macro invocation immediately above produces the statement:

Msg5 byte “At point 5: Assertion failed”

Note how the substitution operator allowed this macro to concatenate “Msg” and “5” to
produce the label on the byte directive. Also note that the expansion operator lets you
expand macro identifiers even if they appear in a literal string constant. Without the
ampersands in the string, MASM would have emitted the statement:

Directives and Pseudo Opcodes

Page 409

Msg5 byte “At point point: String”

Another important operator active within macros is the literal character operator, the
exclamation mark (“!”). This symbol instructs MASM to pass the following character
through without any modification. You would normally use this symbol if you need to
include one of the following symbols as a character within a macro:

! & > %

For example, had you really wanted the string in the DebugMsg macro to display the
ampersands, you would use the definition:

DebugMsg macro Point, String
Msg&String& byte “At point !&Point!&: !&String!&”

endm

“Debug 5, <Assertion fails>” would produce the following statement:

Msg5 byte “At point &Point&: &String&”

Use the “<“ and “>” symbols to delimit text data inside MASM. The following two
invocations of the PutData macro show how you can use these delimiters in a macro:

PutData macro TheName, TheData
PD_&TheName& byte TheData

endm
 .
 .
 .
PutData MyData, 5, 4, 3 ;Emits “PD_MyData byte 5”
PutData MyData, <5, 4, 3> ;Emits “PD_MyData byte 5, 4,

3”

You can use the text delimiters to surround objects that you wish to treat as a single
parameter rather than as a list of multiple parameters. In the PutData example above, the
first invocation passes four parameters to PutData (PutData ignores the last two). In the sec-
ond invocation, there are two parameters, the second consisting of the text 5, 4, 3.

The last macro operator of interest is the “;;” operator. This operator begins a macro
comment. MASM normally copies all text from the macro into the body of the program
during assembly, including all comments. However, if you begin a comment with “;;”
rather than a single semicolon, MASM will not expand the comment as part of the code
during macro expansion. This increases the speed of assembly by a tiny amount and,
more importantly, it does not clutter a program listing with copies of the same comment
(see “Controlling the Listing” on page 424 to learn about program listings).

8.14.6 A Sample Macro to Implement For Loops

Remember the for loops and matrix operations used in a previous example? At the
conclusion of that section there was a brief comment that we could “improve” that code
even more using macros, but the example had to wait. With the description of macro oper-
ators out of the way, we can now finish that discussion. The macros that implement the for
loop are

Table 42: Macro Operators

Operator Description

& Text substitution operator

< > Literal text operator

! Literal character operator

% Expression operator

;; Macro comment

Chapter 08

Page 410

; First, three macros that let us construct symbols by concatenating others.
; This is necessary because this code needs to expand several components in
; text equates multiple times to arrive at the proper symbol.
;
; MakeLbl- Emits a label create by concatenating the two parameters
; passed to this macro.

MakeLbl macro FirstHalf, SecondHalf
&FirstHalf&&SecondHalf&:

endm

jgDone macro FirstHalf, SecondHalf
jg &FirstHalf&&SecondHalf&
endm

jmpLoop macro FirstHalf, SecondHalf
jmp &FirstHalf&&SecondHalf&
endm

; ForLp- This macro appears at the beginning of the for loop. To invoke
; this macro, use a statement of the form:
;
; ForLp LoopCtrlVar, StartVal, StopVal
;
; Note: “FOR” is a MASM reserved word, which is why this macro doesn’t
; use that name.

ForLp macro LCV, Start, Stop

; We need to generate a unique, global symbol for each for loop we create.
; This symbol needs to be global because we will need to reference it at the
; bottom of the loop. To generate a unique symbol, this macro concatenates
; “FOR” with the name of the loop control variable and a unique numeric value
; that this macro increments each time the user constructs a for loop with the
; same loop control variable.

ifndef $$For&LCV& ;;Symbol = $$FOR concatenated with LCV
$$For&LCV& = 0 ;;If this is the first loop w/LCV, use

else ;; zero, otherwise increment the value.
$$For&LCV& = $$For&LCV& + 1

endif

; Emit the instructions to initialize the loop control variable:

mov ax, Start
mov LCV, ax

; Output the label at the top of the for loop. This label takes the form
; $$FOR LCV x
; where LCV is the name of the loop control variable and X is a unique number
; that this macro increments for each for loop that uses the same loop control
; variable.

MakeLbl $$For&LCV&, %$$For&LCV&

; Okay, output the code to see if this for loop is complete.
; The jgDone macro generates a jump (if greater) to the label the
; Next macro emits below the bottom of the for loop.

mov ax, LCV
cmp ax, Stop
jgDone $$Next&LCV&, %$$For&LCV&
endm

; The Next macro terminates the for loop. This macro increments the loop
; control variable and then transfers control back to the label at the top of
; the for loop.

Next macro LCV
inc LCV
jmpLoop $$For&LCV&, %$$For&LCV&
MakeLbl $$Next&LCV&, %$$For&LCV&
endm

Directives and Pseudo Opcodes

Page 411

With these macros and the LDAX/STAX macros, the code from the array manipulation
example presented earlier becomes very simple. It is

ForLp I, 0, 15
ForLp J, 0, 6

ldax A, I, J ;Fetch A[I][J]
mov bx, 15 ;Compute 16-I.
sub bx, I
ldax b, bx, J, imul ;Multiply in B[15-I][J].
stax x, J, I ;Store to X[J][I]

Next J
Next I

Although this code isn’t quite as short as the original C/C++ example, it’s getting pretty
close!

While the main program became much simpler, there is a question of the macros
themselves. The ForLp and Next macros are extremely complex! If you had to go through
this effort every time you wanted to create a macro, assembly language programs would
be ten times harder to write if you decided to use macros. Fortunately, you only have to
write (and debug) a macro like this once. Then you can use it as many times as you like, in
many different programs, without having to worry much about it’s implementation.

Given the complexity of the For and Next macros, it is probably a good idea to carefully
describe what each statement in these macros is doing. However, before discussing the
macros themselves, we should discuss exactly how one might implement a for/next loop in
assembly language. This text fully explores the for loop a little later, but we can certainly
go over the basics here. Consider the following Pascal for loop:

for variable := StartExpression to EndExpression do
Some_Statement;

Pascal begins by computing the value of StartExpression. It then assigns this value to
the loop control variable (variable). It then evaluates EndExpression and saves this value in
a temporary location. Then the Pascal for statement enters the loop’s body. The first thing
the loop does is compare the value of variable against the value it computed for EndExpres-
sion. If the value of variable is greater than this value for EndExpression, Pascal transfers to
the first statement after the for loop, otherwise it executes Some_Statement. After the Pascal
for loop executes Some_Statement, it adds one to variable and jumps back to the point
where it compares the value of variable against the computed value for EndExpression.
Converting this code directly into assembly language yields the following code:

;Note: This code assumes StartExpression and EndExpression are simple variables.
;If this is not the case, compute the values for these expression and place
;them in these variables.

mov ax, StartExpression
mov Variable, ax

ForLoop: mov ax, Variable
cmp ax, EndExpression
jg ForDone

<Code for Some_Statement>

inc Variable
jmp ForLoop

ForDone:

To implement this as a set of macros, we need to be able to write a short piece of code
that will write the above assembly language statements for us. At first blush, this would
seem easy, why not use the following code?

ForLp macro Variable, Start, Stop
mov ax, Start
mov Variable, ax

ForLoop: mov ax, Variable
cmp ax, Stop
jg ForDone

Chapter 08

Page 412

endm

Next macro Variable
inc Variable
jmp ForLoop

ForDone:
endm

These two macros would produce correct code – exactly once. However, a problem
develops if you try to use these macros a second time. This is particularly evident when
using nested loops:

ForLp I, 1, 10
ForLp J, 1, 10
 .
 .
 .
Next J
Next I

The macros above emit the following 80x86 code:

mov ax, 1 ;The ForLp I, 1, 10
mov I, ax ; macro emits these

ForLoop: mov ax, I ; statements.
cmp ax, 10 ; .
jg ForDone ; .

mov ax, 1 ;The ForLp J, 1, 10
mov J, ax ; macro emits these

ForLoop: mov ax, J ; statements.
cmp ax, 10 ; .
jg ForDone ; .
 .
 .
 .
inc J ;The Next J macro emits these
jmp ForLp ; statements.

ForDone:
inc I ;The Next I macro emits these
jmp ForLp ; statements.

ForDone:

The problem, evident in the code above, is that each time you use the ForLp macro you
emit the label “ForLoop” to the code. Likewise, each time you use the Next macro, you emit
the label “ForDone” to the code stream. Therefore, if you use these macros more than once
(within the same procedure), you will get a duplicate symbol error. To prevent this error,
the macros must generate unique labels each time you use them. Unfortunately, the local
directive will not work here. The local directive defines a unique symbol within a single
macro invocation. If you look carefully at the code above, you’ll see that the ForLp macro
emits a symbol that the code in the Next macro references. Likewise, the Next macro emits
a label that the ForLp macro references. Therefore, the label names must be global since the
two macros can reference each other’s labels.

The solution the actual ForLp and Next macros use is to generate globally known labels
of the form “$$For” + “variable name” + “some unique number.” and “$$Next” + “variable
name” + “some unique number”. For the example given above, the real ForLp and Next mac-
ros would generate the following code:

mov ax, 1 ;The ForLp I, 1, 10
mov I, ax ; macro emits these

$$ForI0: mov ax, I ; statements.
cmp ax, 10 ; .
jg $$NextI0 ; .

mov ax, 1 ;The ForLp J, 1, 10
mov J, ax ; macro emits these

$$ForJ0: mov ax, J ; statements.
cmp ax, 10 ; .

Directives and Pseudo Opcodes

Page 413

jg $$NextJ0 ; .
 .
 .
 .
inc J ;The Next J macro emits these
jmp $$ForJ0 ; statements.

$$NextJ0:
inc I ;The Next I macro emits these
jmp $$ForI0 ; statements.

$$NextI0:

The real question is, “How does one generate such labels?”

Constructing a symbol of the form “$$ForI” or “$$NextJ” is pretty easy. Just create a
symbol by concatenating the string “$$For” or “$$Next” with the loop control variable’s
name. The problem occurs when you try to append a numeric value to the end of that
string. The actual ForLp and Next code accomplishes this creating assembly time variable
names of the form “$$Forvariable_name” and incrementing this variable for each loop with
the given loop control variable name. By calling the macros MakeLbl, jgDone, and jmpLoop,
ForLp and Next output the appropriate labels and ancillary instructions.

The ForLp and Next macros are very complex. Far more complex than you would typi-
cally find in a program. They do, however, demonstrate the power of MASM’s macro
facilities. By the way, there are much better ways to create these symbols using macro func-
tions. We’ll discuss macro functions next.

8.14.7 Macro Functions

A macro function is a macro whose sole purpose is to return a value for use in the
operand field of some other statement. Although there is the obvious parallel between
procedures and functions in a high level language and procedural macros and functional
macros, the analogy is far from perfect. Macro functions do not let you create sequences of
code that emit some instructions that compute a value when the program actually exe-
cutes. Instead, macro functions simply compute some value at assembly time that MASM
can use as an operand.

A good example of a macro function is the Date function. This macro function packs a
five bit day, four bit month, and seven bit year value into 16 bits and returns that 16 bit
value as the result. If you needed to create an initialized array of dates, you could use code
like the following:

DateArray word Date(2, 4, 84)
word Date(1, 1, 94)
word Date(7, 20, 60)
word Date(7, 19, 69)
word Date(6, 18, 74)
 .
 .
 .

The Date function would pack the data and the word directive would emit the 16 bit
packed value for each date to the object code file. You invoke macro functions by using
their name where MASM expects a text expression of some sort. If the macro function
requires any parameters, you must enclose them within parentheses, just like the parame-
ters to Date, above.

Macro functions look exactly like standard macros with two exceptions: they do not
contain any statements that generate code and they return a text value via an operand to
the exitm directive. Note that you cannot return a numeric value with a macro function. If
you need to return a numeric value, you must first convert it to a text value.

The following macro function implements Date using the 16 bit date format given in
Chapter One (see “Bit Fields and Packed Data” on page 28):

Chapter 08

Page 414

Date macro month, day, year
local Value

Value = (month shl 12) or (day shl 7) or year
exitm %Value
endm

The text expansion operator (“%”) is necessary in the operand field of the exitm directive
because macro functions always return textual data, not numeric data. The expansion
operator converts the numeric value to a string of digits acceptable to exitm.

One minor problem with the code above is that this function returns garbage if the
date isn’t legal. A better design would generate an error if the input date is illegal. You can
use the “.err” directive and conditional assembly to do this. The following implementation
of Date checks the month, day, and year values to see if they are somewhat reasonable:

Date macro month, day, year
local Value

if (month gt 12) or (month lt 1) or \
(day gt 31) or (day lt 1) or \
(year gt 99) (year lt 1)

.err
exitm <0> ;;Must return something!
endif

Value = (month shl 12) or (day shl 7) or year
exitm %Value
endm

With this version, any attempt to specify a totally outrageous date triggers the assembly of
the “.err” directive that forces an error at assembly time.

8.14.8 Predefined Macros, Macro Functions, and Symbols

MASM provides four built-in macros and four corresponding macro functions. In
addition, MASM also provides a large number of predefined symbols you can access dur-
ing assembly. Although you would rarely use these macros, functions, and variables out-
side of moderately complex macros, they are essential when you do need them.

Table 43: MASM Predefined Macros

Name operands Example Description

substr string, start, length

Returns: text data

NewStr substr Oldstr, 1, 3 Returns a string consisting of the characters
from start to start+length in the string operand.
The length operand is optional. If it is not
present, MASM returns all characters from
position start through the end of the string.

instr start, string, substr

Returns: numeric data

Pos instr 2, OldStr, <ax> Searches for “substr” within “string” starting at
position “start.” The starting value is optional.
If it is missing, MASM begins searching for the
string from position one. If MASM cannot find
the substring within the string operand, it
returns the value zero.

sizestr string

Returns: numeric data

StrSize sizestr OldStr Returns the size of the string in the operand
field.

catstr string, string, ...

Returns: text data

NewStr catstr OldStr, <$$> Creates a new string by concatenating each of
the strings appearing in the operand field of the
catstr macro.

Directives and Pseudo Opcodes

Page 415

The substr and catstr macros return text data. In some respects, they are similar to the
textequ directive since you use them to assign textual data to a symbol at assembly time.
The instr and sizestr are similar to the “=” directive insofar as they return a numeric value.

The catstr macro can eliminate the need for the MakeLbl macro found in the ForLp
macro. Compare the following version of ForLp to the previous version (see “A Sample
Macro to Implement For Loops” on page 409).

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV& = 0

else
$$For&LCV& = $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

; Due to bug in MASM, this won’t actually work. The idea is sound, though
; Read on for correct solution.

ForLoop textequ @catstr($For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jgDone $$Next&LCV&, %$$For&LCV&
endm

MASM also provides macro function forms for catstr, instr, sizestr, and substr. To differ-
entiate these macro functions from the corresponding predefined macros, MASM uses the
names @catstr, @instr, @sizestr, and @substr. The the following equivalences between
these operations:

Symbol catstr String1, String2, ...
Symbol textequ @catstr(String1, String2, ...)

Symbol substr SomeStr, 1, 5
Symbol textequ @substr(SomeStr, 1, 5)

Symbol instr 1, SomeStr, SearchStr
Symbol = @substr(1, SomeStr, SearchStr)

Symbol sizestr SomeStr
Symbol = @sizestr(SomeStr)

The last example above shows how to get rid of the jgDone and jmpLoop macros in the
ForLp macro. A final, improved, version of the ForLp and Next macros, eliminating the
three support macros and working around the bug in MASM might look something like
the following:

Table 44: MASM Predefined Macro Functions

Name Parameters Example

@substr string, start, length
Returns: text data

ifidn @substr(parm, 1, 4), <[bx]>

@instr start, string, substr
Returns: numeric data

if @instr(parm,<bx>)

@sizestr string
Returns: numeric data

byte @sizestr(SomeStr)

@catstr string, string, ...
Returns: text data

jg @catstr($$Next&LCV&, %$$For&LCV&)

Chapter 08

Page 416

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV& = 0

else
$$For&LCV& = $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

ForLoop textequ @catstr($For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jg @catstr($$Next&LCV&, %$$For&LCV&)
endm

Next macro LCV
local NextLbl
inc LCV
jmp @catstr($$For&LCV&, %$$For&LCV&)

NextLbl textequ @catstr($Next&LCV&, %$$For&LCV&)
&NextLbl&:

endm

MASM also provides a large number of built in variables that return information
about the current assembly. The following table describes these built in assembly time
variables.

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Date & Time
Information

@Date Returns the date of assembly. Text value

@Time Returns a string denoting the time of assembly. Text value

Directives and Pseudo Opcodes

Page 417

Environment
Information

@CPU Returns a 16 bit value whose bits determine the
active processor directive. Specifying the .8086,
.186, .286, .386, .486, and .586 directives enable
additional instructions in MASM. They also set
the corresponding bits in the @cpu variable. Note
that MASM sets all the bits for the processors it
can handle at any one given time. For example, if
you use the .386 directive, MASM sets bits zero,
one, two, and three in the @cpu variable.

Bit 0 - 8086 instrs permissible.
Bit 1 - 80186 instrs permissible.
Bit 2 - 80286 instrs permissible.
Bit 3- 80386 instrs permissible.
Bit 4- 80486 instrs permissible.
Bit 5- Pentium instrs permissible.
Bit 6- Reserved for 80686 (?).
Bit 7- Protected mode instrs okay.

Bit 8- 8087 instrs permissible.
Bit 10- 80287 instrs permissible.
Bit 11- 80386 instrs permissible.
(bit 11 is also set for 80486 and
Pentium instr sets).

@Environ @Environ(name) returns the text associated with
DOS environment variable name. The parameter
must be a text value that evaluates to a valid DOS
environment variable name.

Text value

@Interface Returns a numeric value denoting the current lan-
guage type in use. Note that this information is
similar to that provided by the opattr attribute.

The H.O. bit determines if you are assembling
code for MS-DOS/Windows or OS/2.

This directive is mainly useful for those using
MASM’s simplified segment directives. Since this
text does not deal with the simplified directives,
further discussion of this variable is unwarranted.

Bits 0-2
000- No language type
001- C
010- SYSCALL
011- STDCALL
100- Pascal
101- FORTRAN
110- BASIC

Bit 7
0- MS-DOS or Windows
1- OS/2

@Version Returns a numeric value that is the current MASM
version number multiplied by 100. For example,
MASM 6.11’s @version variable returns 611.

Numeric value

File Information

@FileCur Returns the current source or include file name,
including any necessary pathname information.

Text value

@File-
Name

Returns the current source file name (base name
only, no path information). If in an include file,
this variable returns the name of the source file
that included the current file.

Text value

@Line Returns the current line number in the source file. Numeric value

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Chapter 08

Page 418

Although there is insufficient space to go into detail about the possible uses for each
of these variables, a few examples might demonstrate some of the possibilities. Other uses
of these variables will appear throughout the text; however, the most impressive uses will
be the ones you discover.

The @CPU variable is quite useful if you want to assemble different code sequences in
your program for different processors. The section on conditional assembly in this chapter
described how you could create a symbol to determine if you are assembling the code for
an 80386 and later processor or a stock 8086 processor. The @CPU symbol provides a sym-
bol that will tell you exactly which instructions are allowable at any given point in your
program. The following is a rework of that example using the @CPU variable:

if @CPU and 100b ;Need an 80286 or later processor
shl ax, 4 ; for this instruction.
else ;Must be 8086 processor.
mov cl, 4
shl ax, cl
endif

You can use the @Line directive to put special diagnostic messages in your code. The
following code would print an error message including the line number in the source file
of the offending assertion, if it detects an error at run-time:

mov ax, ErrorFlag
cmp ax, 0
je NoError
mov ax, @Line ;Load AX with current line #
call PrintError ;Go print error message and Line #
jmp Quit ;Terminate program.

8.14.9 Macros vs. Text Equates

Macros, macro functions, and text equates all substitute text in a program. While there
is some overlap between them, they really do serve different purposes in an assembly lan-
guage program.

a. These functions are intended for use with MASM’s simplified segment directives. This chapter does not discuss these
directives, so these functions will probably be of little use.

Segment a

Information

@code Returns the name of the current code segment. Text value

@data Returns the name of the current data segment. Text value

@FarData? Returns the name of the current far data segment. Text value

@Word-
Size

Returns two if this is a 16 bit segment, four if this
is a 32 bit segment.

Numeric value

@Code-
Size

Returns zero for Tiny, Small, Compact, and Flat
models. Returns one for Medium, Large, and
Huge models.

Numeric value

@DataSize Returns zero for Tiny, Small, Medium, and Flat
memory models. Returns one for Compact and
Large models. Returns two for Huge model pro-
grams.

Numeric value

@Model Returns one for Tiny model, two for Small model,
three for Compact model, four for Medium model,
five for Large model, six for Huge model, and
seven for Flag model.

Numeric value

@CurSeg Returns the name of the current code segment. Text value

@stack The name of the current stack segment. Text value

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Directives and Pseudo Opcodes

Page 419

Text equates perform a single text substitution on a line. They do not allow any
parameters. However, you can replace text anywhere on a line with a text equate. You can
expand a text equate in the label, mnemonic, operand, or even the comment field. Further-
more, you can replace multiple fields, even an entire line with a single symbol.

Macro functions are legal in the operand field only. However, you can pass parame-
ters to macro functions making them considerably more general than simple text equates.

Procedural macros let you emit sequences of statements (with text equates you can
emit, at most, one statement).

8.14.10 Macros: Good and Bad News

Macros offer considerable convenience. They let you insert several instructions into
your source file by simply typing a single command. This can save you an incredible
amount of typing when entering huge tables, each line of which contains some bizarre,
but repeated calculation. It's useful (in certain cases) for helping make your programs
more readable. Few would argue that ForLp I,1,10 is not more readable than the corre-
sponding 80x86 code. Unfortunately, it's easy to get carried away and produce code that is
inefficient, hard to read, and hard to maintain.

A lot of so-called “advanced” assembly language programmers get carried away with
the idea that they can create their own instructions via macro definitions and they start
creating macros for every imaginable function under the sun. The COPY macro presented
earlier is a good example. The 80x86 doesn't support a memory to memory move opera-
tion. Fine, we'll create a macro that does the job for us. Soon, the assembly language pro-
gram doesn't look like 80x86 assembly language at all. Instead, a large number of the
statements are macro invocations. Now this may be great for the programmer who has
created all these macros and intimately understands their operation. To the 80x86 pro-
grammer who isn't familiar with those macros, however, it's all gibberish. Maintaining a
program someone else wrote, that contains “new” instructions implemented via macros,
is a horrible task. Therefore, you should rarely use macros as a device to create new
instructions on the 80x86.

Another problem with macros is that they tend to hide side effects. Consider the
COPY macro presented earlier. If you encountered a statement of the form
COPY VAR1,VAR2 in an assembly language program, you'd think that this was an innocu-
ous statement that copies VAR2 to VAR1. Wrong! It also destroys the current contents of
the ax register leaving a copy of the value in VAR2 in the ax register. This macro invoca-
tion doesn't make this very clear. Consider the following code sequence:

mov ax, 5
copy Var2, Var1
mov Var1, ax

This code sequence copies Var1 into Var2 and then (supposedly) stores five into Var1.
Unfortunately, the COPY macro has wiped out the value in ax (leaving the value originally
contained in Var1 alone), so this instruction sequence does not modify Var1 at all!

Another problem with macros is efficiency. Consider the following invocations of the
COPY macro:

copy Var3, Var1
copy Var2, Var1
copy Var0, Var1

These three statements generate the code:

mov ax, Var1
mov Var3, ax
mov ax, Var1
mov Var2, ax
mov ax, Var1
mov Var0, ax

Chapter 08

Page 420

Clearly, the last two mov ax,Var1 instructions are superfluous. The ax register already
contains a copy of Var1, there is no need to reload ax with this value. Unfortunately, this
inefficiency, while perfectly obvious in the expanded code, isn't obvious at all in the macro
invocations.

Another problem with macros is complexity. In order to generate efficient code, you
can create extremely complex macros using conditional assembly (especially ifb, ifidn, etc.),
repeat loops (described a little later), and other directives. Unfortunately, these macros are
small programs all on their own. You can have bugs in your macros just as you can have
bugs in your assembly language program. And the more complex your macros become,
the more likely they'll contain bugs that will, of course, become bugs in your program
when invoking the macro.

Overusing macros, especially complex ones, produces hard to read code that is hard
to maintain. Despite the enthusiastic claims of those who love macros, the unbridled use
of macros within a program generally causes more bugs than it helps to prevent. If you're
going to use macros, go easy on them.

There is a good side to macros, however. If you standardize on a set of macros and
document all your programs as using these macros, they may help make your programs
more readable. Especially if those macros have easily identifiable names. The UCR Stan-
dard Library for 80x86 Assembly Language Programmers uses macros for most library calls.
You’ll read more about the UCR Standard Library in the next chapter.

8.15 Repeat Operations

Another macro format (at least by Microsoft's definition) is the repeat macro. A repeat
macro is nothing more than a loop that repeats the statements within the loop some speci-
fied number of times. There are three types of repeat macros provided by MASM:
repeat/rept, for/irp, and forc/irpc. The repeat/rept macro uses the following syntax:

repeat expression
 <statements>

endm

Expression must be a numeric expression that evaluates to an unsigned constant. The
repeat directive duplicates all the statements between repeat and endm that many times.
The following code generates a table of 26 bytes containing the 26 uppercase characters:

ASCIICode = 'A'
repeat 26
byte ASCIICode

ASCIICode = ASCIICode+1
endm

The symbol ASCIICode is assigned the ASCII code for “A”. The loop repeats 26 times,
each time emitting a byte with the value of ASCIICode. Also, the loop increments the ASCI-
ICode symbol on each repetition so that it contains the ASCII code of the next character in
the ASCII table. This effectively generates the following statements:

byte ‘A’
byte ‘B’
 .
 .
 .

byte ‘Y’
byte ‘Z’

ASCIICode = 27

Note that the repeat loop executes at assembly time, not at run time. Repeat is not a
mechanism for creating loops within your program; use it for replicating sections of code
within your program. If you want to create a loop that executes some number of times
within your program, use the loop instruction. Although the following two code sequences
produce the same result, they are not the same:

Directives and Pseudo Opcodes

Page 421

; Code sequence using a run-time loop:

mov cx, 10
AddLp: add ax, [bx]

add bx, 2
loop AddLp

; Code sequence using an assembly-time loop:

repeat 10
add ax, [bx]
add bx, 2
endm

The first code sequence above emits four machine instructions to the object code file.
At assembly time, the 80x86 CPU executes the statements between AddLp and the loop
instruction ten times under the control of the loop instruction. The second code sequence
above emits 20 instructions to the object code file. At run time, the 80x86 CPU simply exe-
cutes these 20 instructions sequentially, with no control transfer. The second form will be
faster, since the 80x86 does not have to execute the loop instruction every third instruc-
tion. On the other hand, the second version is also much larger because it replicates the
body of the loop ten times in the object code file.

Unlike standard macros, you do not define and invoke repeat macros separately.
MASM emits the code between the repeat and endm directives upon encountering the
repeat directive. There isn't a separate invocation phase. If you want to create a repeat
macro that can be invoked throughout your program, consider the following:

REPTMacro macro Count
repeat Count

 <statements>
endm
endm

 By placing the repeat macro inside a standard macro, you can invoke the repeat macro
anywhere in your program by invoking the REPTMacro macro. Note that you need two
endm directives, one to terminate the repeat macro, one to terminate the standard macro.

Rept is a synonym for repeat. Repeat is the newer form, MASM supports Rept for com-
patibility with older source files. You should always use the repeat form.

8.16 The FOR and FORC Macro Operations

Another form of the repeat macro is the for macro. This macro takes the following
form:

for parameter,<item1 {,item2 {,item3 {,...}}}>

 <statements>

endm

The angle brackets are required around the items in the operand field of the for directive.
The braces surround optional items, the braces should not appear in the operand field.

The for directive replicates the instructions between for and endm once for each item
appearing in the operand field. Furthermore, for each iteration, the first symbol in the
operand field is assigned the value of the successive items from the second parameter.
Consider the following loop:

for value,<0,1,2,3,4,5>
byte value
endm

This loop emits six bytes containing the values zero, one, two, ..., five. It is absolutely
identical to the sequence of instructions:

Chapter 08

Page 422

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5

Remember, the for loop, like the repeat loop, executes at assembly time, not at run time.

For’s second operand need not be a literal text constant; you can supply a macro
parameter, macro function result, or a text equate for this value. Keep in mind, though,
that this parameter must expand to a text value with the text delimiters around it.

Irp is an older, obsolete, synonym for for. MASM allows irp to provide compatibility
with older source code. However, you should always use the for directive.

The third form of the loop macro is the forc macro. It differs from the for macro in that
it repeats a loop the number of times specified by the length of a character string rather
than by the number of operands present. The syntax for the forc directive is

forc parameter,<string>

<statements>

endm

The statements in the loop repeat once for each character in the string operand. The
angle brackets must appear around the string. Consider the following loop:

forc value,<012345>
byte value
endm

This loop produces the same code as the example for the for directive above.

Irpc is an old synonym for forc provided for compatibility reasons. You should always
use forc in your new code.

8.17 The WHILE Macro Operation

The while macro lets you repeat a sequence of code in your assembly language file an
indefinite number of times. An assembly time expression, that while evaluates before
emitting the code for each loop, determines whether it repeats. The syntax for this macro
is

while expression
 <Statements>

endm

This macro evaluates the assembly-time expression; if this expression’s value is zero,
the while macro ignores the statements up to the corresponding endm directive. If the
expression evaluates to a non-zero value (true), then MASM assembles the statements up
to the endm directive and reevaluates the expression to see if it should assemble the body
of the while loop again.

Normally, the while directive repeats the statements between the while and endm as
long as the expression evaluates true. However, you can also use the exitm directive to pre-
maturely terminate the expansion of the loop body. Keep in mind that you need to pro-
vide some condition that terminates the loop, otherwise MASM will go into an infinite
loop and continually emit code to the object code file until the disk fills up (or it will sim-
ply go into an infinite loop if the loop does not emit any code).

8.18 Macro Parameters

Standard MASM macros are very flexible. If the number of actual parameters (those
supplied in the operand field of the macro invocation) does not match the number of for-

Directives and Pseudo Opcodes

Page 423

mal parameters (those appearing in the operand field of the macro definition), MASM
won’t necessarily complain. If there are more actual parameters than formal parameters,
MASM ignores the extra parameters and generates a warning. If there are more formal
parameters than actual parameters, MASM substitutes the empty string (“<>”) for the
extra formal parameters. By using the ifb and ifnb conditional assembly directives, you can
test this last condition. While this parameter substitution technique is flexible, it also
leaves open the possibility of error. If you want to require that the programmer supply
exactly three parameters and they actually supply less, MASM will not generate an error.
If you forget to test for the presence of each parameter using ifb, you could generate bad
code. To overcome this limitation, MASM provides the ability to specify that certain
macro parameters are required. You can also assign a default value to a parameter if the
programming doesn’t supply one. Finally, MASM also provides facilities to allow a vari-
able number of macro arguments.

If you want to require a programmer to supply a particular macro parameters, simply
put “:req” after the macro parameter in the macro definition. At assembly time, MASM
will generate an error if that particular macro is missing.

Needs2Parms macro parm1:req, parm2:req
 .
 .
 .

endm
 .
 .
 .

Needs2Parms ax ;Generates an error.
Needs2Parms ;Generates an error.
Needs2Parms ax, bx ;Works fine.

Another possibility is to have the macro supply a default value for a macro if it is
missing from the actual parameter list. To do this, simply use the “:=<text>” operator
immediately after the parameter name in the formal parameter list. For example, the
int 10h BIOS function provides various video services. One of the most commonly used
video services is the ah=0eh function that outputs the character in al to the video display.
The following macro lets the caller specify which function they want to use, and defaults
to function 0eh if they don’t specify a parameter:

Video macro service := <0eh>
mov ah, service
int 10h
endm

The last feature MASM’s macros support is the ability to process a variable number of
parameters. To do this you simply place the operator “:vararg” after the last formal param-
eter in the parameter list. MASM associates the first n actual parameters with the corre-
sponding formal parameters appearing before the variable argument, it then creates a text
equate of all remaining parameters to the formal parameter suffixed with the “:vararg”
operator. You can use the for macro to extract each parameter from this variable argument
list. For example, the following macro lets you declare an arbitrary number of two dimen-
sional arrays, all the same size. The first two parameters specify the number of rows and
columns, the remaining optional parameters specify the names of the arrays:

MkArrays macro NumRows:req, NumCols:req, Names:vararg
for AryName, Names

&AryName& word NumRows dup (NumCols dup (?))
endm
endm

 .
 .
 .

MkArrays 8, 12, A, B, X, Y

Chapter 08

Page 424

8.19 Controlling the Listing

MASM provides several assembler directives that are useful for controlling the output
of the assembler. These directives include echo, %out, title, subttl, page, .list, .nolist, and .xlist.
There are several others, but these are the most important.

8.19.1 The ECHO and %OUT Directives

The echo and %out directives simply print whatever appears in its operand field to the
video display during assembly. Some examples of echo and %out appeared in the sections
on conditional assembly and macros. Note that %out is an older form of echo provided for
compatibility with old source code.. You should use echo in all your new code.

8.19.2 The TITLE Directive

The title assembler directive assigns a title to your source file. Only one title directive
may appear in your program. The syntax for this directive is

title text

MASM will print the specified text at the top of each page of the assembled listing.

8.19.3 The SUBTTL Directive

The subttl (subtitle) directive is similar to the title directive, except multiple subtitles
may appear within your source file. Subtitles appear immediately below the title at the
top of each page in the assembled listing. The syntax for the subttl directive is

 subttl text

The specified text will become the new subtitle. Note that MASM will not print the new
subtitle until the next page eject. If you wish to place the subtitle on the same page as the
code immediately following the directive, use the page directive (described next) to force a
page ejection.

8.19.4 The PAGE Directive

The page directive performs two functions- it can force a page eject in the assembly
listing and it can set the width and length of the output device. To force a page eject, the
following form of the page directive is used:

page

If you place a plus sign, “+”, in the operand field, then MASM performs a page break,
increments the section number, and resets the page number to one. MASM prints page
numbers using the format

section-page

If you want to take advantage of the section number facility, you will have to manually
insert page breaks (with a “+” operand) in front of each new section.

The second form of the page command lets you set the printer page width and length
values. It takes the form:

page length, width

where length is the number of lines per page (defaults to 50, but 56-60 is a better choice for
most printers) and width is the number of characters per line. The default page width is

Directives and Pseudo Opcodes

Page 425

80 characters. If your printer is capable of printing 132 columns, you should change this
value to 132 so your listings will be easier to read. Note that some printers, even if their
carriage is only 8-1/2" wide, will print at least 132 columns across in a condensed mode.
Typically some control character must be sent to the printer to place it in condensed mode.
You can insert such a control character in a comment at the beginning of your source list-
ing.

8.19.5 The .LIST, .NOLIST, and .XLIST Directives

The .list, .nolist, and .xlist directives can be used to selectively list portions of your
source file during assembly. .List turns the listing on, .Nolist turns the listing off. .Xlist is an
obsolete form of .Nolist for older code.

By sprinkling these three directives throughout your source file, you can list only
those sections of code that interest you. None of these directives accept any operands.
They take the following forms:

.list

.nolist

.xlist

8.19.6 Other Listing Directives

MASM provides several other listing control directives that this chapter will not
cover. These let you control the output of macros, conditional assembly segments, and so
on to the listing file. Please see the appendices for details on these directives.

8.20 Managing Large Programs

Most assembly language programs are not totally stand alone programs. In general,
you will call various standard library or other routines which are not defined in your main
program. For example, you’ve probably noticed by now that the 80x86 doesn’t provide
any instructions like “read”, “write”, or “printf” for doing I/O operations. In fact, the only
instructions you’ve seen that do I/O include the 80x86 in and out instructions, which are
really just special mov instructions, and the echo/%out directives that perform assem-
bly-time output, not the run-time output you want. Is there no way to do I/O from assem-
bly language? Of course there is. You can write procedures that perform the I/O
operations like “read” and “write”. Unfortunately, writing such routines is a complex
task, and beginning assembly language programmers are not ready for such tasks. That’s
where the UCR Standard Library for 80x86 Assembly Language Programmers comes in.
This is a package of procedures you can call to perform simple I/O operations like
“printf”.

The UCR Standard Library contains thousands of lines of source code. Imagine how
difficult programming would be if you had to merge these thousands of lines of code into
your simple programs. Fortunately, you don’t have to.

For small programs, working with a single source file is fine. For large programs this
gets very cumbersome (consider the example above of having to include the entire UCR
Standard Library into each of your programs). Furthermore, once you’ve debugged and
tested a large section of your code, continuing to assemble that same code when you make
a small change to some other part of your program is a waste of time. The UCR Standard
Library, for example, takes several minutes to assemble, even on a fast machine. Imagine
having to wait five or ten minutes on a fast Pentium machine to assemble a program to
which you’ve made a one line change!

As with HLLs, the solution is separate compilation (or separate assembly in MASM’s
case). First, you break up your large source files into manageable chunks. Then you

Chapter 08

Page 426

assemble the separate files into object code modules. Finally, you link the object modules
together to form a complete program. If you need to make a small change to one of the
modules, you only need to reassemble that one module, you do not need to reassemble
the entire program.

The UCR Standard Library works in precisely this way. The Standard Library is
already assembled and ready to use. You simply call routines in the Standard Library and
link your code with the Standard Library using a linker program. This saves a tremendous
amount of time when developing a program that uses the Standard Library code. Of
course, you can easily create your own object modules and link them together with your
code. You could even add new routines to the Standard Library so they will be available
for use in future programs you write.

“Programming in the large” is a term software engineers have coined to describe the
processes, methodologies, and tools for handling the development of large software
projects. While everyone has their own idea of what “large” is, separate compilation, and
some conventions for using separate compilation, are one of the big techniques for “pro-
gramming in the large.” The following sections describe the tools MASM provides for
separate compilation and how to effectively employ these tools in your programs.

8.20.1 The INCLUDE Directive

The include directive, when encountered in a source file, switches program input from
the current file to the file specified in the parameter list of the include. This allows you to
construct text files containing common equates, macros, source code, and other assembler
items, and include such a file into the assembly of several separate programs. The syntax
for the include directive is

include filename

Filename must be a valid DOS filename. MASM merges the specified file into the assembly
at the point of the include directive. Note that you can nest include statements inside files
you include. That is, a file being included into another file during assembly may itself
include a third file.

Using the include directive by itself does not provide separate compilation. You could
use the include directive to break up a large source file into separate modules and join
these modules together when you assemble your file. The following example would
include the PRINTF.ASM and PUTC.ASM files during the assembly of your program:

include printf.asm
include putc.asm

<Code for your program goes here>

end

Now your program will benefit from the modularity gained by this approach. Alas,
you will not save any development time. The include directive inserts the source file at the
point of the include during assembly, exactly as though you had typed that code in your-
self. MASM still has to assemble the code and that takes time. Were you to include all the
files for the Standard Library routines, your assemblies would take forever.

In general, you should not use the include directive to include source code as shown
above16. Instead, you should use the include directive to insert a common set of constants
(equates), macros, external procedure declarations, and other such items into a program.
Typically an assembly language include file does not contain any machine code (outside of
a macro). The purpose of using include files in this manner will become clearer after you
see how the public and external declarations work.

16. There is nothing wrong with this, other than the fact that it does not take advantage of separate compilation.

Directives and Pseudo Opcodes

Page 427

8.20.2 The PUBLIC, EXTERN, and EXTRN Directives

Technically, the include directive provides you with all the facilities you need to create
modular programs. You can build up a library of modules, each containing some specific
routine, and include any necessary modules into an assembly language program using the
appropriate include commands. MASM (and the accompanying LINK program) provides
a better way: external and public symbols.

One major problem with the include mechanism is that once you've debugged a rou-
tine, including it into an assembly wastes a lot of time since MASM must reassemble
bug-free code every time you assemble the main program. A much better solution would
be to preassemble the debugged modules and link the object code modules together
rather than reassembling the entire program every time you change a single module. This
is what the public and extern directives provide for you. Extrn is an older directive that is a
synonym for extern. It provides compatibility with old source files. You should always use
the extern directive in new source code.

To use the public and extern facilities, you must create at least two source files. One file
contains a set of variables and procedures used by the second. The second file uses those
variables and procedures without knowing how they're implemented. To demonstrate,
consider the following two modules:

;Module #1:

public Var1, Var2, Proc1
DSEG segment para public 'data'
Var1 word ?
Var2 word ?
DSEG ends

CSEG segment para public 'code'
assume cs:cseg, ds:dseg

Proc1 proc near
mov ax, Var1
add ax, Var2
mov Var1, ax
ret

Proc1 endp
CSEG ends

end

;Module #2:
extern Var1:word, Var2:word, Proc1:near

CSEG segment para public 'code'
 .
 .
 .

mov Var1, 2
mov Var2, 3
call Proc1
 .
 .
 .

CSEG ends
end

Module #2 references Var1, Var2, and Proc1, yet these symbols are external to module
#2. Therefore, you must declare them external with the extern directive. This directive
takes the following form:

 extern name:type {,name:type...}

Name is the name of the external symbol, and type is the type of that symbol. Type may be
any of near, far, proc, byte, word, dword, qword, tbyte, abs (absolute, which is a constant), or
some other user defined type.

The current module uses this type declaration. Neither MASM nor the linker checks
the declared type against the module defining name to see if the types agree. Therefore,
you must exercise caution when defining external symbols. The public directive lets you
export a symbol's value to external modules. A public declaration takes the form:

Chapter 08

Page 428

public name {,name ...}

Each symbol appearing in the operand field of the public statement is available as an exter-
nal symbol to another module. Likewise, all external symbols within a module must
appear within a public statement in some other module.

Once you create the source modules, you should assemble the file containing the pub-
lic declarations first. With MASM 6.x, you would use a command like

ML /c pubs.asm

The “/c” option tells MASM to perform a “compile-only” assembly. That is, it will not try
to link the code after a successful assembly. This produces a “pubs.obj” object module.

Next, assemble the file containing the external definitions and link in the code using
the MASM command:

ML exts.asm pubs.obj

Assuming there are no errors, this will produce a file “exts.exe” which is the linked and
executable form of the program.

Note that the extern directive defines a symbol in your source file. Any attempt to
redefine that symbol elsewhere in your program will produce a “duplicate symbol” error.
This, as it turns out, is the source of problems which Microsoft solved with the externdef
directive.

8.20.3 The EXTERNDEF Directive

The externdef directive is a combination of public and extern all rolled into one. It uses
the same syntax as the extern directive, that is, you place a list of name:type entries in the
operand field. If MASM does not encounter another definition of the symbol in the cur-
rent source file, externdef behaves exactly like the extern statement. If the symbol does
appear in the source file, then externdef behaves like the public command. With externdef
there really is no need to use the public or extern statements unless you feel somehow com-
pelled to do so.

The important benefit of the externdef directive is that it lets you minimize duplication
of effort in your source files. Suppose, for example, you want to create a module with a
bunch of support routines for other programs. In addition to sharing some routines and
some variables, suppose you want to share constants and macros as well. The include file
mechanism provides a perfect way to handle this. You simply create an include file con-
taining the constants, macros, and externdef definitions and include this file in the module
that implements your routines and in the modules that use those routines (see Figure 8.8).

Note that extern and public wouldn’t work in this case because the implementation
module needs the public directive and the using module needs the extern directive. You
would have to create two separate header files. Maintaining two separate header files that

Figure 8.8 Using a Single Include file for Implementation and Using Modules

Implementation Module Using Module

INCLUDE Header.aINCLUDE Header.a

Header.a

Directives and Pseudo Opcodes

Page 429

contain mostly identical definitions is not a good idea. The externdef directive provides a
solution.

Within your headers files you should create segment definitions that match those in
the including modules. Be sure to put the externdef directives inside the same segments in
which the symbol is actually defined. This associates a segment value with the symbol so
that MASM can properly make appropriate optimizations and other calculations based on
the symbol’s full address:

; From “HEADER.A” file:

cseg segment para public ‘code’

externdef Routine1:near, Routine2:far

cseg ends

dseg segment para public ‘data’

externdef i:word, b:byte, flag:byte

dseg ends

This text adopts the UCR Standard Library convention of using an “.a” suffix for
assembly language header files. Other common suffixes in use include “.inc” and “.def”.

8.21 Make Files

Although using separate compilation reduces assembly time and promotes code reuse
and modularity, it is not without its own drawbacks. Suppose you have a program that
consists of two modules: pgma.asm and pgmb.asm. Also suppose that you’ve already
assembled both modules so that the files pgma.obj and pgmb.obj exist. Finally, you make
changes to pgma.asm and pgmb.asm and assemble the pgma.asm but forget to assemble the
pgmb.asm file. Therefore, the pgmb.obj file will be out of date since this object file does not
reflect the changes made to the pgmb.asm file. If you link the program’s modules together,
the resulting .exe file will only contain the changes to the pgma.asm file, it will not have
the updated object code associated with pgmb.asm. As projects get larger, as they have
more modules associated with them, and as more programmers begin working on the
project, it gets very difficult to keep track of which object modules are up to date.

This complexity would normally cause someone to reassemble (or recompile) all mod-
ules in a project, even if many of the .obj files are up to date, simply because it might seem
too difficult to keep track of which modules are up to date and which are not. Doing so, of
course, would eliminate many of the benefits that separate compilation offers. Fortu-
nately, there is a tool that can help you manage large projects: nmake. The nmake pro-
gram, will a little help from you, can figure out which files need to be reassemble and
which files have up to date .obj files. With a properly defined make file, you can easily
assemble only those modules that absolutely must be assembled to generate a consistent
program.

A make file is a text file that lists assembly-time dependencies between files. An .exe
file, for example, is dependent on the source code whose assembly produce the executable.
If you make any changes to the source code you will (probably) need to reassemble or
recompile the source code to produce a new .exe file17.

Typical dependencies include the following:

• An executable file (.exe) generally depends only on the set of object files
(.obj) that the linker combines to form the executable.

• A given object code file (.obj) depends on the assembly language source
files that were assembled to produce that object file. This includes the

17. Obviously, if you only change comments or other statements in the source file that do not affect the executable
file, a recompile or reassembly will not be necessary. To be safe, though, we will assume any change to the source
file will require a reassembly.

Chapter 08

Page 430

assembly language source files (.asm) and any files included during that
assembly (generally .a files).

• The source files and include files generally don’t depend on anything.

A make file generally consists of a dependency statement followed by a set of com-
mands to handle that dependency. A dependency statement takes the following form:

dependent-file : list of files

Example:

pgm.exe: pgma.obj pgmb.obj

This statement says that “pgm.exe” is dependent upon pgma.obj and pgmb.obj. Any
changes that occur to pgma.obj or pgmb.obj will require the generate of a new pgm.exe
file.

The nmake.exe program uses a time/date stamp to determine if a dependent file is out
of date with respect to the files it depends upon. Any time you make a change to a file,
MS-DOS and Windows will update a modification time and date associated with the file. The
nmake.exe program compares the modification date/time stamp of the dependent file
against the modification date/time stamp of the files it depends upon. If the dependent
file’s modification date/time is earlier than one or more of the files it depends upon, or
one of the files it depends upon is not present, then nmake.exe assumes that some opera-
tion must be necessary to update the dependent file.

When an update is necessary, nmake.exe executes the set of (MS-DOS) commands fol-
lowing the dependency statement. Presumably, these commands would do whatever is
necessary to produce the updated file.

The dependency statement must begin in column one. Any commands that must exe-
cute to resolve the dependency must start on the line immediately following the depen-
dency statement and each command must be indented one tabstop. The pgm.exe
statement above would probably look something like the following:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

(The “/Fepgm.exe” option tells MASM to name the executable file “pgm.exe.”)

If you need to execute more than one command to resolve the dependencies, you can
place several commands after the dependency statement in the appropriate order. Note
that you must indent all commands one tab stop. Nmake.exe ignores any blank lines in a
make file. Therefore, you can add blank lines, as appropriate, to make the file easier to
read and understand.

There can be more than a single dependency statement in a make file. In the example
above, for example, pgm.exe depends upon the pgma.obj and pgmb.obj files. Obviously,
the .obj files depend upon the source files that generated them. Therefore, before attempt-
ing to resolve the dependencies for pgm.exe, nmake.exe will first check out the rest of the
make file to see if pgma.obj or pgmb.obj depends on anything. If they do, nmake.exe will
resolve those dependencies first. Consider the following make file:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.asm
ml /c pgma.asm

pgmb.obj: pgmb.asm
ml /c pgmb.asm

The nmake.exe program will process the first dependency line it finds in the file. How-
ever, the files pgm.exe depends upon themselves have dependency lines. Therefore,
nmake.exe will first ensure that pgma.obj and pgmb.obj are up to date before attempting
to execute MASM to link these files together. Therefore, if the only change you’ve made
has been to pgmb.asm, nmake.exe takes the following steps (assuming pgma.obj exists
and is up to date).

Directives and Pseudo Opcodes

Page 431

1. Nmake.exe processes the first dependency statement. It notices that dependency
lines for pgma.obj and pgmb.obj (the files on which pgm.exe depends) exist. So it
processes those statements first.

2. Nmake.exe processes the pgma.obj dependency line. It notices that the pgma.obj
file is newer than the pgma.asm file, so it does not execute the command follow-
ing this dependency statement.

3. Nmake.exe processes the pgmb.obj dependency line. It notes that pgmb.obj is
older than pgmb.asm (since we just changed the pgmb.asm source file). There-
fore, nmake.exe executes the DOS command following on the next line. This gen-
erates a new pgmb.obj file that is now up to date.

4. Having process the pgma.obj and pgmb.obj dependencies, nmake.exe now
returns its attention to the first dependency line. Since nmake.exe just created a
new pgmb.obj file, its date/time stamp will be newer than pgm.exe’s. Therefore,
nmake.exe will execute the ml command that links pgma.obj and pgmb.obj
together to form the new pgm.exe file.

Note that a properly written make file will instruct nmake.exe to assembly only those
modules absolutely necessary to produce a consistent executable file. In the example
above, nmake.exe did not bother to assemble pgma.asm since its object file was already
up to date.

There is one final thing to emphasize with respect to dependencies. Often, object files
are dependent not only on the source file that produces the object file, but any files that the
source file includes as well. In the previous example, there (apparently) were no such
include files. Often, this is not the case. A more typical make file might look like the fol-
lowing:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.asm pgm.a
ml /c pgma.asm

pgmb.obj: pgmb.asm pgm.a
ml /c pgmb.asm

Note that any changes to the pgm.a file will force nmake.exe to reassemble both pgma.asm
and pgmb.asm since the pgma.obj and pgmb.obj files both depend upon the pgm.a
include file. Leaving include files out of a dependency list is a common mistake program-
mers make that can produce inconsistent .exe files.

Note that you would not normally need to specify the UCR Standard Library include
files nor the Standard Library .lib files in the dependency list. True, your resulting .exe file
does depend on this code, but the Standard Library rarely changes, so you can safely leave
it out of your dependency list. Should you make a modification to the Standard Library,
simply delete any old .exe and .obj files and force a reassembly of the entire system.

Nmake.exe, by default, assumes that it will be processing a make file named “make-
file”. When you run nmake.exe, it looks for “makefile” in the current directory. If it doesn’t
find this file, it complains and terminates18. Therefore, it is a good idea to collect the files
for each project you work on into their own subdirectory and give each project its own
makefile. Then to create an executable, you need only change into the appropriate subdi-
rectory and run the nmake.exe program.

Although this section discusses the nmake program in sufficient detail to handle most
projects you will be working on, keep in mind that nmake.exe provides considerable func-
tionality that this chapter does not discuss. To learn more about the nmake.exe program,
consult the documentation that comes with MASM.

18. There is a command line option that lets you specify the name of the makefile. See the nmake documentation
in the MASM manuals for more details.

Chapter 08

Page 432

8.22 Sample Program

Here is a single program that demonstrates most of the concepts from this chapter.
This program consists of several files, including a makefile, that you can assemble and
link using the nmake.exe program. This particular sample program computes “cross
products” of various functions. The multiplication table you learned in school is a good
example of a cross product, so are the truth tables found in Chapter Two of your textbook.
This particular program generates cross product tables for addition, subtraction, division,
and, optionally, remainder (modulo). In addition to demonstrating several concepts from
this chapter, this sample program also demonstrates how to manipulate dynamically allo-
cated arrays. This particular program asks the user to input the matrix size (row and col-
umn sizes) and then computes an appropriate set of cross products for that array.

8.22.1 EX8.MAK

The cross product program contains several modules. The following make file assem-
bles all necessary files to ensure a consistent .EXE file.

ex8.exe:ex8.obj geti.obj getarray.obj xproduct.obj matrix.a
ml ex8.obj geti.obj getarray.obj xproduct.obj

ex8.obj: ex8.asm matrix.a
ml /c ex8.asm

geti.obj: geti.asm matrix.a
ml /c geti.asm

getarray.obj: getarray.asm matrix.a
ml /c getarray.asm

xproduct.obj: xproduct.asm matrix.a
ml /c xproduct.asm

8.22.2 Matrix.A

MATRIX.A is the header file containing definitions that the cross product program
uses. It also contains all the externdef statements for all externally defined routines.

; MATRIX.A
;
; This include file provides the external definitions
; and data type definitions for the matrix sample program
; in Chapter Eight.
;
; Some useful type definitions:

Integer typedef word
Char typedef byte

; Some common constants:

Bell equ 07;ASCII code for the bell character.

; A “Dope Vector” is a structure containing information about arrays that
; a program allocates dynamically during program execution. This particular
; dope vector handles two dimensional arrays. It uses the following fields:
;
; TTL- Points at a zero terminated string containing a description
; of the data in the array.
;
; Func- Pointer to function to compute for this matrix.

Directives and Pseudo Opcodes

Page 433

;
; Data- Pointer to the base address of the array.
;
; Dim1- This is a word containing the number of rows in the array.
;
; Dim2- This is a word containing the number of elements per row
; in the array.
;
; ESize- Contains the number of bytes per element in the array.

DopeVec struct
TTL dword ?
Func dword ?
Data dword ?
Dim1 word ?
Dim2 word ?
ESize word ?
DopeVec ends

; Some text equates the matrix code commonly uses:

Base textequ <es:[di]>

byp textequ <byte ptr>
wp textequ <word ptr>
dp textequ <dword ptr>

; Procedure declarations.

InpSeg segment para public ‘input’

externdef geti:far
externdef getarray:far

InpSeg ends

cseg segment para public ‘code’

externdef CrossProduct:near

cseg ends

; Variable declarations

dseg segment para public ‘data’

externdef InputLine:byte

dseg ends

; Uncomment the following equates if you want to turn on the
; debugging statements or if you want to include the MODULO function.

;debug equ 0
;DoMOD equ 0

8.22.3 EX8.ASM

This is the main program. It calls appropriate routines to get the user input, compute
the cross product, and print the result.

; Sample program for Chapter Eight.
; Demonstrates the use of many MASM features discussed in Chapter Six
; including label types, constants, segment ordering, procedures, equates,
; address expressions, coercion and type operators, segment prefixes,

Chapter 08

Page 434

; the assume directive, conditional assembly, macros, listing directives,
; separate assembly, and using the UCR Standard Library.
;
; Include the header files for the UCR Standard Library. Note that the
; “stdlib.a” file defines two segments; MASM will load these segments into
; memory before “dseg” in this program.
;
; The “.nolist” directive tells MASM not to list out all the macros for
; the standard library when producing an assembly listing. Doing so would
; increase the size of the listing by many tens of pages and would tend to
; obscure the real code in this program.
;
; The “.list” directive turns the listing back on after MASM gets past the
; standard library files. Note that these two directives (“.nolist” and
; “.list”) are only active if you produce an assembly listing using MASM’s
; “/Fl” command line parameter.

.nolist
include stdlib.a
includelib stdlib.lib
.list

; The following statement includes the special header file for this
; particular program. The header file contains external definitions
; and various data type definitions.

include matrix.a

; The following two statements allow us to use 80386 instructions
; in the program. The “.386” directive turns on the 80386 instruction
; set, the “option” directive tells MASM to use 16-bit segments by
; default (when using 80386 instructions, 32-bit segments are the default).
; DOS real mode programs must be written using 16-bit segments.

.386
option segment:use16

dseg segment para public ‘data’

Rows integer ? ;Number of rows in matrices
Columns integer ? ;Number of columns in matrices

; Input line is an input buffer this code uses to read a string of text
; from the user. In particular, the GetWholeNumber procedure passes the
; address of InputLine to the GETS routine that reads a line of text
; from the user and places each character into this array. GETS reads
; a maximum of 127 characters plus the enter key from the user. It zero
; terminates that string (replacing the ASCII code for the ENTER key with
; a zero). Therefore, this array needs to be at least 128 bytes long to
; prevent the possibility of buffer overflow.
;
; Note that the GetArray module also uses this array.

InputLine char 128 dup (0)

; The following two pointers point at arrays of integers.
; This program dynamically allocates storage for the actual array data
; once the user tells the program how big the arrays should be. The
; Rows and Columns variables above determine the respective sizes of
; these arrays. After allocating the storage with a call to MALLOC,
; this program stores the pointers to these arrays into the following
; two pointer variables.

Directives and Pseudo Opcodes

Page 435

RowArray dword ? ;Pointer to Row values
ColArray dword ? ;Pointer to column values.

; ResultArrays is an array of dope vectors(*) to hold the results
; from the matrix operations:
;
; [0]- addition table
; [1]- subtraction table
; [2]- multiplication table
; [3]- division table
;
; [4]- modulo (remainder) table -- if the symbol “DoMOD” is defined.
;
; The equate that follows the ResultArrays declaration computes the number
; of elements in the array. “$” is the offset into dseg immediately after
; the last byte of ResultArrays. Subtracting this value from ResultArrays
; computes the number of bytes in ResultArrays. Dividing this by the size
; of a single dope vector produces the number of elements in the array.
; This is an excellent example of how you can use address expressions in
; an assembly language program.
;
; The IFDEF DoMOD code demonstrates how easy it is to extend this matrix.
; Defining the symbol “DoMOD” adds another entry to this array. The
; rest of the program adjusts for this new entry automatically.
;
; You can easily add new items to this array of dope vectors. You will
; need to supply a title and a function to compute the matrice’s entries.
; Other than that, however, this program automatically adjusts to any new
; entries you add to the dope vector array.
;
; (*) A “Dope Vector” is a data structure that describes a dynamically
; allocated array. A typical dope vector contains the maximum value for
; each dimension, a pointer to the array data in memory, and some other
; possible information. This program also stores a pointer to an array
; title and a pointer to an arithmetic function in the dope vector.

ResultArrays DopeVec {AddTbl,Addition}, {SubTbl,Subtraction}
DopeVec {MulTbl,Multiplication}, {DivTbl,Division}

ifdef DoMOD
DopeVec {ModTbl,Modulo}
endif

; Add any new functions of your own at this point, before the following equate:

RASize = ($-ResultArrays) / (sizeof DopeVec)

; Titles for each of the four (five) matrices.

AddTbl char “Addition Table”,0
SubTbl char “Subtraction Table”,0
MulTbl char “Multiplication Table”,0
DivTbl char “Division Table”,0

ifdef DoMOD
ModTbl char “Modulo (Remainder) Table”,0

endif

; This would be a good place to put a title for any new array you create.

dseg ends

Chapter 08

Page 436

; Putting PrintMat inside its own segment demonstrates that you can have
; multiple code segments within a program. There is no reason we couldn’t
; have put “PrintMat” in CSEG other than to demonstrate a far call to a
; different segment.

PrintSeg segment para public ‘PrintSeg’

; PrintMat- Prints a matrix for the cross product operation.
;
; On Entry:
;
; DS must point at DSEG.
; DS:SI points at the entry in ResultArrays for the
; array to print.
;
; The output takes the following form:
;
; Matrix Title
;
; <- column matrix values ->
;
; ^ *------------------------*
; | | |
; R | |
; o | Cross Product Matrix |
; w | Values |
; | |
; V | |
; a | |
; l | |
; u | |
; e | |
; s | |
; | | |
; v *------------------------*

PrintMat proc far
assume ds:dseg

; Note the use of conditional assembly to insert extra debugging statements
; if a special symbol “debug” is defined during assembly. If such a symbol
; is not defined during assembly, the assembler ignores the following
; statements:

ifdef debug
print
char “In PrintMat”,cr,lf,0
endif

; First, print the title of this table. The TTL field in the dope vector
; contains a pointer to a zero terminated title string. Load this pointer
; into es:di and call PUTS to print that string.

putcr
les di, [si].DopeVec.TTL
puts

; Now print the column values. Note the use of PUTISIZE so that each
; value takes exactly six print positions. The following loop repeats
; once for each element in the Column array (the number of elements in
; the column array is given by the Dim2 field in the dope vector).

print ;Skip spaces to move past the
char cr,lf,lf,” “,0 ; row values.

mov dx, [si].DopeVec.Dim2 ;# times to repeat the loop.
les di, ColArray ;Base address of array.

ColValLp: mov ax, es:[di] ;Fetch current array element.

Directives and Pseudo Opcodes

Page 437

mov cx, 6 ;Print the value using a
putisize ; minimum of six positions.
add di, 2 ;Move on to next element.
dec dx ;Repeat this loop DIM2 times.
jne ColValLp
putcr ;End of column array output
putcr ;Insert a blank line.

; Now output each row of the matrix. Note that we need to output the
; RowArray value before each row of the matrix.
;
; RowLp is the outer loop that repeats for each row.

mov Rows, 0 ;Repeat for 0..Dim1-1 rows.
RowLp: les di, RowArray ;Output the current RowArray

mov bx, Rows ; value on the left hand side
add bx, bx ; of the matrix.
mov ax, es:[di][bx] ;ES:DI is base, BX is index.
mov cx, 5 ;Output using five positions.
putisize
print
char “: “,0

; ColLp is the inner loop that repeats for each item on each row.

mov Columns, 0 ;Repeat for 0..Dim2-1 cols.
ColLp: mov bx, Rows ;Compute index into the array

imul bx, [si].DopeVec.Dim2 ; index := (Rows*Dim2 +
add bx, Columns ; columns) * 2
add bx, bx

; Note that we only have a pointer to the base address of the array, so we
; have to fetch that pointer and index off it to access the desired array
; element. This code loads the pointer to the base address of the array into
; the es:di register pair.

les di, [si].DopeVec.Data ;Base address of array.
mov ax, es:[di][bx] ;Get array element

; The functions that compute the values for the array store an 8000h into
; the array element if some sort of error occurs. Of course, it is possible
; to produce 8000h as an actual result, but giving up a single value to
; trap errors is worthwhile. The following code checks to see if an error
; occurred during the cross product. If so, this code prints “ ****”,
; otherwise, it prints the actual value.

cmp ax, 8000h ;Check for error value
jne GoodOutput
print
char “ ****”,0 ;Print this for errors.
jmp DoNext

GoodOutput: mov cx, 6 ;Use six print positions.
putisize ;Print a good value.

DoNext: mov ax, Columns ;Move on to next array
inc ax ; element.
mov Columns, ax
cmp ax, [si].DopeVec.Dim2 ;See if we’re done with
jb ColLp ; this column.

putcr ;End each column with CR/LF

mov ax, Rows ;Move on to the next row.
inc ax
mov Rows, ax
cmp ax, [si].DopeVec.Dim1 ;Have we finished all the
jb RowLp ; rows? Repeat if not done.
ret

PrintMat endp

Chapter 08

Page 438

PrintSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

;GetWholeNum- This routine reads a whole number (an integer greater than
; zero) from the user. If the user enters an illegal whole
; number, this procedure makes the user re-enter the data.

GetWholeNum proc near
lesi InputLine ;Point es:di at InputLine array.
gets

call Geti ;Get an integer from the line.
jc BadInt ;Carry set if error reading integer.
cmp ax, 0 ;Must have at least one row or column!
jle BadInt
ret

BadInt: print
char Bell
char “Illegal integer value, please re-enter”,cr,lf,0
jmp GetWholeNum

GetWholeNum endp

; Various routines to call for the cross products we compute.
; On entry, AX contains the first operand, dx contains the second.
; These routines return their result in AX.
; They return AX=8000h if an error occurs.
;
; Note that the CrossProduct function calls these routines indirectly.

addition proc far
add ax, dx
jno AddDone ;Check for signed arithmetic overflow.
mov ax, 8000h ;Return 8000h if overflow occurs.

AddDone: ret
addition endp

subtraction proc far
sub ax, dx
jno SubDone
mov ax, 8000h ;Return 8000h if overflow occurs.

SubDone: ret
subtraction endp

multiplication proc far
 imul ax, dx
 jno MulDone
 mov ax, 8000h ;Error if overflow occurs.

MulDone: ret
multiplication endp

division proc far
push cx ;Preserve registers we destory.

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx

mov dx, cx ;Restore the munged register.
pop cx
ret

BadDivide: mov ax, 8000h

Directives and Pseudo Opcodes

Page 439

mov dx, cx
pop cx
ret

division endp

; The following function computes the remainder if the symbol “DoMOD”
; is defined somewhere prior to this point.

ifdef DoMOD
modulo proc far

push cx

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx
mov ax, dx ;Need to put remainder in AX.
mov dx, cx ;Restore the munged registers.
pop cx
ret

BadMod: mov ax, 8000h
mov dx, cx
pop cx
ret

modulo endp
endif

; If you decide to extend the ResultArrays dope vector array, this is a good
; place to define the function for those new arrays.

; The main program that reads the data from the user, calls the appropriate
; routines, and then prints the results.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Prompt the user to enter the number of rows and columns:

GetRows: print
byte “Enter the number of rows for the matrix:”,0

call GetWholeNum
mov Rows, ax

; Okay, read each of the row values from the user:

print
char “Enter values for the row (vertical) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want; multiply this value
; by two since we want an array of words. On return from malloc, es:di
; points at the array allocated on the “heap”. Save away this pointer in
; the “RowArray” variable.
;
; Note the use of the “wp” symbol. This is an equate to “word ptr” appearing
; in the “matrix.a” include file. Also note the use of the address expression
; “RowArray+2” to access the segment portion of the double word pointer.

mov cx, ax
shl cx, 1
malloc
mov wp RowArray, di

Chapter 08

Page 440

mov wp RowArray+2, es

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter row data:”,0

mov ax, Rows ;# of values to read.
call GetArray ;ES:DI still points at array.

; Okay, time to repeat this for the column (horizontal) array.

GetCols: print
byte “Enter the number of columns for the matrix:”,0

call GetWholeNum ;Get # of columns from the user.
mov Columns, ax ;Save away number of columns.

; Okay, read each of the column values from the user:

print
char “Enter values for the column (horz.) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want; multiply this value
; by two since we want an array of words. On return from malloc, es:di
; points at the array allocated on the “heap”. Save away this pointer in
; the “RowArray” variable.

mov cx, ax ;Convert # Columns to # bytes
shl cx, 1 ; by multiply by two.
malloc ;Get the memory.
mov wp ColArray, di ;Save pointer to the
mov wp ColArray+2, es ;columns vector (array).

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter Column data:”,0

mov ax, Columns ;# of values to read.
call GetArray ;ES:DI points at column array.

; Okay, initialize the matrices that will hold the cross products.
; Generate RASize copies of the following code.
; The “repeat” macro repeats the statements between the “repeat” and the “endm”
; directives RASize times. Note the use of the Item symbol to automatically
; generate different indexes for each repetition of the following code.
; The “Item = Item+1” statement ensures that Item will take on the values
; 0, 1, 2, ..., RASize on each repetition of this loop.
;
; Remember, the “repeat..endm” macro copies the statements multiple times
; within the source file, it does not execute a “repeat..until” loop at
; run time. That is, the following macro is equivalent to making “RASize”
; copies of the code, substituting different values for Item for each
; copy.
;
; The nice thing about this code is that it automatically generates the
; proper amount of initialization code, regardless of the number of items
; placed in the ResultArrays array.

Item = 0

Directives and Pseudo Opcodes

Page 441

repeat RASize

mov cx, Columns ;Compute the size, in bytes,
imul cx, Rows ; of the matrix and allocate
add cx, cx ; sufficient storage for the
malloc ; array.

mov wp ResultArrays[Item * (sizeof DopeVec)].Data, di
mov wp ResultArrays[Item * (sizeof DopeVec)].Data+2, es

mov ax, Rows
mov ResultArrays[Item * (sizeof DopeVec)].Dim1, ax

mov ax, Columns
mov ResultArrays[Item * (sizeof DopeVec)].Dim2, ax

mov ResultArrays[Item * (sizeof DopeVec)].ESize, 2

Item = Item+1
endm

; Okay, we’ve got the input values from the user,
; now let’s compute the addition, subtraction, multiplication,
; and division tables. Once again, a macro reduces the amount of
; typing we need to do at this point as well as automatically handling
; however many items are present in the ResultArrays array.

element = 0

repeat RASize
lfs bp, RowArray ;Pointer to row data.
lgs bx, ColArray ;Pointer to column data.

lea cx, ResultArrays[element * (sizeof DopeVec)]
call CrossProduct

element = element+1
endm

; Okay, print the arrays down here. Once again, note the use of the
; repeat..endm macro to save typing and automatically handle additions
; to the ResultArrays array.

Item = 0

repeat RASize
mov si, offset ResultArrays[item * (sizeof DopeVec)]
call PrintMat

Item = Item+1
endm

; Technically, we don’t have to free up the storage malloc’d for each
; of the arrays since the program is about to quit. However, it’s a
; good idea to get used to freeing up all your storage when you’re done
; with it. For example, were you to add code later at the end of this
; program, you would have that extra memory available to that new code.

les di, ColArray
free
les di, RowArray
free

Item = 0
repeat RASize
les di, ResultArrays[Item * (sizeof DopeVec)].Data
free

Chapter 08

Page 442

Item = Item+1
endm

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

8.22.4 GETI.ASM

GETI.ASM contains a routine (geti) that reads an integer value from the user.

; GETI.ASM
;
; This module contains the integer input routine for the matrix
; example in Chapter Eight.

.nolist
include stdlib.a
.list

include matrix.a

InpSeg segment para public ‘input’

; Geti-On entry, es:di points at a string of characters.
; This routine skips any leading spaces and comma characters and then
; tests the first (non-space/comma) character to see if it is a digit.
; If not, this routine returns the carry flag set denoting an error.
; If the first character is a digit, then this routine calls the
; standard library routine “atoi2” to convert the value to an integer.
; It then ensures that the number ends with a space, comma, or zero
; byte.
;
; Returns carry clear and value in AX if no error.
; Returns carry set if an error occurs.
;
; This routine leaves ES:DI pointing at the character it fails on when
; converting the string to an integer. If the conversion occurs without
; an error, the ES:DI points at a space, comma, or zero terminating byte.

geti proc far

ifdef debug
print
char “Inside GETI”,cr,lf,0
endif

; First, skip over any leading spaces or commas.
; Note the use of the “byp” symbol to save having to type “byte ptr”.
; BYP is a text equate appearing in the macros.a file.
; A “byte ptr” coercion operator is required here because MASM cannot
; determine the size of the memory operand (byte, word, dword, etc)
; from the operands. I.e., “es:[di]” and ‘ ‘ could be any of these
; three sizes.
;
; Also note a cute little trick here; by decrementing di before entering

Directives and Pseudo Opcodes

Page 443

; the loop and then immediately incrementing di, we can increment di before
; testing the character in the body of the loop. This makes the loop
; slightly more efficient and a lot more elegant.

dec di
SkipSpcs: inc di

cmp byp es:[di], ‘ ‘
je SkipSpcs
cmp byp es:[di], ‘,’
je SkipSpcs

; See if the first non-space/comma character is a decimal digit:

mov al, es:[di]
cmp al, ‘-’ ;Minus sign is also legal in integers.
jne TryDigit
mov al, es:[di+1] ;Get next char, if “-”

TryDigit: isdigit
jne BadGeti ;Jump if not a digit.

; Okay, convert the characters that follow to an integer:

ConvertNum: atoi2 ;Leaves integer in AX
jc BadGeti ;Bomb if illegal conversion.

; Make sure this number ends with a reasonable character (space, comma,
; or a zero byte):

cmp byp es:[di], ‘ ‘
je GoodGeti
cmp byp es:[di], ‘,’
je GoodGeti
cmp byp es:[di], 0
je GoodGeti

ifdef debug
print
char “GETI: Failed because number did not end with “
char “a space, comma, or zero byte”,cr,lf,0
endif

BadGeti: stc ;Return an error condition.
ret

GoodGeti: clc ;Return no error and an integer in AX
ret

geti endp

InpSeg ends
end

8.22.5 GetArray.ASM

GetArray.ASM contains the GetArray input routine. This reads the data for the array
from the user to produce the cross products. Note that GetArray reads the data for a single
dimension array (or one row in a multidimensional array). The cross product program
reads two such vectors: one for the column values and one for the row values in the cross
product. Note: This routine uses subroutines from the UCR Standard Library that appear
in the next chapter.

; GETARRAY.ASM
;
; This module contains the GetArray input routine. This routine reads a
; set of values for a row of some array.

.386

Chapter 08

Page 444

option segment:use16

.nolist
include stdlib.a
.list

include matrix.a

; Some local variables for this module:

localdseg segment para public ‘LclData’

NumElements word ?
ArrayPtr dword ?

Localdseg ends

InpSeg segment para public ‘input’
assume ds:Localdseg

; GetArray- Read a set of numbers and store them into an array.
;
; On Entry:
;
; es:di points at the base address of the array.
; ax contains the number of elements in the array.
;
; This routine reads the specified number of array elements
; from the user and stores them into the array. If there
; is an input error of some sort, then this routine makes
; the user reenter the data.

GetArray proc far
pusha ;Preserve all the registers
push ds ; that this code modifies
push es
push fs

ifdef debug
print
char “Inside GetArray, # of input values =”,0
puti
putcr
endif

mov cx, Localdseg ;Point ds at our local
mov ds, cx ; data segment.

mov wp ArrayPtr, di ;Save in case we have an
mov wp ArrayPtr+2, es ; error during input.
mov NumElements, ax

; The following loop reads a line of text from the user containing some
; number of integer values. This loop repeats if the user enters an illegal
; value on the input line.
;
; Note: LESI is a macro from the stdlib.a include file. It loads ES:DI
; with the address of its operand (as opposed to les di, InputLine that would
; load ES:DI with the dword value at address InputLine).

RetryLp: lesi InputLine ;Read input line from user.
gets
mov cx, NumElements ;# of values to read.
lfs si, ArrayPtr ;Store input values here.

; This inner loop reads “ax” integers from the input line. If there is
; an error, it transfers control to RetryLp above.

ReadEachItem: call geti ;Read next available value.

Directives and Pseudo Opcodes

Page 445

jc BadGA
mov fs:[si], ax ;Save away in array.
add si, 2 ;Move on to next element.
loop ReadEachItem ;Repeat for each element.

pop fs ;Restore the saved registers
pop es ; from the stack before
pop ds ; returning.
popa
ret

; If an error occurs, make the user re-enter the data for the entire
; row:

BadGA: print
char “Illegal integer value(s).”,cr,lf
char “Re-enter data:”,0
jmp RetryLp

getArray endp

InpSeg ends
end

8.22.6 XProduct.ASM

This file contains the code that computes the actual cross-product.

; XProduct.ASM-
;
; This file contains the cross-product module.

.386
option segment:use16

.nolist
include stdlib.a
includelib stdlib.lib
.list

include matrix.a

; Local variables for this module.

dseg segment para public ‘data’
DV dword ?
RowNdx integer ?
ColNdx integer ?
RowCntr integer ?
ColCntr integer ?
dseg ends

cseg segment para public ‘code’
assume ds:dseg

; CrossProduct- Computes the cartesian product of two vectors.
;
; On entry:
;
; FS:BP-Points at the row matrix.
; GS:BX-Points at the column matrix.
; DS:CX-Points at the dope vector for the destination.
;
; This code assume ds points at dseg.
; This routine only preserves the segment registers.

RowMat textequ <fs:[bp]>
ColMat textequ <gs:[bx]>

Chapter 08

Page 446

DVP textequ <ds:[bx].DopeVec>

CrossProduct proc near

ifdef debug
print
char “Entering CrossProduct routine”,cr,lf,0
endif

xchg bx, cx ;Get dope vector pointer
mov ax, DVP.Dim1 ;Put Dim1 and Dim2 values
mov RowCntr, ax ; where they are easy to access.
mov ax, DVP.Dim2
mov ColCntr, ax
xchg bx, cx

; Okay, do the cross product operation. This is defined as follows:
;
; for RowNdx := 0 to NumRows-1 do
; for ColNdx := 0 to NumCols-1 do
; Result[RowNdx, ColNdx] = Row[RowNdx] op Col[ColNdx];

mov RowNdx, -1 ;Really starts at zero.
OutsideLp: add RowNdx, 1

mov ax, RowNdx
cmp ax, RowCntr
jge Done

mov ColNdx, -1 ;Really starts at zero.
InsideLp: add ColNdx, 1

mov ax, ColNdx
cmp ax, ColCntr
jge OutSideLp

mov di, RowNdx
add di, di
mov ax, RowMat[di]

mov di, ColNdx
add di, di
mov dx, ColMat[di]

push bx ;Save pointer to column matrix.
mov bx, cx ;Put ptr to dope vector where we can

; use it.

call DVP.Func ;Compute result for this guy.

mov di, RowNdx ;Index into array is
imul di, DVP.Dim2 ; (RowNdx*Dim2 + ColNdx) * ElementSize
add di, ColNdx
imul di, DVP.ESize

les bx, DVP.Data ;Get base address of array.
mov es:[bx][di], ax ;Save away result.

pop bx ;Restore ptr to column array.
jmp InsideLp

Done: ret
CrossProduct endp
cseg ends

end

Directives and Pseudo Opcodes

Page 447

8.23 Laboratory Exercises

In this set of laboratory exercises you will assemble various short programs, produce
assembly listings, and observe the object code the assembler produces for some simple
instruction sequences. You will also experiment with a make file to observe how it prop-
erly handles dependencies.

8.23.1 Near vs. Far Procedures

The following short program demonstrates how MASM automatically generates near
and far call and ret instructions depending on the operand field of the proc directive (this
program is on the companion CD-ROM in the chapter eight subdirectory).

Assemble this program with the /Fl option to produce an assembly listing. Look up
the opcodes for near and far call and ret instructions in Appendix D. Compare those val-
ues against the opcodes this program emits. For your lab report: describe how MASM fig-
ures out which instructions need to be near or far. Include the assembled listing with your
report and identify which instructions are near or far calls and returns.

; EX8_1.asm (Laboratory Exercise 8.1)

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Procedure1 proc near

; MASM will emit a *far* call to procedure2
; since it is a far procedure.

call Procedure2

; Since this return instruction is inside
; a near procedure, MASM will emit a near
; return.

ret
Procedure1 endp

Procedure2 proc far

; MASM will emit a *near* call to procedure1
; since it is a near procedure.

call Procedure1

; Since this return instruction is inside
; a far procedure, MASM will emit a far
; return.

ret
Procedure2 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; MASM emits the appropriate call instructions
; to the following procedures.

call Procedure1
call Procedure2

Quit: mov ah, 4ch

Chapter 08

Page 448

int 21h
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

end Main

8.23.2 Data Alignment Exercises

In this exercise you will compile two different programs using the MASM “/Fl” com-
mand line option so you can observe the addresses MASM assigns to the variables in the
program. The first program (Ex8_2a.asm) uses the even directive to align objects on a
word boundary. The second program (Ex8_2b.asm) uses the align directive to align objects
on different sized boundaries. For your lab report: Include the assembly listings in your
lab report. Describe what the even and align directives are doing in the program and com-
ment on how this produces faster running programs.

; EX8_2a.asm
;
; Example demonstrating the EVEN directive.

dseg segment

; Force an odd location counter within
; this segment:

i byte 0

; This word is at an odd address, which is bad!

j word 0

; Force the next word to align itself on an
; even address so we get faster access to it.

even
k word 0

; Note that even has no effect if we're already
; at an even address.

even
l word 0
dseg ends

cseg segment
assume ds:dseg

procedure proc
mov ax, [bx]
mov i, al
mov bx, ax

; The following instruction would normally lie on
; an odd address. The EVEN directive inserts a
; NOP so that it falls on an even address.

even
mov bx, cx

; Since we're already at an even address, the
; following EVEN directive has no effect.

even
mov dx, ax

Directives and Pseudo Opcodes

Page 449

ret
procedure endp
cseg ends

end

; EX8_2b.asm
;
; Example demonstrating the align
; directive.

dseg segment

; Force an odd location counter
; within this segment:

i byte 0

; This word is at an odd address,
; which is bad!

j word 0

; Force the next word to align itself
; on an even address so we get faster
; access to it.

align 2
k word 0

; Force odd address again:

k_odd byte 0

; Align the next entry on a double
; word boundary.

align 4
l dword 0

; Align the next entry on a quad
; word boundary:

align 8
RealVar real8 3.14159

; Start the following on a paragraph
; boundary:

align 16
Table dword 1,2,3,4,5
dseg ends

end

8.23.3 Equate Exercise

In this exercise you will discover a major difference between a numeric equate and a
textual equate (program Ex8_3.asm on the companion CD-ROM). MASM evaluates the
operand field of a numeric equate when it encounters the equate. MASM defers evalua-
tion of a textual equate until it expands the equate (i.e., when you use the equate in a pro-
gram). For your lab report: assemble the following program using MASM’s “/Fl”
command line option and look at the object code emitted for the two equates. Explain

Chapter 08

Page 450

why the instruction operands are different even though the two equates are nearly identi-
cal.

; Ex8_3.asm
;
; Comparison of numeric equates with textual equates
; and the differences they produce at assembly time.
;
cseg segment
equ1 equ $+2 ;Evaluates "$" at this stmt.
equ2 equ <$+2> ;Evaluates "$" on use.
MyProc proc

mov ax, 0
lea bx, equ1
lea bx, equ2
lea bx, equ1
lea bx, equ2

MyProc endp
cseg ends

end

8.23.4 IFDEF Exercise

In this exercise, you will assemble a program that uses conditional assembly and
observe the results. The Ex8_4.asm program uses the ifdef directive to test for the presence
of DEBUG1 and DEBUG2 symbols. DEBUG1 appears in this program while DEBUG2 does
not. For your lab report: assemble this code using the “/Fl” command line parameter.
Include the listing in your lab report and explain the actions of the ifdef directives.

; Ex8_4.asm
;
; Demonstration of IFDEF to control
; debugging features. This code
; assumes there are two levels of
; debugging controlled by the two
; symbols DEBUG1 and DEBUG2. In
; this code example DEBUG1 is
; defined while DEBUG2 is not.

.xlist
include stdlib.a
.list
.nolistmacro
.listif

DEBUG1 = 0

cseg segment
DummyProc proc

ifdef DEBUG2
print
byte "In DummyProc"
byte cr,lf,0
endif
ret

DummyProc endp

Main proc
ifdef DEBUG1
print
byte "Calling DummyProc"
byte cr,lf,0
endif

call DummyProc

ifdef DEBUG1

Directives and Pseudo Opcodes

Page 451

print
byte "Return from DummyProc"
byte cr,lf,0
endif
ret

Main endp
cseg ends

end

8.23.5 Make File Exercise

In this exercise you will experiment with a make file to see how nmake.exe chooses
which files to reassemble. In this exercise you will be using the Ex8_5a.asm, Ex8_5b.asm,
Ex8_5.a, and Ex8_5.mak files found in the Chapter Eight subdirectory on the companion
CD-ROM. Copy these files to a local subdirectory on your hard disk (if they are not
already there). These files contain a program that reads a string of text from the user and
prints out any vowels in the input string. You will make minor changes to the .asm and .a
files and run the make file and observe the results.

The first thing you should do is assemble the program and create up to date .exe and
.obj files for the project. You can do this with the following DOS command:

nmake Ex8_5.mak

Assuming that the .obj and .exe files were not already present in the current directory, the
nmake command above will assemble and link the Ex8_5a.asm and Ex8_5b.asm files pro-
ducing the Ex8.exe executable.

Using the editor, make a minor change (such as inserting a single space on a line con-
taining a comment) to the Ex8_5a.asm file. Execute the above nmake command. Record
what the make file does in your lab report.

Next, make a minor change to the Ex8_5b.asm file. Run the above nmake command
and record the result in your lab report. Explain the results.

Finally, make a minor change to the Ex8_5.a file. Run the nmake command and
describe the results in your lab report.

For your lab report: explain how the changes to each of the files above affects the
make operation. Explain why nmake does what it does. For additional credit: Try delet-
ing (one at a time) the Ex8_5a.obj, Ex8_5b.obj, and Ex8_5.exe files and run the nmake com-
mand. Explain why nmake does what it does when you individually delete each of these
files.

Ex8_5.mak makefile:

ex8_5.exe: ex8_5a.obj ex8_5b.obj
 ml /Feex8_5.exe ex8_5a.obj ex8_5b.obj

ex8_5a.obj: ex8_5a.asm ex8_5.a
 ml /c ex8_5a.asm

ex8_5b.obj: ex8_5b.asm ex8_5.a
 ml /c ex8_5b.asm

Ex8_5.a Header File:

; Header file for Ex8_5 project.
; This file includes the EXTERNDEF
; directive which makes the PrintVowels
; name public/external. It also includes
; the PrtVowels macro which lets us call
; the PrintVowels routine in a manner
; similar to the UCR Standard Library

Chapter 08

Page 452

; routines.

externdef PrintVowels:near

PrtVowels macro
call PrintVowels
endm

Ex8_5a.asm source file:

; Ex8_5a.asm
;
; Randall Hyde
; 2/7/96
;
; This program reads a string of symbols from the
; user and prints the vowels. It demonstrates the use of
; make files

.xlist
include stdlib.a
includelib stdlib.lib
.list

; The following include file brings in the external
; definitions of the routine(s) in the Lab6x10b
; module. In particular, it gives this module
; access to the "PrtVowels" routine found in
; Lab8_5b.asm.

include Ex8_5.a

cseg segment para public 'code'

Main proc

meminit

; Read a string from the user, print all the vowels
; present in that string, and then free up the memory
; allocated by the GETSM routine:

print
byte "I will find all your vowels"
byte cr,lf
byte "Enter a line of text: ",0

getsm
print
byte "Vowels on input line: ",0
PrtVowels
putcr
free

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)

Directives and Pseudo Opcodes

Page 453

zzzzzzseg ends
end Main

8.24 Programming Projects

1) Write a program that inputs two 4x4 integer matrices from the user and compute their
matrix product. The matrix multiply algorithm (computing C := A * B) is

for i := 0 to 3 do
for j := 0 to 3 do begin

c[i,j] := 0;
for k := 0 to 3 do
 c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Feel free to use the ForLp and Next macros from Chapter Six.
2) Modify the sample program (“Sample Program” on page 432) to use the FORLP and

NEXT macros provided in the textbook. Replace all for loop simulations in the program
with the corresponding macros.

3) Write a program that asks the user to input three integer values, m, p, and n. This program
should allocate storage for three arrays: A[0..m-1, 0..p-1], B[0..p-1, 0..n-1], and C[0..m-1,
0..n-1]. The program should then read values for arrays A and B from the user. Next, this
program should compute the matrix product of A and B using the algorithm:

for i := 0 to m-1 do
for j := 0 to n-1 do begin

c[i,j] := 0;
for k := 0 to p-1 do
 c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Finally, the program should print arrays A, B, and C. Feel free to use the ForLp and Next
macro given in this chapter. You should also take a look at the sample program (see “Sam-
ple Program” on page 432) to see how to dynamically allocate storage for arrays and
access arrays whose dimensions are not known until run time.

4) The ForLp and Next macros provide in this chapter only increment their loop control vari-
able by one on each iteration of the loop. Write a new macro, ForTo, that lets you specify
an increment constant. Increment the loop control variable by this constant on each itera-
tion of the for loop. Write a program to demonstrate the use of this macro. Hint: you will
need to create a global label to pass the increment information to the NEXT macro, or you
will need to perform the increment operation inside the ForLp macro.

5) Write a third version for ForLp and Next (see Program #7 above) that lets you specify neg-
ative increments (like the for..downto statement in Pascal). Call this macro ForDT
(for..downto).

8.25 Summary

This chapter introduced several assembler directives and pseudo-opcodes supported
by MASM. This chapter, by no means, is a complete description of what MASM has to
offer. It does provide enough information to get you going.

Assembly language statements are free format and there is usually one statement per
line in your source file. Although MASM allows free format input, you should carefully
structure your source files to make them easier to read.

• See “Assembly Language Statements” on page 355.

Chapter 08

Page 454

MASM keeps track of the offset of an instruction or variable in a segment using the
location counter. MASM increments the location counter by one for each byte of object code
it writes to the output file.

• See “The Location Counter” on page 357.

Like HLLs, MASM lets you use symbolic names for variables and statement labels.
Dealing with symbols is much easier than numeric offsets in an assembly language pro-
gram. MASM symbols look a whole lot like their HLL with a few extensions.

• See “Symbols” on page 358

MASM provides several different types of literal constants including binary, decimal,
and hexadecimal integer constants, string constants, and text constants.

• See “Literal Constants” on page 359.
• See “Integer Constants” on page 360.
• See “String Constants” on page 361.
• See “Text Constants” on page 362.

To help you manipulate segments within your program, MASM provides the seg-
ment/ends directives. With the segment directive you can control the loading order and
alignment of modules in memory.

• See “Segments” on page 366.
• See “Segment Names” on page 367.
• See “Segment Loading Order” on page 368.
• See “Segment Operands” on page 369.
• See “The CLASS Type” on page 374.
• See “Typical Segment Definitions” on page 376.
• See “Why You Would Want to Control the Loading Order” on page 376.

MASM provides the proc/endp directives for declaring procedures within your assem-
bly language programs. Although not strictly necessary, the proc/endp directives make
your programs much easier to read and maintain. The proc/endp directives also let you use
local statement names within your procedures.

• See “Procedures” on page 365.

Equates let you define symbolic constants of various sorts in your program. MASM
provides three directives for defining such constants: “=”, equ, and textequ. As with HLLs,
the judicious use of equates can help make your program easier to read.

• See “Declaring Manifest Constants Using Equates” on page 362.

As you saw in Chapter Four, MASM gives you the ability to declare variables in the
data segment using the byte, word, dword and other directives. MASM is a strongly typed
assembler and attaches a type as well as a location to variable names (most assemblers
only attach a location). This helps MASM locate obscure bugs in your program.

• See “Variables” on page 384.
• See“Label Types” on page 385.
• See “How to Give a Symbol a Particular Type” on page 385.
• See “Label Values” on page 386.
• See “Type Conflicts” on page 386.

MASM supports address expressions that let you use arithmetic operators to build con-
stant address values at assembly time. It also lets you override the type of an address
value and extract various pieces of information about a symbol. This is very useful for
writing maintainable programs.

• See “Address Expressions” on page 387.
• See “Symbol Types and Addressing Modes” on page 387.
• See “Arithmetic and Logical Operators” on page 388.
• See “Coercion” on page 390.
• See “Type Operators” on page 392.

Directives and Pseudo Opcodes

Page 455

• See “Operator Precedence” on page 396.

MASM provides several facilities for telling the assembler which segment associates
with which segment register. It also gives you the ability to override a default choice. This
lets your program manage several segments at once with a minimum of fuss.

• See “Segment Prefixes” on page 377.
• See “Controlling Segments with the ASSUME Directive” on page 377.

MASM provides you with a “conditional assembly” capability that lets you choose
which segments of code are actually assembled during the assembly process. This is use-
ful for inserting debugging code into your programs (that you can easily remove with a
single statement) and for writing programs that need to run in different environments (by
inserting and removing different sections of code).

• See “Conditional Assembly” on page 397.
• See “IF Directive” on page 398.
• See “IFE directive” on page 399.
• See “IFDEF and IFNDEF” on page 399.
• See “IFB, IFNB” on page 399.
• See “IFIDN, IFDIF, IFIDNI, and IFDIFI” on page 400.

MASM, living up to its name, provides a powerful macro facility. Macros are sections
of code you can replicate by simply placing the macro’s name in your code. Macros, prop-
erly used, can help you write shorter, easier to read, and more robust programs. Alas,
improperly used, macros produce hard to maintain, inefficient programs.

• See “Macros” on page 400.
• See “Procedural Macros” on page 400.
• See “The LOCAL Directive” on page 406.
• See“The EXITM Directive” on page 406.
• See “Macros: Good and Bad News” on page 419.
• See “Repeat Operations” on page 420.

MASM provides several directives you can use to produce “assembled listings” or
print-outs of your program with lots of assembler generated (useful!) information. These
directives let you turn on and off the listing operation, display information on the display
during assembly, and set titles on the output.

• See “Controlling the Listing” on page 424.
• See “The ECHO and %OUT Directives” on page 424.
• See “The TITLE Directive” on page 424.
• See “The SUBTTL Directive” on page 424.
• See “The PAGE Directive” on page 424.
• See “The .LIST, .NOLIST, and .XLIST Directives” on page 425.
• See “Other Listing Directives” on page 425.

To handle large projects (“Programming in the Large”) requires separate compilation
(or separate assembly in MASM’s case). MASM provides several directives that let you
merge source files during assembly, separately assemble modules, and communicate pro-
cedure and variables names between the modules.

• See “Managing Large Programs” on page 425.
• See “The INCLUDE Directive” on page 426.
• See “The PUBLIC, EXTERN, and EXTRN Directives” on page 427.
• See “The EXTERNDEF Directive” on page 428.

Chapter 08

Page 456

8.26 Questions

1) What is the difference between the following instruction sequences?

MOV AX, VAR+1

and MOV AX, VAR
 INC AX

2) What is the source line format for an assembly language statement?

3) What is the purpose of the ASSUME directive?

4) What is the location counter?

 5) Which of the following symbols are valid?

a) ThisIsASymbol b) This_Is_A_Symbol

c) This.Is.A.Symbol d) .Is_This_A_Symbol?

e) ________________ f) @_$?_To_You

g) 1WayToGo h) %Hello

i) F000h j) ?A_0$1

 k) $1234 l) Hello there

6) How do you specify segment loading order?

7) What is the type of the symbols declared by the following statements?

a)symbol1 equ 0
b)symbol2:
c)symbol3 proc
d)symbol4 db ?
e)symbol5 dw ?
f)symbol6 proc far
g)symbol7 equ this word
h)symbol8 equ byte ptr symbol7
i)symbol9 dd ?
j)symbol10 macro
k)symbol11 segment para public 'data'
l)symbol12 equ this near
m)symbol13 equ 'ABCD'
n)symbol14 equ <MOV AX, 0>

8) Which of the symbols in question 7 are not assigned the current location counter value?

9) Explain the purpose of the following operators:

a) PTR b) SHORT c) THIS d) HIGH e) LOW

f) SEG g) OFFSET

 10) What is the difference between the values loaded into the BX register (if any) in the fol-
lowing code sequence?

mov bx, offset Table
lea bx, Table

11) What is the difference between the REPEAT macro and the DUP operator?

12) In what order will the following segments be loaded into memory?

CSEG segment para public 'CODE'
…

CSEG ends
DSEG segment para public 'DATA'

…
DSEG ends
ESEG segment para public 'CODE'

…

Directives and Pseudo Opcodes

Page 457

ESEG ends

13) Which of the following address expressions do not produce the same result as the others:

a) Var1[3][5] b) 15[Var1] c) Var1[8] d) Var1+2[6]

e) Var1*3*5 f) Var1+3+5

Chapter 08

Page 458

Page 459

 Arithmetic and Logical Operations Chapter Nine

There is a lot more to assembly language than knowing the operations of a handful of
machine instructions. You’ve got to know how to use them and what they can do. Many
instructions are useful for operations that have little to do with their mathematical or
obvious functions. This chapter discusses how to convert expressions from a high level
language into assembly language. It also discusses advanced arithmetic and logical opera-
tions including multiprecision operations and tricks you can play with various instruc-
tions.

9.0 Chapter Overview

This chapter discusses six main subjects: converting HLL arithmetic expressions into
assembly language, logical expressions, extended precision arithmetic and logical opera-
tions, operating on different sized operands, machine and arithmetic idioms, and masking
operations. Like the preceding chapters, this chapter contains considerable material that
you may need to learn immediately if you’re a beginning assembly language programmer.
The sections below that have a “•” prefix are essential. Those sections with a “

❏

” discuss
advanced topics that you may want to put off for a while.

• Arithmetic expressions
• Simple assignments
• Simple expressions
• Complex expressions
• Commutative operators
• Logical expressions
• Multiprecision operations
• Multiprecision addition operations
• Multiprecision subtraction operations
• Extended precision comparisons

 ❏

Extended precision multiplication

 ❏

Extended precision division

 ❏

Extended precision negation
• Extended precision AND, OR, XOR, and NOT

 ❏

Extended precision shift and rotate operations

 ❏

Operating on different sized operands
• Multiplying without MUL and IMUL

 ❏

Division without DIV and IDIV

 ❏

Using AND to compute remainders

 ❏

Modulo-n Counters with AND

 ❏

Testing for 0FFFFF...FFFh
• Test operations

 ❏

Testing signs with the XOR instructions

 ❏

Masking operations

 ❏

Masking with the AND instructions

 ❏

Masking with the OR instruction

 ❏

Packing and unpacking data types

 ❏

Table lookups

None of this material is particularly difficult to understand. However, there are a lot
of new topics here and taking them a few at a time will certain help you absorb the mate-
rial better. Those topics with the “•” prefix are ones you will frequently use; hence it is a
good idea to study these first.

Thi d t t d ith F M k 4 0 2

Chapter 09

Page 460

9.1 Arithmetic Expressions

Probably the biggest shock to beginners facing assembly language for the very first
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most high
level languages, look similar to their algebraic equivalents:

X:=Y*Z;

In assembly language, you’ll need several statements to accomplish this same task, e.g.,

mov ax, y
imul z
mov x, ax

Obviously the HLL version is much easier to type, read, and understand. This point, more
than any other, is responsible for scaring people away from assembly language.

Although there is a lot of typing involved, converting an arithmetic expression into
assembly language isn’t difficult at all. By attacking the problem in steps, the same way
you would solve the problem by hand, you can easily break down any arithmetic expres-
sion into an equivalent sequence of assembly language statements. By learning how to
convert such expressions to assembly language in three steps, you’ll discover there is little
difficulty to this task.

9.1.1 Simple Assignments

The easiest expressions to convert to assembly language are the simple assignments.
Simple assignments copy a single value into a variable and take one of two forms:

variable := constant

or

variable := variable

If variable appears in the current data segment (e.g.,

DSEG

), converting the first form
to assembly language is easy, just use the assembly language statement:

mov variable, constant

This move immediate instruction copies the constant into the variable.

The second assignment above is somewhat complicated since the 80x86 doesn’t pro-
vide a memory–to-memory

mov

instruction. Therefore, to copy one memory variable into
another, you must move the data through a register. If you’ll look at the encoding for the

mov

instruction in the appendix, you’ll notice that the

mov ax, memory

 and

mov memory, ax

instructions are shorter than moves involving other registers. Therefore, if the

ax

 register
is available, you should use it for this operation. For example,

var1 := var2;

becomes

mov ax, var2
mov var1, ax

Of course, if you’re using the

ax

register for something else, one of the other registers will
suffice. Regardless, you must use a register to transfer one memory location to another.

This discussion, of course, assumes that both variables are in memory. If possible, you
should try to use a register to hold the value of a variable.

9.1.2 Simple Expressions

The next level of complexity up from a simple assignment is a simple expression. A
simple expression takes the form:

Arithmetic and Logical Operations

Page 461

var := term

1

 op term

2

;

Var

 is a variable,

term

1

and

 term

2

 are variables or constants, and

op

is some arithmetic oper-
ator (addition, subtraction, multiplication, etc.).

As simple as this expression appears, most expressions take this form. It should come
as no surprise then, that the 80x86 architecture was optimized for just this type of expres-
sion.

 A typical conversion for this type of expression takes the following form:

mov ax, term

1

op ax, term

2

mov var, ax

Op

 is the mnemonic that corresponds to the specified operation (e.g., “+” =

add

, “-” =

sub

,
etc.).

 There are a few inconsistencies you need to be aware of. First, the 80x86’s

{i}mul

instructions do not allow immediate operands on processors earlier than the 80286. Fur-
ther, none of the processors allow immediate operands with

{i}div

. Therefore, if the opera-
tion is multiplication or division and one of the terms is a constant value, you may need to
load this constant into a register or memory location and then multiply or divide

ax

by
that value. Of course, when dealing with the multiply and divide instructions on the
8086/8088, you must use the

ax

and

dx

registers. You cannot use arbitrary registers as you
can with other operations. Also, don’t forget the sign extension instructions if you’re per-
forming a division operation and you’re dividing one 16/32 bit number by another.
Finally, don’t forget that some instructions may cause overflow. You may want to check
for an overflow (or underflow) condition after an arithmetic operation.

Examples of common simple expressions:

X := Y + Z;

mov ax, y
add ax, z
mov x, ax

X := Y - Z;

mov ax, y
sub ax, z
mov x, ax

X := Y * Z; {unsigned}

mov ax, y
mul z ;Use IMUL for signed arithmetic.
mov x, ax ;Don’t forget this wipes out DX.

X := Y div Z; {unsigned div}

mov ax, y
mov dx, 0 ;Zero extend AX into DX
div z
mov x, ax

X := Y div Z; {signed div}

mov ax, y
cwd ;Sign extend AX into DX
idiv z
mov x, ax

X := Y mod Z; {unsigned remainder}

mov ax, y
mov dx, 0 ;Zero extend AX into DX
div z
mov x, dx ;Remainder is in DX

Chapter 09

Page 462

X := Y mod Z; {signed remainder}

mov ax, y
cwd ;Sign extend AX into DX
idiv z
mov x, dx ;Remainder is in DX

Since it is possible for an arithmetic error to occur, you should generally test the result
of each expression for an error before or after completing the operation. For example,
unsigned addition, subtraction, and multiplication set the carry flag if an overflow occurs.
You can use the

jc

 or

jnc

 instructions immediately after the corresponding instruction
sequence to test for overflow. Likewise, you can use the

jo

 or

jno

 instructions after these
sequences to test for signed arithmetic overflow. The next two examples demonstrate how
to do this for the

add

 instruction:

X := Y + Z; {unsigned}

mov ax, y
add ax, z
mov x, ax
jc uOverflow

X := Y + Z; {signed}

mov ax, y
add ax, z
mov x, ax
jo sOverflow

Certain unary operations also qualify as simple expressions. A good example of a
unary operation is negation. In a high level language negation takes one of two possible
forms:

var := -var or var

1

 := -var

2

Note that

var := -constant

 is really a simple assignment, not a simple expression. You can
specify a negative constant as an operand to the

mov

 instruction:

mov var, -14

 To handle the first form of the negation operation above use the single assembly lan-
guage statement:

neg var

If two different variables are involved, then use the following:

mov ax, var

2

neg ax
mov var

1

, ax

Overflow only occurs if you attempt to negate the most negative value (-128 for eight
bit values, -32768 for sixteen bit values, etc.). In this instance the 80x86 sets the overflow
flag, so you can test for arithmetic overflow using the

jo

 or

jno

 instructions. In all other
cases the80x86 clears the overflow flag. The carry flag has no meaning after executing the

neg

 instruction since

neg

 (obviously) does not apply to unsigned operands.

9.1.3 Complex Expressions

A complex expression is any arithmetic expression involving more than two terms
and one operator. Such expressions are commonly found in programs written in a high
level language. Complex expressions may include parentheses to override operator prece-
dence, function calls, array accesses, etc. While the conversion of some complex expres-
sions to assembly language is fairly straight-forward, others require some effort. This
section outlines the rules you use to convert such expressions.

A complex function that is easy to convert to assembly language is one that involves
three terms and two operators, for example:

W := W - Y - Z;

Arithmetic and Logical Operations

Page 463

Clearly the straight-forward assembly language conversion of this statement will require
two

sub

 instructions. However, even with an expression as simple as this one, the conver-
sion is not trivial. There are actually

two ways

 to convert this from the statement above into
assembly language:

mov ax, w
sub ax, y
sub ax, z
mov w, ax

and
mov ax, y
sub ax, z
sub w, ax

The second conversion, since it is shorter, looks better. However, it produces an incorrect
result (assuming Pascal-like semantics for the original statement). Associativity is the
problem. The second sequence above computes W := W - (Y - Z) which is not the same as
W := (W - Y) - Z. How we place the parentheses around the subexpressions can affect the
result. Note that if you are interested in a shorter form, you can use the following
sequence:

mov ax, y
add ax, z
sub w, ax

This computes W:=W-(Y+Z). This is equivalent to W := (W - Y) - Z.

Precedence is another issue. Consider the Pascal expression:

X := W * Y + Z;

Once again there are two ways we can evaluate this expression:

X := (W * Y) + Z;
or

X := W * (Y + Z);

By now, you’re probably thinking that this text is crazy. Everyone knows the correct way
to evaluate these expressions is the second form provided in these two examples. How-
ever, you’re wrong to think that way. The APL programming language, for example, eval-
uates expressions solely from right to left and does not give one operator precedence over
another.

Most high level languages use a fixed set of precedence rules to describe the order of
evaluation in an expression involving two or more different operators. Most program-
ming languages, for example, compute multiplication and division before addition and
subtraction. Those that support exponentiation (e.g., FORTRAN and BASIC) usually com-
pute that before multiplication and division. These rules are intuitive since almost every-
one learns them before high school. Consider the expression:

X op

1

 Y op

2

 Z

If op

1

 takes precedence over op

2

 then this evaluates to (X op

1

 Y) op

2

 Z otherwise if op

2

takes precedence over op

1

 then this evaluates to X op

1

 (Y op

2

 Z). Depending upon the
operators and operands involved, these two computations could produce different
results.

When converting an expression of this form into assembly language, you must be
sure to compute the subexpression with the highest precedence first. The following exam-
ple demonstrates this technique:

; W := X + Y * Z;

mov bx, x
mov ax, y ;Must compute Y * Z first since
mul z ; “*” has the highest precedence.
add bx, ax ;Now add product with X’s value.
mov w, bx ;Save away result.

Since addition is a commutative operation, we could optimize the above code to produce:

Chapter 09

Page 464

; W := X + Y * Z;

mov ax, y ;Must compute Y * Z first since
mul z ; “*” has the highest precedence.
add ax, x ;Now add product with X’s value.
mov w, ax ;Save away result.

If two operators appearing within an expression have the same precedence, then you
determine the order of evaluation using associativity rules. Most operators are left associa-
tive meaning that they evaluate from left to right. Addition, subtraction, multiplication,
and division are all left associative. A right associative operator evaluates from right to left.
The exponentiation operator in FORTRAN and BASIC is a good example of a right asso-
ciative operator:

2^2^3 is equal to 2^(2^3) not (2^2)^3

The precedence and associativity rules determine the order of evaluation. Indirectly,
these rules tell you where to place parentheses in an expression to determine the order of
evaluation. Of course, you can always use parentheses to override the default precedence
and associativity. However, the ultimate point is that your assembly code must complete
certain operations before others to correctly compute the value of a given expression. The
following examples demonstrate this principle:

; W := X - Y - Z

mov ax, x ;All the same operator, so we need
sub ax, y ; to evaluate from left to right
sub ax, z ; because they all have the same
mov w, ax ; precedence.

; W := X + Y * Z

mov ax, y ;Must compute Y * Z first since
imul z ; multiplication has a higher
add ax, x ; precedence than addition.
mov w, ax

; W := X / Y - Z

mov ax, x ;Here we need to compute division
cwd ; first since it has the highest
idiv y ; precedence.
sub ax, z
mov w, ax

; W := X * Y * Z

mov ax, y ;Addition and multiplication are
imul z ; commutative, therefore the order
imul x ; of evaluation does not matter
mov w, ax

There is one exception to the associativity rule. If an expression involves multiplica-
tion and division it is always better to perform the multiplication first. For example, given
an expression of the form:

W := X/Y * Z

It is better to compute X*Z and then divide the result by Y rather than divide X by Y and
multiply the quotient by Z. There are two reasons this approach is better. First, remember
that the imul instruction always produces a 32 bit result (assuming 16 bit operands). By
doing the multiplication first, you automatically sign extend the product into the dx regis-
ter so you do not have to sign extend ax prior to the division. This saves the execution of
the cwd instruction. A second reason for doing the multiplication first is to increase the
accuracy of the computation. Remember, (integer) division often produces an inexact
result. For example, if you compute 5/2 you will get the value two, not 2.5. Computing
(5/2)*3 produces six. However, if you compute (5*3)/2 you get the value seven which is a
little closer to the real quotient (7.5). Therefore, if you encounter an expression of the form:

W := X/Y*Z;

You can usually convert this to assembly code:

Arithmetic and Logical Operations

Page 465

mov ax, x
imul z
idiv z
mov w, ax

Of course, if the algorithm you’re encoding depends on the truncation effect of the divi-
sion operation, you cannot use this trick to improve the algorithm. Moral of the story:
always make sure you fully understand any expression you are converting to assembly
language. Obviously if the semantics dictate that you must perform the division first, do
so.

Consider the following Pascal statement:

W := X - Y * Z;

This is similar to a previous example except it uses subtraction rather than addition. Since
subtraction is not commutative, you cannot compute Y * Z and then subtract X from this
result. This tends to complicate the conversion a tiny amount. Rather than a straight for-
ward multiply and addition sequence, you’ll have to load X into a register, multiply Y and
Z leaving their product in a different register, and then subtract this product from X, e.g.,

mov bx, x
mov ax, y
imul z
sub bx, ax
mov w, bx

This is a trivial example that demonstrates the need for temporary variables in an expres-
sion. The code uses the bx register to temporarily hold a copy of X until it computes the
product of Y and Z. As your expression increase in complexity, the need for temporaries
grows. Consider the following Pascal statement:

W := (A + B) * (Y + Z);

Following the normal rules of algebraic evaluation, you compute the subexpressions
inside the parentheses (i.e., the two subexpressions with the highest precedence) first and
set their values aside. When you computed the values for both subexpressions you can
compute their sum. One way to deal with complex expressions like this one is to reduce it
to a sequence of simple expressions whose results wind up in temporary variables. For
example, we can convert the single expression above into the following sequence:

Temp1 := A + B;
Temp2 := Y + Z;
W := Temp1 * Temp2;

Since converting simple expressions to assembly language is quite easy, it’s now a snap to
compute the former, complex, expression in assembly. The code is

mov ax, a
add ax, b
mov Temp1, ax
mov ax, y
add ax, z
mov temp2, ax
mov ax, temp1,
imul temp2
mov w, ax

Of course, this code is grossly inefficient and it requires that you declare a couple of tem-
porary variables in your data segment. However, it is very easy to optimize this code by
keeping temporary variables, as much as possible, in 80x86 registers. By using 80x86 regis-
ters to hold the temporary results this code becomes:

mov ax, a
add ax, b
mov bx, y
add bx, z
imul bx
mov w, ax

Yet another example:

Chapter 09

Page 466

X := (Y+Z) * (A-B) / 10;

This can be converted to a set of four simple expressions:

Temp1 := (Y+Z)
Temp2 := (A-B)
Temp1 := Temp1 * Temp2
X := Temp1 / 10

You can convert these four simple expressions into the assembly language statements:

mov ax, y ;Compute AX := Y+Z
add ax, z
mov bx, a ;Compute BX := A-B
sub bx, b
mul bx ;Compute AX := AX * BX, this also sign
mov bx, 10 ; extends AX into DX for idiv.
idiv bx ;Compute AX := AX / 10
mov x, ax ;Store result into X

The most important thing to keep in mind is that temporary values, if possible, should
be kept in registers. Remember, accessing an 80x86 register is much more efficient than
accessing a memory location. Use memory locations to hold temporaries only if you’ve
run out of registers to use.

Ultimately, converting a complex expression to assembly language is little different
than solving the expression by hand. Instead of actually computing the result at each
stage of the computation, you simply write the assembly code that computes the results.
Since you were probably taught to compute only one operation at a time, this means that
manual computation works on “simple expressions” that exist in a complex expression.
Of course, converting those simple expressions to assembly is fairly trivial. Therefore,
anyone who can solve a complex expression by hand can convert it to assembly language
following the rules for simple expressions.

9.1.4 Commutative Operators

If “@” represents some operator, that operator is commutative if the following relation-
ship is always true:

(A @ B) = (B @ A)

As you saw in the previous section, commutative operators are nice because the order
of their operands is immaterial and this lets you rearrange a computation, often making
that computation easier or more efficient. Often, rearranging a computation allows you to
use fewer temporary variables. Whenever you encounter a commutative operator in an
expression, you should always check to see if there is a better sequence you can use to
improve the size or speed of your code. The following tables list the commutative and
non-commutative operators you typically find in high level languages:

Table 46: Some Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

AND && or & Logical or bitwise AND

OR || or | Logical or bitwise OR

XOR ^ (Logical or) Bitwise exclusive-OR

= == Equality

<> != Inequality

Arithmetic and Logical Operations

Page 467

9.2 Logical (Boolean) Expressions

Consider the following expression from a Pascal program:

B := ((X=Y) and (A <= C)) or ((Z-A) <> 5);

B is a boolean variable and the remaining variables are all integers.

How do we represent boolean variables in assembly language? Although it takes only
a single bit to represent a boolean value, most assembly language programmers allocate a
whole byte or word for this purpose. With a byte, there are 256 possible values we can use
to represent the two values true and false. So which two values (or which two sets of val-
ues) do we use to represent these boolean values? Because of the machine’s architecture,
it’s much easier to test for conditions like zero or not zero and positive or negative rather
than to test for one of two particular boolean values. Most programmers (and, indeed,
some programming languages like “C”) choose zero to represent false and anything else
to represent true. Some people prefer to represent true and false with one and zero
(respectively) and not allow any other values. Others select 0FFFFh for true and 0 for false.
You could also use a positive value for true and a negative value for false. All these mech-
anisms have their own advantages and drawbacks.

Using only zero and one to represent false and true offers one very big advantage: the
80x86 logical instructions (and, or, xor and, to a lesser extent, not) operate on these values
exactly as you would expect. That is, if you have two boolean variables A and B, then the
following instructions perform the basic logical operations on these two variables:

mov ax, A
and ax, B
mov C, ax ;C := A and B;

mov ax, A
or ax, B
mov C, ax ;C := A or B;

mov ax, A
xor ax, B
mov C, ax ;C := A xor B;

mov ax, A ;Note that the NOT instruction does not
not ax ; properly compute B := not A by itself.
and ax, 1 ; I.e., (NOT 0)does not equal one.
mov B, ax ;B := not A;

mov ax, A ;Another way to do B := NOT A;
xor ax, 1
mov B, ax ;B := not A;

Note, as pointed out above, that the not instruction will not properly compute logical
negation. The bitwise not of zero is 0FFh and the bitwise not of one is 0FEh. Neither result
is zero or one. However, by anding the result with one you get the proper result. Note that

Table 47: Some Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or DIV / Division

MOD % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

Chapter 09

Page 468

you can implement the not operation more efficiently using the xor ax, 1 instruction since
it only affects the L.O. bit.

As it turns out, using zero for false and anything else for true has a lot of subtle advan-
tages. Specifically, the test for true or false is often implicit in the execution of any logical
instruction. However, this mechanism suffers from a very big disadvantage: you cannot
use the 80x86 and, or, xor, and not instructions to implement the boolean operations of the
same name. Consider the two values 55h and 0AAh. They’re both non-zero so they both
represent the value true. However, if you logically and 55h and 0AAh together using the
80x86 and instruction, the result is zero. (True and true) should produce true, not false. A
system that uses non-zero values to represent true and zero to represent false is an arith-
metic logical system. A system that uses the two distinct values like zero and one to repre-
sent false and true is called a boolean logical system, or simply a boolean system. You can
use either system, as convenient. Consider again the boolean expression:

B := ((X=Y) and (A <= D)) or ((Z-A) <> 5);

The simple expressions resulting from this expression might be:

Temp2 := X = Y
Temp := A <= D
Temp := Temp and Temp2
Temp2 := Z-A
Temp2 := Temp2 <> 5
B := Temp or Temp2

The assembly language code for these expressions could be:

mov ax, x ;See if X = Y and load zero or
cmp ax, y ; one into AX to denote the result
jnz L1 ; of this comparison.
mov al, 1 ;X = Y
jmp L2

L1: mov al, 0 ;X <> Y
L2:

mov bx, A ;See if A <= D and load zero or one
cmp bx, D ; into BX to denote the result of
jle ST1 ; this comparison.
mov bl, 0
jmp L3

ST1: mov bl, 1
L3:

and bl, al ;Temp := Temp and Temp2

mov ax, Z ;See if (Z-A) <> 5.
sub ax, A ;Temp2 := Z-A;
cmp ax, 5 ;Temp2 := Temp2 <> 5;
jnz ST2
mov al, 0
jmp short L4

ST2: mov al, 1
L4:

or al, bl ;Temp := Temp or Temp2;
mov B, al ;B := Temp;

As you can see, this is a rather unwieldy sequence of statements. One slight optimization
you can use is to assume a result is going to be true or false and initialize the correspond-
ing boolean result ahead of time:

mov bl, 0 ;Assume X <> Y
mov ax, x
cmp ax, Y
jne L1
mov bl, 1 ;X is equal to Y, so make this true.

L1:
mov bh, 0 ;Assume not (A <= D)
mov ax, A
cmp ax, D
jnle L2
mov bh, 1 ;A <= D so make this true

Arithmetic and Logical Operations

Page 469

L2:
and bl, bh ;Compute logical AND of results.

mov bh, 0 ;Assume (Z-A) = 5
mov ax, Z
sub ax, A
cmp ax, 5
je L3:
mov bh, 1 ;(Z-A) <> 5

L3:
or bl, bh ;Logical OR of results.
mov B, bl ;Save boolean result.

Of course, if you have an 80386 or later processor, you can use the setcc instructions to
simplify this a bit:

mov ax, x
cmp ax, y
sete al ;TEMP2 := X = Y

mov bx, A
cmp bx, D
setle bl ;TEMP := A <= D
and bl, al ;Temp := Temp and Temp2
mov ax, Z
sub ax, A ;Temp2 := Z-A;
cmp ax, 5 ;Temp2 := Temp2 <> 5;
setne al
or bl, al ;Temp := Temp or Temp2;
mov B, bl ;B := Temp;

This code sequence is obviously much better than the previous one, but it will only exe-
cute on 80386 and later processors.

Another way to handle boolean expressions is to represent boolean values by states
within your code. The basic idea is to forget maintaining a boolean variable throughout
the execution of a code sequence and use the position within the code to determine the
boolean result. Consider the following implementation of the above expression. First, let’s
rearrange the expression to be

B := ((Z-A) <> 5) or ((X=Y) and (A <= D));

This is perfectly legal since the or operation is commutative. Now consider the following
implementation:

mov B, 1 ;Assume the result is true.
mov ax, Z ;See if (Z-A) <> 5
sub ax, A ;If this condition is true, the
cmp ax, 5 ; result is always true so there
jne Done ; is no need to check the rest.

mov ax, X ;If X <> Y, the result is false,
cmp ax, Y ; no matter what A and D contain
jne SetBtoFalse

mov ax, A ;Now see if A <= D.
cmp ax, D
jle Done ;If so, quit.

SetBtoFalse: mov B, 0 ;If B is false, handle that here.
Done:

Notice that this section of code is a lot shorter than the first version above (and it runs
on all processors). The previous translations did everything computationally. This version
uses program flow logic to improve the code. It begins by assuming a true result and sets
the B variable to true. It then checks to see if (Z-A) <> 5. If this is true the code branches to
the done table because B is true no matter what else happens. If the program falls through
to the mov ax, X instruction, we know that the result of the previous comparison is false.
There is no need to save this result in a temporary since we implicitly know its value by
the fact that we’re executing the mov ax, X instruction. Likewise, the second group of state-
ments above checks to see if X is equal to Y. If it is not, we already know the result is false

Chapter 09

Page 470

so this code jumps to the SetBtoFalse label. If the program begins executing the third set of
statements above, we know that the first result was false and the second result was true;
the position of the code guarantees this. Therefore, there is no need to maintain temporary
boolean variables that keep track of the state of this computation.

Consider another example:

B := ((A = E) or (F <> D)) and ((A<>B) or (F = D));

Computationally, this expression would yield a considerable amount of code. However,
by using flow control you can reduce it to the following:

mov b, 0 ;Assume result is false.
mov ax, a ;See if A = E.
cmp ax, e
je test2 ;If so, 1st subexpression is true.

mov ax, f ;If not, check 2nd subexpression
cmp ax, d ; to see if F <> D.
je Done ;If so, we’re done, else fall

; through to next tests.
Test2: mov ax, a ;Does A <> B?

cmp ax, b
jne SetBto1 ;If so, we’re done.

mov ax, f ;If not, see if F = D.
cmp ax, d
jne Done

SetBto1: mov b, 1
Done:

There is one other difference between using control flow vs. computation logic: when
using control flow methods, you may skip the majority of the instructions that implement
the boolean formula. This is known as short-circuit evaluation. When using the computa-
tion model, even with the setcc instruction, you wind up executing most of the statements.
Keep in mind that this is not necessarily a disadvantage. On pipelined processors it may
be much faster to execute several additional instructions rather than flush the pipeline and
prefetch queue. You may need to experiment with your code to determine the best solu-
tion.

When working with boolean expressions don’t forget the that you might be able to
optimize your code by simplifying those boolean expressions (see “Simplification of Bool-
ean Functions” on page 52). You can use algebraic transformations (especially DeMor-
gan’s theorems) and the mapping method to help reduce the complexity of an expression.

9.3 Multiprecision Operations

One big advantage of assembly language over HLLs is that assembly language does
not limit the size of integers. For example, the C programming language defines a maxi-
mum of three different integer sizes: short int, int, and long int. On the PC, these are often 16
or 32 bit integers. Although the 80x86 machine instructions limit you to processing eight,
sixteen, or thirty-two bit integers with a single instruction, you can always use more than
one instruction to process integers of any size you desire. If you want 256 bit integer val-
ues, no problem. The following sections describe how extended various arithmetic and
logical operations from 16 or 32 bits to as many bits as you please.

9.3.1 Multiprecision Addition Operations

The 80x86 add instruction adds two 8, 16, or 32 bit numbers1. After the execution of
the add instruction, the 80x86 carry flag is set if there is an overflow out of the H.O. bit of

1. As usual, 32 bit arithmetic is available only on the 80386 and later processors.

Arithmetic and Logical Operations

Page 471

the sum. You can use this information to do multiprecision addition operations. Consider
the way you manually perform a multidigit (multiprecision) addition operation:

Step 1: Add the least significant digits together:

 289 289
+456 produces +456
---- ----

 5 with carry 1.

 Step 2: Add the next significant digits plus the carry:

 1 (previous carry)
 289 289

+456 produces +456
---- ----
 5 45 with carry 1.

 Step 3: Add the most significant digits plus the carry:

 1 (previous carry)
 289 289
+456 produces +456
---- ----
 45 745

 The 80x86 handles extended precision arithmetic in an identical fashion, except instead of
adding the numbers a digit at a time, it adds them a byte or a word at a time. Consider the
three-word (48 bit) addition operation in Figure 8.1.

Figure 8.1 Multiprecision (48-bit) Addition

Step 1: Add the least significant words together:

Step 2: Add the middle words together:

(plus carry, if any)

C

Step 3: Add the most significant words together:

(plus carry, if any)

C

Chapter 09

Page 472

The add instruction adds the L.O. words together. The adc (add with carry) instruction
adds all other word pairs together. The adc instruction adds two operands plus the carry
flag together producing a word value and (possibly) a carry.

For example, suppose that you have two thirty-two bit values you wish to add
together, defined as follows:

X dword ?
Y dword ?

Suppose, also, that you want to store the sum in a third variable, Z, that is likewise
defined with the dword directive. The following 80x86 code will accomplish this task:

mov ax, word ptr X
add ax, word ptr Y
mov word ptr Z, ax
mov ax, word ptr X+2
adc ax, word ptr Y+2
mov word ptr Z+2, ax

Remember, these variables are declared with the dword directive. Therefore the assem-
bler will not accept an instruction of the form mov ax, X because this instruction would
attempt to load a 32 bit value into a 16 bit register. Therefore this code uses the word ptr
coercion operator to coerce symbols X, Y, and Z to 16 bits. The first three instructions add
the L.O. words of X and Y together and store the result at the L.O. word of Z. The last three
instructions add the H.O. words of X and Y together, along with the carry out of the L.O.
word, and store the result in the H.O. word of Z. Remember, address expressions of the
form “X+2” access the H.O. word of a 32 bit entity. This is due to the fact that the 80x86
address space addresses bytes and it takes two consecutive bytes to form a word.

Of course, if you have an 80386 or later processor you needn’t go through all this just
to add two 32 bit values together, since the 80386 directly supports 32 bit operations.
However, if you wanted to add two 64 bit integers together on the 80386, you would still
need to use this technique.

You can extend this to any number of bits by using the adc instruction to add in the
higher order words in the values. For example, to add together two 128 bit values, you
could use code that looks something like the following:

BigVal1 dword 0,0,0,0 ;Four double words in 128 bits!
BigVal2 dword 0,0,0,0
BigVal3 dword 0,0,0,0

 .
 .
 .

mov eax, BigVal1 ;No need for dword ptr operator since
add eax, BigVal2 ; these are dword variables.
mov BigVal3, eax

mov eax, BigVal1+4 ;Add in the values from the L.O.
adc eax, BigVal2+4 ; entity to the H.O. entity using
mov BigVal3+4, eax ; the ADC instruction.

mov eax, BigVal1+8
adc eax, BigVal2+8
mov BigVal3+8, eax

mov eax, BigVal1+12
adc eax, BigVal2+12
mov BigVal3+12, eax

9.3.2 Multiprecision Subtraction Operations

Like addition, the 80x86 performs multi-byte subtraction the same way you would
manually, except it subtracts whole bytes , words, or double words at a time rather than
decimal digits. The mechanism is similar to that for the add operation, You use the sub
instruction on the L.O. byte/word/double word and the sbb instruction on the high order

Arithmetic and Logical Operations

Page 473

values. The following example demonstrates a 32 bit subtraction using the 16 bit registers
on the 8086:

var1 dword ?
var2 dword ?
diff dword ?

mov ax, word ptr var1
sub ax, word ptr var2
mov word ptr diff, ax
mov ax, word ptr var1+2
sbb ax, word ptr var2+2
mov word ptr diff+2, ax

The following example demonstrates a 128-bit subtraction using the 80386 32 bit register
set:

BigVal1 dword 0,0,0,0 ;Four double words in 128 bits!
BigVal2 dword 0,0,0,0
BigVal3 dword 0,0,0,0

.

.

.

mov eax, BigVal1 ;No need for dword ptr operator since
sub eax, BigVal2 ; these are dword variables.
mov BigVal3, eax

mov eax, BigVal1+4 ;Subtract the values from the L.O.
sbb eax, BigVal2+4 ; entity to the H.O. entity using
mov BigVal3+4, eax ; the SUB and SBB instructions.

mov eax, BigVal1+8
sbb eax, BigVal2+8
mov BigVal3+8, eax

mov eax, BigVal1+12
sbb eax, BigVal2+12
mov BigVal3+12, eax

9.3.3 Extended Precision Comparisons

Unfortunately, there isn’t a “compare with borrow” instruction that can be used to
perform extended precision comparisons. Since the cmp and sub instructions perform the
same operation, at least as far as the flags are concerned, you’d probably guess that you
could use the sbb instruction to synthesize an extended precision comparison; however,
you’d only be partly right. There is, however, a better way.

Consider the two unsigned values 2157h and 1293h. The L.O. bytes of these two val-
ues do not affect the outcome of the comparison. Simply comparing 21h with 12h tells us
that the first value is greater than the second. In fact, the only time you ever need to look
at both bytes of these values is if the H.O. bytes are equal. In all other cases comparing the
H.O. bytes tells you everything you need to know about the values. Of course, this is true
for any number of bytes, not just two. The following code compares two signed 64 bit inte-
gers on an 80386 or later processor:

; This sequence transfers control to location “IsGreater” if
; QwordValue > QwordValue2. It transfers control to “IsLess” if
; QwordValue < QwordValue2. It falls though to the instruction
; following this sequence if QwordValue = QwordValue2. To test for
; inequality, change the “IsGreater” and “IsLess” operands to “NotEqual”
; in this code.

mov eax, dword ptr QWordValue+4 ;Get H.O. dword
cmp eax, dword ptr QWordValue2+4
jg IsGreater
jl IsLess
mov eax, dword ptr QWordValue
cmp eax, dword ptr QWordValue2
jg IsGreater
jl IsLess

Chapter 09

Page 474

To compare unsigned values, simply use the ja and jb instructions in place of jg and jl.

You can easily synthesize any possible comparison from the sequence above, the fol-
lowing examples show how to do this. These examples do signed comparisons, substitute
ja, jae, jb, and jbe for jg, jge, jl, and jle (respectively) to do unsigned comparisons.

QW1 qword ?
QW2 qword ?

dp textequ <dword ptr>

; 64 bit test to see if QW1 < QW2 (signed).
; Control transfers to “IsLess” label if QW1 < QW2. Control falls
; through to the next statement if this is not true.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg NotLess
jl IsLess
mov eax, dp QW1 ;Fall through to here if H.O.
cmp eax, dp QW2 ; dwords are equal.
jl IsLess

NotLess:

; 64 bit test to see if QW1 <= QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg NotLessEq
jl IsLessEq
mov eax, dp QW1
cmp eax, dword ptr QW2
jle IsLessEq

NotLessEQ:

; 64 bit test to see if QW1 >QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg IsGtr
jl NotGtr
mov eax, dp QW1 ;Fall through to here if H.O.
cmp eax, dp QW2 ; dwords are equal.
jg IsGtr

NotGtr:

; 64 bit test to see if QW1 >= QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg IsGtrEq
jl NotGtrEq
mov eax, dp QW1
cmp eax, dword ptr QW2
jge IsGtrEq

NotGtrEq:

; 64 bit test to see if QW1 = QW2 (signed or unsigned). This code branches
; to the label “IsEqual” if QW1 = QW2. It falls through to the next instruction
; if they are not equal.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jne NotEqual
mov eax, dp QW1
cmp eax, dword ptr QW2
je IsEqual

NotEqual:

Arithmetic and Logical Operations

Page 475

; 64 bit test to see if QW1 <> QW2 (signed or unsigned). This code branches
; to the label “NotEqual” if QW1 <> QW2. It falls through to the next
; instruction if they are equal.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jne NotEqual
mov eax, dp QW1
cmp eax, dword ptr QW2
jne NotEqual

9.3.4 Extended Precision Multiplication

Although a 16x16 or 32x32 multiply is usually sufficient, there are times when you
may want to multiply larger values together. You will use the 80x86 single operand mul
and imul instructions for extended precision multiplication.

Not surprisingly (in view of how adc and sbb work), you use the same techniques to
perform extended precision multiplication on the 80x86 that you employ when manually
multiplying two values.

 Consider a simplified form of the way you perform multi-digit multiplication by
hand:

1) Multiply the first two 2) Multiply 5*2:
 digits together (5*3):

123 123
 45 45
--- ---
 15 15

10

 3) Multiply 5*1: 4) 4*3:

123 123
 45 45
--- ---
 15 15
10 10
5 5

12

 5) Multiply 4*2: 6) 4*1:

 123 123
 45 45
 --- ---
 15 15
 10 10
 5 5
 12 12
 8 8

4

 7) Add all the partial products together:

 123
 45

 15
 10
 5
 12
 8
4

5535

Chapter 09

Page 476

 The 80x86 does extended precision multiplication in the same manner except that it
works with bytes, words, and double words rather than digits. Figure 8.2 shows how this
works.

Probably the most important thing to remember when performing an extended preci-
sion multiplication is that you must also perform a multiple precision addition at the same
time. Adding up all the partial products requires several additions that will produce the
result. The following listing demonstrates the proper way to multiply two 32 bit values on
a 16 bit processor:

Note: Multiplier and Multiplicand are 32 bit variables declared in the data segment via the
dword directive. Product is a 64 bit variable declared in the data segment via the qword
directive.

Figure 8.2 Multiprecision Multiplication

A B
C D

D * B

1) Multiply the L.O. words 2) Multiply D * A

A B
C D

D * B
D * A

A B
C D

D * B

C D

D * A
C * B

3) Multiply C times B 4) Multiply C * A

A B
C D

D * B

C D

D * A
C * B

C * A

5) Compute sum of partial products

A B
C D

D * B

C D

D * A
C * B

C * A
AB * CB

Arithmetic and Logical Operations

Page 477

Multiply proc near
push ax
push dx
push cx
push bx

; Multiply the L.O. word of Multiplier times Multiplicand:

mov ax, word ptr Multiplier
mov bx, ax ;Save Multiplier val
mul word ptr Multiplicand ;Multiply L.O. words
mov word ptr Product, ax ;Save partial product
mov cx, dx ;Save H.O. word

mov ax, bx ;Get Multiplier in BX
mul word ptr Multiplicand+2 ;Multiply L.O. * H.O.
add ax, cx ;Add partial product
adc dx, 0 ;Don’t forget carry!
mov bx, ax ;Save partial product
mov cx, dx ; for now.

; Multiply the H.O. word of Multiplier times Multiplicand:

mov ax, word ptr Multiplier+2 ;Get H.O. Multiplier
mul word ptr Multiplicand ;Times L.O. word
add ax, bx ;Add partial product
mov word ptr product+2, ax ;Save partial product
adc cx, dx ;Add in carry/H.O.!

mov ax, word ptr Multiplier+2 ;Multiply the H.O.
mul word ptr Multiplicand+2 ; words together.
add ax, cx ;Add partial product
adc dx, 0 ;Don’t forget carry!
mov word ptr Product+4, ax ;Save partial product
mov word ptr Product+6, dx

pop bx
pop cx
pop dx
pop ax
ret

Multiply endp

 One thing you must keep in mind concerning this code, it only works for unsigned
operands. Multiplication of signed operands appears in the exercises.

9.3.5 Extended Precision Division

You cannot synthesize a general n-bit/m-bit division operation using the div and idiv
instructions. Such an operation must be performed using a sequence of shift and subtract
instructions. Such an operation is extremely messy. A less general operation, dividing an n
bit quantity by a 32 bit (on the 80386 or later) or 16 bit quantity is easily synthesized using
the div instruction. The following code demonstrates how to divide a 64 bit quantity by a
16 bit divisor, producing a 64 bit quotient and a 16 bit remainder:

dseg segment para public ‘DATA’
dividend dword 0FFFFFFFFh, 12345678h
divisor word 16
Quotient dword 0,0
Modulo word 0
dseg ends

cseg segment para public ‘CODE’
assume cs:cseg, ds:dseg

; Divide a 64 bit quantity by a 16 bit quantity:

Divide64 proc near

mov ax, word ptr dividend+6
sub dx, dx

Chapter 09

Page 478

div divisor
mov word ptr Quotient+6, ax
mov ax, word ptr dividend+4
div divisor
mov word ptr Quotient+4, ax
mov ax, word ptr dividend+2
div divisor
mov word ptr Quotient+2, ax
mov ax, word ptr dividend
div divisor
mov word ptr Quotient, ax
mov Modulo, dx
ret

Divide64 endp
cseg ends

This code can be extended to any number of bits by simply adding additional mov / div /
mov instructions at the beginning of the sequence. Of course, on the 80386 and later pro-
cessors you can divide by a 32 bit value by using edx and eax in the above sequence (with
a few other appropriate adjustments).

If you need to use a divisor larger than 16 bits (32 bits on an 80386 or later), you’re
going to have to implement the division using a shift and subtract strategy. Unfortunately,
such algorithms are very slow. In this section we’ll develop two division algorithms that
operate on an arbitrary number of bits. The first is slow but easier to understand, the sec-
ond is quite a bit faster (in general).

As for multiplication, the best way to understand how the computer performs divi-
sion is to study how you were taught to perform long division by hand. Consider the
operation 3456/12 and the steps you would take to manually perform this operation:

This algorithm is actually easier in binary since at each step you do not have to guess
how many times 12 goes into the remainder nor do you have to multiply 12 by your guess
to obtain the amount to subtract. At each step in the binary algorithm the divisor goes into
the remainder exactly zero or one times. As an example, consider the division of 27 (11011)
by three (11):

 2
12 3456
 24
 105

(2) Subtract 24 from 35
and drop down the
105.

12 3456
 24

(1) 12 goes into 34 two times.

 28
12 3456
 24
 105
 96
 96

(4) Subtract 96 from 105
and drop down the 96.

(3) 12 goes into 105
 eight times.

 2
12 3456
 24
 105
 96

 288
12 3456
 24
 105
 96
 96
 96

(6) Therefore, 12
goes into 3456
exactly 288 times.

(5) 12 goes into 96
 exactly eight times.

 28
12 3456
 24
 105
 96
 96
 96

11 11011
 11

11 goes into 11 one time.

Arithmetic and Logical Operations

Page 479

11 11011
 11
 00

Subtract out the 11 and bring down the zero.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

1

11 11011
 11
 00
 00
 01

Subtract out the zero and bring down the one.

10

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

10

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the zero and bring down the one.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

100

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001

Chapter 09

Page 480

There is a novel way to implement this binary division algorithm that computes the
quotient and the remainder at the same time. The algorithm is the following:

Quotient := Dividend;
Remainder := 0;
for i:= 1 to NumberBits do

Remainder:Quotient := Remainder:Quotient SHL 1;
if Remainder >= Divisor then

Remainder := Remainder - Divisor;
Quotient := Quotient + 1;

endif
endfor

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and Dividend variables.
Note that the Quotient := Quotient + 1 statement sets the L.O. bit of Quotient to one since this
algorithm previously shifts Quotient one bit to the left. The 80x86 code to implement this
algorithm is

; Assume Dividend (and Quotient) is DX:AX, Divisor is in CX:BX,
; and Remainder is in SI:DI.

mov bp, 32 ;Count off 32 bits in BP
sub si, si ;Set remainder to zero
sub di, di

BitLoop: shl ax, 1 ;See the section on shifts
rcl dx, 1 ; that describes how this
rcl di, 1 ; 64 bit SHL operation works
rcl si, 1
cmp si, cx ;Compare H.O. words of Rem,
ja GoesInto ; Divisor.
jb TryNext
cmp di, bx ;Compare L.O. words.
jb TryNext

GoesInto: sub di, bx ;Remainder := Remainder -
sbb si, cx ; Divisor
inc ax ;Set L.O. bit of AX

TryNext: dec bp ;Repeat 32 times.
jne BitLoop

This code looks short and simple, but there are a few problems with it. First, it does
not check for division by zero (it will produce the value 0FFFFFFFFh if you attempt to
divide by zero), it only handles unsigned values, and it is very slow. Handling division by
zero is very simple, just check the divisor against zero prior to running this code and
return an appropriate error code if the divisor is zero. Dealing with signed values is
equally simple, you’ll see how to do that in a little bit. The performance of this algorithm,
however, leaves a lot to be desired. Assuming one pass through the loop takes about 30
clock cycles2, this algorithm would require almost 1,000 clock cycles to complete! That’s
an order of magnitude worse than the DIV/IDIV instructions on the 80x86 that are among
the slowest instructions on the 80x86.

There is a technique you can use to boost the performance of this division by a fair
amount: check to see if the divisor variable really uses 32 bits. Often, even though the divi-
sor is a 32 bit variable, the value itself fits just fine into 16 bits (i.e., the H.O. word of Divisor
is zero). In this special case, that occurs frequently, you can use the DIV instruction which
is much faster.

9.3.6 Extended Precision NEG Operations

Although there are several ways to negate an extended precision value, the shortest
way is to use a combination of neg and sbb instructions. This technique uses the fact that
neg subtracts its operand from zero. In particular, it sets the flags the same way the sub

2. This will vary depending upon your choice of processor.

Arithmetic and Logical Operations

Page 481

instruction would if you subtracted the destination value from zero. This code takes the
following form:

neg dx
neg ax
sbb dx,0

The sbb instruction decrements dx if there is a borrow out of the L.O. word of the negation
operation (which always occurs unless ax is zero).

To extend this operation to additional bytes, words, or double words is easy; all you
have to do is start with the H.O. memory location of the object you want to negate and
work towards the L.O. byte. The following code computes a 128 bit negation on the 80386
processor:

Value dword 0,0,0,0 ;128 bit integer.
 .
 .
 .
neg Value+12 ;Neg H.O. dword
neg Value+8 ;Neg previous dword in memory.
sbb Value+12, 0 ;Adjust H.O. dword
neg Value+4 ;Neg the second dword in object.
sbb Value+8, 0 ;Adjust 3rd dword in object.
sbb Value+12, 0 ;Carry any borrow through H.O. word.
neg Value ;Negate L.O. word.
sbb Value+4, 0 ;Adjust 2nd dword in object.
sbb Value+8, 0 ;Adjust 3rd dword in object.
sbb Value+12, 0 ;Carry any borrow through H.O. word.

Unfortunately, this code tends to get really large and slow since you need to pro-
pogate the carry through all the H.O. words after each negate operation. A simpler way to
negate larger values is to simply subract that value from zero:

Value dword 0,0,0,0,0 ;160 bit integer.
 .
 .
 .
mov eax, 0
sub eax, Value
mov Value, eax
mov eax, 0
sbb eax, Value+4
mov Value+8, ax
mov eax, 0
sbb eax, Value+8
mov Value+8, ax
mov eax, 0
sbb eax, Value+12
mov Value+12, ax
mov eax, 0
sbb eax, Value+16
mov Value+16, ax

9.3.7 Extended Precision AND Operations

Performing an n-word and operation is very easy – simply and the corresponding
words between the two operands, saving the result. For example, to perform the and
operation where all three operands are 32 bits long, you could use the following code:

mov ax, word ptr source1
and ax, word ptr source2
mov word ptr dest, ax
mov ax, word ptr source1+2
and ax, word ptr source2+2
mov word ptr dest+2, ax

Chapter 09

Page 482

This technique easily extends to any number of words, all you need to is logically and the
corresponding bytes, words, or double words in the corresponding operands.

9.3.8 Extended Precision OR Operations

Multi-word logical or operations are performed in the same way as multi-word and
operations. You simply or the corresponding words in the two operand together. For
example, to logically or two 48 bit values, use the following code:

mov ax, word ptr operand1
or ax, word ptr operand2
mov word ptr operand3, ax
mov ax, word ptr operand1+2
or ax, word ptr operand2+2
mov word ptr operand3+2, ax
mov ax, word ptr operand1+4
or ax, word ptr operand2+4
mov word ptr operand3+4, ax

9.3.9 Extended Precision XOR Operations

Extended precision xor operations are performed in a manner identical to and/or –
simply xor the corresponding words in the two operands to obtain the extended precision
result. The following code sequence operates on two 64 bit operands, computes their
exclusive-or, and stores the result into a 64 bit variable. This example uses the 32 bit regis-
ters available on 80386 and later processors.

mov eax, dword ptr operand1
xor eax, dword ptr operand2
mov dword ptr operand3, eax
mov eax, dword ptr operand1+4
xor eax, dword ptr operand2+4
mov dword ptr operand3+4, eax

9.3.10 Extended Precision NOT Operations

The not instruction inverts all the bits in the specified operand. It does not affect any
flags (therefore, using a conditional jump after a not instruction has no meaning). An
extended precision not is performed by simply executing the not instruction on all the
affected operands. For example, to perform a 32 bit not operation on the value in (dx:ax),
all you need to do is execute the instructions:

not ax or not dx
not dx not ax

Keep in mind that if you execute the not instruction twice, you wind up with the orig-
inal value. Also note that exclusive-oring a value with all ones (0FFh, 0FFFFh, or 0FF..FFh)
performs the same operation as the not instruction.

9.3.11 Extended Precision Shift Operations

Extended precision shift operations require a shift and a rotate instruction. Consider
what must happen to implement a 32 bit shl using 16 bit operations:

1) A zero must be shifted into bit zero.

2) Bits zero through 14 are shifted into the next higher bit.

3) Bit 15 is shifted into bit 16.

Arithmetic and Logical Operations

Page 483

4) Bits 16 through 30 must be shifted into the next higher bit.

5) Bit 31 is shifted into the carry flag.

The two instructions you can use to implement this 32 bit shift are shl and rcl. For
example, to shift the 32 bit quantity in (dx:ax) one position to the left, you’d use the
instructions:

shl ax, 1
rcl dx, 1

Note that you can only shift an extended precision value one bit at a time. You cannot
shift an extended precision operand several bits using the cl register or an immediate
value greater than one as the count using this technique

To understand how this instruction sequence works, consider the operation of these
instructions on an individual basis. The shl instruction shifts a zero into bit zero of the 32
bit operand and shifts bit 15 into the carry flag. The rcl instruction then shifts the carry flag
into bit 16 and then shifts bit 31 into the carry flag. The result is exactly what we want.

 To perform a shift left on an operand larger than 32 bits you simply add additional rcl
instructions. An extended precision shift left operation always starts with the least signifi-
cant word and each succeeding rcl instruction operates on the next most significant word.
For example, to perform a 48 bit shift left operation on a memory location you could use
the following instructions:

shl word ptr Operand, 1
rcl word ptr Operand+2, 1
rcl word ptr Operand+4, 1

If you need to shift your data by two or more bits, you can either repeat the above
sequence the desired number of times (for a constant number of shifts) or you can place
the instructions in a loop to repeat them some number of times. For example, the follow-
ing code shifts the 48 bit value Operand to the left the number of bits specified in cx:

ShiftLoop: shl word ptr Operand, 1
rcl word ptr Operand+2, 1
rcl word ptr Operand+4, 1
loop ShiftLoop

You implement shr and sar in a similar way, except you must start at the H.O. word of the
operand and work your way down to the L.O. word:

DblSAR: sar word ptr Operand+4, 1
rcr word ptr Operand+2, 1
rcr word ptr Operand, 1

DblSHR: shr word ptr Operand+4, 1
rcr word ptr Operand+2, 1
rcr word ptr Operand, 1

There is one major difference between the extended precision shifts described here
and their 8/16 bit counterparts – the extended precision shifts set the flags differently than

Figure 8.3 32-bit Shift Left Operation

31 20 19 18 17 16

...C

15 4 3 2 1 0

...

Chapter 09

Page 484

the single precision operations. For example, the zero flag is set if the last rotate instruc-
tion produced a zero result, not if the entire shift operation produced a zero result. For the
shift right operations, the overflow, and sign flags aren’t set properly (they are set prop-
erly for the left shift operation). Additional testing will be required if you need to test one
of these flags after an extended precision shift operation. Fortunately, the carry flag is the
flag most often tested after a shift operation and the extended precision shift instructions
properly set this flag.

The shld and shrd instructions let you efficiently implement multiprecision shifts of
several bits on 80386 and later processors. Consider the following code sequence:

ShiftMe dword 1234h, 5678h, 9012h
 .
 .
 .
mov eax, ShiftMe+4
shld ShiftMe+8, eax, 6
mov eax, ShiftMe
shld ShiftMe+4, eax, 6
shl ShiftMe, 6

Recall that the shld instruction shifts bits from its second operand into its first operand.
Therefore, the first shld instruction above shifts the bits from ShiftMe+4 into ShiftMe+8 with-
out affecting the value in ShiftMe+4. The second shld instruction shifts the bits from ShiftMe
into ShiftMe+4. Finally, the shl instruction shifts the L.O. double word the appropriate
amount. There are two important things to note about this code. First, unlike the other
extended precision shift left operations, this sequence works from the H.O. double word
down to the L.O. double word. Second, the carry flag does not contain the carry out of the
H.O. shift operation. If you need to preserve the carry flag at that point, you will need to
push the flags after the first shld instruction and pop the flags after the shl instruction.

You can do an extended precision shift right operation using the shrd instruction. It
works almost the same way as the code sequence above except you work from the L.O.
double word to the H.O. double word. The solution is left as an exercise at the end of this
chapter.

9.3.12 Extended Precision Rotate Operations

The rcl and rcr operations extend in a manner almost identical to that for shl and shr .
For example, to perform 48 bit rcl and rcr operations, use the following instructions:

rcl word ptr operand,1
rcl word ptr operand+2, 1
rcl word ptr operand+4, 1

rcr word ptr operand+4, 1
rcr word ptr operand+2, 1
rcr word ptr operand, 1

The only difference between this code and the code for the extended precision shift opera-
tions is that the first instruction is a rcl or rcr rather than a shl or shr instruction.

Performing an extended precision rol or ror instruction isn’t quite as simple an opera-
tion. The 8086 extended precision versions of these instructions appear in the exercises.
On the 80386 and later processors, you can use the bt, shld, and shrd instructions to easily
implement an extended precision rol or ror instruction. The following code shows how to
use the shld instruction to do an extended precision rol:

; Compute ROL EDX:EAX, 4

mov ebx, edx
shld edx, eax, 4
shld eax, ebx, 4
bt eax, 0 ;Set carry flag, if desired.

Arithmetic and Logical Operations

Page 485

An extended precision ror instruction is similar; just keep in mind that you work on the
L.O. end of the object first and the H.O. end last.

9.4 Operating on Different Sized Operands

Occasionally you may need to compute some value on a pair of operands that are not
the same size. For example, you may need to add a word and a double word together or
subtract a byte value from a word value. The solution is simple: just extend the smaller
operand to the size of the larger operand and then do the operation on two similarly sized
operands. For signed operands, you would sign extend the smaller operand to the same
size as the larger operand; for unsigned values, you zero extend the smaller operand. This
works for any operation, although the following examples demonstrate this for the addi-
tion operation.

To extend the smaller operand to the size of the larger operand, use a sign extension
or zero extension operation (depending upon whether you’re adding signed or unsigned
values). Once you’ve extended the smaller value to the size of the larger, the addition can
proceed. Consider the following code that adds a byte value to a word value:

var1 byte ?
var2 word ?

Unsigned addition: Signed addition:

mov al, var1 mov al, var1
mov ah, 0 cbw
add ax, var2 add ax, var2

 In both cases, the byte variable was loaded into the al register, extended to 16 bits, and
then added to the word operand. This code works out really well if you can choose the
order of the operations (e.g., adding the eight bit value to the sixteen bit value). Some-
times, you cannot specify the order of the operations. Perhaps the sixteen bit value is
already in the ax register and you want to add an eight bit value to it. For unsigned addi-
tion, you could use the following code:

mov ax, var2 ;Load 16 bit value into AX
 . ;Do some other operations leaving
 . ; a 16 bit quantity in AX.
add al, var1 ;Add in the 8 bit value.
adc ah, 0 ;Add carry into the H.O. word.

 The first add instruction in this example adds the byte at var1 to the L.O. byte of the value
in the accumulator. The adc instruction above adds the carry out of the L.O. byte into the
H.O. byte of the accumulator. Care must be taken to ensure that this adc instruction is
present. If you leave it out, you may not get the correct result.

Adding an eight bit signed operand to a sixteen bit signed value is a little more diffi-
cult. Unfortunately, you cannot add an immediate value (as above) to the H.O. word of ax.
This is because the H.O. extension byte can be either 00h or 0FFh. If a register is available,
the best thing to do is the following:

mov bx, ax ;BX is the available register.
mov al, var1
cbw
add ax, bx

 If an extra register is not available, you might try the following code:

add al, var1
cmp var1, 0
jge add0
adc ah, 0FFh
jmp addedFF

add0: adc ah, 0
addedFF:

Chapter 09

Page 486

Of course, if another register isn’t available, you could always push one onto the stack and
save it while you’re performing the operation, e.g.,

push bx
mov bx, ax
mov al, var1
cbw
add ax, bx
pop bx

 Another alternative is to store the 16 bit value in the accumulator into a memory location
and then proceed as before:

mov temp, ax
mov al, var1
cbw
add ax, temp

All the examples above added a byte value to a word value. By zero or sign extending
the smaller operand to the size of the larger operand, you can easily add any two different
sized variables together. Consider the following code that adds a signed byte operand to a
signed double word:

var1 byte ?
var2 dword ?

 mov al, var1
cbw
cwd ;Extend to 32 bits in DX
add ax, word ptr var2
adc dx, word ptr var2+2

Of course, if you have an 80386 or later processor, you could use the following code:

 movsx eax, var1
add eax, var2

An example more applicable to the 80386 is adding an eight bit value to a quadword (64
bit) value, consider the following code:

BVal byte -1
QVal qword 1

movsx eax, BVal
cdq
add eax, dword ptr QVal
adc edx, dword ptr QVal+4

For additional examples, see the exercises at the end of this chapter.

9.5 Machine and Arithmetic Idioms

An idiom is an idiosyncrasy. Several arithmetic operations and 80x86 instructions
have idiosyncracies that you can take advantage of when writing assembly language
code. Some people refer to the use of machine and arithmetic idioms as “tricky program-
ming” that you should always avoid in well written programs. While it is wise to avoid
tricks just for the sake of tricks, many machine and arithmetic idioms are well-known and
commonly found in assembly language programs. Some of them can be really tricky, but a
good number of them are simply “tricks of the trade.” This text cannot even begin to
present all of the idioms in common use today; they are too numerous and the list is con-
stantly changing. Nevertheless, there are some very important idioms that you will see all
the time, so it makes sense to discuss those.

Arithmetic and Logical Operations

Page 487

9.5.1 Multiplying Without MUL and IMUL

If you take a quick look at the timing for the multiply instruction, you’ll notice that the
execution time for this instruction is rather long. Only the div and idiv instructions take
longer on the 8086. When multiplying by a constant, you can avoid the performance pen-
alty of the mul and imul instructions by using shifts, additions, and subtractions to perform
the multiplication.

Remember, a shl operation performs the same operation as multiplying the specified
operand by two. Shifting to the left two bit positions multiplies the operand by four. Shift-
ing to the left three bit positions multiplies the operand by eight. In general, shifting an
operand to the left n bits multiplies it by 2n. Any value can be multiplied by some constant
using a series of shifts and adds or shifts and subtractions. For example, to multiply the ax
register by ten, you need only multiply it by eight and then add in two times the original
value. That is, 10*ax = 8*ax + 2*ax. The code to accomplish this is

shl ax, 1 ;Multiply AX by two
mov bx, ax ;Save 2*AX for later
shl ax, 1 ;Multiply AX by four
shl ax, 1 ;Multiply AX by eight
add ax, bx ;Add in 2*AX to get 10*AX

The ax register (or just about any register, for that matter) can be multiplied by most
constant values much faster using shl than by using the mul instruction. This may seem
hard to believe since it only takes two instructions to compute this product:

mov bx, 10
mul bx

However, if you look at the timings, the shift and add example above requires fewer clock
cycles on most processors in the 80x86 family than the mul instruction. Of course, the code
is somewhat larger (by a few bytes), but the performance improvement is usually worth it.
Of course, on the later 80x86 processors, the mul instruction is quite a bit faster than the
earlier processors, but the shift and add scheme is generally faster on these processors as
well.

You can also use subtraction with shifts to perform a multiplication operation. Con-
sider the following multiplication by seven:

mov bx, ax ;Save AX*1
shl ax, 1 ;AX := AX*2
shl ax, 1 ;AX := AX*4
shl ax, 1 ;AX := AX*8
sub ax, bx ;AX := AX*7

This follows directly from the fact that ax*7 = (ax*8)-ax.

A common error made by beginning assembly language students is subtracting or
adding one or two rather than ax*1 or ax*2. The following does not compute ax*7:

shl ax, 1
shl ax, 1
shl ax, 1
sub ax, 1

It computes (8*ax)-1, something entirely different (unless, of course, ax = 1). Beware of
this pitfall when using shifts, additions, and subtractions to perform multiplication opera-
tions.

You can also use the lea instruction to compute certain products on 80386 and later
processors. The trick is to use the 80386 scaled index mode. The following examples dem-
onstrate some simple cases:

lea eax, [ecx][ecx] ;EAX := ECX * 2
lea eax, [eax]eax*2] ;EAX := EAX * 3
lea eax, [eax*4] ;EAX := EAX * 4
lea eax, [ebx][ebx*4] ;EAX := EBX * 5
lea eax, [eax*8] ;EAX := EAX * 8

Chapter 09

Page 488

lea eax, [edx][edx*8] ;EAX := EDX * 9

9.5.2 Division Without DIV and IDIV

Much as the shl instruction can be used for simulating a multiplication by some power
of two, the shr and sar instructions can be used to simulate a division by a power of two.
Unfortunately, you cannot use shifts, additions, and subtractions to perform a division by
an arbitrary constant as easily as you can use these instructions to perform a multiplica-
tion operation.

Another way to perform division is to use the multiply instructions. You can divide
by some value by multiplying by its reciprocal. The multiply instruction is marginally
faster than the divide instruction; multiplying by a reciprocal is almost always faster than
division.

Now you’re probably wondering “how does one multiply by a reciprocal when the
values we’re dealing with are all integers?” The answer, of course, is that we must cheat to
do this. If you want to multiply by one tenth, there is no way you can load the value
1/10th into an 80x86 register prior to performing the division. However, we could multi-
ply 1/10th by 10, perform the multiplication, and then divide the result by ten to get the
final result. Of course, this wouldn’t buy you anything at all, in fact it would make things
worse since you’re now doing a multiplication by ten as well as a division by ten. How-
ever, suppose you multiply 1/10th by 65,536 (6553), perform the multiplication, and then
divide by 65,536. This would still perform the correct operation and, as it turns out, if you
set up the problem correctly, you can get the division operation for free. Consider the fol-
lowing code that divides ax by ten:

mov dx, 6554 ;Round (65,536/10)
mul dx

This code leaves ax/10 in the dx register.

To understand how this works, consider what happens when you multiply ax by
65,536 (10000h). This simply moves ax into dx and sets ax to zero. Multiplying by 6,554
(65,536 divided by ten) puts ax divided by ten into the dx register. Since mul is marginally
faster than div , this technique runs a little faster than using a straight division.

Multiplying by the reciprocal works well when you need to divide by a constant. You
could even use it to divide by a variable, but the overhead to compute the reciprocal only
pays off if you perform the division many, many times (by the same value).

9.5.3 Using AND to Compute Remainders

The and instruction can be used to quickly compute remainders of the form:

dest := dest MOD 2n

To compute a remainder using the and instruction, simply and the operand with the
value 2n-1. For example, to compute ax = ax mod 8 simply use the instruction:

and ax, 7

Additional examples:

and ax, 3 ;AX := AX mod 4
and ax, 0Fh ;AX := AX mod 16
and ax, 1Fh ;AX := AX mod 32
and ax, 3Fh ;AX := AX mod 64
and ax, 7Fh ;AX := AX mod 128
mov ah, 0 ;AX := AX mod 256

; (Same as ax and 0FFh)

Arithmetic and Logical Operations

Page 489

9.5.4 Implementing Modulo-n Counters with AND

If you want to implement a counter variable that counts up to 2n-1 and then resets to
zero, simply using the following code:

inc CounterVar
and CounterVar, nBits

where nBits is a binary value containing n one bits right justified in the number. For exam-
ple, to create a counter that cycles between zero and fifteen, you could use the following:

inc CounterVar
and CounterVar, 00001111b

9.5.5 Testing an Extended Precision Value for 0FFFF..FFh

The and instruction can be used to quickly check a multi-word value to see if it con-
tains ones in all its bit positions. Simply load the first word into the ax register and then
logically and the ax register with all the remaining words in the data structure. When the
and operation is complete, the ax register will contain 0FFFFh if and only if all the words
in that structure contained 0FFFFh. E.g.,

mov ax, word ptr var
and ax, word ptr var+2
and ax, word ptr var+4
 .
 .
 .

and ax, word ptr var+n
cmp ax, 0FFFFh
je Is0FFFFh

9.5.6 TEST Operations

Remember, the test instruction is an and instruction that doesn’t retain the results of
the and operation (other than the flag settings). Therefore, many of the comments con-
cerning the and operation (particularly with respect to the way it affects the flags) also
hold for the test instruction. However, since the test instruction doesn’t affect the destina-
tion operand, multiple bit tests may be performed on the same value. Consider the follow-
ing code:

test ax, 1
jnz Bit0
test ax, 2
jnz Bit1
test ax, 4
jnz Bit3
etc.

This code can be used to successively test each bit in the ax register (or any other oper-
and for that matter). Note that you cannot use the test/cmp instruction pair to test for a spe-
cific value within a string of bits (as you can with the and/cmp instructions). Since test
doesn’t strip out any unwanted bits, the cmp instruction would actually be comparing the
original value rather than the stripped value. For this reason, you’ll normally use the test
instruction to see if a single bit is set or if one or more bits out of a group of bits are set. Of
course, if you have an 80386 or later processor, you can also use the bt instruction to test
individual bits in an operand.

Another important use of the test instruction is to efficiently compare a register
against zero. The following test instruction sets the zero flag if and only if ax contains zero
(anything anded with itself produces its original value; this sets the zero flag only if that
value is zero):

test ax, ax

Chapter 09

Page 490

The test instruction is shorter than

cmp ax, 0
or

cmp eax, 0

though it is no better than

cmp al, 0

Note that you can use the and and or instructions to test for zero in a fashion identical
to test. However, on pipelined processors like the 80486 and Pentium chips, the test
instruction is less likely to create a hazard since it does not store a result back into its des-
tination register.

9.5.7 Testing Signs with the XOR Instruction

Remember the pain associated with a multi-precision signed multiplication opera-
tion? You need to determine the sign of the result, take the absolute value of the operands,
multiply them, and then adjust the sign of the result as determined before the multiplica-
tion operation. The sign of the product of two numbers is simply the exclusive-or of their
signs before performing the multiplication. Therefore, you can use the xor instruction to
determine the sign of the product of two extended precision numbers. E.g.,

32x32 Multiply:
mov al, byte ptr Oprnd1+3
xor al, byte ptr Oprnd2+3
mov cl, al ;Save sign

; Do the multiplication here (don’t forget to take the absolute
; value of the two operands before performing the multiply).

 .
 .
 .

; Now fix the sign.

cmp cl, 0 ;Check sign bit
jns ResultIsPos

; Negate the product here.

 .
 .
 .

ResultIsPos:

9.6 Masking Operations

A mask is a value used to force certain bits to zero or one within some other value. A
mask typically affects certain bits in an operand (forcing them to zero or one) and leaves
other bits unaffected. The appropriate use of masks allows you to extract bits from a value,
insert bits into a value, and pack or unpacked a packed data type. The following sections
describe these operations in detail.

9.6.1 Masking Operations with the AND Instruction

If you’ll take a look at the truth table for the and operation back in Chapter One, you’ll
note that if you fix either operand at zero the result is always zero. If you set that operand
to one, the result is always the value of the other operand. We can use this property of the
and instruction to selectively force certain bits to zero in a value without affecting other
bits. This is called masking out bits.

Arithmetic and Logical Operations

Page 491

As an example, consider the ASCII codes for the digits “0”..”9”. Their codes fall in the
range 30h..39h respectively. To convert an ASCII digit to its corresponding numeric value,
you must subtract 30h from the ASCII code. This is easily accomplished by logically and-
ing the value with 0Fh. This strips (sets to zero) all but the L.O. four bits producing the
numeric value. You could have used the subtract instruction, but most people use the and
instruction for this purpose.

9.6.2 Masking Operations with the OR Instruction

Much as you can use the and instruction to force selected bits to zero, you can use the
or instruction to force selected bits to one. This operation is called masking in bits.

Remember the masking out operation described earlier with the and instruction? In
that example we wanted to convert an ASCII code for a digit to its numeric equivalent.
You can use the or instruction to reverse this process. That is, convert a numeric value in
the range 0..9 to the ASCII code for the corresponding digit, i.e., ‘0’..’9’. To do this, logi-
cally or the specified numeric value with 30h.

9.7 Packing and Unpacking Data Types

One of the primary uses of the shift and rotate instructions is packing and unpacking
data. Byte and word data types are chosen more often than any other since the 80x86 sup-
ports these two data sizes with hardware. If you don’t need exactly eight or 16 bits, using
a byte or word to hold your data might be wasteful. By packing data, you may be able to
reduce memory requirements for your data by inserting two or more values into a single
byte or word. The cost for this reduction in memory use is lower performance. It takes
time to pack and unpack the data. Nevertheless, for applications that aren’t speed critical
(or for those portions of the application that aren’t speed critical), the memory savings
might justify the use of packed data.

The data type that offers the most savings when using packing techniques is the bool-
ean data type. To represent true or false requires a single bit. Therefore, up to eight differ-
ent boolean values can be packed into a single byte. This represents an 8:1 compression
ratio, therefore, a packed array of boolean values requires only one-eighth the space of an
equivalent unpacked array (where each boolean variable consumes one byte). For exam-
ple, the Pascal array

B:packed array[0..31] of boolean;

requires only four bytes when packed one value per bit. When packed one value per byte,
this array requires 32 bytes.

Dealing with a packed boolean array requires two operations. You’ll need to insert a
value into a packed variable (often called a packed field) and you’ll need to extract a value
from a packed field.

To insert a value into a packed boolean array, you must align the source bit with its
position in the destination operand and then store that bit into the destination operand.
You can do this with a sequence of and, or, and shift instructions. The first step is to mask
out the corresponding bit in the destination operand. Use an and instruction for this. Then
the source operand is shifted so that it is aligned with the destination position, finally the
source operand is or’d into the destination operand. For example, if you want to insert bit
zero of the ax register into bit five of the cx register, the following code could be used:

and cl, 0DFh ;Clear bit five (the destination bit)
and al, 1 ;Clear all AL bits except the src bit.
ror al, 1 ;Move to bit 7
shr al, 1 ;Move to bit 6
shr al, 1 ;move to bit 5
or cl, al

Chapter 09

Page 492

This code is somewhat tricky. It rotates the data to the right rather than shifting it to
the left since this requires fewer shifts and rotate instructions.

To extract a boolean value, you simply reverse this process. First, you move the
desired bit into bit zero and then mask out all the other bits. For example, to extract the
data in bit five of the cx register leaving the single boolean value in bit zero of the ax regis-
ter, you’d use the following code:

mov al, cl
shl al, 1 ;Bit 5 to bit 6
shl al, 1 ;Bit 6 to bit 7
rol al, 1 ;Bit 7 to bit 0
and ax, 1 ;Clear all bits except 0

To test a boolean variable in a packed array you needn’t extract the bit and then test it,
you can test it in place. For example, to test the value in bit five to see if it is zero or one,
the following code could be used:

test cl, 00100000b
jnz BitIsSet

Other types of packed data can be handled in a similar fashion except you need to
work with two or more bits. For example, suppose you’ve packed five different three bit
fields into a sixteen bit value as shown in Figure 8.4.

If the ax register contains the data to pack into value3, you could use the following
code to insert this data into field three:

mov ah, al ;Do a shl by 8
shr ax, 1 ;Reposition down to bits 6..8
shr ax, 1
and ax, 11100000b ;Strip undesired bits
and DATA, 0FE3Fh ;Set destination field to zero.
or DATA, ax ;Merge new data into field.

Extraction is handled in a similar fashion. First you strip the unneeded bits and then you
justify the result:

mov ax, DATA
and ax, 1Ch
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1

This code can be improved by using the following code sequence:

mov ax, DATA
shl ax, 1
shl ax, 1
mov al, ah
and ax, 07h

Additional uses for packed data will be explored throughout this book.

Figure 8.4 Packed Data

Val 1 Val 2 Va l 3 Va l 4 Val 5

Unused

Arithmetic and Logical Operations

Page 493

9.8 Tables

The term “table” has different meanings to different programmers. To most assembly
language programmers, a table is nothing more than an array that is initialized with some
data. The assembly language programmer often uses tables to compute complex or other-
wise slow functions. Many very high level languages (e.g., SNOBOL4 and Icon) directly
support a table data type. Tables in these languages are essentially arrays whose elements
you can access with an non-integer value (e.g., floating point, string, or any other data
type). In this section, we will adopt the assembly language programmer’s view of tables.

A Table is an array containing preinitialized values that do not change during the exe-
cution of the program. A table can be compared to an array in the same way an integer
constant can be compared to an integer variable. In assembly language, you can use tables
for a variety of purposes: computing functions, controlling program flow, or simply “look-
ing things up”. In general, tables provide a fast mechanism for performing some opera-
tion at the expense of some space in your program (the extra space holds the tabular data).
In the following sections we’ll explore some of the many possible uses of tables in an
assembly language program.

9.8.1 Function Computation via Table Look Up

Tables can do all kinds of things in assembly language. In HLLs, like Pascal, it’s real
easy to create a formula which computes some value. A simple looking arithmetic expres-
sion is equivalent to a considerable amount of 80x86 assembly language code. Assembly
language programmers tend to compute many values via table look up rather than
through the execution of some function. This has the advantage of being easier, and often
more efficient as well. Consider the following Pascal statement:

if (character >= ‘a’) and (character <= ‘z’) then character := chr(ord(character) - 32);

This Pascal if statement converts the character variable character from lower case to
upper case if character is in the range ‘a’..’z’. The 80x86 assembly language code that does
the same thing is

mov al, character
cmp al, ‘a’
jb NotLower

 cmp al, ‘z’
ja NotLower

 and al, 05fh ;Same operation as SUB AL,32
NotLower: mov character, al

Had you buried this code in a nested loop, you’d be hard pressed to improve the speed of
this code without using a table look up. Using a table look up, however, allows you to
reduce this sequence of instructions to just four instructions:

mov al, character
lea bx, CnvrtLower
xlat

 mov character, al

CnvrtLower is a 256-byte table which contains the values 0..60h at indices 0..60h,
41h..5Ah at indices 61h..7Ah, and 7Bh..0FFh at indices 7Bh..0FFh. Often, using this table
look up facility will increase the speed of your code.

As the complexity of the function increases, the performance benefits of the table look
up method increase dramatically. While you would almost never use a look up table to
convert lower case to upper case, consider what happens if you want to swap cases:

Via computation:

mov al, character
cmp al, ‘a’

Chapter 09

Page 494

jb NotLower
 cmp al, ‘z’
 ja NotLower
 and al, 05fh
 jmp ConvertDone

 NotLower: cmp al, ‘A’
 jb ConvertDone
 cmp al, ‘Z’
 ja ConvertDone
 or al, 20h
 ConvertDone:

mov character, al

The table look up code to compute this same function is:

mov al, character
lea bx, SwapUL

 xlat
 mov character, al

As you can see, when computing a function via table look up, no matter what the
function is, only the table changes, not the code doing the look up.

Table look ups suffer from one major problem – functions computed via table look
ups have a limited domain. The domain of a function is the set of possible input values
(parameters) it will accept. For example, the upper/lower case conversion functions
above have the 256-character ASCII character set as their domain.

A function such as SIN or COS accepts the set of real numbers as possible input val-
ues. Clearly the domain for SIN and COS is much larger than for the upper/lower case
conversion function. If you are going to do computations via table look up, you must limit
the domain of a function to a small set. This is because each element in the domain of a
function requires an entry in the look up table. You won’t find it very practical to imple-
ment a function via table look up whose domain the set of real numbers.

 Most look up tables are quite small, usually 10 to 128 entries. Rarely do look up tables
grow beyond 1,000 entries. Most programmers don’t have the patience to create (and ver-
ify the correctness) of a 1,000 entry table.

Another limitation of functions based on look up tables is that the elements in the
domain of the function must be fairly contiguous. Table look ups take the input value for a
function, use this input value as an index into the table, and return the value at that entry
in the table. If you do not pass a function any values other than 0, 100, 1,000, and 10,000 it
would seem an ideal candidate for implementation via table look up, its domain consists
of only four items. However, the table would actually require 10,001 different elements
due to the range of the input values. Therefore, you cannot efficiently create such a func-
tion via a table look up. Throughout this section on tables, we’ll assume that the domain
of the function is a fairly contiguous set of values.

The best functions that can be implemented via table look ups are those whose
domain and range is always 0..255 (or some subset of this range). Such functions are effi-
ciently implemented on the 80x86 via the XLAT instruction. The upper/lower case con-
version routines presented earlier are good examples of such a function. Any function in
this class (those whose domain and range take on the values 0..255) can be computed
using the same two instructions (lea bx,table / xlat) above. The only thing that ever changes
is the look up table.

The xlat instruction cannot be (conveniently) used to compute a function value once
the range or domain of the function takes on values outside 0..255. There are three situa-
tions to consider:

• The domain is outside 0..255 but the range is within 0..255,
• The domain is inside 0..255 but the range is outside 0..255, and
• Both the domain and range of the function take on values outside 0..255.

We will consider each of these cases separately.

Arithmetic and Logical Operations

Page 495

If the domain of a function is outside 0..255 but the range of the function falls within
this set of values, our look up table will require more than 256 entries but we can represent
each entry with a single byte. Therefore, the look up table can be an array of bytes. Next to
look ups involving the xlat instruction, functions falling into this class are the most effi-
cient. The following Pascal function invocation,

B := Func(X);

where Func is

function Func(X:word):byte;

consists of the following 80x86 code:

mov bx, X
 mov al, FuncTable [bx]
 mov B, al

This code loads the function parameter into bx, uses this value (in the range 0..??) as
an index into the FuncTable table, fetches the byte at that location, and stores the result into
B. Obviously, the table must contain a valid entry for each possible value of X. For exam-
ple, suppose you wanted to map a cursor position on the video screen in the range 0..1999
(there are 2,000 character positions on an 80x25 video display) to its X or Y coordinate on
the screen. You could easily compute the X coordinate via the function X:=Posn mod 80 and
the Y coordinate with the formula Y:=Posn div 80 (where Posn is the cursor position on the
screen). This can be easily computed using the 80x86 code:

mov bl, 80
 mov ax, Posn
 div bx

; X is now in AH, Y is now in AL

However, the div instruction on the 80x86 is very slow. If you need to do this computa-
tion for every character you write to the screen, you will seriously degrade the speed of
your video display code. The following code, which realizes these two functions via table
look up, would improve the performance of your code considerably:

mov bx, Posn
 mov al, YCoord[bx]

mov ah, XCoord[bx]

If the domain of a function is within 0..255 but the range is outside this set, the look up
table will contain 256 or fewer entries but each entry will require two or more bytes. If
both the range and domains of the function are outside 0..255, each entry will require two
or more bytes and the table will contain more than 256 entries.

Recall from Chapter Four the formula for indexing into a single dimensional array (of
which a table is a special case):

Address := Base + index * size

 If elements in the range of the function require two bytes, then the index must be
multiplied by two before indexing into the table. Likewise, if each entry requires three,
four, or more bytes, the index must be multiplied by the size of each table entry before
being used as an index into the table. For example, suppose you have a function, F(x),
defined by the following (pseudo) Pascal declaration:

function F(x:0..999):word;

You can easily create this function using the following 80x86 code (and, of course, the
appropriate table):

mov bx, X ;Get function input value and
shl bx, 1 ; convert to a word index into F.
mov ax, F[bx]

Chapter 09

Page 496

The shl instruction multiplies the index by two, providing the proper index into a table
whose elements are words.

 Any function whose domain is small and mostly contiguous is a good candidate for
computation via table look up. In some cases, non-contiguous domains are acceptable as
well, as long as the domain can be coerced into an appropriate set of values. Such opera-
tions are called conditioning and are the subject of the next section.

9.8.2 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and massag-
ing them so that they are more acceptable as inputs to that function. Consider the follow-
ing function:

This says that the (computer) function SIN(x) is equivalent to the (mathematical) func-
tion sin x where

-2π ≤ x ≤ 2π
As we all know, sine is a circular function which will accept any real valued input.

The formula used to compute sine, however, only accept a small set of these values.

This range limitation doesn’t present any real problems, by simply computing
SIN(X mod (2*pi)) we can compute the sine of any input value. Modifying an input value so
that we can easily compute a function is called conditioning the input. In the example
above we computed X mod 2*pi and used the result as the input to the sin function. This
truncates X to the domain sin needs without affecting the result. We can apply input condi-
tioning can be applied to table look ups as well. In fact, scaling the index to handle word
entries is a form of input conditioning. Consider the following Pascal function:

function val(x:word):word; begin
case x of

0: val := 1;
 1: val := 1;

2: val := 4;
3: val := 27;
4: val := 256;
otherwise val := 0;

end;
end;

This function computes some value for x in the range 0..4 and it returns zero if x is out-
side this range. Since x can take on 65,536 different values (being a 16 bit word), creating a
table containing 65,536 words where only the first five entries are non-zero seems to be
quite wasteful. However, we can still compute this function using a table look up if we use
input conditioning. The following assembly language code presents this principle:

xor ax, ax ;AX := 0, assume X > 4.
mov bx, x
cmp bx, 4
ja ItsZero
shl bx, 1
mov ax, val[bx]

ItsZero:

This code checks to see if x is outside the range 0..4. If so, it manually sets ax to zero,
otherwise it looks up the function value through the val table. With input conditioning,
you can implement several functions that would otherwise be impractical to do via table
look up.

xsin xsin x 2– π 2π,[]∈〈 | 〉=

Arithmetic and Logical Operations

Page 497

9.8.3 Generating Tables

One big problem with using table look ups is creating the table in the first place. This
is particularly true if there are a large number of entries in the table. Figuring out the data
to place in the table, then laboriously entering the data, and, finally, checking that data to
make sure it is valid, is a very time-staking and boring process. For many tables, there is
no way around this process. For other tables there is a better way – use the computer to
generate the table for you. An example is probably the best way to describe this. Consider
the following modification to the sine function:

This states that x is an integer in the range 0..359 and r is an integer. The computer can
easily compute this with the following code:

mov bx, X
shl bx, 1
mov ax, Sines [bx] ;Get SIN(X)*1000
mov bx, R ;Compute R*(SIN(X)*1000)
mul bx
mov bx, 1000 ;Compute (R*(SIN(X)*1000))/1000
div bx

Note that integer multiplication and division are not associative. You cannot remove
the multiplication by 1000 and the division by 1000 because they seem to cancel one
another out. Furthermore, this code must compute this function in exactly this order. All
that we need to complete this function is a table containing 360 different values corre-
sponding to the sine of the angle (in degrees) times 1,000. Entering a table into an assem-
bly language program containing such values is extremely boring and you’d probably
make several mistakes entering and verifying this data. However, you can have the pro-
gram generate this table for you. Consider the following Turbo Pascal program:

program maketable;
var i:integer;
 r:integer;
 f:text;
begin
 assign(f,’sines.asm’);

rewrite(f);
for i := 0 to 359 do begin

r := round(sin(I * 2.0 * pi / 360.0) * 1000.0);
if (i mod 8) = 0 then begin

 writeln(f);
 write(f,’ dw ‘,r);

end
 else write(f,’,’,r);
 end;

close(f);
 end.

 This program produces the following output:

dw 0,17,35,52,70,87,105,122
dw 139,156,174,191,208,225,242,259
dw 276,292,309,326,342,358,375,391
dw 407,423,438,454,469,485,500,515
dw 530,545,559,574,588,602,616,629
dw 643,656,669,682,695,707,719,731
dw 743,755,766,777,788,799,809,819
dw 829,839,848,857,866,875,883,891
dw 899,906,914,921,927,934,940,946
dw 951,956,961,966,970,974,978,982
dw 985,988,990,993,995,996,998,999
dw 999,1000,1000,1000,999,999,998,996
dw 995,993,990,988,985,982,978,974
dw 970,966,961,956,951,946,940,934
dw 927,921,914,906,899,891,883,875

xsin() r× r 1000 xsin×()×()
1000

---x 0 3,[∈〈 |=

Chapter 09

Page 498

dw 866,857,848,839,829,819,809,799
dw 788,777,766,755,743,731,719,707
dw 695,682,669,656,643,629,616,602
dw 588,574,559,545,530,515,500,485
dw 469,454,438,423,407,391,375,358
dw 342,326,309,292,276,259,242,225
dw 208,191,174,156,139,122,105,87
dw 70,52,35,17,0,-17,-35,-52
dw -70,-87,-105,-122,-139,-156,-174,-191
dw -208,-225,-242,-259,-276,-292,-309,-326
dw -342,-358,-375,-391,-407,-423,-438,-454
dw -469,-485,-500,-515,-530,-545,-559,-574
dw -588,-602,-616,-629,-643,-656,-669,-682
dw -695,-707,-719,-731,-743,-755,-766,-777
dw -788,-799,-809,-819,-829,-839,-848,-857
dw -866,-875,-883,-891,-899,-906,-914,-921
dw -927,-934,-940,-946,-951,-956,-961,-966
dw -970,-974,-978,-982,-985,-988,-990,-993
dw -995,-996,-998,-999,-999,-1000,-1000,-1000
dw -999,-999,-998,-996,-995,-993,-990,-988
dw -985,-982,-978,-974,-970,-966,-961,-956
dw -951,-946,-940,-934,-927,-921,-914,-906
dw -899,-891,-883,-875,-866,-857,-848,-839
dw -829,-819,-809,-799,-788,-777,-766,-755
dw -743,-731,-719,-707,-695,-682,-669,-656
dw -643,-629,-616,-602,-588,-574,-559,-545
dw -530,-515,-500,-485,-469,-454,-438,-423
dw -407,-391,-375,-358,-342,-326,-309,-292
dw -276,-259,-242,-225,-208,-191,-174,-156
dw -139,-122,-105,-87,-70,-52,-35,-17

 Obviously it’s much easier to write the Turbo Pascal program that generated this data
than to enter (and verify) this data by hand. This little example shows how useful Pascal
can be to the assembly language programmer!

9.9 Sample Programs

This chapter’s sample programs demonstrate several important concepts including extended preci-
sion arithmetic and logical operations, arithmetic expression evaluation, boolean expression evaluation,
and packing/unpacking data.

9.9.1 Converting Arithmetic Expressions to Assembly Language

The following sample program (Pgm9_1.asm on the companion CD-ROM) provides
some examples of converting arithmetic expressions into assembly language:

; Pgm9_1.ASM
;
; Several examples demonstrating how to convert various
; arithmetic expressions into assembly language.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Arbitrary variables this program uses.

u word ?
v word ?
w word ?
x word ?
y word ?

Arithmetic and Logical Operations

Page 499

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.

geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Abitrary expression program",cr,lf
byte "---------------------------",cr,lf
byte lf
byte "Enter a value for u: ",0

geti
mov u, ax

print
byte "Enter a value for v: ",0
geti
mov v, ax

print
byte "Enter a value for w: ",0
geti
mov w, ax

print
byte "Enter a non-zero value for x: ",0
geti
mov x, ax

print
byte "Enter a non-zero value for y: ",0
geti
mov y, ax

; Okay, compute Z := (X+Y)*(U+V*W)/X and print the result.

print
byte cr,lf
byte "(X+Y) * (U+V*W)/X is ",0

mov ax, v ;Compute V*W
imul w ; and then add in
add ax, u ; U.
mov bx, ax ;Save in a temp location for now.

mov ax, x ;Compute X+Y, multiply this
add ax, y ; sum by the result above,
imul bx ; and then divide the whole

Chapter 09

Page 500

idiv x ; thing by X.

puti
putcr

; Compute ((X-Y*U) + (U*V) - W)/(X*Y)

print
byte "((X-Y*U) + (U*V) - W)/(X*Y) = ",0

mov ax, y ;Compute y*u first
imul u
mov dx, X ;Now compute X-Y*U
sub dx, ax
mov cx, dx ;Save in temp

mov ax, u ;Compute U*V
imul V
add cx, ax ;Compute (X-Y*U) + (U*V)

sub cx, w ;Compute ((X-Y*U) + (U*V) - W)

mov ax, x ;Compute (X*Y)
imul y

xchg ax, cx
cwd ;Compute NUMERATOR/(X*Y)
idiv cx

puti
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.2 Boolean Operations Example

The following sample program (Pgm9_2.asm on the companion CD-ROM) demon-
strates how to manipulate boolean values in assembly language. It also provides an exam-
ple of Demorgan’s Theorems in operation.

; Pgm9_2.ASM
;
; This program demonstrates DeMorgan's theorems and
; various other logical computations.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Boolean input variables for the various functions
; we are going to test.

Arithmetic and Logical Operations

Page 501

a byte 0
b byte 0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Get0or1-Reads a "0" or "1" from the user and returns its
; its value in the AX register.

get0or1 textequ <call _get0or1>
_get0or1 proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_get0or1 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Demorgan's Theorems",cr,lf
byte "-------------------",cr,lf
byte lf
byte "According to Demorgan's theorems, all results "
byte "between the dashed lines",cr,lf
byte "should be equal.",cr,lf
byte lf
byte "Enter a value for a: ",0

get0or1
mov a, al

print
byte "Enter a value for b: ",0
get0or1
mov b, al

print
byte "---------------------------------",cr,lf
byte "Computing not (A and B): ",0

mov ah, 0
mov al, a
and al, b
xor al, 1 ;Logical NOT operation.

puti
putcr

print
byte "Computing (not A) OR (not B): ",0
mov al, a
xor al, 1
mov bl, b
xor bl, 1
or al, bl

Chapter 09

Page 502

puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing (not A) OR B: ",0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte "Computing not (A AND (not B)): ",0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing (not A) OR B: ",0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte "Computing not (A AND (not B)): ",0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing not (A OR B): ",0
mov al, a
or al, b
xor al, 1
puti

print
byte cr,lf
byte "Computing (not A) AND (not B): ",0
mov al, a
xor al, 1
and bl, b
xor bl, 1
and al, bl
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte 0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

Arithmetic and Logical Operations

Page 503

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.3 64-bit Integer I/O

This sample program (Pgm9_3.asm on the companion CD-ROM) shows how to read
and write 64-bit integers. It provides the ATOU64 and PUTU64 routines that let you con-
vert a string of digits to a 64-bit unsigned integer and output a 64-bit unsigned integer as a
decimal string to the display.

; Pgm9_3.ASM
;
; This sample program provides two procedures that read and write
; 64-bit unsigned integer values on an 80386 or later processor.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386
option segment:use16

dp textequ <dword ptr>
byp textequ <byte ptr>

dseg segment para public 'data'

; Acc64 is a 64 bit value that the ATOU64 routine uses to input
; a 64-bit value.

Acc64 qword 0

; Quotient holds the result of dividing the current PUTU value by
; ten.

Quotient qword 0

; NumOut holds the string of digits created by the PUTU64 routine.

NumOut byte 32 dup (0)

; A sample test string for the ATOI64 routine:

LongNumber byte "123456789012345678",0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; ATOU64- On entry, ES:DI point at a string containing a
; sequence of digits. This routine converts that
; string to a 64-bit integer and returns that
; unsigned integer value in EDX:EAX.
;
; This routine uses the algorithm:
;
; Acc := 0
; while digits left
;
; Acc := (Acc * 10) + (Current Digit - '0')
; Move on to next digit
;

Chapter 09

Page 504

; endwhile

ATOU64 proc near
push di ;Save because we modify it.
mov dp Acc64, 0 ;Initialize our accumulator.
mov dp Acc64+4, 0

; While we've got some decimal digits, process the input string:

sub eax, eax ;Zero out eax's H.O. 3 bytes.
WhileDigits: mov al, es:[di]

xor al, '0' ;Translates '0'..'9' -> 0..9
cmp al, 10 ; and everything else is > 9.
ja NotADigit

; Multiply Acc64 by ten. Use shifts and adds to accomplish this:

shl dp Acc64, 1 ;Compute Acc64*2
rcl dp Acc64+4, 1

push dp Acc64+4 ;Save Acc64*2
push dp Acc64

shl dp Acc64, 1 ;Compute Acc64*4
rcl dp Acc64+4, 1
shl dp Acc64, 1 ;Compute Acc64*8
rcl dp Acc64+4, 1

pop edx ;Compute Acc64*10 as
add dp Acc64, edx ; Acc64*2 + Acc64*8
pop edx
adc dp Acc64+4, edx

; Add in the numeric equivalent of the current digit.
; Remember, the H.O. three words of eax contain zero.

add dp Acc64, eax ;Add in this digit

inc di ;Move on to next char.
jmp WhileDigits ;Repeat for all digits.

; Okay, return the 64-bit integer value in eax.

NotADigit: mov eax, dp Acc64
mov edx, dp Acc64+4
pop di
ret

ATOU64 endp

; PUTU64- On entry, EDX:EAX contain a 64-bit unsigned value.
; Output a string of decimal digits providing the
; decimal representation of that value.
;
; This code uses the following algorithm:
;
; di := 30;
; while edx:eax <> 0 do
;
; OutputNumber[di] := digit;
; edx:eax := edx:eax div 10
; di := di - 1;
;
; endwhile
; Output digits from OutNumber[di+1]
; through OutputNumber[30]

PUTU64 proc
push es
push eax
push ecx

Arithmetic and Logical Operations

Page 505

push edx
push di
pushf

mov di, dseg ;This is where the output
mov es, di ; string will go.
lea di, NumOut+30 ;Store characters in string
std ; backwards.
mov byp es:[di+1],0 ;Output zero terminator.

; Save the value to print so we can divide it by ten using an
; extended precision division operation.

mov dp Quotient, eax
mov dp Quotient+4, edx

; Okay, begin converting the number into a string of digits.

mov ecx, 10 ;Value to divide by.
DivideLoop: mov eax, dp Quotient+4 ;Do a 64-bit by

sub edx, edx ; 32-bit division
div ecx ; (see the text
mov dp Quotient+4, eax ; for details).

mov eax, dp Quotient
div ecx
mov dp Quotient, eax

; At this time edx (dl, actually) contains the remainder of the
; above division by ten, so dl is in the range 0..9. Convert
; this to an ASCII character and save it away.

mov al, dl
or al, '0'
stosb

; Now check to see if the result is zero. When it is, we can
; quit.

mov eax, dp Quotient
or eax, dp Quotient+4
jnz DivideLoop

OutputNumber: inc di
puts
popf
pop di
pop edx
pop ecx
pop eax
pop es
ret

PUTU64 endp

; The main program provides a simple test of the two routines
; above.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi LongNumber
call ATOU64
call PutU64
printf

Chapter 09

Page 506

byte cr,lf
byte "%x %x %x %x",cr,lf,0
dword Acc64+6, Acc64+4, Acc64+2, Acc64

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.4 Packing and Unpacking Date Data Types

This sample program demonstrates how to pack and unpack data using the Date data
type introduced in Chapter One.

; Pgm9_4.ASM
;
; This program demonstrates how to pack and unpack
; data types. It reads in a month, day, and year value.
; It then packs these values into the format the textbook
; presents in chapter two. Finally, it unpacks this data
; and calls the stdlib DTOA routine to print it as text.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

Month byte ? ;Holds month value (1-12)
Day byte ? ;Holds day value (1-31)
Year byte ? ;Holds year value (80-99)

Date word ? ;Packed data goes in here.

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.

geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp

Arithmetic and Logical Operations

Page 507

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Date Conversion Program",cr,lf
byte "-----------------------",cr,lf
byte lf,0

; Get the month value from the user.
; Do a simple check to make sure this value is in the range
; 1-12. Make the user reenter the month if it is not.

GetMonth: print
byte "Enter the month (1-12): ",0

geti
mov Month, al
cmp ax, 0
je BadMonth
cmp ax, 12
jbe GoodMonth

BadMonth: print
byte "Illegal month value, please re-enter",cr,lf,0
jmp GetMonth

GoodMonth:

; Okay, read the day from the user. Again, do a simple
; check to see if the date is valid. Note that this code
; only checks to see if the day value is in the range 1-31.
; It does not check those months that have 28, 29, or 30
; day months.

GetDay: print
byte "Enter the day (1-31): ",0
geti
mov Day, al
cmp ax, 0
je BadDay
cmp ax, 31
jbe GoodDay

BadDay: print
byte "Illegal day value, please re-enter",cr,lf,0
jmp GetDay

GoodDay:

; Okay, get the year from the user.
; This check is slightly more sophisticated. If the user
; enters a year in the range 1980-1999, it will automatically
; convert it to 80-99. All other dates outside the range
; 80-99 are illegal.

GetYear: print
byte "Enter the year (80-99): ",0
geti
cmp ax, 1980
jb TestYear
cmp ax, 1999
ja BadYear

sub dx, dx ;Zero extend year to 32 bits.
mov bx, 100
div bx ;Compute year mod 100.
mov ax, dx
jmp GoodYear

Chapter 09

Page 508

TestYear: cmp ax, 80
jb BadYear
cmp ax, 99
jbe GoodYear

BadYear: print
byte "Illegal year value. Please re-enter",cr,lf,0
jmp GetYear

GoodYear: mov Year, al

; Okay, take these input values and pack them into the following
; 16-bit format:
;
; bit 15 8 7 0
; | | | |
; MMMMDDDD DYYYYYYY

mov ah, 0
mov bh, ah
mov al, Month ;Put Month into bit positions
mov cl, 4 ; 12..15
ror ax, cl

mov bl, Day ;Put Day into bit positions
mov cl, 7 ; 7..11.
shl bx, cl

or ax, bx ;Create MMMMDDDD D0000000
or al, Year ;Create MMMMDDDD DYYYYYYY
mov Date, ax ;Save away packed date.

; Print out the packed date (in hex):

print
byte "Packed date = ",0
putw
putcr

; Okay, the following code demonstrates how to unpack this date
; and put it in a form the standard library's LDTOAM routine can
; use.

mov ax, Date ;First, extract Month
mov cl, 4
shr ah, cl
mov dh, ah ;LDTOAM needs month in DH.

mov ax, Date ;Next get the day.
shl ax, 1
and ah, 11111b
mov dl, ah ;Day needs to be in DL.

mov cx, Date ;Now process the year.
and cx, 7fh ;Strip all but year bits.

print
byte "Date: ",0
LDTOAM ;Convert to a string
puts
free
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")

Arithmetic and Logical Operations

Page 509

sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.10 Laboratory Exercises

In this laboratory you will perform the following activities:

• Use CodeView to set breakpoints within a program and locate some errors.
• Use CodeView to trace through sections of a program to discover problems with that program.
• Use CodeView to trace through some code you write to verify correctness and observe the calculation one

step at a time.

9.10.1 Debugging Programs with CodeView

In past chapters of this lab manual you’ve had the opportunity to use CodeView to
view the machine state (register and memory values), enter simple assembly language
programs, and perform other minor tasks. In this section we will explore one of Code-
View’s most important capabilities - helping you locate problems within your code. This
section discusses three features of CodeView we have ignored up to this point - Break-
points, Watch operations, and code tracing. These features provide some very important
tools for figuring out what is wrong with your assembly language programs.

Code tracing is a feature CodeView provides that lets you execute assembly language
statements one at a time and observe the results. Many programmers refer to this opera-
tion as single stepping because it lets you step through the program one statement per
operation. Ultimately, though, the real purpose of single stepping is to let you observe the
results of a sequence of instructions, noting all side effects, so you can see why that
sequence is not producing desired results.

CodeView provides two easy to use trace/single step commands. Pressing F8 traces
through one instruction. CodeView will update all affected registers and memory loca-
tions and halt on the very next instruction. In the event the current instruction is a call,
int, or other transfer of control instruction, CodeView transfers control to the target loca-
tion and displays the instruction at that location.

The second CodeView command for single stepping is the step command. You can
execute the step command by pressing F10. The step command executes the current state-
ment and stops upon executing the statement immediately following it in the program.
For most instructions the step and trace commands do the same thing. However, for
instructions that transfer control, the trace command follows the flow of control while the
step command allows the CPU to run at full speed until returning back to the next instruc-
tion. This, for example, lets you quickly execute a subroutine without having to step
through all the instructions in that subroutine. You should attempt to using the program
trace command (F8) for most debugging purposes and only use the step command (F10)
on call and int instructions. The step instruction may have some unintended effects on
other transfer of control instructions like loop, and the conditional branches.

The CodeView command window also provides two commands to trace or single step
through an instruction. The “T” command traces through an instruction, the “P” com-
mand steps over an instruction.

One major problem with tracing through your program is that it is very slow. Even if
you hold the F8 key down and let it autorepeat, you’d only be executing 10-20 instructions
per second. This is a million (or more) times slower than a typical high-end PC. If the pro-
gram executes several thousand instructions before even getting to the point where you

Chapter 09

Page 510

suspect the bug will be, you would have to execute far too many trace operations to get to
that point.

A breakpoint is a point in your program where control returns to the debugger. This is
the facility that lets you run a program a full speed up to a specific point (the break point)
in your program. Breakpoints are, perhaps, the most important tool for locating errors in a
machine language program. Since they are so useful, it is not surprising to find that Code-
View provides a very rich set of breakpoint manipulation commands.

There are three keystroke commands that let you run your program at full speed and
set breakpoints. The F5 command (run) begins full speed execution of your program at
CS:IP. If you do not have any breakpoints set, your program will run to completion. If you
are interested in stopping your program at some point you should set a breakpoint before
executing this command.

Pressing F5 produces the same result as the “G” (go) command in the command win-
dow. The Go command is a little more powerful, however, because it lets you specify a
non-sticky breakpoint at the same time. The command window Go commands take the fol-
lowing forms:

G

G breakpoint_address

The F7 keystroke executes at full speed up to the instruction the cursor is on. This sets
a non-sticky breakpoint. To use this command you must first place the cursor on an
instruction in the source window and then press the F7 key. CodeView will set a break-
point at the specified instruction and start the program running at full speed until it hits a
breakpoint.

A non-sticky breakpoint is one that deactivates whenever control returns back to Code-
View. Once CodeView regains control it clears all non-sticky breakpoints. You will have to
reset those breakpoints if you still need to stop at that point in your program. Note that
CodeView clears the non-sticky breakpoints even if the program stops for some reason
other than execution of those non-sticky breakpoints.

One very important thing to keep in mind, especially when using the F7 command to
set non-sticky breakpoints, is that you must execute the statement on which the break-
point was set for the breakpoint to have any effect. If your program skips over the instruc-
tion on which you’ve set the breakpoint, you might not return to CodeView except via
program termination. When choosing a point for a breakpoint, you should always pick a
sequence point. A sequence point is some spot in your program to which all execution paths
converge. If you cannot set a breakpoint at a sequence point, you should set several break-
points in your program if you are not sure the code will execute the statement with the
single breakpoint.

The easiest way to set a sticky breakpoint is to move the cursor to the desired state-
ment in the CodeView source window and press F9. This will brighten that statement to
show that there is a breakpoint set on that instruction. Note that the F9 key only works on
80x86 machine instructions. You cannot use it on blank lines, comments, assembler direc-
tives, or pseudo-opcodes.

CodeView’s command window also provides several commands to manipulate
breakpoints including BC (Breakpoint Clear), BD (Breakpoint Disable), BE (Breakpoint
Enable), BL (Breakpoint List), and BP (BreakPoint set). These commands are very power-
ful and let you set breakpoints on memory modification, expression evaluation, apply
counters to breakpoints, and more. See the MASM “Environment and Tools” manual or
the CodeView on-line help for more information about these commands.

Another useful debugging tool in CodeView is the Watch Window. The watch window
displays the values of some specified expressions during program execution. One impor-
tant use of the watch window is to display the contents of selected variables while your
program executes. Upon encountering a breakpoint, CodeView automatically updates all

Arithmetic and Logical Operations

Page 511

watch expressions. You can add a watch expression to the watch window using the
DATA:Add Watch menu item. This opens up a dialog box that looks like the following:

By typing a variable name (like Counter above) you can add a watch item to the
watch window. By opening the watch windows (from the Windows menu item) you can
view the values of any watch expressions you’ve created.

Watch expressions are quite useful because they let you observe how your program
affects the values of variables throughout your code. If you place several variable names
in the watch list you can execute a section of code up to a break point and observe how
that code affected certain variables.

9.10.2 Debugging Strategies

Learning how to effectively use a debugger to locate problems in your machine lan-
guage programs is not something you can learn from a book. Alas, there is a bit of a learn-
ing curve to using a debugger like CodeView and learning the necessary techniques to
quickly locate the source of an error within a program. For this reason all too many stu-
dents fall back to debugging techniques they learned in their first or second quarter of
programming, namely sticking a bunch of print statements throughout their code. You
should not make this mistake. The time you spend learning how to properly use Code-
View will pay off very quickly.

9.10.2.1 Locating Infinite Loops

Infinite loops are a very common problem in many programs. You start a program
running and the whole machine locks up on you. How do you deal with this? Well, the
first thing to do is to load your program into CodeView. Once you start your program run-
ning and it appears to be in an infinite loop, you can manually break the program by
pressing the SysReq or Ctrl-Break key. This generally forces control back to CodeView. If

Chapter 09

Page 512

you are currently executing in a small loop, you can use the trace command to step
through the loop and figure out why it does not terminate.

Another way to catch an infinite loop is to use a binary search. To use this technique,
place a breakpoint in the middle of your program (or in the middle of the code you wish
to test). Start the program running. If it hangs up, the infinite loop is before the breakpoint.
If you execute the breakpoint, then the infinite loop occurs after the breakpoint3 Once you
determine which half of your program contains the infinite loop, the next step is to place
another breakpoint half way into that part of the program. If the infinite loop occurred
before the breakpoint in the middle of the program, then you should set a new breakpoint
one quarter of the way into the program, that is, halfway between the beginning of the
program and the original breakpoint. If you got to the original breakpoint without
encountering the infinite loop, then set a new breakpoint at the three-quarters point in
your program, i.e., halfway between the original breakpoint and the end of your program.
Run the program from the beginning again (you can use the CodeView command win-
dow command “L” to restart the program from the beginning). If you do not hit any of the
three breakpoints you know that the infinite loop is in the first 25% of the program. Other-
wise, the current breakpoints at the 25%, 50%, and 75% points in the program will effec-
tively limit the source of the infinite loop to a smaller section of your program. You can
repeat this step over and over again until you pinpoint the section of your program con-
taining the infinite loop.

Of course, you should not place a breakpoint within a loop when searching for an infi-
nite loop. Otherwise CodeView will break on each iteration of the loop and it will take you
much longer to find the error. Of course, if the infinite loop occurs inside some other loop
you will eventually need to place breakpoints inside a loop, but hopefully you will find
the infinite loop on the first execution of the outside loop. If you do need to place a break-
point inside a loop that must execute several times before you really want the break to
occur, you can attach a counter to a breakpoint that counts down from some value before
actually breaking. See the MASM Environment and Tools manual, or use CodeView’s
on-line help facility, to get more details on breakpoint counters.

9.10.2.2 Incorrect Computations

Another common problem is that you get the wrong result after performing a
sequence of arithmetic and logical computations. You can look at a section of code all day
long and still not see the problem, but if you trace through the code, the incorrect code
because quite obvious.

If you think that a particular computation is not producing a correct result you should
set a breakpoint at the first instruction of the computation and run the program at full
speed up to that point. Be sure to check the values of all variables and registers used in the com-
putation. All too often a bad computation is the result of bad input values, that means the
incorrect computation is elsewhere in your program.

Once you have verified that the input values are correct, you can being tracing the
instructions of the computation one at a time. After each instruction executes you should
compare the results you actually obtain against those you expected to obtain.

The main thing to keep in mind when trying to determine why your program is pro-
ducing incorrect results is that the source of the error could be somewhere else besides the
point where you first notice the error. This is why you should always check in input regis-
ter and variable values before tracing through a section of code. If you find that the input
values are no correct, then the problem lies elsewhere in your program and you will have
to search elsewhere.

3. Of course, you must make sure that the instruction on which you set the break point is a sequence point. If the code can jump over your break-
point into the second half of the program, you have proven nothing.

Arithmetic and Logical Operations

Page 513

9.10.2.3 Illegal Instructions/Infinite Loops Part II

Sometimes when your program hangs up it is not due to the execution of an infinite
loop, but rather you’ve executed an opcode that is not a valid machine instruction. Other
times you will press the SysReq key only to find you are executing code that is nowhere
near your program, perhaps out in the middle of RAM and executing some really weird
instructions. Most of the time this is due to a stack problem or executing some indirect
jump. The best strategy here is to open a memory window and dump some memory
around the stack pointer (SS:SP). Try and locate a reasonable return address on the top of
stack (or shortly thereafter if there are many values pushed on the stack) and disassemble
that code. Somewhere before the return address is probably a call. You should set a break-
point at that location and begin single stepping into the routine, watching what happens
on all indirect jumps and returns. Pay close attention to the stack during all this.

9.10.3 Debug Exercise I: Using CodeView to Find Bugs in a Calculation

Exercise 1: Running CodeView. The following program contains several bugs (noted
in the comments). Enter this program into the system (note, this code is available as the
file Ex9_1.asm on the companion CD-ROM):

dseg segment para public ‘data’

I word 0
J word 0
K word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; This program is useful for debugging purposes only!
; The intent is to execute this code from inside CodeView.
;
; This program is riddled with bugs. The bugs are very
; obvious in this short code sequence, within a larger
; program these bugs might not be quite so obvious.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; The following loop increments I until it reaches 10

ForILoop: inc I
cmp I, 10
jb ForILoop

; This loop is supposed to do the same thing as the loop
; above, but we forgot to reinitialize I back to zero.
; What happens?

ForILoop2: inc I
cmp I, 10
jb ForILoop2

; The following loop, once again, attempts to do the same
; thing as the first for loop above. However, this time we
; remembered to reinitialize I. Alas, there is another
; problem with this code, a typo that the assembler cannot
; catch.

mov I, 0
ForILoop3: inc I

cmp I, 10
jb ForILoop ;<<<-- Whoops! Typo.

Chapter 09

Page 514

; The following loop adds I to J until J reaches 100.
; Unfortunately, the author of this code must have been
; confused and thought that AX contained the sum
; accumulating in J. It compares AX against 100 when
; it should really be comparing J against 100.

WhileJLoop: mov ax, I
add J, ax
cmp ax, 100 ;This is a bug!
jb WhileJLoop

mov ah, 4ch ;Quit to DOS.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Assemble this program with the command:

ML /Zi Ex9_1.asm

The “/Zi” option instructions MASM to include debugging information for CodeView in
the .EXE file. Note that the “Z” must be uppercase and the “i” must be lower case.

Load this into CodeView using the command:

CV Ex9_1

Your display should now look something like the following:

Note that CodeView highlights the instruction it will execute next (mov ax, dseg in
the above code). Try out the trace command by pressing the F10 key three times.This
should leave the inc I instruction highlighted. Step through the loop and note all the major

Arithmetic and Logical Operations

Page 515

changes that take place on each iteration (note: remember jb=jc so be sure to note the value
of the carry flag on each iteration as well).

For your lab report: Discuss the results in your lab manual. Also note the final value
of I after completing the loop.

Part Two: Locating a bug. The second loop in the program contains a major bug. The pro-
grammer forgot to reset I back to zero before executing the code starting at label ForILoop2.
Trace through this loop until it falls through to the statement at label ForILoop3.

For your lab report: Describe what went wrong and how pressing the F8 key would help
you locate this problem.

Part 3: Locating another bug. The third loop contains a typo that causes it to restart at label
ForILoop. Trace through this code using the F8 key.

For your lab report: Describe the process of tracking this problem down and provide a
description of how you could use the trace command to catch this sort of problem.

Part 4: Verifying correctness. Program Ex9_2.asm is a corrected version of the above pro-
gram. Single step through that code and verify that it works correctly.

For your lab report: Describe the differences between the two debugging sessions in your
lab manual.

Part 5: Using Ex9_2.asm, open a watch window and add the watch expression “I” to that
window. Set sticky breakpoints on the three jb instructions in the program. Run the pro-
gram using the Go command and comment on what happens in the Watch window at
each breakpoint.

For your lab report: Describe how you could use the watch window to help you locate a
problem in your programs.

9.10.4 Software Delay Loop Exercises

Software Delay Loops. The Ex9_3.asm file contains a short software-based delay loop.
Run this program and determine the value for the loop control variable that will cause a
delay of 11 seconds. Note: the current value was chosen for a 66 MHz 80486 system; if you
have a slower system you may want to reduce this value, if you have a faster system, you
will want to increase this value. Adjust the value to get the delay as close to 11 seconds as
you can on your PC.

For your lab report: Provide the constant for you particular system that produces a delay
of 11 seconds. Discuss how to create a delay of 1, 10, 20, 30, or 60 seconds using this code.

For additional credit: After getting the delay loop to run for 11 seconds on your PC, take
the executable around to different systems with different CPUs and different clock speeds.
Run the program and measure the delay. Describe the differences in your lab report.

Part 2: Hardware determined software delay loop. The Ex9_4.asm file contains a software
delay loop that automatically determines the number of loop iterations by observing the
BIOS real time clock variable. Run this software and observe the results.

For your lab report: Determine the loop iteration count and include this value in your lab
manual. If your PC has a turbo switch on it, set it to “non-turbo” mode when requested by
the program. Measure the actual delay as accurately as you can with the turbo switch in
turbo and in non-turbo mode. Include these timings in your lab report.

For additional credit: Take the executable file around to different systems with different
CPUs and different clock speeds. Run the program and measure the delays. Describe the
differences in your lab report.

Chapter 09

Page 516

9.11 Programming Projects

9.12 Summary

This chapter discussed arithmetic and logical operations on 80x86 CPUs. It presented
the instructions and techniques necessary to perform integer arithmetic in a fashion simi-
lar to high level languages. This chapter also discussed multiprecision operations, how to
perform arithmetic operations using non-arithmetic instructions, and how to use arith-
metic instructions to perform non-arithmetic operations.

Arithmetic expressions are much simpler in a high-level language than in assembly
language. Indeed, the original purpose of the FORTRAN programming language was to
provide a FORMula TRANslator for arithmetic expressions. Although it takes a little more
effort to convert an arithmetic formula to assembly language than it does to, say, Pascal, as
long as you follow some very simple rules the conversion is not hard. For a step-by-step
description, see

• “Arithmetic Expressions” on page 460
• “Simple Assignments” on page 460
• “Simple Expressions” on page 460
• “Complex Expressions” on page 462
• “Commutative Operators” on page 466
• “Logical (Boolean) Expressions” on page 467

One big advantage to assembly language is that it is easy to perform nearly unlimited
precision arithmetic and logical operations. This chapter describes how to do extended
precision operations for most of the common operations. For complete instructions, see

• “Multiprecision Operations” on page 470
• “Multiprecision Addition Operations” on page 470
• “Multiprecision Subtraction Operations” on page 472
• “Extended Precision Comparisons” on page 473
• “Extended Precision Multiplication” on page 475
• “Extended Precision Division” on page 477
• “Extended Precision NEG Operations” on page 480
• “Extended Precision AND Operations” on page 481
• “Extended Precision OR Operations” on page 482
• “Extended Precision NOT Operations” on page 482
• “Extended Precision Shift Operations” on page 482
• “Extended Precision Rotate Operations” on page 484

At certain times you may need to operate on two operands that are different types.
For example, you may need to add a byte value to a word value. The general idea is to
extend the smaller operand so that it is the same size as the larger operand and then com-
pute the result on these like-sized operands. For all the details, see

• “Operating on Different Sized Operands” on page 485

Although the 80x86 instruction set provides straight-forward ways to accomplish
many tasks, you can often take advantage of various idioms in the instruction set or with
respect to certain arithmetic operations to produce code that is faster or shorter than the
obvious way. This chapter introduces a few of these idioms. To see some examples, check
out

• “Machine and Arithmetic Idioms” on page 486
• “Multiplying Without MUL and IMUL” on page 487
• “Division Without DIV and IDIV” on page 488
• “Using AND to Compute Remainders” on page 488
• “Implementing Modulo-n Counters with AND” on page 489
• “Testing an Extended Precision Value for 0FFFF..FFh” on page 489

Arithmetic and Logical Operations

Page 517

• “TEST Operations” on page 489
• “Testing Signs with the XOR Instruction” on page 490

To manipulate packed data you need the ability to extract a field from a packed record
and insert a field into a packed record. You can use the logical and and or instructions to
mask the fields you want to manipulate; you can use the shl and shr instructions to posi-
tion the data to their appropriate positions before inserting or after extracting data. To
learn how to pack and unpack data, see

• “Masking Operations” on page 490
• “Masking Operations with the AND Instruction” on page 490
• “Masking Operations with the OR Instruction” on page 491
• “Packing and Unpacking Data Types” on page 491

Chapter 09

Page 518

9.13 Questions

1) Describe how you might go about adding an unsigned word to an unsigned byte variable
producing a byte result. Explain any error conditions and how to check for them.

2) Answer question one for signed values.

3) Assume that var1 is a word and var2 and var3 are double words. What is the 80x86 assem-
bly language code that will add var1 to var2 leaving the sum in var3 if:

a) var1, var2, and var3 are unsigned values.

 b) var1, var2, and var3 are signed values.

4) “ADD BX, 4” is more efficient than “LEA BX, 4[BX]”. Give an example of an LEA instruc-
tion which is more efficient than the corresponding ADD instruction.

5) Provide the single 80386 LEA instruction that will multiply EAX by five.

6) Assume that VAR1 and VAR2 are 32 bit variables declared with the DWORD
pseudo-opcode. Write code sequences that will test the following:

a) VAR1 = VAR2

b) VAR1 <> VAR2

c) VAR1 < VAR2 (Unsigned and signed versions

d) VAR1 <= VAR2 for each of these)

e) VAR1 > VAR2

f) VAR1 >= VAR2

7) Convert the following expressions into assembly language code employing shifts, addi-
tions, and subtractions in place of the multiplication:

a) AX*15

b) AX*129

c) AX*1024

d) AX*20000

8) What’s the best way to divide the AX register by the following constants?

a) 8 b) 255 c) 1024 d) 45

9) Describe how you could multiply an eight bit value in AL by 256 (leaving the result in AX)
using nothing more than two MOV instructions.

10) How could you logically AND the value in AX by 0FFh using nothing more than a MOV
instruction?

11) Suppose that the AX register contains a pair of packed binary values with the L.O. four
bits containing a value in the range 0..15 and the H.O. 12 bits containing a value in the
range 0..4095. Now suppose you want to see if the 12 bit portion contains the value 295.
Explain how you could accomplish this with two instructions.

12) How could you use the TEST instruction (or a sequence of TEST instructions) to see if bits
zero and four in the AL register are both set to one? How would the TEST instruction be
used to see if either bit is set? How could the TEST instruction be used to see if neither bit
is set?

13) Why can’t the CL register be used as a count operand when shifting multi-precision oper-
ands. I.e., why won’t the following instructions shift the value in (DX,AX) three bits to the
left?

mov cl, 3
shl ax, cl
rcl dx, cl

Arithmetic and Logical Operations

Page 519

14) Provide instruction sequences that perform an extended precision (32 bit) ROL and ROR
operation using only 8086 instructions.

15) Provide an instruction sequence that implements a 64 bit ROR operation using the 80386
SHRD and BT instructions.

16) Provide the 80386 code to perform the following 64 bit computations. Assume you are
computing X := Y op Z with X, Y, and Z defined as follows:

X dword 0, 0
y dword 1, 2
z dword 3, 4

a) addition b) subtraction c) multiplication

c) Logical AND d) Logical OR e) Logical XOR

f) negate g) Logical NOT

Chapter 09

Page 520

Page 521

Control Structures Chapter 10

A computer program typically contains three structures: instruction sequences, deci-
sions, and loops. A sequence is a set of sequentially executing instructions. A decision is a
branch (

goto

) within a program based upon some condition. A loop is a sequence of
instructions that will be repeatedly executed based on some condition. In this chapter we
will explore some of the common decision structures in 80x86 assembly language.

10.0 Chapter Overview

This chapter discusses the two primary types of control structures: decision and itera-
tion. It describes how to convert high level language statements like

if..then..else

,

case

(

switch

),

while, for

etc., into equivalent assembly language sequences. This chapter also dis-
cusses techniques you can use to improve the performance of these control structures. The
sections below that have a “•” prefix are essential. Those sections with a “

❏

” discuss
advanced topics that you may want to put off for a while.

• Introduction to Decisions.
• IF..THEN..ELSE Sequences.
• CASE Statements.

 ❏

State machines and indirect jumps.
• Spaghetti code.
• Loops.
• WHILE Loops.
• REPEAT..UNTIL loops.
• LOOP..ENDLOOP.
• FOR Loops.
• Register usage and loops.

 ❏

Performance improvements.

 ❏

Moving the termination condition to the end of a loop.

 ❏

Executing the loop backwards.

 ❏

Loop invariants.

 ❏

Unraveling loops.

 ❏

Induction variables.

10.1 Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that switches
between two possible execution paths based on some condition. Normally (though not
always), conditional instruction sequences are implemented with the conditional jump
instructions. Conditional instructions correspond to the

if..then..else

statement in Pascal:

 IF (condition is true) THEN stmt1 ELSE stmt2 ;

Assembly language, as usual, offers much more flexibility when dealing with conditional
statements. Consider the following Pascal statement:

 IF ((X<Y) and (Z > T)) or (A <> B) THEN stmt1;

A “brute force” approach to converting this statement into assembly language might pro-
duce:

Thi d t t d ith F M k 4 0 2

Chapter 10

Page 522

mov cl, 1 ;Assume true
mov ax, X
cmp ax, Y
jl IsTrue
mov cl, 0 ;This one’s false

IsTrue: mov ax, Z
cmp ax, T
jg AndTrue
mov cl, 0 ;It’s false now

AndTrue: mov al, A
cmp al, B

 je OrFalse
 mov cl, 1 ;Its true if A <> B

OrFalse: cmp cl, 1
 jne SkipStmt1
<Code for stmt1 goes here>

SkipStmt1:

As you can see, it takes a considerable number of conditional statements just to process
the expression in the example above. This roughly corresponds to the (equivalent) Pascal
statements:

cl := true;
 IF (X >= Y) then cl := false;

IF (Z <= T) then cl := false;
IF (A <> B) THEN cl := true;
IF (CL = true) then stmt1;

Now compare this with the following “improved” code:

mov ax, A
cmp ax, B
jne DoStmt
mov ax, X
cmp ax, Y
jnl SkipStmt
mov ax, Z
cmp ax, T
jng SkipStmt

DoStmt:

<

Place code for Stmt1 here>

SkipStmt:

Two things should be apparent from the code sequences above: first, a single condi-
tional statement in Pascal may require several conditional jumps in assembly language;
second, organization of complex expressions in a conditional sequence can affect the effi-
ciency of the code. Therefore, care should be exercised when dealing with conditional
sequences in assembly language.

Conditional statements may be broken down into three basic categories:

if..then..else

statements,

case

statements, and indirect jumps. The following sections will describe these
program structures, how to use them, and how to write them in assembly language.

10.2 IF..THEN..ELSE Sequences

The most commonly used conditional statement is the

if..then

or

if..then..else

statement.
These two statements take the following form shown in Figure 10.1.

The

if..then

statement is just a special case of the

if..then..else

statement (with an empty
ELSE block). Therefore, we’ll only consider the more general

if..then..else

 form. The basic
implementation of an

if..then..else

statement in 80x86 assembly language looks something
like this:

Control Structures

Page 523

 {Sequence of statements to test some condition}
 J

cc

ElseCode
 {Sequence of statements corresponding to the THEN block}

jmp EndOfIF

ElseCode:
{Sequence of statements corresponding to the ELSE block}

EndOfIF:

 Note:

J

cc

 represents some conditional jump instruction.

For example, to convert the Pascal statement:

IF (a=b) then c := d else b := b + 1;

to assembly language, you could use the following 80x86 code:

mov ax, a
 cmp ax, b
 jne ElseBlk
 mov ax, d
 mov c, ax
 jmp EndOfIf

ElseBlk:
inc b

EndOfIf:

For simple expressions like

 (A=B)

 generating the proper code for an

if..then..else

state-
ment is almost trivial. Should the expression become more complex, the associated assem-
bly language code complexity increases as well. Consider the following

if

statement
presented earlier:

IF ((X > Y) and (Z < T)) or (A<>B) THEN C := D;

Figure 10.1 IF..THEN and IF..THEN..ELSE Statement Flow

Continue execution
down here after the
completion of the
THEN or if skipping the
THEN block.

Test for some condition

Execute this block of
statements if the
condition is true.

IF..THEN

Test for some condition

Execute this block of
statements if the
condition is true.

Execute this block of
statements if the
condition is false

Continue execution
down here after the
completion of the
THEN or ELSE blocks

IF..THEN..ELSE

Chapter 10

Page 524

When processing complex

if

statements such as this one, you’ll find the conversion
task easier if you break this

if

statement into a sequence of three different

if

statements as
follows:

IF (A<>B) THEN C := D
IF (X > Y) THEN IF (Z < T) THEN C := D;

This conversion comes from the following Pascal equivalences:

IF (expr1 AND expr2) THEN stmt;

is equivalent to

IF (expr1) THEN IF (expr2) THEN stmt;

and

IF (expr1 OR expr2) THEN stmt;

is equivalent to

IF (expr1) THEN stmt;
IF (expr2) THEN stmt;

In assembly language, the former

if

statement becomes:

mov ax, A
cmp ax, B
jne DoIF
mov ax, X
cmp ax, Y
jng EndOfIf
mov ax, Z
cmp ax, T
jnl EndOfIf

DoIf:
mov ax, D

 mov C, ax
EndOfIF:

 As you can probably tell, the code necessary to test a condition can easily become
more complex than the statements appearing in the

else

and then blocks. Although it
seems somewhat paradoxical that it may take more effort to test a condition than to act
upon the results of that condition, it happens all the time. Therefore, you should be pre-
pared for this situation.

Probably the biggest problem with the implementation of complex conditional state-
ments in assembly language is trying to figure out what you’ve done after you’ve written
the code. Probably the biggest advantage high level languages offer over assembly lan-
guage is that expressions are much easier to read and comprehend in a high level lan-
guage. The HLL version is self-documenting whereas assembly language tends to hide
the true nature of the code. Therefore, well-written comments are an essential ingredient
to assembly language implementations of

if..then..else

 statements. An elegant implementa-
tion of the example above is:

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;
; Implemented as:
; IF (A <> B) THEN GOTO DoIF;

mov ax, A
cmp ax, B
jne DoIF

; IF NOT (X > Y) THEN GOTO EndOfIF;

mov ax, X
cmp ax, Y
jng EndOfIf

; IF NOT (Z < T) THEN GOTO EndOfIF ;

mov ax, Z
cmp ax, T
jnl EndOfIf

Control Structures

Page 525

; THEN Block:

DoIf: mov ax, D
mov C, ax

; End of IF statement

EndOfIF:

Admittedly, this appears to be going overboard for such a simple example. The fol-
lowing would probably suffice:

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;

; Test the boolean expression:

mov ax, A
cmp ax, B
jne DoIF
mov ax, X
cmp ax, Y
jng EndOfIf
mov ax, Z
cmp ax, T
jnl EndOfIf

; THEN Block:

DoIf: mov ax, D
 mov C, ax

; End of IF statement

EndOfIF:

However, as your

if

statements become complex, the density (and quality) of your com-
ments become more and more important.

10.3 CASE Statements

The Pascal

case

statement takes the following form :

 CASE variable OF
const

1

:stmt

1

;
 const

2

:stmt

2

;
 .

 .
 .
const

n

:stmt

n

END;

When this statement executes, it checks the value of variable against the constants

const

1

 … const

n

. If a match is found then the corresponding statement executes. Standard
Pascal places a few restrictions on the

case

 statement. First, if the value of variable isn’t in
the list of constants, the result of the

case

 statement is undefined. Second, all the constants
appearing as

case

 labels must be unique. The reason for these restrictions will become
clear in a moment.

Most introductory programming texts introduce the

case

 statement by explaining it as
a sequence of

if..then..else

statements. They might claim that the following two pieces of
Pascal code are equivalent:

CASE I OF
0: WriteLn(‘I=0’);
1: WriteLn(‘I=1’);
2: WriteLn(‘I=2’);

END;

IF I = 0 THEN WriteLn(‘I=0’)
ELSE IF I = 1 THEN WriteLn(‘I=1’)
ELSE IF I = 2 THEN WriteLn(‘I=2’);

Chapter 10

Page 526

While semantically these two code segments may be the same, their implementation
is usually different

1

. Whereas the

if..then..else if

chain does a comparison for each condi-
tional statement in the sequence, the

case

 statement normally uses an indirect jump to
transfer control to any one of several statements with a single computation. Consider the
two examples presented above, they could be written in assembly language with the fol-
lowing code:

 mov bx, I
 shl bx, 1 ;Multiply BX by two
 jmp cs:JmpTbl[bx]

JmpTbl word stmt0, stmt1, stmt2

Stmt0: print
 byte “I=0”,cr,lf,0
 jmp EndCase

Stmt1: print
 byte “I=1”,cr,lf,0
 jmp EndCase

Stmt2: print
 byte “I=2”,cr,lf,0

EndCase:

; IF..THEN..ELSE form:

 mov ax, I
 cmp ax, 0
 jne Not0

print
byte “I=0”,cr,lf,0
jmp EndOfIF

Not0: cmp ax, 1
jne Not1
print
byte “I=1”,cr,lf,0
jmp EndOfIF

Not1: cmp ax, 2
 jne EndOfIF

Print
byte “I=2”,cr,lf,0

EndOfIF:

Two things should become readily apparent: the more (consecutive) cases you have,
the more efficient the jump table implementation becomes (both in terms of space and
speed). Except for trivial cases, the

case

 statement is almost always faster and usually by a
large margin. As long as the

case

 labels are consecutive values, the

case

 statement version
is usually smaller as well.

What happens if you need to include non-consecutive

case

 labels or you cannot be
sure that the

case

 variable doesn’t go out of range? Many Pascals have extended the defi-
nition of the

case

 statement to include an

otherwise

clause. Such a

case

 statement takes the
following form:

 CASE variable OF
const:stmt;

 const:stmt;
 . .

 . .
 . .
const:stmt;
OTHERWISE stmt

END;

 If the value of variable matches one of the constants making up the

case

 labels, then
the associated statement executes. If the variable’s value doesn’t match any of the

case

1. Versions of Turbo Pascal, sadly, treat the

case

statement as a form of the

if..then..else

statement.

Control Structures

Page 527

labels, then the statement following the

otherwise clause executes. The otherwise clause is
implemented in two phases. First, you must choose the minimum and maximum values
that appear in a case statement. In the following case statement, the smallest case label is
five, the largest is 15:

 CASE I OF
5:stmt1;

 8:stmt2;
 10:stmt3;
 12:stmt4;

15:stmt5;
OTHERWISE stmt6

END;

Before executing the jump through the jump table, the 80x86 implementation of this
case statement should check the case variable to make sure it’s in the range 5..15. If not,
control should be immediately transferred to stmt6:

mov bx, I
cmp bx, 5
jl Otherwise
cmp bx, 15
jg Otherwise
shl bx, 1
jmp cs:JmpTbl-10[bx]

 The only problem with this form of the case statement as it now stands is that it
doesn’t properly handle the situation where I is equal to 6, 7, 9, 11, 13, or 14. Rather than
sticking extra code in front of the conditional jump, you can stick extra entries in the jump
table as follows:

mov bx, I
cmp bx, 5
jl Otherwise
cmp bx, 15
jg Otherwise
shl bx, 1
jmp cs:JmpTbl-10[bx]

Otherwise: {put stmt6 here}
jmp CaseDone

JmpTbl word stmt1, Otherwise, Otherwise, stmt2, Otherwise
word stmt3, Otherwise, stmt4, Otherwise, Otherwise
word stmt5
etc.

Note that the value 10 is subtracted from the address of the jump table. The first entry
in the table is always at offset zero while the smallest value used to index into the table is
five (which is multiplied by two to produce 10). The entries for 6, 7, 9, 11, 13, and 14 all
point at the code for the Otherwise clause, so if I contains one of these values, the Other-
wise clause will be executed.

There is a problem with this implementation of the case statement. If the case labels
contain non-consecutive entries that are widely spaced, the following case statement
would generate an extremely large code file:

CASE I OF
0: stmt1;
100: stmt2;

 1000: stmt3;
 10000: stmt4;

Otherwise stmt5
END;

 In this situation, your program will be much smaller if you implement the case state-
ment with a sequence of if statements rather than using a jump statement. However, keep
one thing in mind- the size of the jump table does not normally affect the execution speed
of the program. If the jump table contains two entries or two thousand, the case statement
will execute the multi-way branch in a constant amount of time. The if statement imple-

Chapter 10

Page 528

mentation requires a linearly increasing amount of time for each case label appearing in
the case statement.

Probably the biggest advantage to using assembly language over a HLL like Pascal is
that you get to choose the actual implementation. In some instances you can implement a
case statement as a sequence ofif..then..else statements, or you can implement it as a jump
table, or you can use a hybrid of the two:

CASE I OF
0:stmt1;

 1:stmt2;
 2:stmt3;
 100:stmt4;
 Otherwise stmt5

END;

could become:

mov bx, I
 cmp bx, 100
 je Is100
 cmp bx, 2

ja Otherwise
shl bx, 1
jmp cs:JmpTbl[bx]

 etc.

Of course, you could do this in Pascal with the following code:

 IF I = 100 then stmt4
ELSE CASE I OF

0:stmt1;
 1:stmt2;
 2:stmt3;

Otherwise stmt5
END;

 But this tends to destroy the readability of the Pascal program. On the other hand, the
extra code to test for 100 in the assembly language code doesn’t adversely affect the read-
ability of the program (perhaps because it’s so hard to read already). Therefore, most peo-
ple will add the extra code to make their program more efficient.

The C/C++ switch statement is very similar to the Pascal case statement. There is only
one major semantic difference: the programmer must explicitly place a break statement in
each case clause to transfer control to the first statement beyond the switch. This break cor-
responds to the jmp instruction at the end of each case sequence in the assembly code
above. If the corresponding break is not present, C/C++ transfers control into the code of
the following case. This is equivalent to leaving off the jmp at the end of the case’s
sequence:

switch (i)
{
case 0: stmt1;
case 1: stmt2;
case 2: stmt3;

break;
case 3: stmt4;

break;
default: stmt5;
}

This translates into the following 80x86 code:

mov bx, i
cmp bx, 3
ja DefaultCase

shl bx, 1
jmp cs:JmpTbl[bx]

JmpTbl word case0, case1, case2, case3

Control Structures

Page 529

case0: <stmt1’s code>

case1: <stmt2’s code>

case2: <stmt3’s code>

jmp EndCase ;Emitted for the break stmt.

case3: <stmt4’s code>
jmp EndCase ;Emitted for the break stmt.

DefaultCase: <stmt5’s code>
EndCase:

10.4 State Machines and Indirect Jumps

Another control structure commonly found in assembly language programs is the
state machine. A state machine uses a state variable to control program flow. The FORTRAN
programming language provides this capability with the assigned goto statement. Certain
variants of C (e.g., GNU’s GCC from the Free Software Foundation) provide similar fea-
tures. In assembly language, the indirect jump provides a mechanism to easily implement
state machines.

So what is a state machine? In very basic terms, it is a piece of code2 which keeps track
of its execution history by entering and leaving certain “states”. For the purposes of this
chapter, we’ll not use a very formal definition of a state machine. We’ll just assume that a
state machine is a piece of code which (somehow) remembers the history of its execution
(its state) and executes sections of code based upon that history.

In a very real sense, all programs are state machines. The CPU registers and values in
memory constitute the “state” of that machine. However, we’ll use a much more con-
strained view. Indeed, for most purposes only a single variable (or the value in the IP reg-
ister) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure which you
want to perform one operation the first time you call it, a different operation the second
time you call it, yet something else the third time you call it, and then something new
again on the fourth call. After the fourth call it repeats these four different operations in
order. For example, suppose you want the procedure to add ax and bx the first time, sub-
tract them on the second call, multiply them on the third, and divide them on the fourth.
You could implement this procedure as follows:

State byte 0
StateMach proc

cmp state,0
jne TryState1

; If this is state 0, add BX to AX and switch to state 1:

add ax, bx
inc State ;Set it to state 1
ret

; If this is state 1, subtract BX from AX and switch to state 2

TryState1: cmp State, 1
jne TryState2
sub ax, bx
inc State
ret

; If this is state 2, multiply AX and BX and switch to state 3:

TryState2: cmp State, 2

2. Note that state machines need not be software based. Many state machines’ implementation are hardware
based.

Chapter 10

Page 530

jne MustBeState3
push dx
mul bx
pop dx
inc State
ret

; If none of the above, assume we’re in State 4. So divide
; AX by BX.

MustBeState3:
push dx
xor dx, dx ;Zero extend AX into DX.
div bx
pop dx
mov State, 0 ;Switch back to State 0
ret

StateMach endp

Technically, this procedure is not the state machine. Instead, it is the variable State and the
cmp/jne instructions which constitute the state machine.

There is nothing particularly special about this code. It’s little more than a case state-
ment implemented via theif..then..else construct. The only thing special about this proce-
dure is that it remembers how many times it has been called3 and behaves differently
depending upon the number of calls. While this is a correct implementation of the desired
state machine, it is not particularly efficient. The more common implementation of a state
machine in assembly language is to use an indirect jump. Rather than having a state vari-
able which contains a value like zero, one, two, or three, we could load the state variable
with the address of the code to execute upon entry into the procedure. By simply jumping
to that address, the state machine could save the tests above needed to execute the proper
code fragment. Consider the following implementation using the indirect jump:

State word State0
StateMach proc

jmp State

; If this is state 0, add BX to AX and switch to state 1:

State0: add ax, bx
mov State, offset State1 ;Set it to state 1
ret

; If this is state 1, subtract BX from AX and switch to state 2

State1: sub ax, bx
mov State, offset State2 ;Switch to State 2
ret

; If this is state 2, multiply AX and BX and switch to state 3:

State2: push dx
mul bx
pop dx
mov State, offset State3 ;Switch to State 3
ret

; If in State 3, do the division and switch back to State 0:

State3: push dx
xor dx, dx ;Zero extend AX into DX.
div bx
pop dx
mov State, offset State0 ;Switch to State 0
ret

StateMach endp

The jmp instruction at the beginning of the StateMach procedure transfers control to
the location pointed at by the State variable. The first time you call StateMach it points at

3. Actually, it remembers how many times, MOD 4, that it has been called.

Control Structures

Page 531

the State0 label. Thereafter, each subsection of code sets the State variable to point at the
appropriate successor code.

10.5 Spaghetti Code

One major problem with assembly language is that it takes several statements to real-
ize a simple idea encapsulated by a single HLL statement. All too often an assembly lan-
guage programmer will notice that s/he can save a few bytes or cycles by jumping into
the middle of some programming structure. After a few such observations (and corre-
sponding modifications) the code contains a whole sequence of jumps in and out of por-
tions of the code. If you were to draw a line from each jump to its destination, the
resulting listing would end up looking like someone dumped a bowl of spaghetti on your
code, hence the term “spaghetti code”.

Spaghetti code suffers from one major drawback- it’s difficult (at best) to read such a
program and figure out what it does. Most programs start out in a “structured” form only
to become spaghetti code at the altar of efficiency. Alas, spaghetti code is rarely efficient.
Since it’s difficult to figure out exactly what’s going on, it’s very difficult to determine if
you can use a better algorithm to improve the system. Hence, spaghetti code may wind up
less efficient.

While it’s true that producing some spaghetti code in your programs may improve its
efficiency, doing so should always be a last resort (when you’ve tried everything else and
you still haven’t achieved what you need), never a matter of course. Always start out writ-
ing your programs with straight-forward ifs and case statements. Start combining sections
of code (via jmp instructions) once everything is working and well understood. Of course,
you should never obliterate the structure of your code unless the gains are worth it.

A famous saying in structured programming circles is “After gotos, pointers are the
next most dangerous element in a programming language.” A similar saying is “Pointers
are to data structures what gotos are to control structures.” In other words, avoid excessive
use of pointers. If pointers and gotos are bad, then the indirect jump must be the worst
construct of all since it involves both gotos and pointers! Seriously though, the indirect
jump instructions should be avoided for casual use. They tend to make a program harder
to read. After all, an indirect jump can (theoretically) transfer control to any label within a
program. Imagine how hard it would be to follow the flow through a program if you have
no idea what a pointer contains and you come across an indirect jump using that pointer.
Therefore, you should always exercise care when using jump indirect instructions.

10.6 Loops

Loops represent the final basic control structure (sequences, decisions, and loops)
which make up a typical program. Like so many other structures in assembly language,
you’ll find yourself using loops in places you’ve never dreamed of using loops. Most
HLLs have implied loop structures hidden away. For example, consider the BASIC state-
ment IF A$ = B$ THEN 100. This if statement compares two strings and jumps to statement
100 if they are equal. In assembly language, you would need to write a loop to compare
each character in A$ to the corresponding character in B$ and then jump to statement 100
if and only if all the characters matched. In BASIC, there is no loop to be seen in the pro-
gram. In assembly language, this very simple if statement requires a loop. This is but a
small example which shows how loops seem to pop up everywhere.

Program loops consist of three components: an optional initialization component, a
loop termination test, and the body of the loop. The order with which these components
are assembled can dramatically change the way the loop operates. Three permutations of
these components appear over and over again. Because of their frequency, these loop
structures are given special names in HLLs: while loops, repeat..until loops (do..while in
C/C++), and loop..endloop loops.

Chapter 10

Page 532

10.6.1 While Loops

The most general loop is the while loop. It takes the following form:

WHILE boolean expression DO statement;

There are two important points to note about the while loop. First, the test for termi-
nation appears at the beginning of the loop. Second as a direct consequence of the position
of the termination test, the body of the loop may never execute. If the termination condi-
tion always exists, the loop body will always be skipped over.

Consider the following Pascal while loop:

I := 0;
WHILE (I<100) do I := I + 1;

I := 0; is the initialization code for this loop. I is a loop control variable, because it con-
trols the execution of the body of the loop. (I<100) is the loop termination condition. That
is, the loop will not terminate as long as I is less than 100. I:=I+1; is the loop body. This is
the code that executes on each pass of the loop. You can convert this to 80x86 assembly
language as follows:

mov I, 0
WhileLp: cmp I, 100

jge WhileDone
inc I
jmp WhileLp

WhileDone:

Note that a Pascal while loop can be easily synthesized using an if and a goto state-
ment. For example, the Pascal while loop presented above can be replaced by:

I := 0;
1: IF (I<100) THEN BEGIN

I := I + 1;
GOTO 1;

END;

More generally, any while loop can be built up from the following:

optional initialization code
1: IF not termination condition THEN BEGIN

loop body
GOTO 1;

END;

Therefore, you can use the techniques from earlier in this chapter to convert if statements
to assembly language. All you’ll need is an additional jmp (goto) instruction.

10.6.2 Repeat..Until Loops

The repeat..until (do..while) loop tests for the termination condition at the end of the
loop rather than at the beginning. In Pascal, the repeat..until loop takes the following form:

optional initialization code
REPEAT

loop body
UNTIL termination condition

This sequence executes the initialization code, the loop body, then tests some condi-
tion to see if the loop should be repeated. If the boolean expression evaluates to false, the
loop repeats; otherwise the loop terminates. The two things to note about the repeat..until
loop is that the termination test appears at the end of the loop and, as a direct consequence
of this, the loop body executes at least once.

Like the while loop, the repeat..until loop can be synthesized with an if statement and a
goto . You would use the following:

Control Structures

Page 533

initialization code
1: loop body

IF NOT termination condition THEN GOTO 1

Based on the material presented in the previous sections, you can easily synthesize
repeat..until loops in assembly language.

10.6.3 LOOP..ENDLOOP Loops

If while loops test for termination at the beginning of the loop and repeat..until loops
check for termination at the end of the loop, the only place left to test for termination is in
the middle of the loop. Although Pascal and C/C++4 don’t directly support such a loop,
the loop..endloop structure can be found in HLL languages like Ada. The loop..endloop loop
takes the following form:

LOOP
loop body

ENDLOOP;

Note that there is no explicit termination condition. Unless otherwise provided for,
the loop..endloop construct simply forms an infinite loop. Loop termination is handled by
an if and goto statement5. Consider the following (pseudo) Pascal code which employs a
loop..endloop construct:

 LOOP
READ(ch)
IF ch = ‘.’ THEN BREAK;
WRITE(ch);

ENDLOOP;

In real Pascal, you’d use the following code to accomplish this:

1:
READ(ch);
IF ch = ‘.’ THEN GOTO 2; (* Turbo Pascal supports BREAK! *)
WRITE(ch);
GOTO 1

2:

In assembly language you’d end up with something like:

LOOP1: getc
cmp al, ‘.’
je EndLoop
putc
jmp LOOP1

EndLoop:

10.6.4 FOR Loops

The for loop is a special form of the while loop which repeats the loop body a specific
number of times. In Pascal, the for loop looks something like the following:

FOR var := initial TO final DO stmt
or

FOR var := initial DOWNTO final DO stmt

Traditionally, the for loop in Pascal has been used to process arrays and other objects
accessed in sequential numeric order. These loops can be converted directly into assembly
language as follows:

4. Technically, C/C++ does support such a loop. “for(;;)” along with break provides this capability.
5. Many high level languages use statements like NEXT, BREAK, CONTINUE, EXIT, and CYCLE rather than
GOTO; but they’re all forms of the GOTO statement.

Chapter 10

Page 534

In Pascal:

FOR var := start TO stop DO stmt;

In Assembly:

mov var, start
FL: mov ax, var

cmp ax, stop
jg EndFor

; code corresponding to stmt goes here.

inc var
jmp FL

EndFor:

Fortunately, most for loops repeat some statement(s) a fixed number of times. For
example,

 FOR I := 0 to 7 do write(ch);

In situations like this, it’s better to use the 80x86 loop instruction rather than simulate a
for loop:

mov cx, 7
LP: mov al, ch

call putc
loop LP

Keep in mind that the loop instruction normally appears at the end of a loop whereas
the for loop tests for termination at the beginning of the loop. Therefore, you should take
precautions to prevent a runaway loop in the event cx is zero (which would cause the loop
instruction to repeat the loop 65,536 times) or the stop value is less than the start value. In
the case of

FOR var := start TO stop DO stmt;

assuming you don’t use the value of var within the loop, you’d probably want to use the
assembly code:

mov cx, stop
sub cx, start
jl SkipFor
inc cx

LP: stmt
loop LP

SkipFor:

Remember, the sub and cmp instructions set the flags in an identical fashion. There-
fore, this loop will be skipped if stop is less than start. It will be repeated (stop-start)+1 times
otherwise. If you need to reference the value of var within the loop, you could use the fol-
lowing code:

mov ax, start
mov var, ax
mov cx, stop
sub cx, ax
jl SkipFor
inc cx

LP: stmt
inc var
loop LP

SkipFor:

The downto version appears in the exercises.

10.7 Register Usage and Loops

Given that the 80x86 accesses registers much faster than memory locations, registers
are the ideal spot to place loop control variables (especially for small loops). This point is

Control Structures

Page 535

amplified since the loop instruction requires the use of the cx register. However, there are
some problems associated with using registers within a loop. The primary problem with
using registers as loop control variables is that registers are a limited resource. In particu-
lar, there is only one cx register. Therefore, the following will not work properly:

mov cx, 8
Loop1: mov cx, 4
Loop2: stmts

loop Loop2
stmts
loop Loop1

The intent here, of course, was to create a set of nested loops, that is, one loop inside
another. The inner loop (Loop2) should repeat four times for each of the eight executions of
the outer loop (Loop1). Unfortunately, both loops use the loop instruction. Therefore, this
will form an infinite loop since cx will be set to zero (which loop treats like 65,536) at the
end of the first loop instruction. Since cx is always zero upon encountering the second loop
instruction, control will always transfer to the Loop1 label. The solution here is to save and
restore the cx register or to use a different register in place of cx for the outer loop:

mov cx, 8
Loop1: push cx

mov cx, 4
Loop2: stmts

loop Loop2
pop cx
stmts
loop Loop1

or:

mov bx, 8
Loop1: mov cx, 4
Loop2: stmts

loop Loop2
stmts
dec bx
jnz Loop1

Register corruption is one of the primary sources of bugs in loops in assembly lan-
guage programs, always keep an eye out for this problem.

10.8 Performance Improvements

The 80x86 microprocessors execute sequences of instructions at blinding speeds.
You’ll rarely encounter a program that is slow which doesn’t contain any loops. Since
loops are the primary source of performance problems within a program, they are the
place to look when attempting to speed up your software. While a treatise on how to write
efficient programs is beyond the scope of this chapter, there are some things you should be
aware of when designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to execute one itera-
tion of the loop.

10.8.1 Moving the Termination Condition to the End of a Loop

Consider the following flow graphs for the three types of loops presented earlier:

Repeat..until loop:

Initialization code
Loop body

Test for termination
Code following the loop

While loop:

Chapter 10

Page 536

Initialization code
Loop termination test

Loop body
Jump back to test

Code following the loop

Loop..endloop loop:

Initialization code
Loop body, part one
Loop termination test
Loop body, part two
Jump back to loop body part 1

Code following the loop

As you can see, the repeat..until loop is the simplest of the bunch. This is reflected in the
assembly language code required to implement these loops. Consider the following
repeat..until and while loops that are identical:

SI := DI - 20; SI := DI - 20;
while (SI <= DI) do repeat
begin

stmts stmts
SI := SI + 1; SI := SI + 1;

end; until SI > DI;

The assembly language code for these two loops is6:

mov si, di mov si, di
sub si, 20 sub si, 20

WL1: cmp si, di U: stmts
jnle QWL inc si
stmts cmp si, di
inc si jng RU
jmp WL1

QWL:

As you can see, testing for the termination condition at the end of the loop allowed us
to remove a jmp instruction from the loop. This can be significant if this loop is nested
inside other loops. In the preceding example there wasn’t a problem with executing the
body at least once. Given the definition of the loop, you can easily see that the loop will be
executed exactly 20 times. Assuming cx is available, this loop easily reduces to:

lea si, -20[di]
mov cx, 20

WL1: stmts
inc si
loop WL1

Unfortunately, it’s not always quite this easy. Consider the following Pascal code:

WHILE (SI <= DI) DO BEGIN
stmts
SI := SI + 1;

END;

In this particular example, we haven’t the slightest idea what si contains upon entry
into the loop. Therefore, we cannot assume that the loop body will execute at least once.
Therefore, we must do the test before executing the body of the loop. The test can be
placed at the end of the loop with the inclusion of a single jmp instruction:

jmp short Test
RU: stmts

inc si
Test: cmp si, di

jle RU

6. Of course, a good compiler would recognize that both loops perform the same operation and generate identical
code for each. However, most compilers are not this good.

Control Structures

Page 537

Although the code is as long as the original while loop, the jmp instruction executes only
once rather than on each repetition of the loop. Note that this slight gain in efficiency is
obtained via a slight loss in readability. The second code sequence above is closer to spa-
ghetti code that the original implementation. Such is often the price of a small perfor-
mance gain. Therefore, you should carefully analyze your code to ensure that the
performance boost is worth the loss of clarity. More often than not, assembly language
programmers sacrifice clarity for dubious gains in performance, producing impossible to
understand programs.

10.8.2 Executing the Loop Backwards

Because of the nature of the flags on the 80x86, loops which range from some number
down to (or up to) zero are more efficient than any other. Compare the following Pascal
loops and the code they generate:

for I := 1 to 8 do for I := 8 downto 1 do
K := K + I - J; K := K + I - j;

mov I, 1 mov I, 8
FLP: mov ax, K FLP: mov ax, K

add ax, I add ax, I
sub ax, J sub ax, J
mov K, ax mov K, ax
inc I dec I
cmp I, 8 jnz FLP
jle FLP

Note that by running the loop from eight down to one (the code on the right) we saved a
comparison on each repetition of the loop.

Unfortunately, you cannot force all loops to run backwards. However, with a little
effort and some coercion you should be able to work most loops so they operate back-
wards. Once you get a loop operating backwards, it’s a good candidate for the loop
instruction (which will improve the performance of the loop on pre-486 CPUs).

The example above worked out well because the loop ran from eight down to one.
The loop terminated when the loop control variable became zero. What happens if you
need to execute the loop when the loop control variable goes to zero? For example, sup-
pose that the loop above needed to range from seven down to zero. As long as the upper
bound is positive, you can substitute the jns instruction in place of the jnz instruction
above to repeat the loop some specific number of times:

mov I, 7
FLP: mov ax, K

add ax, I
sub ax, J
mov K, ax
dec I
jns FLP

This loop will repeat eight times with I taking on the values seven down to zero on
each execution of the loop. When it decrements zero to minus one, it sets the sign flag and
the loop terminates.

Keep in mind that some values may look positive but they are negative. If the loop
control variable is a byte, then values in the range 128..255 are negative. Likewise, 16-bit
values in the range 32768..65535 are negative. Therefore, initializing the loop control vari-
able with any value in the range 129..255 or 32769..65535 (or, of course, zero) will cause the
loop to terminate after a single execution. This can get you into a lot of trouble if you’re
not careful.

Chapter 10

Page 538

10.8.3 Loop Invariant Computations

A loop invariant computation is some calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the loop. You can
compute them outside the loop and reference the value of the computation inside. The fol-
lowing Pascal code demonstrates a loop which contains an invariant computation:

FOR I := 0 TO N DO
K := K+(I+J-2);

Since J never changes throughout the execution of this loop, the sub-expression “J-2”
can be computed outside the loop and its value used in the expression inside the loop:

temp := J-2;
FOR I := 0 TO N DO

K := K+(I+temp);

Of course, if you’re really interested in improving the efficiency of this particular loop,
you’d be much better off (most of the time) computing K using the formula:

This computation for K is based on the formula:

 However, simple computations such as this one aren’t always possible. Still, this demon-
strates that a better algorithm is almost always better than the trickiest code you can come
up with.

In assembly language, invariant computations are even trickier. Consider this conver-
sion of the Pascal code above:

mov ax, J
add ax, 2
mov temp, ax
mov ax, n
mov I, ax

FLP: mov ax, K
add ax, I
sub ax, temp
mov K, ax
dec I
cmp I, -1
jg FLP

Of course, the first refinement we can make is to move the loop control variable (I) into a
register. This produces the following code:

mov ax, J
inc ax
inc ax
mov temp, ax
mov cx, n

FLP: mov ax, K
add ax, cx
sub ax, temp
mov K, ax
dec cx
cmp cx, -1
jg FLP

K K N 1+() temp×() N 2+() N 2+()×
2

---+ +=

i
i 0=

N

∑ N 1+() N()×
2

--------------------------------------=

Control Structures

Page 539

This operation speeds up the loop by removing a memory access from each repetition of
the loop. To take this one step further, why not use a register to hold the “temp” value
rather than a memory location:

mov bx, J
inc bx
inc bx
mov cx, n

FLP: mov ax, K
add ax, cx
sub ax, bx
mov K, ax
dec cx
cmp cx, -1
jg FLP

Furthermore, accessing the variable K can be removed from the loop as well:

mov bx, J
inc bx
inc bx
mov cx, n
mov ax, K

FLP: add ax, cx
sub ax, bx
dec cx
cmp cx, -1
jg FLP
mov K, ax

One final improvement which is begging to be made is to substitute the loop instruc-
tion for the dec cx / cmp cx,-1 / JG FLP instructions. Unfortunately, this loop must be
repeated whenever the loop control variable hits zero, the loop instruction cannot do this.
However, we can unravel the last execution of the loop (see the next section) and do that
computation outside the loop as follows:

mov bx, J
inc bx
inc bx
mov cx, n
mov ax, K

FLP: add ax, cx
sub ax, bx
loop FLP
sub ax, bx
mov K, ax

As you can see, these refinements have considerably reduced the number of instruc-
tions executed inside the loop and those instructions that do appear inside the loop are
very fast since they all reference registers rather than memory locations.

Removing invariant computations and unnecessary memory accesses from a loop
(particularly an inner loop in a set of nested loops) can produce dramatic performance
improvements in a program.

10.8.4 Unraveling Loops

For small loops, that is, those whose body is only a few statements, the overhead
required to process a loop may constitute a significant percentage of the total processing
time. For example, look at the following Pascal code and its associated 80x86 assembly
language code:

Chapter 10

Page 540

FOR I := 3 DOWNTO 0 DO A [I] := 0;

mov I, 3
FLP: mov bx, I

shl bx, 1
mov A [bx], 0
dec I
jns FLP

Each execution of the loop requires five instructions. Only one instruction is perform-
ing the desired operation (moving a zero into an element of A). The remaining four
instructions convert the loop control variable into an index into A and control the repeti-
tion of the loop. Therefore, it takes 20 instructions to do the operation logically required by
four.

While there are many improvements we could make to this loop based on the infor-
mation presented thus far, consider carefully exactly what it is that this loop is doing-- it’s
simply storing four zeros into A[0] through A[3]. A more efficient approach is to use four
mov instructions to accomplish the same task. For example, if A is an array of words, then
the following code initializes A much faster than the code above:

mov A, 0
mov A+2, 0
mov A+4, 0
mov A+6, 0

You may improve the execution speed and the size of this code by using the ax regis-
ter to hold zero:

xor ax, ax
mov A, ax
mov A+2, ax
mov A+4, ax
mov A+6, ax

Although this is a trivial example, it shows the benefit of loop unraveling. If this sim-
ple loop appeared buried inside a set of nested loops, the 5:1 instruction reduction could
possibly double the performance of that section of your program.

Of course, you cannot unravel all loops. Loops that execute a variable number of
times cannot be unraveled because there is rarely a way to determine (at assembly time)
the number of times the loop will be executed. Therefore, unraveling a loop is a process
best applied to loops that execute a known number of times.

Even if you repeat a loop some fixed number of iterations, it may not be a good candi-
date for loop unraveling. Loop unraveling produces impressive performance improve-
ments when the number of instructions required to control the loop (and handle other
overhead operations) represent a significant percentage of the total number of instructions
in the loop. Had the loop above contained 36 instructions in the body of the loop (exclu-
sive of the four overhead instructions), then the performance improvement would be, at
best, only 10% (compared with the 300-400% it now enjoys). Therefore, the costs of unrav-
eling a loop, i.e., all the extra code which must be inserted into your program, quickly
reaches a point of diminishing returns as the body of the loop grows larger or as the num-
ber of iterations increases. Furthermore, entering that code into your program can become
quite a chore. Therefore, loop unraveling is a technique best applied to small loops.

Note that the superscalar x86 chips (Pentium and later) have branch prediction hardware
and use other techniques to improve performance. Loop unrolling on such systems many
actually slow down the code since these processors are optimized to execute short loops.

10.8.5 Induction Variables

The following is a slight modification of the loop presented in the previous section:

Control Structures

Page 541

FOR I := 0 TO 255 DO A [I] := 0;

mov I, 0
FLP: mov bx, I

shl bx, 1
mov A [bx], 0
inc I
cmp I, 255
jbe FLP

Although unraveling this code will still produce a tremendous performance improve-
ment, it will take 257 instructions to accomplish this task7, too many for all but the most
time-critical applications. However, you can reduce the execution time of the body of the
loop tremendously using induction variables. An induction variable is one whose value
depends entirely on the value of some other variable. In the example above, the index into
the array A tracks the loop control variable (it’s always equal to the value of the loop con-
trol variable times two). Since I doesn’t appear anywhere else in the loop, there is no sense
in performing all the computations on I. Why not operate directly on the array index
value? The following code demonstrates this technique:

mov bx, 0
FLP: mov A [bx], 0

inc bx
inc bx
cmp bx, 510
jbe FLP

Here, several instructions accessing memory were replaced with instructions that
only access registers. Another improvement to make is to shorten the MOVA[bx],0 instruc-
tion using the following code:

lea bx, A
xor ax, ax

FLP: mov [bx], ax
inc bx
inc bx
cmp bx, offset A+510
jbe FLP

This code transformation improves the performance of the loop even more. However,
we can improve the performance even more by using the loop instruction and the cx regis-
ter to eliminate the cmp instruction8:

lea bx, A
xor ax, ax
mov cx, 256

FLP: mov [bx], ax
inc bx
inc bx
loop FLP

This final transformation produces the fastest executing version of this code9.

10.8.6 Other Performance Improvements

There are many other ways to improve the performance of a loop within your assem-
bly language programs. For additional suggestions, a good text on compilers such as
“Compilers, Principles, Techniques, and Tools” by Aho, Sethi, and Ullman would be an

7. For this particular loop, the STOSW instruction could produce a big performance improvement on many 80x86
processors. Using the STOSW instruction would require only about six instructions for this code. See the chapter
on string instructions for more details.
8. The LOOP instruction is not the best choice on the 486 and Pentium processors since dec cx” followed by “jne
lbl” actually executes faster.
9. Fastest is a dangerous statement to use here! But it is the fastest of the examples presented here.

Chapter 10

Page 542

excellent place to look. Additional efficiency considerations will be discussed in the vol-
ume on efficiency and optimization.

10.9 Nested Statements

As long as you stick to the templates provides in the examples presented in this chap-
ter, it is very easy to nest statements inside one another. The secret to making sure your
assembly language sequences nest well is to ensure that each construct has one entry
point and one exit point. If this is the case, then you will find it easy to combine state-
ments. All of the statements discussed in this chapter follow this rule.

Perhaps the most commonly nested statements are the if..then..else statements. To see
how easy it is to nest these statements in assembly language, consider the following Pas-
cal code:

if (x = y) then
if (I >= J) then writeln(‘At point 1’)
else writeln(‘At point 2)

else write(‘Error condition’);

To convert this nested if..then..else to assembly language, start with the outermost if,
convert it to assembly, then work on the innermost if:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; Put innermost IF here

jmp IfDone0

; Else write(‘Error condition’);

Else0: print
byte “Error condition”,0

IfDone0:

As you can see, the above code handles the “if (X=Y)...” instruction, leaving a spot for
the second if. Now add in the second if as follows:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; IF (I >= J) then writeln(‘At point 1’)

mov ax, I
cmp ax, J
jnge Else1
print
byte “At point 1”,cr,lf,0
jmp IfDone1

; Else writeln (‘At point 2’);

Else1: print
byte “At point 2”,cr,lf,0

IfDone1:

jmp IfDone0

; Else write(‘Error condition’);

Control Structures

Page 543

Else0: print
byte “Error condition”,0

IfDone0:

The nested if appears in italics above just to help it stand out.

There is an obvious optimization which you do not really want to make until speed
becomes a real problem. Note in the innermost if statement above that the JMP IFDONE1
instructions simply jumps to a jmp instruction which transfers control to IfDone0. It is very
tempting to replace the first jmp by one which jumps directly to IFDone0. Indeed, when
you go in and optimize your code, this would be a good optimization to make. However,
you shouldn’t make such optimizations to your code unless you really need the speed.
Doing so makes your code harder to read and understand. Remember, we would like all
our control structures to have one entry and one exit. Changing this jump as described
would give the innermost if statement two exit points.

The for loop is another commonly nested control structure. Once again, the key to
building up nested structures is to construct the outside object first and fill in the inner
members afterwards. As an example, consider the following nested for loops which add
the elements of a pair of two dimensional arrays together:

for i := 0 to 7 do
for k := 0 to 7 do

A [i,j] := B [i,j] + C [i,j];

As before, begin by constructing the outermost loop first. This code assumes that dx
will be the loop control variable for the outermost loop (that is, dx is equivalent to “i”):

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; Put innermost FOR loop here

inc dx
jmp ForLp0

EndFor0:

Now add the code for the nested for loop. Note the use of the cx register for the loop
control variable on the innermost for loop of this code.

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; for cx := 0 to 7 do

mov cx, 0
ForLp1: cmp cx, 7

jnle EndFor1

; Put code for A[dx,cx] := b[dx,cx] + C [dx,cx] here

inc cx
jmp ForLp1

EndFor1:

inc dx
jmp ForLp0

EndFor0:

Once again the innermost for loop is in italics in the above code to make it stand out.
The final step is to add the code which performs that actual computation.

Chapter 10

Page 544

10.10 Timing Delay Loops

Most of the time the computer runs too slow for most people’s tastes. However, there
are occasions when it actually runs too fast. One common solution is to create an empty
loop to waste a small amount of time. In Pascal you will commonly see loops like:

for i := 1 to 10000 do ;

In assembly, you might see a comparable loop:

mov cx, 8000h
DelayLp: loop DelayLp

By carefully choosing the number of iterations, you can obtain a relatively accurate
delay interval. There is, however, one catch. That relatively accurate delay interval is only
going to be accurate on your machine. If you move your program to a different machine
with a different CPU, clock speed, number of wait states, different sized cache, or half a
dozen other features, you will find that your delay loop takes a completely different
amount of time. Since there is better than a hundred to one difference in speed between
the high end and low end PCs today, it should come as no surprise that the loop above
will execute 100 times faster on some machines than on others.

The fact that one CPU runs 100 times faster than another does not reduce the need to
have a delay loop which executes some fixed amount of time. Indeed, it makes the prob-
lem that much more important. Fortunately, the PC provides a hardware based timer
which operates at the same speed regardless of the CPU speed. This timer maintains the
time of day for the operating system, so it’s very important that it run at the same speed
whether you’re on an 8088 or a Pentium. In the chapter on interrupts you will learn to
actually patch into this device to perform various tasks. For now, we will simply take
advantage of the fact that this timer chip forces the CPU to increment a 32-bit memory
location (40:6ch) about 18.2 times per second. By looking at this variable we can determine
the speed of the CPU and adjust the count value for an empty loop accordingly.

The basic idea of the following code is to watch the BIOS timer variable until it
changes. Once it changes, start counting the number of iterations through some sort of
loop until the BIOS timer variable changes again. Having noted the number of iterations,
if you execute a similar loop the same number of times it should require about 1/18.2 sec-
onds to execute.

The following program demonstrates how to create such a Delay routine:

.xlist
include stdlib.a
includelib stdlib.lib
.list

; PPI_B is the I/O address of the keyboard/speaker control
; port. This program accesses it simply to introduce a
; large number of wait states on faster machines. Since the
; PPI (Programmable Peripheral Interface) chip runs at about
; the same speed on all PCs, accessing this chip slows most
; machines down to within a factor of two of the slower
; machines.

PPI_B equ 61h

; RTC is the address of the BIOS timer variable (40:6ch).
; The BIOS timer interrupt code increments this 32-bit
; location about every 55 ms (1/18.2 seconds). The code
; which initializes everything for the Delay routine
; reads this location to determine when 1/18th seconds
; have passed.

RTC textequ <es:[6ch]>

dseg segment para public ‘data’

Control Structures

Page 545

; TimedValue contains the number of iterations the delay
; loop must repeat in order to waste 1/18.2 seconds.

TimedValue word 0

; RTC2 is a dummy variable used by the Delay routine to
; simulate accessing a BIOS variable.

RTC2 word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Main program which tests out the DELAY subroutine.

Main proc
mov ax, dseg
mov ds, ax

print
byte “Delay test routine”,cr,lf,0

; Okay, let’s see how long it takes to count down 1/18th
; of a second. First, point ES as segment 40h in memory.
; The BIOS variables are all in segment 40h.
;
; This code begins by reading the memory timer variable
; and waiting until it changes. Once it changes we can
; begin timing until the next change occurs. That will
; give us 1/18.2 seconds. We cannot start timing right
; away because we might be in the middle of a 1/18.2
; second period.

mov ax, 40h
mov es, ax
mov ax, RTC

RTCMustChange: cmp ax, RTC
je RTCMustChange

; Okay, begin timing the number of iterations it takes
; for an 18th of a second to pass. Note that this
; code must be very similar to the code in the Delay
; routine.

mov cx, 0
mov si, RTC
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, RTC
loope TimeRTC

neg cx ;CX counted down!
mov TimedValue, cx ;Save away

mov ax, ds
mov es, ax

printf
byte “TimedValue = %d”,cr,lf
byte “Press any key to continue”,cr,lf
byte “This will begin a delay of five “

Chapter 10

Page 546

byte “seconds”,cr,lf,0
dword TimedValue

getc

mov cx, 90
DelayIt: call Delay18

loop DelayIt

Quit: ExitPgm ;DOS macro to quit program.
Main endp

; Delay18-This routine delays for approximately 1/18th sec.
; Presumably, the variable “TimedValue” in DS has
; been initialized with an appropriate count down
; value before calling this code.

Delay18 proc near
push ds
push es
push ax
push bx
push cx
push dx
push si

mov ax, dseg
mov es, ax
mov ds, ax

; The following code contains two loops. The inside
; nested loop repeats 10 times. The outside loop
; repeats the number of times determined to waste
; 1/18.2 seconds. This loop accesses the hardware
; port “PPI_B” in order to introduce many wait states
; on the faster processors. This helps even out the
; timings on very fast machines by slowing them down.
; Note that accessing PPI_B is only done to introduce
; these wait states, the data read is of no interest
; to this code.
;
; Note the similarity of this code to the code in the
; main program which initializes the TimedValue variable.

mov cx, TimedValue
mov si, es:RTC2
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, es:RTC2
loope TimeRTC

pop si
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

Delay18 endp

cseg ends

sseg segment para stack ‘stack’
stk word 1024 dup (0)
sseg ends

end Main

Control Structures

Page 547

10.11 Sample Program

This chapter’s sample program is a simple moon lander game. While the simulation
isn’t terribly realistic, this program does demonstrate the use and optimization of several
different control structures including loops, if..then..else statements, and so on.

; Simple "Moon Lander" game.
;
; Randall Hyde
; 2/8/96
;
; This program is an example of a trivial little "moon lander"
; game that simulates a Lunar Module setting down on the Moon's
; surface. At time T=0 the spacecraft's velocity is 1000 ft/sec
; downward, the craft has 1000 units of fuel, and the craft is
; 10,000 ft above the moon's surface. The pilot (user) can
; specify how much fuel to burn at each second.
;
; Note that all calculations are approximate since everything is
; done with integer arithmetic.

; Some important constants

InitialVelocity = 1000
InitialDistance = 10000
InitialFuel = 250
MaxFuelBurn = 25

MoonsGravity = 5 ;Approx 5 ft/sec/sec
AccPerUnitFuel = -5 ;-5 ft/sec/sec for each fuel unit.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Current distance from the Moon's Surface:

CurDist word InitialDistance

; Current Velocity:

CurVel word InitialVelocity

; Total fuel left to burn:

FuelLeft word InitialFuel

; Amount of Fuel to use on current burn.

Fuel word ?

; Distance travelled in the last second.

Dist word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Chapter 10

Page 548

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register. If the user entered garbage,
; this code will make the user re-enter the value.

geti textequ <call _geti>
_geti proc

push es
push di
push bx

; Read a string of characters from the user.
;
; Note that there are two (nested) loops here. The outer loop
; (GetILp) repeats the getsm operation as long as the user
; keeps entering an invalid number. The innermost loop (ChkDigits)
; checks the individual characters in the input string to make
; sure they are all decimal digits.

GetILp: getsm

; Check to see if this string contains any non-digit characters:
;
; while (([bx] >= '0') and ([bx] <= '9') bx := bx + 1;
;
; Note the sneaky way of turning the while loop into a
; repeat..until loop.

mov bx, di ;Pointer to start of string.
dec bx

ChkDigits: inc bx
mov al, es:[bx] ;Fetch next character.
IsDigit ;See if it's a decimal digit.
je ChkDigits ;Repeat if it is.

cmp al, 0 ;At end of string?
je GotNumber

; Okay, we just ran into a non-digit character. Complain and make
; the user reenter the value.

free ;Free space malloc'd by getsm.
print
byte cr,lf
byte "Illegal unsigned integer value, "
byte "please reenter.",cr,lf
byte "(no spaces, non-digit chars, etc.):",0
jmp GetILp

; Okay, ES:DI is pointing at something resembling a number. Convert
; it to an integer.

GotNumber: atoi
free ;Free space malloc'd by getsm.

pop bx
pop di
pop es
ret

_geti endp

; InitGame- Initializes global variables this game uses.

InitGame proc
mov CurVel, InitialVelocity
mov CurDist, InitialDistance
mov FuelLeft, InitialFuel
mov Dist, 0
ret

Control Structures

Page 549

InitGame endp

; DispStatus- Displays important information for each
; cycle of the game (a cycle is one second).

DispStatus proc
printf
byte cr,lf
byte "Distance from surface: %5d",cr,lf
byte "Current velocity: %5d",cr,lf
byte "Fuel left: %5d",cr,lf
byte lf
byte "Dist travelled in the last second: %d",cr,lf
byte lf,0
dword CurDist, CurVel, FuelLeft, Dist
ret

DispStatus endp

; GetFuel- Reads an integer value representing the amount of fuel
; to burn from the user and checks to see if this value
; is reasonable. A reasonable value must:
;
; * Be an actual number (GETI handles this).
; * Be greater than or equal to zero (no burning
; negative amounts of fuel, GETI handles this).
; * Be less than MaxFuelBurn (any more than this and
; you have an explosion, not a burn).
; * Be less than the fuel left in the Lunar Module.

GetFuel proc
push ax

; Loop..endloop structure that reads an integer input and terminates
; if the input is reasonable. It prints a message an repeats if
; the input is not reasonable.
;
; loop
; get fuel;
; if (fuel < MaxFuelBurn) then break;
; print error message.
; endloop
;
; if (fuel > FuelLeft) then
;
; fuel = fuelleft;
; print appropriate message.
;
; endif

GetFuelLp: print
byte "Enter amount of fuel to burn: ",0
geti
cmp ax, MaxFuelBurn
jbe GoodFuel

print
byte "The amount you've specified exceeds the "
byte "engine rating,", cr, lf
byte "please enter a smaller value",cr,lf,lf,0
jmp GetFuelLp

GoodFuel: mov Fuel, ax
cmp ax, FuelLeft
jbe HasEnough
printf
byte "There are only %d units of fuel left.",cr,lf
byte "The Lunar module will burn this rather than %d"
byte cr,lf,0
dword FuelLeft, Fuel

mov ax, FuelLeft

Chapter 10

Page 550

mov Fuel, ax

HasEnough: mov ax, FuelLeft
sub ax, Fuel
mov FuelLeft, ax
pop ax
ret

GetFuel endp

; ComputeStatus-
;
; This routine computes the new velocity and new distance based on the
; current distance, current velocity, fuel burnt, and the moon's
; gravity. This routine is called for every "second" of flight time.
; This simplifies the following equations since the value of T is
; always one.
;
; note:
;
; Distance Travelled = Acc*T*T/2 + Vel*T (note: T=1, so it goes away).
; Acc = MoonsGravity + Fuel * AccPerUnitFuel
;
; New Velocity = Acc*T + Prev Velocity
;
; This code should really average these values over the one second
; time period, but the simulation is so crude anyway, there's no
; need to really bother.

ComputeStatus proc
push ax
push bx
push dx

; First, compute the acceleration value based on the fuel burnt
; during this second (Acc = Moon's Gravity + Fuel * AccPerUnitFuel).

mov ax, Fuel ;Compute
mov dx, AccPerUnitFuel ; Fuel*AccPerUnitFuel
imul dx

add ax, MoonsGravity ;Add in Moon's gravity.
mov bx, ax ;Save Acc value.

; Now compute the new velocity (V=AT+V)

add ax, CurVel ;Compute new velocity
mov CurVel, ax

; Next, compute the distance travelled (D = 1/2 * A * T^2 + VT +D)

sar bx, 1 ;Acc/2
add ax, bx ;Acc/2 + V (T=1!)
mov Dist, ax ;Distance Travelled.
neg ax
add CurDist, ax ;New distance.

pop dx
pop bx
pop ax
ret

ComputeStatus endp

; GetYorN- Reads a yes or no answer from the user (Y, y, N, or n).
; Returns the character read in the al register (Y or N,
; converted to upper case if necessary).

GetYorN proc
getc
ToUpper
cmp al, 'Y'
je GotIt
cmp al, 'N'
jne GetYorN

GotIt: ret

Control Structures

Page 551

GetYorN endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

MoonLoop: print
byte cr,lf,lf
byte "Welcome to the moon lander game.",cr,lf,lf
byte "You must manuever your craft so that you touch"
byte "down at less than 10 ft/sec",cr,lf
byte "for a soft landing.",cr,lf,lf,0

call InitGame

; The following loop repeats while the distance to the surface is greater
; than zero.

WhileStillUp: mov ax, CurDist
cmp ax, 0
jle Landed

call DispStatus
call GetFuel
call ComputeStatus
jmp WhileStillUp

Landed: cmp CurVel, 10
jle SoftLanding

printf
byte "Your current velocity is %d.",cr,lf
byte "That was just a little too fast. However, as a "
byte "consolation prize,",cr,lf
byte "we will name the new crater you just created "
byte "after you.",cr,lf,0
dword CurVel

jmp TryAgain

SoftLanding: printf
byte "Congrats! You landed the Lunar Module safely at "
byte "%d ft/sec.",cr,lf
byte "You have %d units of fuel left.",cr,lf
byte "Good job!",cr,lf,0
dword CurVel, FuelLeft

TryAgain: print
byte "Do you want to try again (Y/N)? ",0
call GetYorN
cmp al, 'Y'
je MoonLoop

print
byte cr,lf
byte "Thanks for playing! Come back to the moon “
byte “again sometime"
byte cr,lf,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Chapter 10

Page 552

10.12 Laboratory Exercises

In this laboratory exercise you will program the timer chip on the PC to produce
musical tones. You will learn how the PC generates sound and how you can use this abil-
ity to encode and play music.

10.12.1The Physics of Sound

Sounds you hear are the result of vibrating air molecules. When air molecules quickly
vibrate back and forth between 20 and 20,000 times per second, we interpret this as some
sort of sound. A speaker (see Figure 10.3) is a device which vibrates air in response to an
electrical signal. That is, it converts an electric signal which alternates between 20 and
20,000 times per second (Hz) to an audible tone. Alternating a signal is very easy on a
computer, all you have to do is apply a logic one to an output port for some period of time
and then write a logic zero to the output port for a short period. Then repeat this over and
over again. A plot of this activity over time appears in Figure 10.2.

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s
speaker is not capable of faithfully reproducing the tones in this range. It works pretty
good for sounds in the range 100-10Khz, but the volume drops off dramatically outside
this range. Fortunately, this lab only requires frequencies in the 110-2,000 hz range; well
within the capabilities of the PC speaker.

Figure 10.2 An Audible Sound Wave: The Relationship Between Period and Frequency

Voltage on
output port

Time

Logic 1

Logic 0

One Clock Period

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are between 20 and 20,000 Hz.

Figure 10.3 A Speaker

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.

Control Structures

Page 553

10.12.2 The Fundamentals of Music

In this laboratory you will use the timer chip and the PC’s built-in speaker to produce
musical tones. To produce true music, rather than annoying tones, requires a little knowl-
edge of music theory. This section provides a very brief introduction to the notation musi-
cians use. This will help you when you attempt to convert music in standard notation to a
form the computer can use.

Western music tends to use notation based on the alphabetic letters A…G. There are a
total of 12 notes designated A, A#, B, C, C#, D, D#, E, F, F#, G, and G# 10. On a typical
musical instrument these 12 notes repeat over and over again. For example, a typical
piano might have six repetitions of these 12 notes. Each repetition is an octave. An octave is
just a collection of 12 notes, it need not necessarily start with A, indeed, most pianos start
with C. Although there are, technically, about 12 octaves within the normal hearing range
of adults, very little music uses more than four or five octaves. In the laboratory, you will
implement four octaves.

Written music typically uses two staffs. A staff is a set of five parallel lines. The upper
staff is often called the treble staff and the lower staff is often called the bass staff. An exam-
ples appears in Figure 10.4.

A musical note, as the notation to the side of the staffs above indicates, appears both
on the lines of the staffs and the spaces between the staffs. The position of the notes on the
staffs determine which note to play, the shape of the note determines its duration. There
are whole notes, half notes, quarter notes, eighth notes, sixteenth notes, and thirty-second
notes11. Note durations are specified relative to one another. So a half note plays for
one-half the time of a whole note, a quarter note plays for one-half the time of a half note
(one quarter the time of a whole note), etc. In most musical passages, the quarter note is
generally the basis for timing. If the tempo of a particular piece is 100 beats per second this
means that you play 100 quarter notes per second.

The duration of a note is determined by its shape as shown in Figure 10.5.

In addition to the notes themselves, there are often brief pauses in a musical passage
when there are no notes being played. These pauses are known as rests. Since there is
nothing audible about them, only their duration matters. The duration of the various rests
is the same as the normal notes; there are whole rests, half rests, quarter rests, etc. The
symbols for these rests appear in .

This is but a brief introduction to music notation. Barely sufficient for those without
any music training to convert a piece of sheet music into a form suitable for a computer

10. The notes with the “#” (pronounced sharp) correspond to the black keys on the piano. The other notes correspond to the white keys on the
piano. Note that western music notation also describes flats in addition to sharps. A# is equal to Bb (b denotes flat), C# corresponds to Db, etc. Tech-
nically, B is equivalent to Cb and C is equivalent to B# but you will rarely see musicians refer to these notes this way.
11. The only reason their aren’t shorter notes is because it would be hard to play one note which is 1/64th the length of another.

Figure 10.4 A Musical Staff

F
D
B
G
E

E
C
A
F
D

B
G
E
C
A

A
F
D
B
G

Middle C

Chapter 10

Page 554

program. If you are interested in more information on music notation, the library is a good
source of information on music theory.

Figure 10.7 provides an adaptation of the hymn “Amazing Grace”. There are two
things to note here. First, there is no bass staff, just two treble staffs. Second, the sharp
symbol on the “F” line indicates that this song is played in “G-Major” and that all F notes
should be F#. There are no F notes in this song, so that hardly matters12.

10.12.3The Physics of Music

Each musical note corresponds to a unique frequency. The A above middle C is gener-
ally 440 Hz (this is known as concert pitch since this is the frequency orchestras tune to).
The A one octave below this is at 220 Hz, the A above this is 880Hz. In general, to get the
next higher A you double the current frequency, to get the previous A you halve the cur-
rent frequency. To obtain the remaining notes you multiply the frequency of A with a mul-
tiple of the twelfth root of two. For example, to get A# you would take the frequency for A

12. In the full version of the song there are F notes on the base clef.

Figure 10.5 Note Durations

Whole Half Quarter Eighth Sixteenth Thirty-Second
Note Note Note Note Note Note

Figure 10.6 Rest Durations

Whole
Rest

Half
Rest

Quarter
Rest

Eighth
Rest

Sixteenth
Rest

Thirty-Second
Rest

Figure 10.7 Amazing Grace

#

#

Amazing Grace. John Newton, John Rees, Edwin Excell

Control Structures

Page 555

and multiply it by the twelfth root of two. Repeating this operation yields the following
(truncated) frequencies for four separate octaves:

Notes: The number following each note denotes its octave. In the chart above, middle
C is C1.

You can generate additional notes by halving or doubling the notes above. For exam-
ple, if you really need A(-1) (the octave below A0 above), dividing the frequency of A0 by
two yields 55Hz. Likewise, if you want E4, you can obtain this by doubling E3 to produce
2638 Hz. Keep in mind that the frequencies above are not exact. They are rounded to the
nearest integer because we will need integer frequencies in this lab.

10.12.4 The 8253/8254 Timer Chip

PCs contain a special integrated circuit which produces a period signal. This chip (an
Intel compatible 8253 or 8254, depending on your particular computer13) contains three
different 16-bit counter/timer circuits. The PC uses one of these timers to generate the
1/18.2 second real time clock mentioned earlier. It uses the second of these timers to con-
trol the DMA refresh on main memory14. The third timer circuit on this chip is connected
to the PC’s speaker. The PC uses this timer to produces beeps, tones, and other sounds.
The RTC timer will be of interest to us in a later chapter. The DMA timer, if present on
your PC, isn’t something you should mess with. The third timer, connected to the speaker,
is the subject of this section.

10.12.5Programming the Timer Chip to Produce Musical Tones

As mentioned earlier, one of the channels on the PC programmable interval timer
(PIT) chip is connected to the PC’s speaker. To produce a musical tone we need to pro-
gram this timer chip to produce the frequency of some desired note and then activate the

13. Most modern computers don’t actually have an 8253 or 8254 chip. Instead, there is a compatible device built into some other VLSI chip on the
motherboard.
14. Many modern computer systems do not use this timer for this purpose and, therefore, do not include the second timer in their chipset.

Note Frequency Note Frequency Note Frequency Note Frequency

A 0 110 A 1 220 A 2 440 A 3 880

A # 0 117 A # 1 233 A # 2 466 A # 3 932

B 0 123 B 1 247 B 2 494 B 3 988

C 0 131 C 1 262 C 2 523 C 3 1047

C # 0 139 C # 1 277 C # 2 554 C # 3 1109

D 0 147 D 1 294 D 2 587 D 3 1175

D # 0 156 D # 1 311 D # 2 622 D # 3 1245

E 0 165 E 1 330 E 2 659 E 3 1319

F 0 175 F 1 349 F 2 698 F 3 1397

F # 0 185 F # 1 370 F # 2 740 F # 3 1480

G 0 196 G 1 392 G 2 784 G 3 1568

G # 0 208 G # 1 415 G # 2 831 G # 3 1661

Chapter 10

Page 556

speaker. Once you initialize the timer and speaker in this fashion, the PC will continu-
ously produce the specified tone until you disable the speaker.

To activate the speaker you must set bits zero and one of the “B Port” on the PC’s 8255
Programmable Peripheral Interface (PPI) chip. Port B of the PPI is an eight-bit I/O device
located at I/O address 61h. You must use the in instruction to read this port and the out
instruction to write data back to it. You must preserve all other bits at this I/O address. If
you modify any of the other bits, you will probably cause the PC to malfunction, perhaps
even reset. The following code shows how to set bits zero and one without affecting the
other bits on the port:

in al, PPI_B ;PPI_B is equated to 61h
or al, 3 ;Set bits zero and one.
out PPI_B, al

Since PPI_B’s port address is less than 100h we can access this port directly, we do not
have to load its port address into dx and access the port indirectly through dx.

To deactivate the speaker you must write zeros to bits zero and one of PPI_B. The code
is similar to the above except you force the bits to zero rather than to one.

Manipulating bits zero and one of the PPI_B port let you turn on and off the speaker. It
does not let you adjust the frequency of the tone the speaker produces. To do this you
must program the PIT at I/O addresses 42h and 43h. To change the frequency applied to
the speaker you must first write the value 0B6h to I/O port 43h (the PIT control word) and
then you must write a 16-bit frequency divisor to port 42h (timer channel two). Since the
port is only an eight-bit port, you must write the data using two successive OUT instruc-
tions to the same I/O address. The first byte you write is the L.O. byte of the divisor, the
second byte you write is the H.O. byte.

To compute the divisor value, you must use the following formula:

For example, the divisor for the A above middle C (440 Hz) is 1,193,180/440 or 2,712
(rounded to the nearest integer). To program the PIT to play this note you would execute
the following code:

mov al, 0B6h ;Control word code.
out PIT_CW, al ;Write control word (port 43h).
mov al, 98h ;2712 is 0A98h.
out PIT_Ch2, al ;Write L.O. byte (port 42h).
mov al, 0ah
out PIT_Ch2, al ;Write H.O. byte (port 42h).

Assuming that you have activated the speaker, the code above will produce the A
note until you deactivate the speaker or reprogram the PIT with a different divisor.

10.12.6Putting it All Together

To create music you will need to activate the speaker, program the PIT, and then delay
for some period of time while the note plays. At the end of that period, you need to repro-
gram the PIT and wait while the next note plays. If you encounter a rest, you need to deac-
tivate the speaker for the given time interval. The key point is this time interval. If you
simply reprogram the PPI and PIT chips at microprocessor speeds, your song will be over
and done with in just a few microseconds. Far to fast to hear anything. Therefore, we need
to use a delay, such as the software delay code presented earlier, to allow us to hear our
notes.

1193180
Frequency
---------------------------- Divisor=

Control Structures

Page 557

A reasonable tempo is between 80 and 120 quarter notes per second. This means you
should be calling the Delay18 routine between 9 and 14 times for each quarter note. A rea-
sonable set of iterations is

• three times for sixteenth notes,
• six times for eighth notes,
• twelve times for quarter notes,
• twenty-four times for half notes, and
• forty-eight times for whole notes.

Of course, you may adjust these timings as you see fit to make your music sound bet-
ter. The important parameter is the ratio between the different notes and rests, not the
actual time.

Since a typical piece of music contains many, many individual notes, it doesn’t make
sense to reprogram the PIT and PPI chips individually for each note. Instead, you should
write a procedure into which you pass a divisor and a count down value. That procedure
would then play that note for the specified time and then return. Assuming you call this
procedure PlayNote and it expects the divisor in ax and the duration (number of times to
call Delay18) in cx , you could use the following macro to easily create songs in your pro-
grams:

Note macro divisor, duration
mov ax, divisor
mov cx, duration
call PlayNote
endm

The following macro lets you easily insert a rest into your music:

Rest macro Duration
local LoopLbl
mov cx, Duration

LoopLbl: call Delay18
loop LoopLbl
endm

Now you can play notes by simply stringing together a list of these macros with the
appropriate parameters.

The only problem with this approach is that it is different to create songs if you must
constantly supply divisor values. You’ll find music creation to be much simpler if you
could specify the note, octave, and duration rather than a divisor and duration. This is
very easy to do. Simply create a lookup table using the following definition:

Divisors: array [Note, Sharp, Octave] of word;

Where Note is ‘A’;..”G”, Sharp is true or false (1 or 0), and Octave is 0..3. Each entry in
the table would contain the divisor for that particular note.

10.12.7 Amazing Grace Exercise

Program Ex10_1.asm on the companion CD-ROM is a complete working program
that plays the tune “Amazing Grace.” Load this program an execute it.

For your lab report: the Ex10_1.asm file uses a “Note” macro that is very similar to the
one appearing in the previous section. What is the difference between Ex10_1’s Note
macro and the one in the previous section? What changes were made to PlayNote in order
to accommodate this difference?

The Ex10_1.asm program uses straight-line code (no loops or decisions) to play its tune.
Rewrite the main body of the loop to use a pair of tables to feed the data to the Note and
Rest macros. One table should contain a list of frequency values (use -1 for a rest), the
other table should contain duration values. Put the two tables in the data segment and ini-

Chapter 10

Page 558

tialize them with the values for the Amazing Grace song. The loop should fetch a pair of
values, one from each of the tables and call the Note or Rest macro as appropriate. When
the loop encounters a frequency value of zero it should terminate. Note: you must call the
rest macro at the end of the tune in order to shut the speaker off.

For your lab report: make the changes to the program, document them, and include
the print-out of the new program in your lab report.

10.13 Programming Projects

1) Write a program to transpose two 4x4 arrays. The algorithm to transpose the arrays is

for i := 0 to 3 do
for j := 0 to 3 do begin

temp := A [i,j];
A [i,j] := B [j,i];
B [j,i] := temp;

end;

Write a main program that calls a transpose procedure. The main program should
read the A array values from the user and print the A and B arrays after computing the
transpose of A and placing the result in B.

2) Create a program to play music which is supplied as a string to the program. The notes to
play should consist of a string of ASCII characters terminated with a byte containing the
value zero. Each note should take the following form:

(Note)(Octave)(Duration)

where “Note” is A..G (upper or lower case), “Octave” is 0..3, and “Duration” is 1..8. “1”
corresponds to an eighth note, “2” corresponds to a quarter note, “4” corresponds to a half
note, and “8” corresponds to a whole note.

Rests consist of an explanation point followed by a “Duration” value.

Your program should ignore any spaces appearing in the string.

The following sample piece is the song “Amazing Grace” presented earlier.

Music byte "d12 g14 b11 g11 b14 a12 g14 e12 d13 !1 d12 "
byte "g14 b11 g11 b14 a12 d28"
byte "b12 d23 b11 d21 b11 g14 d12 e13 g12 e11 "
byte "d13 !1 d12 g14 b11 g11 b14 a12 g18"
byte 0

Write a program to play any song appearing in string form like the above string. Using
music obtained from another source, submit your program playing that other song.

3) A C character string is a sequence of characters that end with a byte containing zero. Some
common character string routines include computing the length of a character string (by
counting all the characters in a string up to, but not including, the zero byte), comparing
two strings for equality (by comparing corresponding characters in two strings, character
by character until you encounter a zero byte or two characters that are not the same), and
copying one string to another (by copying the characters from one string to the corre-
sponding positions in the other until you encounter the zero byte). Write a program that
reads two strings from the user, computes the length of the first of these, compares the two
strings, and then copies the first string over the top of the second. Allow for a maximum of
128 characters (including the zero byte) in your strings. Note: do not use the Standard
Library string routines for this project.

4) Modify the moon lander game appearing in the Sample Programs section of this chapter
(moon.asm on the companion CD-ROM, also see “Sample Program” on page 547) to allow
the user to specify the initial velocity, starting distance from the surface, and initial fuel
values. Verify that the values are reasonable before allowing the game to proceed.

Control Structures

Page 559

10.14 Summary

This chapter discussed the implementation of different control structures in an assem-
bly language programs including conditional statements (if..then..else and case state-
ments), state machines, and iterations (loops, including while, repeat..until (do/while),
loop..endloop, and for). While assembly language gives you the flexibility to create totally
custom control structures, doing so often produces programs that are difficult to read and
understand. Unless the situation absolutely requires something different, you should
attempt to model your assembly language control structures after those in high level lan-
guages as much as possible.

The most common control structure found in high level language programs is the
IF..THEN..ELSE statement. You can easily synthesize(if..then and (if..then..else statements in
assembly language using the cmp instruction, the conditional jumps, and the jmp instruc-
tion. To see how to convert HLL if..then..else statements into assembly language, check out

• “IF..THEN..ELSE Sequences” on page 522

A second popular HLL conditional statement is the case (switch) statement. The case
statement provides an efficient way to transfer control to one of many different statements
depending on the value of some expression. While there are many ways to implement the
case statement in assembly language, the most common way is to use a jump table. For
case statements with contiguous values, this is probably the best implementation. For case
statements that have widely spaced, non-contiguous values, an if..then..else implementa-
tion or some other technique is probably best. For details, see

• “CASE Statements” on page 525

State machines provide a useful paradigm for certain programming situations. A sec-
tion of code which implements a state machine maintains a history of prior execution
within a state variable. Subsequent execution of the code picks up in a possibly different
“state” depending on prior execution. Indirect jumps provide an efficient mechanism for
implementing state machines in assembly language. This chapter provided a brief intro-
duction to state machines. To see how to implement a state machine with an indirect
jump, see

• “State Machines and Indirect Jumps” on page 529

Assembly language provides some very powerful primitives for constructing a wide
variety of control structures. Although this chapter concentrates on simulating HLL con-
structs, you can build any convoluted control structure you care to from the 80x86’s cmp
instruction and conditional branches. Unfortunately, the result may be very difficult to
understand, especially by someone other than the original author. Although assembly lan-
guage gives you the freedom to do anything you want, a mature programmer exercises
restraint and chooses only those control flows which are easy to read and understand;
never settling for convoluted code unless absolutely necessary. For a further description
and additional guidelines, see

• “Spaghetti Code” on page 531

Iteration is one of the three basic components to programming language built around
Von Neumann machines15. Loop control structures provide the basic iteration mechanism
in most HLLs. Assembly language does not provide any looping primitives. Even the
80x86 loop instruction isn’t really a loop, it’s just a decrement, compare, and branch
instruction. Nonetheless, it is very easy to synthesize common loop control structures in
assembly language. The following sections describe how to construct HLL loop control
structures in assembly language:

• “Loops” on page 531
• “While Loops” on page 532
• “Repeat..Until Loops” on page 532

15. The other two being conditional execution and the sequence.

Chapter 10

Page 560

• “LOOP..ENDLOOP Loops” on page 533
• “FOR Loops” on page 533

Program loops often consume most of the CPU time in a typical program. Therefore, if
you want to improve the performance of your programs, the loops are the first place you
want to look. This chapter provides several suggestions to help improve the performance
of certain types of loops in assembly language programs. While they do not provide a
complete guide to optimization, the following sections provide common techniques used
by compilers and experienced assembly language programmers:

• “Register Usage and Loops” on page 534
• “Performance Improvements” on page 535
• “Moving the Termination Condition to the End of a Loop” on page 535
• “Executing the Loop Backwards” on page 537
• “Loop Invariant Computations” on page 538
• “Unraveling Loops” on page 539
• “Induction Variables” on page 540
• “Other Performance Improvements” on page 541

Control Structures

Page 561

10.15 Questions

1) Convert the following Pascal statements to assembly language: (assume all variables are
two byte signed integers)

a) IF (X=Y) then A := B;

b) IF (X <= Y) then X := X + 1 ELSE Y := Y - 1;

c) IF NOT ((X=Y) and (Z <> T)) then Z := T else X := T;

d) IF (X=0) and ((Y-2) > 1) then Y := Y - 1;

2) Convert the following CASE statement to assembly language:

CASE I OF
0: I := 5;

 1: J := J+1;
 2: K := I+J;
 3: K := I-J;
 Otherwise I := 0;
END;

3) Which implementation method for the CASE statement (jump table or IF form) produces
the least amount of code (including the jump table, if used) for the following CASE state-
ments?

 a)

CASE I OF
0:stmt;
100:stmt;
1000:stmt;

 END;
b)

CASE I OF
0:stmt;
1:stmt;
2:stmt;
3:stmt;
4:stmt;

END;

4) For question three, which form produces the fastest code?

5) Implement the CASE statements in problem three using 80x86 assembly language.

6) What three components compose a loop?

7) What is the major difference between the WHILE, REPEAT..UNTIL, and LOOP..END-
LOOP loops?

8) What is a loop control variable?

9) Convert the following WHILE loops to assembly language: (Note: don’t optimize these
loops, stick exactly to the WHILE loop format)

a) I := 0;

WHILE (I < 100) DO I := I + 1;

b) CH := ‘ ‘;

WHILE (CH <> ‘.’) DO BEGIN

CH := GETC;

PUTC(CH);

END;

10) Convert the following REPEAT..UNTIL loops into assembly language: (Stick exactly to the
REPEAT..UNTIL loop format)

Chapter 10

Page 562

a) I := 0;

REPEAT

I := I + 1;

UNTIL I >= 100;

b) REPEAT

CH := GETC;

PUTC(CH);

UNTIL CH = ‘.’;

11) Convert the following LOOP..ENDLOOP loops into assembly language: (Stick exactly to
the LOOP..ENDLOOP format)

a) I := 0; LOOP

I := I + 1; IF I >= 100 THEN BREAK;

ENDLOOP;

b) LOOP

CH := GETC; IF CH = ‘.’ THEN BREAK; PUTC(CH);

ENDLOOP;

12) What are the differences, if any, between the loops in problems 4, 5, and 6? Do they per-
form the same operations? Which versions are most efficient?

13) Rewrite the two loops presented in the previous examples, in assembly language, as effi-
ciently as you can.

14) By simply adding a JMP instruction, convert the two loops in problem four into
REPEAT..UNTIL loops.

15) By simply adding a JMP instruction, convert the two loops in problem five to WHILE
loops.

16) Convert the following FOR loops into assembly language (Note: feel free to use any of the
routines provided in the UCR Standard Library package):

a) FOR I := 0 to 100 do WriteLn(I);

b) FOR I := 0 to 7 do

FOR J := 0 to 7 do

K := K*(I-J);

c) FOR I := 255 to 16 do

A [I] := A[240-I]-I;

17) The DOWNTO reserved word, when used in conjunction with the Pascal FOR loop, runs a
loop counter from a higher number down to a lower number. A FOR loop with the
DOWNTO reserved word is equivalent to the following WHILE loop:

loopvar := initial;
while (loopvar >= final) do begin

stmt;
loopvar := loopvar-1;

end;

Implement the following Pascal FOR loops in assembly language:

 a) FOR I := start downto stop do WriteLn(I);

b) FOR I := 7 downto 0 do

FOR J := 0 to 7 do

Control Structures

Page 563

K := K*(I-J);

c) FOR I := 255 downto 16 do

A [I] := A[240-I]-I;

18) Rewrite the loop in problem 11b maintaining I in BX, J in CX, and K in AX.

19) How does moving the loop termination test to the end of the loop improve the perfor-
mance of that loop?

20) What is a loop invariant computation?

21) How does executing a loop backwards improve the performance of the loop?

22) What does unraveling a loop mean?

23) How does unraveling a loop improve the loop’s performance?

24) Give an example of a loop that cannot be unraveled.

25) Give an example of a loop that can be but shouldn’t be unraveled.

Chapter 10

Page 564

Page 565

Procedures and Functions Chapter 11

Modular design

 is one of the cornerstones of structured programming

.

 A modular pro-
gram contains blocks of code with single entry and exit points. You can

reuse

well written
sections of code in other programs or in other sections of an existing program. If you reuse
an existing segment of code, you needn’t design, code, nor debug that section of code
since (presumably) you’ve already done so. Given the rising costs of software develop-
ment, modular design will become more important as time passes.

The basic unit of a modular program is the module. Modules have different meanings
to different people, herein you can assume that the terms module, subprogram, subrou-
tine, program unit, procedure, and function are all synonymous.

The procedure is the basis for a programming style. The procedural languages include
Pascal, BASIC, C++, FORTRAN, PL/I, and ALGOL. Examples of non-procedural lan-
guages include APL, LISP, SNOBOL4 ICON, FORTH, SETL, PROLOG, and others that are
based on other programming constructs such as functional abstraction or pattern match-
ing. Assembly language is capable of acting as a procedural or non-procedural language.
Since you’re probably much more familiar with the procedural programming paradigm
this text will stick to simulating procedural constructs in 80x86 assembly language.

11.0 Chapter Overview

This chapter presents an introduction to procedures and functions in assembly lan-
guage. It discusses basic principles, parameter passing, function results, local variables,
and recursion. You will use most of the techniques this chapter discusses in typical assem-
bly language programs. The discussion of procedures and functions continues in the next
chapter; that chapter discusses advanced techniques that you will not commonly use in
assembly language programs. The sections below that have a “•” prefix are essential.
Those sections with a “

❏

” discuss advanced topics that you may want to put off for a
while.

• Procedures.

 ❏

Near and far procedures.
• Functions
• Saving the state of the machine
• Parameters
• Pass by value parameters.
• Pass by reference parameters.

 ❏

Pass by value-returned parameters.

 ❏

Pass by result parameters.

 ❏

Pass by name parameters.
• Passing parameters in registers.
• Passing parameters in global variables.
• Passing parameters on the stack.
• Passing parameters in the code stream.

 ❏

Passing parameters via a parameter block.
• Function results.
• Returning function results in a register.
• Returning function results on the stack.
• Returning function results in memory locations.
• Side effects.

 ❏

Local variable storage.

 ❏

Recursion.

Thi d t t d ith F M k 4 0 2

Chapter 11

Page 566

11.1 Procedures

In a procedural environment, the basic unit of code is the

procedure

. A procedure is a
set of instructions that compute some value or take some action (such as printing or read-
ing a character value). The definition of a procedure is very similar to the definition of an

algorithm

. A procedure is a set of rules to follow which, if they conclude, produce some
result. An algorithm is also such a sequence, but an algorithm is guaranteed to terminate
whereas a procedure offers no such guarantee.

Most procedural programming languages implement procedures using the
call/return mechanism. That is, some code calls a procedure, the procedure does its thing,
and then the procedure returns to the caller. The call and return instructions provide the
80x86’s

procedure invocation mechanism

. The calling code calls a procedure with the

call

instruction, the procedure returns to the caller with the

ret

 instruction. For example, the
following 80x86 instruction calls the UCR Standard Library

sl_putcr

 routine

1

:

call sl_putcr

sl_putcr

 prints a carriage return/line feed sequence to the video display and returns con-
trol to the instruction immediately following the

 call sl_putcr

 instruction.

Alas, the UCR Standard Library does not supply all the routines you will need. Most
of the time you’ll have to write your own procedures. A simple procedure may consist of
nothing more than a sequence of instructions ending with a

ret

 instruction. For example,
the following “procedure” zeros out the 256 bytes starting at the address in the

bx

 register:

ZeroBytes: xor ax, ax
mov cx, 128

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

By loading the

bx

 register with the address of some block of 256 bytes and issuing a

call ZeroBytes

instruction, you can zero out the specified block.

As a general rule, you won’t define your own procedures in this manner. Instead, you
should use MASM’s

proc

 and

endp

 assembler directives. The

ZeroBytes

 routine, using the

proc

 and

endp

 directives, is

ZeroBytes proc
xor ax, ax
mov cx, 128

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

ZeroBytes endp

Keep in mind that

proc

 and

endp

 are assembler directives. They do not generate any
code. They’re simply a mechanism to help make your programs easier to read. To the
80x86, the last two examples are identical; however, to a human being, latter is clearly a
self-contained procedure, the other could simply be an arbitrary set of instructions within
some other procedure. Consider now the following code:

ZeroBytes: xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

DoFFs: mov cx, 128
mov ax, 0ffffh

1. Normally you would use the

putcr

 macro to accomplish this, but this

call

 instruction will accomplish the same
thing.

Procedures and Functions

Page 567

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

Are there two procedures here or just one? In other words, can a calling program enter
this code at labels

ZeroBytes

 and

DoFFs

 or just at

ZeroBytes

? The use of the

proc

 and

endp

directives can help remove this ambiguity:

Treated as a single subroutine:

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

DoFFs: mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

ZeroBytes endp

Treated as two separate routines:

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

ZeroBytes endp

DoFFs proc
mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop
ret

DoFFs endp

Always keep in mind that the

proc

 and

endp

 directives are

logical

 procedure separa-
tors. The 80x86 microprocessor returns from a procedure by executing a

ret

 instruction,
not by encountering an

endp

 directive. The following is not equivalent to the code above:

ZeroBytes proc
xor ax, ax
jcxz DoFFs

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop

; Note missing RET instr.
ZeroBytes endp

DoFFs proc
mov cx, 128
mov ax, 0ffffh

FFLoop: mov [bx], ax
sub bx, 2
loop FFLoop

; Note missing RET instr.
DoFFs endp

Without the

ret

 instruction at the end of each procedure, the 80x86 will fall into the
next subroutine rather than return to the caller. After executing

ZeroBytes

 above, the 80x86
will drop through to the

DoFFs

 subroutine (beginning with the

mov cx, 128

 instruction).

Chapter 11

Page 568

Once

DoFFs

 is through, the 80x86 will continue execution with the next executable instruc-
tion following

DoFFs’ endp

 directive.

An 80x86 procedure takes the form:

ProcName proc {near|far} ;Choose near, far, or neither.
<Procedure instructions>

ProcName endp

The

near

 or

far

 operand is optional, the next section will discuss its purpose. The pro-
cedure name must be on the both

proc

 and

endp

 lines. The procedure name must be unique
in the program.

Every

proc

 directive must have a matching

endp

 directive. Failure to match the

proc

and

endp

 directives will produce a

block nesting error

.

11.2 Near and Far Procedures

The 80x86 supports near and far subroutines. Near calls and returns transfer control
between procedures in the same code segment. Far calls and returns pass control between
different segments. The two calling and return mechanisms push and pop different return
addresses. You generally do not use a near

call

 instruction to call a far procedure or a far

call

 instruction to call a near procedure. Given this little rule, the next question is “how do
you control the emission of a near or far

call

 or

ret

?”

Most of the time, the

call

 instruction uses the following syntax:

call ProcName

and the

ret

 instruction is either

2

:

ret
or ret disp

Unfortunately, these instructions do not tell MASM if you are calling a near or far pro-
cedure or if you are returning from a near or far procedure. The

proc

 directive handles that
chore. The

proc

 directive has an optional operand that is either

near

 or

far

.

Near

 is the
default if the operand field is empty

3

. The assembler assigns the procedure type (near or
far) to the symbol. Whenever MASM assembles a

call

 instruction, it emits a near or far call
depending on operand. Therefore, declaring a symbol with

proc

 or

proc near

, forces a near
call. Likewise, using

proc far

, forces a far call.

Besides controlling the generation of a near or far call,

proc

’s operand also controls

ret

code generation. If a procedure has the near operand, then all return instructions inside
that procedure will be near. MASM emits far returns inside far procedures.

11.2.1 Forcing NEAR or FAR CALLs and Returns

Once in a while you might want to override the near/far declaration mechanism.
MASM provides a mechanism that allows you to force the use of near/far calls and
returns.

Use the

near

ptr

and

far

ptr

operators to override the automatic assignment of a near or
far

call

. If

NearLbl

 is a near label and

FarLbl

 is a far label, then the following

call

 instructions
generate a near and far call, respectively:

call NearLbl ;Generates a NEAR call.
call FarLbl ;Generates a FAR call.

Suppose you need to make a far call to

NearLbl

 or a near call to

FarLbl

. You can accom-
plish this using the following instructions:

2. There are also retn and retf instructions.
3. Unless you are using MASM’s

simplified segment directives.

 See the appendices for details.

Procedures and Functions

Page 569

call far ptr NearLbl ;Generates a FAR call.
call near ptr FarLbl ;Generates a NEAR call.

Calling a near procedure using a far call, or calling a far procedure using a near call
isn’t something you’ll normally do. If you call a near procedure using a far call instruction,
the near return will leave the cs value on the stack. Generally, rather than:

call far ptr NearProc

 you should probably use the clearer code:

push cs
call NearProc

Calling a far procedure with a near call is a very dangerous operation. If you attempt
such a call, the current cs value must be on the stack. Remember, a far ret pops a seg-
mented return address off the stack. A near call instruction only pushes the offset, not the
segment portion of the return address.

Starting with MASM v5.0, there are explicit instructions you can use to force a near or
far ret. If ret appears within a procedure declared via proc and end;, MASM will automati-
cally generate the appropriate near or far return instruction. To accomplish this, use the
retn and retf instructions. These two instructions generate a near and far ret, respectively.

11.2.2 Nested Procedures

MASM allows you to nest procedures. That is, one procedure definition may be
totally enclosed inside another. The following is an example of such a pair of procedures:

OutsideProc proc near
jmp EndofOutside

InsideProc proc near
mov ax, 0
ret

InsideProc endp

EndofOutside: call InsideProc
mov bx, 0
ret

OutsideProc endp

Unlike some high level languages, nesting procedures in 80x86 assembly language
doesn’t serve any useful purpose. If you nest a procedure (as with InsideProc above), you’ll
have to code an explicit jmp around the nested procedure. Placing the nested procedure
after all the code in the outside procedure (but still between the outside proc/endp direc-
tives) doesn’t accomplish anything. Therefore, there isn’t a good reason to nest procedures
in this manner.

Whenever you nest one procedure within another, it must be totally contained within
the nesting procedure. That is, the proc and endp statements for the nested procedure must
lie between the proc and endp directives of the outside, nesting, procedure. The following
is not legal:

OutsideProc proc near
 .
 .
 .

InsideProc proc near
 .
 .
 .

OutsideProc endp
 .
 .
 .

InsideProc endp

The OutsideProc and InsideProc procedures overlap, they are not nested. If you attempt
to create a set of procedures like this, MASM would report a “block nesting error”.
Figure 11.1 demonstrates this graphically.

Chapter 11

Page 570

The only form acceptable to MASM appears in Figure 11.2.

Besides fitting inside an enclosing procedure, proc/endp groups must fit entirely within
a segment. Therefore the following code is illegal:

cseg segment
MyProc proc near

ret
cseg ends
MyProc endp

The endp directive must appear before the cseg ends statement since MyProc begins
inside cseg. Therefore, procedures within segments must always take the form shown in
Figure 11.3.

Not only can you nest procedures inside other procedures and segments, but you can
nest segments inside other procedures and segments as well. If you’re the type who likes
to simulate Pascal or C procedures in assembly language, you can create variable declara-
tion sections at the beginning of each procedure you create, just like Pascal:

cgroup group cseg1, cseg2

cseg1 segment para public ‘code’
cseg1 ends

cseg2 segment para public ‘code’
cseg2 ends

Figure 11.1 Illegal Procedure Nesting

OutsideProc Procedure

InsideProc Procedure

Figure 11.2 Legal Procedure Nesting

OutsideProc Procedure

InsideProc Procedure

Figure 11.3 Legal Procedure/Segment Nesting

Segment declared with SEGMENT/ENDS

Procedure declared with PROC/ENDP

Procedures and Functions

Page 571

dseg segment para public ‘data’
dseg ends

cseg1 segment para public ‘code’
assume cs:cgroup, ds:dseg

MainPgm proc near

; Data declarations for main program:

dseg segment para public ‘data’
I word ?
J word ?
dseg ends

; Procedures that are local to the main program:

cseg2 segment para public ‘code’

ZeroWords proc near

; Variables local to ZeroBytes:

dseg segment para public ‘data’
AXSave word ?
BXSave word ?
CXSave word ?
dseg ends

; Code for the ZeroBytes procedure:

mov AXSave, ax
mov CXSave, cx
mov BXSave, bx
xor ax, ax

ZeroLoop: mov [bx], ax
inc bx
inc bx
loop ZeroLoop
mov ax, AXSave
mov bx, BXSave
mov cx, CXSave
ret

ZeroWords endp

Cseg2 ends

; The actual main program begins here:

mov bx, offset Array
mov cx, 128
call ZeroWords
ret

MainPgm endp
cseg1 ends

end

The system will load this code into memory as shown in Figure 11.4.

ZeroWords follows the main program because it belongs to a different segment (cseg2)
than MainPgm (cseg1). Remember, the assembler and linker combine segments with the

Figure 11.4 Example Memory Layout

Main Program

Main Program Vars

ZeroWords Vars

ZeroWords

Chapter 11

Page 572

same class name into a single segment before loading them into memory (see “Segment
Loading Order” on page 368 for more details). You can use this feature of the assembler to
“pseudo-Pascalize” your code in the fashion shown above. However, you’ll probably not
find your programs to be any more readable than using the straight forward non-nesting
approach.

11.3 Functions

The difference between functions and procedures in assembly language is mainly a
matter of definition. The purpose for a function is to return some explicit value while the
purpose for a procedure is to execute some action. To declare a function in assembly lan-
guage, use the proc/endp directives. All the rules and techniques that apply to procedures
apply to functions. This text will take another look at functions later in this chapter in the
section on function results. From here on, procedure will mean procedure or function.

11.4 Saving the State of the Machine

Take a look at this code:

mov cx, 10
Loop0: call PrintSpaces

putcr
loop Loop0
 .
 .
 .

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

This section of code attempts to print ten lines of 40 spaces each. Unfortunately, there
is a subtle bug that causes it to print 40 spaces per line in an infinite loop. The main pro-
gram uses the loop instruction to call PrintSpaces 10 times. PrintSpaces uses cx to count off
the 40 spaces it prints. PrintSpaces returns with cx containing zero. The main program then
prints a carriage return/line feed, decrements cx, and then repeats because cx isn’t zero (it
will always contain 0FFFFh at this point).

The problem here is that the PrintSpaces subroutine doesn’t preserve the cx register.
Preserving a register means you save it upon entry into the subroutine and restore it
before leaving. Had the PrintSpaces subroutine preserved the contents of the cx register,
the program above would have functioned properly.

Use the 80x86’s push and pop instructions to preserve register values while you need
to use them for something else. Consider the following code for PrintSpaces:

PrintSpaces proc near
push ax
push cx
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
pop cx
pop ax
ret

PrintSpaces endp

Note that PrintSpaces saves and restores ax and cx (since this procedure modifies these
registers). Also, note that this code pops the registers off the stack in the reverse order that
it pushed them. The operation of the stack imposes this ordering.

Procedures and Functions

Page 573

Either the caller (the code containing the call instruction) or the callee (the subroutine)
can take responsibility for preserving the registers. In the example above, the callee pre-
served the registers. The following example shows what this code might look like if the
caller preserves the registers:

mov cx, 10
Loop0: push ax

push cx
call PrintSpaces
pop cx
pop ax
putcr
loop Loop0
 .
 .
 .

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

There are two advantages to callee preservation: space and maintainability. If the
callee preserves all affected registers, then there is only one copy of the push and pop
instructions, those the procedure contains. If the caller saves the values in the registers, the
program needs a set of push and pop instructions around every call. Not only does this
make your programs longer, it also makes them harder to maintain. Remembering which
registers to push and pop on each procedure call is not something easily done.

On the other hand, a subroutine may unnecessarily preserve some registers if it pre-
serves all the registers it modifies. In the examples above, the code needn’t save ax.
Although PrintSpaces changes the al, this won’t affect the program’s operation. If the caller
is preserving the registers, it doesn’t have to save registers it doesn’t care about:

mov cx, 10
Loop0: push cx

call PrintSpaces
pop cx
putcr
loop Loop0
putcr
putcr
call PrintSpaces

mov al, ‘*’
mov cx, 100

Loop1: putc
push ax
push cx
call PrintSpaces
pop cx
pop ax
putc
putcr
loop Loop1
 .
 .
 .

PrintSpaces proc near
mov al, ‘ ‘
mov cx, 40

PSLoop: putc
loop PSLoop
ret

PrintSpaces endp

This example provides three different cases. The first loop (Loop0) only preserves the
cx register. Modifying the al register won’t affect the operation of this program. Immedi-
ately after the first loop, this code calls PrintSpaces again. However, this code doesn’t save

Chapter 11

Page 574

ax or cx because it doesn’t care if PrintSpaces changes them. Since the final loop (Loop1)
uses ax and cx, it saves them both.

One big problem with having the caller preserve registers is that your program may
change. You may modify the calling code or the procedure so that they use additional reg-
isters. Such changes, of course, may change the set of registers that you must preserve.
Worse still, if the modification is in the subroutine itself, you will need to locate every call
to the routine and verify that the subroutine does not change any registers the calling code
uses.

Preserving registers isn’t all there is to preserving the environment. You can also push
and pop variables and other values that a subroutine might change. Since the 80x86
allows you to push and pop memory locations, you can easily preserve these values as
well.

11.5 Parameters

Although there is a large class of procedures that are totally self-contained, most pro-
cedures require some input data and return some data to the caller. Parameters are values
that you pass to and from a procedure. There are many facets to parameters. Questions
concerning parameters include:

• where is the data coming from?
• how do you pass and return data?
• what is the amount of data to pass?

There are six major mechanisms for passing data to and from a procedure, they are

• pass by value,
• pass by reference,
• pass by value/returned,
• pass by result, and
• pass by name.
• pass by lazy evaluation

You also have to worry about where you can pass parameters. Common places are

• in registers,
• in global memory locations,
• on the stack,
• in the code stream, or
• in a parameter block referenced via a pointer.

Finally, the amount of data has a direct bearing on where and how to pass it. The fol-
lowing sections take up these issues.

11.5.1 Pass by Value

A parameter passed by value is just that – the caller passes a value to the procedure.
Pass by value parameters are input only parameters. That is, you can pass them to a pro-
cedure but the procedure cannot return them. In HLLs, like Pascal, the idea of a pass by
value parameter being an input only parameter makes a lot of sense. Given the Pascal pro-
cedure call:

CallProc(I);

If you pass I by value, the CallProc does not change the value of I, regardless of what hap-
pens to the parameter inside CallProc.

Since you must pass a copy of the data to the procedure, you should only use this
method for passing small objects like bytes, words, and double words. Passing arrays and

Procedures and Functions

Page 575

strings by value is very inefficient (since you must create and pass a copy of the structure
to the procedure).

11.5.2 Pass by Reference

To pass a parameter by reference, you must pass the address of a variable rather than
its value. In other words, you must pass a pointer to the data. The procedure must derefer-
ence this pointer to access the data. Passing parameters by reference is useful when you
must modify the actual parameter or when you pass large data structures between proce-
dures.

Passing parameters by reference can produce some peculiar results. The following
Pascal procedure provides an example of one problem you might encounter:

program main(input,output);
var m:integer;

procedure bletch(var i,j:integer);
begin

i := i+2;
j := j-i;
writeln(i,’ ‘,j);

end;

 .
 .
 .

begin {main}

m := 5;
bletch(m,m);

end.

This particular code sequence will print “00” regardless of m’s value. This is because
the parameters i and j are pointers to the actual data and they both point at the same
object. Therefore, the statement j:=j-i; always produces zero since i and j refer to the same
variable.

Pass by reference is usually less efficient than pass by value. You must dereference all
pass by reference parameters on each access; this is slower than simply using a value.
However, when passing a large data structure, pass by reference is faster because you do
not have to copy a large data structure before calling the procedure.

11.5.3 Pass by Value-Returned

Pass by value-returned (also known as value-result) combines features from both the
pass by value and pass by reference mechanisms. You pass a value-returned parameter by
address, just like pass by reference parameters. However, upon entry, the procedure
makes a temporary copy of this parameter and uses the copy while the procedure is exe-
cuting. When the procedure finishes, it copies the temporary copy back to the original
parameter.

The Pascal code presented in the previous section would operate properly with pass
by value-returned parameters. Of course, when Bletch returns to the calling code, m could
only contain one of the two values, but while Bletch is executing, i and j would contain dis-
tinct values.

In some instances, pass by value-returned is more efficient than pass by reference, in
others it is less efficient. If a procedure only references the parameter a couple of times,
copying the parameter’s data is expensive. On the other hand, if the procedure uses this
parameter often, the procedure amortizes the fixed cost of copying the data over many
inexpensive accesses to the local copy.

Chapter 11

Page 576

11.5.4 Pass by Result

Pass by result is almost identical to pass by value-returned. You pass in a pointer to
the desired object and the procedure uses a local copy of the variable and then stores the
result through the pointer when returning. The only difference between pass by
value-returned and pass by result is that when passing parameters by result you do not
copy the data upon entering the procedure. Pass by result parameters are for returning
values, not passing data to the procedure. Therefore, pass by result is slightly more effi-
cient than pass by value-returned since you save the cost of copying the data into the local
variable.

11.5.5 Pass by Name

Pass by name is the parameter passing mechanism used by macros, text equates, and
the #define macro facility in the C programming language. This parameter passing mecha-
nism uses textual substitution on the parameters. Consider the following MASM macro:

PassByName macro Parameter1, Parameter2
mov ax, Parameter1
add ax, Parameter2
endm

If you have a macro invocation of the form:

PassByName bx, I

MASM emits the following code, substituting bx for Parameter1 and I for Parameter2:

mov ax, bx
add ax, I

Some high level languages, such as ALGOL-68 and Panacea, support pass by name
parameters. However, implementing pass by name using textual substitution in a com-
piled language (like ALGOL-68) is very difficult and inefficient. Basically, you would have
to recompile a function everytime you call it. So compiled languages that support pass by
name parameters generally use a different technique to pass those parameters. Consider
the following Panacea procedure:

PassByName: procedure(name item:integer; var index:integer);
begin PassByName;

foreach index in 0..10 do

item := 0;

endfor;

end PassByName;

Assume you call this routine with the statement PassByName(A[i], i); where A is an
array of integers having (at least) the elements A[0]..A[10]. Were you to substitute the pass
by name parameter item you would obtain the following code:

begin PassByName;

foreach index in 0..10 do

A[I] := 0; (* Note that index and I are aliases *)

endfor;

end PassByName;

This code zeros out elements 0..10 of array A.

High level languages like ALGOL-68 and Panacea compile pass by name parameters
into functions that return the address of a given parameter. So in one respect, pass by
name parameters are similar to pass by reference parameters insofar as you pass the
address of an object. The major difference is that with pass by reference you compute the

Procedures and Functions

Page 577

address of an object before calling a subroutine; with pass by name the subroutine itself
calls some function to compute the address of the parameter.

So what difference does this make? Well, reconsider the code above. Had you passed
A[I] by reference rather than by name, the calling code would compute the address of A[I]
just before the call and passed in this address. Inside the PassByName procedure the vari-
able item would have always referred to a single address, not an address that changes
along with I. With pass by name parameters, item is really a function that computes the
address of the parameter into which the procedure stores the value zero. Such a function
might look like the following:

ItemThunk proc near
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

ItemThunk endp

The compiled code inside the PassByName procedure might look something like the fol-
lowing:

; item := 0;

call ItemThunk
mov word ptr [bx], 0

Thunk is the historical term for these functions that compute the address of a pass by
name parameter. It is worth noting that most HLLs supporting pass by name parameters
do not call thunks directly (like the call above). Generally, the caller passes the address of a
thunk and the subroutine calls the thunk indirectly. This allows the same sequence of
instructions to call several different thunks (corresponding to different calls to the subrou-
tine).

11.5.6 Pass by Lazy-Evaluation

Pass by name is similar to pass by reference insofar as the procedure accesses the
parameter using the address of the parameter. The primary difference between the two is
that a caller directly passes the address on the stack when passing by reference, it passes
the address of a function that computes the parameter’s address when passing a parame-
ter by name. The pass by lazy evaluation mechanism shares this same relationship with
pass by value parameters – the caller passes the address of a function that computes the
parameter’s value if the first access to that parameter is a read operation.

Pass by lazy evaluation is a useful parameter passing technique if the cost of comput-
ing the parameter value is very high and the procedure may not use the value. Consider
the following Panacea procedure header:

PassByEval: procedure(eval a:integer; eval b:integer; eval c:integer);

When you call the PassByEval function it does not evaluate the actual parameters and
pass their values to the procedure. Instead, the compiler generates thunks that will com-
pute the value of the parameter at most one time. If the first access to an eval parameter is
a read, the thunk will compute the parameter’s value and store that into a local variable. It
will also set a flag so that all future accesses will not call the thunk (since it has already
computed the parameter’s value). If the first access to an eval parameter is a write, then
the code sets the flag and future accesses within the same procedure activation will use
the written value and ignore the thunk.

Consider the PassByEval procedure above. Suppose it takes several minutes to com-
pute the values for the a, b, and c parameters (these could be, for example, three different
possible paths in a Chess game). Perhaps the PassByEval procedure only uses the value of
one of these parameters. Without pass by lazy evaluation, the calling code would have to
spend the time to compute all three parameters even though the procedure will only use
one of the values. With pass by lazy evaluation, however, the procedure will only spend

Chapter 11

Page 578

the time computing the value of the one parameter it needs. Lazy evaluation is a common
technique artificial intelligence (AI) and operating systems use to improve performance.

11.5.7 Passing Parameters in Registers

Having touched on how to pass parameters to a procedure, the next thing to discuss is
where to pass parameters. Where you pass parameters depends, to a great extent, on the
size and number of those parameters. If you are passing a small number of bytes to a pro-
cedure, then the registers are an excellent place to pass parameters. The registers are an
ideal place to pass value parameters to a procedure. If you are passing a single parameter
to a procedure you should use the following registers for the accompanying data types:

Data Size Pass in this Register
Byte: al
Word: ax
Double Word: dx:ax or eax (if 80386 or better)

This is, by no means, a hard and fast rule. If you find it more convenient to pass 16 bit
values in the si or bx register, by all means do so. However, most programmers use the reg-
isters above to pass parameters.

If you are passing several parameters to a procedure in the 80x86’s registers, you
should probably use up the registers in the following order:

First Last

 ax, dx, si, di, bx, cx

In general, you should avoid using bp register. If you need more than six words, perhaps
you should pass your values elsewhere.

The UCR Standard Library package provides several good examples of procedures
that pass parameters by value in the registers. Putc, which outputs an ASCII character
code to the video display, expects an ASCII value in the al register. Likewise, puti expects
the value of a signed integer in the ax register. As another example, consider the following
putsi (put short integer) routine that outputs the value in al as a signed integer:

putsi proc
push ax ;Save AH’s value.
cbw ;Sign extend AL -> AX.
puti ;Let puti do the real work.
pop ax ;Restore AH.
ret

putsi endp

The other four parameter passing mechanisms (pass by reference, value-returned,
result, and name) generally require that you pass a pointer to the desired object (or to a
thunk in the case of pass by name). When passing such parameters in registers, you have
to consider whether you’re passing an offset or a full segmented address. Sixteen bit off-
sets can be passed in any of the 80x86’s general purpose 16 bit registers. si, di, and bx are
the best place to pass an offset since you’ll probably need to load it into one of these regis-
ters anyway4. You can pass 32 bit segmented addresses dx:ax like other double word
parameters. However, you can also pass them in ds:bx, ds:si, ds:di, es:bx, es:si, or es:di and
be able to use them without copying into a segment register.

The UCR Stdlib routine puts, which prints a string to the video display, is a good
example of a subroutine that uses pass by reference. It wants the address of a string in the
es:di register pair. It passes the parameter in this fashion, not because it modifies the
parameter, but because strings are rather long and passing them some other way would
be inefficient. As another example, consider the following strfill(str,c) that copies the char-

4. This does not apply to thunks. You may pass the address of a thunk in any 16 bit register. Of course, on an 80386
or later processor, you can use any of the 80386’s 32-bit registers to hold an address.

Procedures and Functions

Page 579

acter c (passed by value in al) to each character position in str (passed by reference in es:di)
up to a zero terminating byte:

; strfill- copies value in al to the string pointed at by es:di
; up to a zero terminating byte.

byp textequ <byte ptr>

strfill proc
pushf ;Save direction flag.
cld ;To increment D with STOS.
push di ;Save, because it’s changed.
jmp sfStart

sfLoop: stosb ;es:[di] := al, di := di + 1;
sfStart: cmp byp es:[di], 0 ;Done yet?

jne sfLoop

pop di ;Restore di.
popf ;Restore direction flag.
ret

strfill endp

When passing parameters by value-returned or by result to a subroutine, you could
pass in the address in a register. Inside the procedure you would copy the value pointed at
by this register to a local variable (value-returned only). Just before the procedure returns
to the caller, it could store the final result back to the address in the register.

The following code requires two parameters. The first is a pass by value-returned
parameter and the subroutine expects the address of the actual parameter in bx. The sec-
ond is a pass by result parameter whose address is in si. This routine increments the pass
by value-result parameter and stores the previous result in the pass by result parameter:

; CopyAndInc- BX contains the address of a variable. This routine
; copies that variable to the location specified in SI
; and then increments the variable BX points at.
; Note: AX and CX hold the local copies of these
; parameters during execution.

CopyAndInc proc
push ax ;Preserve AX across call.
push cx ;Preserve CX across call.
mov ax, [bx] ;Get local copy of 1st parameter.
mov cx, ax ;Store into 2nd parm’s local var.
inc ax ;Increment 1st parameter.
mov [si], cx ;Store away pass by result parm.
mov [bx], ax ;Store away pass by value/ret parm.
pop cx ;Restore CX’s value.
pop ax ;Restore AX’s value.
ret

CopyAndInc endp

To make the call CopyAndInc(I,J) you would use code like the following:

lea bx, I
lea si, J
call CopyAndInc

This is, of course, a trivial example whose implementation is very inefficient. Neverthe-
less, it shows how to pass value-returned and result parameters in the 80x86’s registers. If
you are willing to trade a little space for some speed, there is another way to achieve the
same results as pass by value-returned or pass by result when passing parameters in reg-
isters. Consider the following implementation of CopyAndInc:

CopyAndInc proc
mov cx, ax ;Make a copy of the 1st parameter,
inc ax ; then increment it by one.
ret

CopyAndInc endp

Chapter 11

Page 580

To make the CopyAndInc(I,J) call, as before, you would use the following 80x86 code:

mov ax, I
call CopyAndInc
mov I, ax
mov J, cx

Note that this code does not pass any addresses at all; yet it has the same semantics (that
is, performs the same operations) as the previous version. Both versions increment I and
store the pre-incremented version into J. Clearly the latter version is faster, although your
program will be slightly larger if there are many calls to CopyAndInc in your program (six
or more).

You can pass a parameter by name or by lazy evaluation in a register by simply load-
ing that register with the address of the thunk to call. Consider the Panacea PassByName
procedure (see “Pass by Name” on page 576). One implementation of this procedure
could be the following:

;PassByName- Expects a pass by reference parameter index
; passed in si and a pass by name parameter, item,
; passed in dx (the thunk returns the address in bx).

PassByName proc
push ax ;Preserve AX across call
mov word ptr [si], 0 ;Index := 0;

ForLoop: cmp word ptr [si], 10 ;For loop ends at ten.
jg ForDone
call dx ;Call thunk item.
mov word ptr [bx], 0 ;Store zero into item.
inc word ptr [si] ;Index := Index + 1;
jmp ForLoop

ForDone: pop ax ;Restore AX.
ret ;All Done!

PassByName endp

You might call this routine with code that looks like the following:

lea si, I
lea dx, Thunk_A
call PassByName
 .
 .
 .

Thunk_A proc
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

Thunk_A endp

The advantage to this scheme, over the one presented in the earlier section, is that you can
call different thunks, not just the ItemThunk routine appearing in the earlier example.

11.5.8 Passing Parameters in Global Variables

Once you run out of registers, the only other (reasonable) alternative you have is main
memory. One of the easiest places to pass parameters is in global variables in the data seg-
ment. The following code provides an example:

mov ax, xxxx ;Pass this parameter by value
mov Value1Proc1, ax
mov ax, offset yyyy ;Pass this parameter by ref
mov word ptr Ref1Proc1, ax
mov ax, seg yyyy
mov word ptr Ref1Proc1+2, ax
call ThisProc
 .
 .
 .

Procedures and Functions

Page 581

ThisProc proc near
push es
push ax
push bx
les bx, Ref1Proc1 ;Get address of ref parm.
mov ax, Value1Proc1 ;Get value parameter
mov es:[bx], ax ;Store into loc pointed at by
pop bx ; the ref parameter.
pop ax
pop es
ret

ThisProc endp

Passing parameters in global locations is inelegant and inefficient. Furthermore, if you
use global variables in this fashion to pass parameters, the subroutines you write cannot
use recursion (see “Recursion” on page 606). Fortunately, there are better parameter pass-
ing schemes for passing data in memory so you do not need to seriously consider this
scheme.

11.5.9 Passing Parameters on the Stack

Most HLLs use the stack to pass parameters because this method is fairly efficient. To
pass parameters on the stack, push them immediately before calling the subroutine. The
subroutine then reads this data from the stack memory and operates on it appropriately.
Consider the following Pascal procedure call:

CallProc(i,j,k+4);

Most Pascal compilers push their parameters onto the stack in the order that they
appear in the parameter list. Therefore, the 80x86 code typically emitted for this subrou-
tine call (assuming you’re passing the parameters by value) is

push i
push j
mov ax, k
add ax, 4
push ax
call CallProc

Upon entry into CallProc, the 80x86’s stack looks like that shown in Figure 11.5 (for a
near procedure) or Figure 11.6 (for a far procedure).

You could gain access to the parameters passed on the stack by removing the data
from the stack (Assuming a near procedure call):

Figure 11.5 CallProc Stack Layout for a Near Procedure

Previous Stack Contents

i's current value

j's current value

The sum of k+4

Return address
Stack Pointer

If CallProc is a
NEAR Procedure

Chapter 11

Page 582

CallProc proc near
pop RtnAdrs
pop kParm
pop jParm
pop iParm
push RtnAdrs
 .
 .
 .

ret
CallProc endp

There is, however, a better way. The 80x86’s architecture allows you to use the bp (base
pointer) register to access parameters passed on the stack. This is one of the reasons the
disp[bp], [bp][di], [bp][si], disp[bp][si], and disp[bp][di] addressing modes use the stack segment
rather than the data segment. The following code segment gives the standard procedure
entry and exit code:

StdProc proc near
push bp
mov bp, sp
 .
 .
 .

pop bp
ret ParmSize

StdProc endp

ParmSize is the number of bytes of parameters pushed onto the stack before calling the
procedure. In the CallProc procedure there were six bytes of parameters pushed onto the
stack so ParmSize would be six.

Take a look at the stack immediately after the execution of mov bp, sp in StdProc.
Assuming you’ve pushed three parameter words onto the stack, it should look something
like shown in Figure 11.7.

Figure 11.6 CallProc Stack Layout for a Far Procedure

Previous Stack Contents

i's current value

j's current value

The sum of k+4

Return segment

Stack Pointer

If CallProc is a
FAR Procedure

Return offset

Figure 11.7 Accessing Parameters on the Stack

Previous Stack Contents

First Parameter

Second Parameter

Third Parameter

Return address

BP, SP

If this is a
NEAR Procedure

Original BP Value

Procedures and Functions

Page 583

Now the parameters can be fetched by indexing off the bp register:

mov ax, 8[bp] ;Accesses the first parameter
mov ax, 6[bp] ;Accesses the second parameter
mov ax, 4[bp] ;Accesses the third parameter

When returning to the calling code, the procedure must remove these parameters
from the stack. To accomplish this, pop the old bp value off the stack and execute a ret 6
instruction. This pops the return address off the stack and adds six to the stack pointer,
effectively removing the parameters from the stack.

The displacements given above are for near procedures only. When calling a far pro-
cedure,

• 0[BP] will point at the old BP value,
• 2[BP] will point at the offset portion of the return address,
• 4[BP] will point at the segment portion of the return address, and
• 6[BP] will point at the last parameter pushed onto the stack.

The stack contents when calling a far procedure are shown in Figure 11.8.

This collection of parameters, return address, registers saved on the stack, and other
items, is a stack frame or activation record.

When saving other registers onto the stack, always make sure that you save and set
up bp before pushing the other registers. If you push the other registers before setting up
bp, the offsets into the stack frame will change. For example, the following code disturbs
the ordering presented above:

FunnyProc proc near
push ax
push bx
push bp
mov bp, sp
 .
 .
 .

pop bp
pop bx
pop ax
ret

FunnyProc endp

Since this code pushes ax and bx before pushing bp and copying sp to bp, ax and bx
appear in the activation record before the return address (that would normally start at
location [bp+2]). As a result, the value of bx appears at location [bp+2] and the value of ax
appears at location [bp+4]. This pushes the return address and other parameters farther up
the stack as shown in Figure 11.9.

Figure 11.8 Accessing Parameters on the Stack in a Far Procedure

0

2

4

6

8

10

Offset from BP

Previous Stack Contents

First Parameter

Second Parameter

Third Parameter

BP, SP

If this is a
FAR Procedure

Original BP Value

Return address
Segment Portion

Offset Portion

Chapter 11

Page 584

Although this is a near procedure, the parameters don’t begin until offset eight in the
activation record. Had you pushed the ax and bx registers after setting up bp, the offset to
the parameters would have been four (see Figure 11.10).

FunnyProc proc near
push bp
mov bp, sp
push ax
push bx
 .
 .
 .

pop bx
pop ax
pop bp
ret

FunnyProc endp

Therefore, the push bp and mov bp, sp instructions should be the first two instructions
any subroutine executes when it has parameters on the stack.

Accessing the parameters using expressions like [bp+6] can make your programs very
hard to read and maintain. If you would like to use meaningful names, there are several
ways to do so. One way to reference parameters by name is to use equates. Consider the
following Pascal procedure and its equivalent 80x86 assembly language code:

Figure 11.9 Messing up Offsets by Pushing Other Registers Before BP

Previous Stack Contents

Parameters Begin

Return Address

BP, SP

If this is a
NEAR Procedure

AX

BX2

4

6

8

Offset from BP

Original BP Value0

Figure 11.10 Keeping the Offsets Constant by Pushing BP First

Previous Stack Contents

Parameters Begin

 SP

If this is a
NEAR Procedure

-2

0

2

4

Offset from BP

-4

BP

Return Address

Original BP Value

AX

BX

Procedures and Functions

Page 585

procedure xyz(var i:integer; j,k:integer);
begin

i := j+k;
end;

Calling sequence:

xyz(a,3,4);

Assembly language code:

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.
xyz proc near

push bp
mov bp, sp
push es
push ax
push bx
les bx, xyz_i ;Get address of I into ES:BX
mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov es:[bx], ax ;Store result into I parameter
pop bx
pop ax
pop es
pop bp
ret 8

xyz endp

Calling sequence:

mov ax, seg a ;This parameter is passed by
push ax ; reference, so pass its
mov ax, offset a ; address on the stack.
push ax
mov ax, 3 ;This is the second parameter
push ax
mov ax, 4 ;This is the third parameter.
push ax
call xyz

On an 80186 or later processor you could use the following code in place of the above:

push seg a ;Pass address of “a” on the
push offset a ; stack.
push 3 ;Pass second parm by val.
push 4 ;Pass third parm by val.
call xyz

Upon entry into the xyz procedure, before the execution of the les instruction, the stack
looks like shown in Figure 11.11.

Since you’re passing I by reference, you must push its address onto the stack. This
code passes reference parameters using 32 bit segmented addresses. Note that this code
uses ret 8. Although there are three parameters on the stack, the reference parameter I
consumes four bytes since it is a far address. Therefore there are eight bytes of parameters
on the stack necessitating the ret 8 instruction.

Were you to pass I by reference using a near pointer rather than a far pointer, the code
would look like the following:

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.
xyz proc near

push bp
mov bp, sp
push ax
push bx
mov bx, xyz_i ;Get address of I into BX

Chapter 11

Page 586

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov [bx], ax ;Store result into I parameter
pop bx
pop ax
pop bp
ret 6

xyz endp

Note that since I’s address on the stack is only two bytes (rather than four), this routine
only pops six bytes when it returns.

Calling sequence:

mov ax, offset a ;Pass near address of a.
push ax
mov ax, 3 ;This is the second parameter
push ax
mov ax, 4 ;This is the third parameter.
push ax
call xyz

On an 80286 or later processor you could use the following code in place of the above:

push offset a ;Pass near address of a.
push 3 ;Pass second parm by val.
push 4 ;Pass third parm by val.
call xyz

The stack frame for the above code appears in Figure 11.12.

When passing a parameter by value-returned or result, you pass an address to the
procedure, exactly like passing the parameter by reference. The only difference is that you
use a local copy of the variable within the procedure rather than accessing the variable
indirectly through the pointer. The following implementations for xyz show how to pass I
by value-returned and by result:

; xyz version using Pass by Value-Returned for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax
push bx

Figure 11.11 XYZ Stack Upon Procedure Entry

Previous Stack Contents

 SP

If this is a
NEAR Procedure

Offset from BP

BP

Segmented Address
of I8

10

12

6 Value of J

4 Value of K

2 Return Address

0 Original BP Value

-2 ES

-4 AX

-6 BX

Procedures and Functions

Page 587

push cx ;Keep local copy here.

mov bx, xyz_i ;Get address of I into BX
mov cx, [bx] ;Get local copy of I parameter.

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov cx, ax ;Store result into local copy

mov bx, xyz_i ;Get ptr to I, again
mov [bx], cx ;Store result away.

pop cx
pop bx
pop ax
pop bp
ret 6

xyz endp

There are a couple of unnecessary mov instructions in this code. They are present only
to precisely implement pass by value-returned parameters. It is easy to improve this code
using pass by result parameters. The modified code is

; xyz version using Pass by Result for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax
push bx
push cx ;Keep local copy here.

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov cx, ax ;Store result into local copy

mov bx, xyz_i ;Get ptr to I, again
mov [bx], cx ;Store result away.

pop cx
pop bx
pop ax
pop bp
ret 6

xyz endp

Figure 11.12 Passing Parameters by Reference Using Near Pointers Rather than Far Pointers

Previous Stack Contents

 SP

If this is a
NEAR Procedure

Offset from BP

BP

10

Address of I8

6 Value of J

4 Value of K

2 Return Address

0 Original BP Value

-2 AX

-4 BX

Chapter 11

Page 588

As with passing value-returned and result parameters in registers, you can improve
the performance of this code using a modified form of pass by value. Consider the follow-
ing implementation of xyz:

; xyz version using modified pass by value-result for xyz_i

xyz_i equ 8[bp] ;Use equates so we can reference
xyz_j equ 6[bp] ; symbolic names in the body of
xyz_k equ 4[bp] ; the procedure.

xyz proc near
push bp
mov bp, sp
push ax

mov ax, xyz_j ;Get J parameter
add ax, xyz_k ;Add to K parameter
mov xyz_i, ax ;Store result into local copy

pop ax
pop bp
ret 4 ;Note that we do not pop I parm.

xyz endp

The calling sequence for this code is

push a ;Pass a’s value to xyz.
push 3 ;Pass second parameter by val.
push 4 ;Pass third parameter by val.
call xyz
pop a

Note that a pass by result version wouldn’t be practical since you have to push something
on the stack to make room for the local copy of I inside xyz. You may as well push the
value of a on entry even though the xyz procedure ignores it. This procedure pops only
four bytes off the stack on exit. This leaves the value of the I parameter on the stack so that
the calling code can store it away to the proper destination.

To pass a parameter by name on the stack, you simply push the address of the thunk.
Consider the following pseudo-Pascal code:

procedure swap(name Item1, Item2:integer);
var temp:integer;
begin

temp := Item1;
Item1 := Item2;
Item2 := Temp;

end;

If swap is a near procedure, the 80x86 code for this procedure could look like the following
(note that this code has been slightly optimized and does not following the exact sequence
given above):

; swap- swaps two parameters passed by name on the stack.
; Item1 is passed at address [bp+6], Item2 is passed
; at address [bp+4]

wp textequ <word ptr>
swap_Item1 equ [bp+6]
swap_Item2 equ [bp+4]

swap proc near
push bp
mov bp, sp
push ax ;Preserve temp value.
push bx ;Preserve bx.
call wp swap_Item1 ;Get adrs of Item1.
mov ax, [bx] ;Save in temp (AX).
call wp swap_Item2 ;Get adrs of Item2.
xchg ax, [bx] ;Swap temp <-> Item2.
call wp swap_Item1 ;Get adrs of Item1.

Procedures and Functions

Page 589

mov [bx], ax ;Save temp in Item1.
pop bx ;Restore bx.
pop ax ;Restore ax.
ret 4 ;Return and pop Item1/2.

swap endp

Some sample calls to swap follow:

; swap(A[i], i) -- 8086 version.

lea ax, thunk1
push ax
lea ax, thunk2
push ax
call swap

; swap(A[i],i) -- 80186 & later version.

push offset thunk1
push offset thunk2
call swap

 .
 .
 .

; Note: this code assumes A is an array of two byte integers.

thunk1 proc near
mov bx, i
shl bx, 1
lea bx, A[bx]
ret

thunk1 endp

thunk2 proc near
lea bx, i
ret

thunk2 endp

The code above assumes that the thunks are near procs that reside in the same seg-
ment as the swap routine. If the thunks are far procedures the caller must pass far
addresses on the stack and the swap routine must manipulate far addresses. The follow-
ing implementation of swap, thunk1, and thunk2 demonstrate this.

; swap- swaps two parameters passed by name on the stack.
; Item1 is passed at address [bp+10], Item2 is passed
; at address [bp+6]

swap_Item1 equ [bp+10]
swap_Item2 equ [bp+6]
dp textequ <dword ptr>

swap proc far
push bp
mov bp, sp
push ax ;Preserve temp value.
push bx ;Preserve bx.
push es ;Preserve es.
call dp swap_Item1 ;Get adrs of Item1.
mov ax, es:[bx] ;Save in temp (AX).
call dp swap_Item2 ;Get adrs of Item2.
xchg ax, es:[bx] ;Swap temp <-> Item2.
call dp swap_Item1 ;Get adrs of Item1.
mov es:[bx], ax ;Save temp in Item1.
pop es ;Restore es.
pop bx ;Restore bx.
pop ax ;Restore ax.
ret 8 ;Return and pop Item1, Item2.

swap endp

Some sample calls to swap follow:

Chapter 11

Page 590

; swap(A[i], i) -- 8086 version.

mov ax, seg thunk1
push ax
lea ax, thunk1
push ax
mov ax, seg thunk2
push ax
lea ax, thunk2
push ax
call swap

; swap(A[i],i) -- 80186 & later version.

push seg thunk1
push offset thunk1
push seg thunk2
push offset thunk2
call swap

 .
 .
 .

; Note: this code assumes A is an array of two byte integers.
; Also note that we do not know which segment(s) contain
; A and I.

thunk1 proc far
mov bx, seg A ;Need to return seg A in ES.
push bx ;Save for later.
mov bx, seg i ;Need segment of I in order
mov es, bx ; to access it.
mov bx, es:i ;Get I’s value.
shl bx, 1
lea bx, A[bx]
pop es ;Return segment of A[I] in es.
ret

thunk1 endp

thunk2 proc near
mov bx, seg i ;Need to return I’s seg in es.
mov es, bx
lea bx, i
ret

thunk2 endp

Passing parameters by lazy evaluation is left for the programming projects.

Additional information on activation records and stack frames appears later in this
chapter in the section on local variables.

11.5.10 Passing Parameters in the Code Stream

Another place where you can pass parameters is in the code stream immediately after
the call instruction. The print routine in the UCR Standard Library package provides an
excellent example:

print
byte “This parameter is in the code stream.”,0

Normally, a subroutine returns control to the first instruction immediately following
the call instruction. Were that to happen here, the 80x86 would attempt to interpret the
ASCII code for “This...” as an instruction. This would produce undesirable results. Fortu-
nately, you can skip over this string when returning from the subroutine.

So how do you gain access to these parameters? Easy. The return address on the stack
points at them. Consider the following implementation of print:

Procedures and Functions

Page 591

MyPrint proc near
push bp
mov bp, sp
push bx
push ax
mov bx, 2[bp] ;Load return address into BX

PrintLp: mov al, cs:[bx] ;Get next character
cmp al, 0 ;Check for end of string
jz EndStr
putc ;If not end, print this char
inc bx ;Move on to the next character
jmp PrintLp

EndStr: inc bx ;Point at first byte beyond zero
mov 2[bp], bx ;Save as new return address
pop ax
pop bx
pop bp
ret

MyPrint endp

This procedure begins by pushing all the affected registers onto the stack. It then
fetches the return address, at offset 2[BP], and prints each successive character until
encountering a zero byte. Note the presence of the cs: segment override prefix in the
mov al, cs:[bx] instruction. Since the data is coming from the code segment, this prefix
guarantees that MyPrint fetches the character data from the proper segment. Upon encoun-
tering the zero byte, MyPrint points bx at the first byte beyond the zero. This is the address
of the first instruction following the zero terminating byte. The CPU uses this value as the
new return address. Now the execution of the ret instruction returns control to the instruc-
tion following the string.

The above code works great if MyPrint is a near procedure. If you need to call MyPrint
from a different segment you will need to create a far procedure. Of course, the major dif-
ference is that a far return address will be on the stack at that point – you will need to use
a far pointer rather than a near pointer. The following implementation of MyPrint handles
this case.

MyPrint proc far
push bp
mov bp, sp
push bx ;Preserve ES, AX, and BX
push ax
push es

les bx, 2[bp] ;Load return address into ES:BX
PrintLp: mov al, es:[bx] ;Get next character

cmp al, 0 ;Check for end of string
jz EndStr
putc ;If not end, print this char
inc bx ;Move on to the next character
jmp PrintLp

EndStr: inc bx ;Point at first byte beyond zero
mov 2[bp], bx ;Save as new return address
pop es
pop ax
pop bx
pop bp
ret

MyPrint endp

Note that this code does not store es back into location [bp+4]. The reason is quite sim-
ple – es does not change during the execution of this procedure; storing es into location
[bp+4] would not change the value at that location. You will notice that this version of
MyPrint fetches each character from location es:[bx] rather than cs:[bx]. This is because the
string you’re printing is in the caller’s segment, that might not be the same segment con-
taining MyPrint.

Chapter 11

Page 592

Besides showing how to pass parameters in the code stream, the MyPrint routine also
exhibits another concept: variable length parameters. The string following the call can be any
practical length. The zero terminating byte marks the end of the parameter list. There are
two easy ways to handle variable length parameters. Either use some special terminating
value (like zero) or you can pass a special length value that tells the subroutine how many
parameters you are passing. Both methods have their advantages and disadvantages.
Using a special value to terminate a parameter list requires that you choose a value that
never appears in the list. For example, MyPrint uses zero as the terminating value, so it can-
not print the NULL character (whose ASCII code is zero). Sometimes this isn’t a limita-
tion. Specifying a special length parameter is another mechanism you can use to pass a
variable length parameter list. While this doesn’t require any special codes or limit the
range of possible values that can be passed to a subroutine, setting up the length parame-
ter and maintaining the resulting code can be a real nightmare5.

Although passing parameters in the code stream is an ideal way to pass variable
length parameter lists, you can pass fixed length parameter lists as well. The code stream
is an excellent place to pass constants (like the string constants passed to MyPrint) and ref-
erence parameters. Consider the following code that expects three parameters by refer-
ence:

Calling sequence:

call AddEm
word I,J,K

Procedure:

AddEm proc near
push bp
mov bp, sp
push si
push bx
push ax
mov si, [bp+2] ;Get return address
mov bx, cs:[si+2] ;Get address of J
mov ax, [bx] ;Get J’s value
mov bx, cs:[si+4] ;Get address of K
add ax, [bx] ;Add in K’s value
mov bx, cs:[si] ;Get address of I
mov [bx], ax ;Store result
add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

This subroutine adds J and K together and stores the result into I. Note that this code uses
16 bit near pointers to pass the addresses of I, J, and K to AddEm. Therefore, I, J, and K must
be in the current data segment. In the example above, AddEm is a near procedure. Had it
been a far procedure it would have needed to fetch a four byte pointer from the stack
rather than a two byte pointer. The following is a far version of AddEm:

AddEm proc far
push bp
mov bp, sp
push si
push bx
push ax
push es
les si, [bp+2] ;Get far ret adrs into es:si
mov bx, es:[si+2] ;Get address of J
mov ax, [bx] ;Get J’s value

5. Especially if the parameter list changes frequently.

Procedures and Functions

Page 593

mov bx, es:[si+4] ;Get address of K
add ax, [bx] ;Add in K’s value
mov bx, es:[si] ;Get address of I
mov [bx], ax ;Store result
add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop es
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

In both versions of AddEm, the pointers to I, J, and K passed in the code stream are near
pointers. Both versions assume that I, J, and K are all in the current data segment. It is pos-
sible to pass far pointers to these variables, or even near pointers to some and far pointers
to others, in the code stream. The following example isn’t quite so ambitious, it is a near
procedure that expects far pointers, but it does show some of the major differences. For
additional examples, see the exercises.

Callling sequence:

call AddEm
dword I,J,K

Code:

AddEm proc near
push bp
mov bp, sp
push si
push bx
push ax
push es
mov si, [bp+2] ;Get near ret adrs into si
les bx, cs:[si+2] ;Get address of J into es:bx
mov ax, es:[bx] ;Get J’s value
les bx, cs:[si+4] ;Get address of K
add ax, es:[bx] ;Add in K’s value
les bx, cs:[si] ;Get address of I
mov es:[bx], ax ;Store result
add si, 12 ;Skip past parms
mov [bp+2], si ;Save return address
pop es
pop ax
pop bx
pop si
pop bp
ret

AddEm endp

Note that there are 12 bytes of parameters in the code stream this time around. This is why
this code contains an add si, 12 instruction rather than the add si, 6 appearing in the other
versions.

In the examples given to this point, MyPrint expects a pass by value parameter, it prints
the actual characters following the call, and AddEm expects three pass by reference param-
eters – their addresses follow in the code stream. Of course, you can also pass parameters
by value-returned, by result, by name, or by lazy evaluation in the code stream as well.
The next example is a modification of AddEm that uses pass by result for I, pass by
value-returned for J, and pass by name for K. This version is slightly differerent insofar as
it modifies J as well as I, in order to justify the use of the value-returned parameter.

Chapter 11

Page 594

; AddEm(Result I:integer; ValueResult J:integer; Name K);
;
; Computes I:= J;
; J := J+K;
;
; Presumes all pointers in the code stream are near pointers.

AddEm proc near
push bp
mov bp, sp
push si ;Pointer to parameter block.
push bx ;General pointer.
push cx ;Temp value for I.
push ax ;Temp value for J.

mov si, [bp+2] ;Get near ret adrs into si

mov bx, cs:[si+2] ;Get address of J into bx
mov ax, es:[bx] ;Create local copy of J.
mov cx, ax ;Do I:=J;

call word ptr cs:[si+4] ;Call thunk to get K’s adrs
add ax, [bx] ;Compute J := J + K

mov bx, cs:[si] ;Get address of I and store
mov [bx], cx ; I away.

mov bx, cs:[si+2] ;Get J’s address and store
mov [bx], ax ; J’s value away.

add si, 6 ;Skip past parms
mov [bp+2], si ;Save return address
pop ax
pop cx
pop bx
pop si
pop bp
ret

AddEm endp

Example calling sequences:

; AddEm(I,J,K)

call AddEm
word I,J,KThunk

; AddEm(I,J,A[I])

call AddEm
word I,J,AThunk
 .
 .
 .

KThunk proc near
lea bx, K
ret

KThunk endp

AThunk proc near
mov bx, I
shl bx, 1
lea bx, A[bx]
ret

AThunk endp

Note: had you passed I by reference, rather than by result, in this example, the call

AddEm(I,J,A[i])

would have produced different results. Can you explain why?

Passing parameters in the code stream lets you perform some really clever tasks. The
following example is considerably more complex than the others in this section, but it

Procedures and Functions

Page 595

demonstrates the power of passing parameters in the code stream and, despite the com-
plexity of this example, how they can simplify your programming tasks.

The following two routines implement a for/next statement, similar to that in BASIC, in
assembly language. The calling sequence for these routines is the following:

call ForStmt
word «LoopControlVar», «StartValue», «EndValue»
 .
 .

« loop body statements»
 .
 .

call Next

This code sets the loop control variable (whose near address you pass as the first
parameter, by reference) to the starting value (passed by value as the second parameter). It
then begins execution of the loop body. Upon executing the call to Next, this program
would increment the loop control variable and then compare it to the ending value. If it is
less than or equal to the ending value, control would return to the beginning of the loop
body (the first statement following the word directive). Otherwise it would continue exe-
cution with the first statement past the call to Next.

Now you’re probably wondering, “How on earth does control transfer to the begin-
ning of the loop body?” After all, there is no label at that statement and there is no control
transfer instruction instruction that jumps to the first statement after the word directive.
Well, it turns out you can do this with a little tricky stack manipulation. Consider what the
stack will look like upon entry into the ForStmt routine, after pushing bp onto the stack (see
Figure 11.13).

Normally, the ForStmt routine would pop bp and return with a ret instruction, which
removes ForStmt’s activation record from the stack. Suppose, instead, ForStmt executes the
following instructions:

add word ptr 2[b], 2 ;Skip the parameters.
push [bp+2] ;Make a copy of the rtn adrs.
mov bp, [bp] ;Restore bp’s value.
ret ;Return to caller.

Just before the ret instruction above, the stack has the entries shown in Figure 11.14.

Figure 11.13 Stack Upon Entry into the ForStmt Procedure

 SP, BP

Offset from BP

4

Return Address2

0 Original BP Value

Previous Stack Contents

Figure 11.14 Stack Just Before Leaving the ForStmt Procedure

 BP

 SP

Previous Stack Contents

Offset from BP

4

Return Address2

0 Original BP Value

Return Address-2

Chapter 11

Page 596

Upon executing the ret instruction, ForStmt will return to the proper return address but it
will leave its activation record on the stack!

After executing the statements in the loop body, the program calls the Next routine.
Upon initial entry into Next (and setting up bp), the stack contains the entries appearing
in Figure 11.156.

The important thing to see here is that ForStmt’s return address, that points at the first
statement past the word directive, is still on the stack and available to Next at offset [bp+6].
Next can use this return address to gain access to the parameters and return to the appro-
priate spot, if necessary. Next increments the loop control variable and compares it to the
ending value. If the loop control variable’s value is less than the ending value, Next pops
its return address off the stack and returns through ForStmt’s return address. If the loop
control variable is greater than the ending value, Next returns through its own return
address and removes ForStmt’s activation record from the stack. The following is the code
for Next and ForStmt:

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
I word ?
J word ?
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

wp textequ <word ptr>

ForStmt proc near
push bp
mov bp, sp
push ax
push bx
mov bx, [bp+2] ;Get return address
mov ax, cs:[bx+2];Get starting value
mov bx, cs:[bx] ;Get address of var
mov [bx], ax ;var := starting value
add wp [bp+2], 6 ;Skip over parameters
pop bx

6. Assuming the loop does not push anything onto the stack, or pop anything off the stack. Should either case
occur, the ForStmt/Next loop would not work properly.

Figure 11.15 The Stack upon Entering the Next Procedure

Previous Stack Contents

ForStmt's Return Address

 SP, BP

2

4

6

Offset from BP

ForStmt's BP Value

8

Next's Return Address

0 Next's BP Value

Procedures and Functions

Page 597

pop ax
push [bp+2] ;Copy return address
mov bp, [bp] ;Restore bp
ret ;Leave Act Rec on stack

ForStmt endp

Next proc near
push bp
mov bp, sp
push ax
push bx
mov bx, [bp+6] ;ForStmt’s rtn adrs
mov ax, cs:[bx-2];Ending value
mov bx, cs:[bx-6];Ptr to loop ctrl var
inc wp [bx] ;Bump up loop ctrl
cmp ax, [bx] ;Is end val < loop ctrl?
jl QuitLoop

; If we get here, the loop control variable is less than or equal
; to the ending value. So we need to repeat the loop one more time.
; Copy ForStmt’s return address over our own and then return,
; leaving ForStmt’s activation record intact.

mov ax, [bp+6] ;ForStmt’s return address
mov [bp+2], ax ;Overwrite our return address
pop bx
pop ax
pop bp ;Return to start of loop body
ret

; If we get here, the loop control variable is greater than the
; ending value, so we need to quit the loop (by returning to Next’s
; return address) and remove ForStmt’s activation record.

QuitLoop: pop bx
pop ax
pop bp
ret 4

Next endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

call ForStmt
word I,1,5
call ForStmt
word J,2,4
printf
byte “I=%d, J=%d\n”,0
dword I,J

call Next ;End of J loop
call Next ;End of I loop
print
byte “All Done!”,cr,lf,0

Quit: ExitPgm
Main endp
cseg ends
sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends
zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main
The example code in the main program shows that these for loops nest exactly as you

would expect in a high level language like BASIC, Pascal, or C. Of course, this is not a par-
ticularly good way to construct a for loop in assembly language. It is many times slower
than using the standard loop generation techniques (see “Loops” on page 531 for more

Chapter 11

Page 598

details on that). Of course, if you don’t care about speed, this is a perfectly good way to
implement a loop. It is certainly easier to read and understand than the traditional meth-
ods for creating a for loop. For another (more efficient) implementation of the for loop,
check out the ForLp macros in Chapter Eight (see “A Sample Macro to Implement For
Loops” on page 409).

The code stream is a very convenient place to pass parameters. The UCR Standard
Library makes considerable use of this parameter passing mechanism to make it easy to
call certain routines. Printf is, perhaps, the most complex example, but other examples
(especially in the string library) abound.

Despite the convenience, there are some disadvantages to passing parameters in the
code stream. First, if you fail to provide the exact number of parameters the procedure
requires, the subroutine will get very confused. Consider the UCR Standard Library print
routine. It prints a string of characters up to a zero terminating byte and then returns con-
trol to the first instruction following the zero terminating byte. If you leave off the zero ter-
minating byte, the print routine happily prints the following opcode bytes as ASCII
characters until it finds a zero byte. Since zero bytes often appear in the middle of an
instruction, the print routine might return control into the middle of some other instruc-
tion. This will probably crash the machine. Inserting an extra zero, which occurs more
often than you might think, is another problem programmers have with the print routine.
In such a case, the print routine would return upon encountering the first zero byte and
attempt to execute the following ASCII characters as machine code. Once again, this usu-
ally crashes the machine.

Another problem with passing parameters in the code stream is that it takes a little
longer to access such parameters. Passing parameters in the registers, in global variables,
or on the stack is slightly more efficient, especially in short routines. Nevertheless, access-
ing parameters in the code stream isn’t extremely slow, so the convenience of such param-
eters may outweigh the cost. Furthermore, many routines (print is a good example) are so
slow anyway that a few extra microseconds won’t make any difference.

11.5.11 Passing Parameters via a Parameter Block

Another way to pass parameters in memory is through a parameter block. A parameter
block is a set of contiguous memory locations containing the parameters. To access such
parameters, you would pass the subroutine a pointer to the parameter block. Consider the
subroutine from the previous section that adds J and K together, storing the result in I; the
code that passes these parameters through a parameter block might be

Calling sequence:

ParmBlock dword I
I word ? ;I, J, and K must appear in
J word ? ; this order.
K word ?

 .
 .
 .

les bx, ParmBlock
call AddEm
 .
 .
 .

AddEm proc near
push ax
mov ax, es:2[bx] ;Get J’s value
add ax, es:4[bx] ;Add in K’s value
mov es:[bx], ax ;Store result in I
pop ax
ret

AddEm endp

Note that you must allocate the three parameters in contiguous memory locations.

Procedures and Functions

Page 599

This form of parameter passing works well when passing several parameters by refer-
ence, because you can initialize pointers to the parameters directly within the assembler.
For example, suppose you wanted to create a subroutine rotate to which you pass four
parameters by reference. This routine would copy the second parameter to the first, the
third to the second, the fourth to the third, and the first to the fourth. Any easy way to
accomplish this in assembly is

; Rotate- On entry, BX points at a parameter block in the data
; segment that points at four far pointers. This code
; rotates the data referenced by these pointers.

Rotate proc near
push es ;Need to preserve these
push si ; registers
push ax

les si, [bx+4] ;Get ptr to 2nd var
mov ax, es:[si] ;Get its value
les si, [bx] ;Get ptr to 1st var
xchg ax, es:[si] ;2nd->1st, 1st->ax
les si, [bx+12] ;Get ptr to 4th var
xchg ax, es:[si] ;1st->4th, 4th->ax
les si, [bx+8] ;Get ptr to 3rd var
xchg ax, es:[si] ;4th->3rd, 3rd->ax
les si, [bx+4] ;Get ptr to 2nd var
mov es:[si], ax ;3rd -> 2nd

pop ax
pop si
pop es
ret

Rotate endp

To call this routine, you pass it a pointer to a group of four far pointers in the bx regis-
ter. For example, suppose you wanted to rotate the first elements of four different arrays,
the second elements of those four arrays, and the third elements of those four arrays. You
could do this with the following code:

lea bx, RotateGrp1
call Rotate
lea bx, RotateGrp2
call Rotate
lea bx, RotateGrp3
call Rotate
 .
 .
 .

RotateGrp1 dword ary1[0], ary2[0], ary3[0], ary4[0]
RotateGrp2 dword ary1[2], ary2[2], ary3[2], ary4[2]
RotateGrp3 dword ary1[4], ary2[4], ary3[4], ary4[4]

Note that the pointer to the parameter block is itself a parameter. The examples in this
section pass this pointer in the registers. However, you can pass this pointer anywhere
you would pass any other reference parameter – in registers, in global variables, on the
stack, in the code stream, even in another parameter block! Such variations on the theme,
however, will be left to your own imagination. As with any parameter, the best place to
pass a pointer to a parameter block is in the registers. This text will generally adopt that
policy.

Although beginning assembly language programmers rarely use parameter blocks,
they certainly have their place. Some of the IBM PC BIOS and MS-DOS functions use this
parameter passing mechanism. Parameter blocks, since you can initialize their values dur-
ing assembly (using byte, word, etc.), provide a fast, efficient way to pass parameters to a
procedure.

Of course, you can pass parameters by value, reference, value-returned, result, or by
name in a parameter block. The following piece of code is a modification of the Rotate pro-
cedure above where the first parameter is passed by value (its value appears inside the
parameter block), the second is passed by reference, the third by value-returned, and the

Chapter 11

Page 600

fourth by name (there is no pass by result since Rotate needs to read and write all values).
For simplicity, this code uses near pointers and assumes all variables appear in the data
segment:

; Rotate- On entry, DI points at a parameter block in the data
; segment that points at four pointers. The first is
; a value parameter, the second is passed by reference,
; the third is passed by value/return, the fourth is
; passed by name.

Rotate proc near
push si ;Used to access ref parms
push ax ;Temporary
push bx ;Used by pass by name parm
push cx ;Local copy of val/ret parm

mov si, [di+4] ;Get a copy of val/ret parm
mov cx, [si]

mov ax, [di] ;Get 1st (value) parm
call word ptr [di+6] ;Get ptr to 4th var
xchg ax, [bx] ;1st->4th, 4th->ax
xchg ax, cx ;4th->3rd, 3rd->ax
mov bx, [di+2] ;Get adrs of 2nd (ref) parm
xchg ax, [bx] ;3rd->2nd, 2nd->ax
mov [di], ax ;2nd->1st

mov bx, [di+4] ;Get ptr to val/ret parm
mov [bx], cx ;Save val/ret parm away.

pop cx
pop bx
pop ax
pop si
ret

Rotate endp

A reasonable example of a call to this routine might be:

I word 10
J word 15
K word 20
RotateBlk word 25, I, J, KThunk

 .
 .
 .

lea di, RotateBlk
call Rotate
 .
 .
 .

KThunk proc near
lea bx, K
ret

KThunk endp

11.6 Function Results

Functions return a result, which is nothing more than a result parameter. In assembly
language, there are very few differences between a procedure and a function. That is prob-
ably why there aren’t any “func” or “endf” directives. Functions and procedures are usu-
ally different in HLLs, function calls appear only in expressions, subroutine calls as
statements7. Assembly language doesn’t distinguish between them.

You can return function results in the same places you pass and return parameters.
Typically, however, a function returns only a single value (or single data structure) as the

7. “C” is an exception to this rule. C’s procedures and functions are all called functions. PL/I is another exception.
In PL/I, they’re all called procedures.

Procedures and Functions

Page 601

function result. The methods and locations used to return function results is the subject of
the next three sections.

11.6.1 Returning Function Results in a Register

Like parameters, the 80x86’s registers are the best place to return function results. The
getc routine in the UCR Standard Library is a good example of a function that returns a
value in one of the CPU’s registers. It reads a character from the keyboard and returns the
ASCII code for that character in the al register. Generally, functions return their results in
the following registers:

Use First Last
Bytes: al, ah, dl, dh, cl, ch, bl, bh
Words: ax, dx, cx, si, di, bx
Double words: dx:ax On pre-80386

eax, edx, ecx, esi, edi, ebx On 80386 and later.
16-bitOffsets: bx, si, di, dx
32-bit Offsets ebx, esi , edi, eax, ecx, edx
Segmented Pointers: es:di, es:bx, dx:ax, es:si Do not use DS.

Once again, this table represents general guidelines. If you’re so inclined, you could
return a double word value in (cl, dh, al, bh). If you’re returning a function result in some
registers, you shouldn’t save and restore those registers. Doing so would defeat the whole
purpose of the function.

11.6.2 Returning Function Results on the Stack

Another good place where you can return function results is on the stack. The idea
here is to push some dummy values onto the stack to create space for the function result.
The function, before leaving, stores its result into this location. When the function returns
to the caller, it pops everything off the stack except this function result. Many HLLs use
this technique (although most HLLs on the IBM PC return function results in the regis-
ters). The following code sequences show how values can be returned on the stack:

function PasFunc(i,j,k:integer):integer;
begin

PasFunc := i+j+k;
end;

m := PasFunc(2,n,l);

In assembly:

PasFunc_rtn equ 10[bp]
PasFunc_i equ 8[bp]
PasFunc_j equ 6[bp]
PasFunc_k equ 4[bp]

PasFunc proc near
push bp
mov bp, sp
push ax
mov ax, PasFunc_i
add ax, PasFunc_j
add ax, PasFunc_k
mov PasFunc_rtn, ax
pop ax
pop bp
ret 6

PasFunc endp

Chapter 11

Page 602

Calling sequence:

push ax ;Space for function return result
mov ax, 2
push ax
push n
push l
call PasFunc
pop ax ;Get function return result

On an 80286 or later processor you could also use the code:

push ax ;Space for function return result
push 2
push n
push l
call PasFunc
pop ax ;Get function return result

Although the caller pushed eight bytes of data onto the stack, PasFunc only removes
six. The first “parameter” on the stack is the function result. The function must leave this
value on the stack when it returns.

11.6.3 Returning Function Results in Memory Locations

Another reasonable place to return function results is in a known memory location.
You can return function values in global variables or you can return a pointer (presumably
in a register or a register pair) to a parameter block. This process is virtually identical to
passing parameters to a procedure or function in global variables or via a parameter
block.

Returning parameters via a pointer to a parameter block is an excellent way to return
large data structures as function results. If a function returns an entire array, the best way
to return this array is to allocate some storage, store the data into this area, and leave it up
to the calling routine to deallocate the storage. Most high level languages that allow you
to return large data structures as function results use this technique.

Of course, there is very little difference between returning a function result in memory
and the pass by result parameter passing mechanism. See “Pass by Result” on page 576
for more details.

11.7 Side Effects

A side effect is any computation or operation by a procedure that isn’t the primary pur-
pose of that procedure. For example, if you elect not to preserve all affected registers
within a procedure, the modification of those registers is a side effect of that procedure.
Side effect programming, that is, the practice of using a procedure’s side effects, is very
dangerous. All too often a programmer will rely on a side effect of a procedure. Later
modifications may change the side effect, invalidating all code relying on that side effect.
This can make your programs hard to debug and maintain. Therefore, you should avoid
side effect programming.

Perhaps some examples of side effect programming will help enlighten you to the dif-
ficulties you may encounter. The following procedure zeros out an array. For efficiency
reasons, it makes the caller responsible for preserving necessary registers. As a result, one
side effect of this procedure is that the bx and cx registers are modified. In particular, the cx
register contains zero upon return.

Procedures and Functions

Page 603

ClrArray proc near
lea bx, array
mov cx, 32

ClrLoop: mov word ptr [bx], 0
inc bx
inc bx
loop ClrLoop
ret

ClrArray endp

If your code expects cx to contain zero after the execution of this subroutine, you
would be relying on a side effect of the ClrArray procedure. The main purpose behind this
code is zeroing out an array, not setting the cx register to zero. Later, if you modify the
ClrArray procedure to the following, your code that depends upon cx containing zero
would no longer work properly:

ClrArray proc near
lea bx, array

ClrLoop: mov word ptr [bx], 0
inc bx
inc bx
cmp bx, offset array+32
jne ClrLoop
ret

ClrArray endp

So how can you avoid the pitfalls of side effect programming in your procedures? By
carefully structuring your code and paying close attention to exactly how your calling
code and the subservient procedures interface with one another. These rules can help you
avoid problems with side effect programming:

• Always properly document the input and output conditions of a proce-
dure. Never rely on any other entry or exit conditions other than these
documented operations.

• Partition your procedures so that they compute a single value or execute
a single operation. Subroutines that do two or more tasks are, by defini-
tion, producing side effects unless every invocation of that subroutine
requires all the computations and operations.

• When updating the code in a procedure, make sure that it still obeys the
entry and exit conditions. If not, either modify the program so that it does
or update the documentation for that procedure to reflect the new entry
and exit conditions.

• Avoid passing information between routines in the CPU’s flag register.
Passing an error status in the carry flag is about as far as you should ever
go. Too many instructions affect the flags and it’s too easy to foul up a
return sequence so that an important flag is modified on return.

• Always save and restore all registers a procedure modifies.
• Avoid passing parameters and function results in global variables.
• Avoid passing parameters by reference (with the intent of modifying

them for use by the calling code).

These rules, like all other rules, were meant to be broken. Good programming prac-
tices are often sacrificed on the altar of efficiency. There is nothing wrong with breaking
these rules as often as you feel necessary. However, your code will be difficult to debug
and maintain if you violate these rules often. But such is the price of efficiency8. Until you
gain enough experience to make a judicious choice about the use of side effects in your
programs, you should avoid them. More often than not, the use of a side effect will cause
more problems than it solves.

8. This is not just a snide remark. Expert programmers who have to wring the last bit of performance out of a sec-
tion of code often resort to poor programming practices in order to achieve their goals. They are prepared, how-
ever, to deal with the problems that are often encountered in such situations and they are a lot more careful when
dealing with such code.

Chapter 11

Page 604

11.8 Local Variable Storage

Sometimes a procedure will require temporary storage, that it no longer requires
when the procedure returns. You can easily allocate such local variable storage on the
stack.

The 80x86 supports local variable storage with the same mechanism it uses for param-
eters – it uses the bp and sp registers to access and allocate such variables. Consider the
following Pascal program:

program LocalStorage;
var i,j,k:integer;

c: array [0..20000] of integer;

procedure Proc1;
var a:array [0..30000] of integer;

i:integer;
begin

{Code that manipulates a and i}

end;

procedure Proc2;
var b:array [0..20000] of integer;

i:integer;
begin

{Code that manipulates b and i}

end;

begin

{main program that manipulates i,j,k, and c}

end.

Pascal normally allocates global variables in the data segment and local variables in
the stack segment. Therefore, the program above allocates 50,002 words of local storage
(30,001 words in Proc1 and 20,001 words in Proc2). This is above and beyond the other
data on the stack (like return addresses). Since 50,002 words of storage consumes 100,004
bytes of storage you have a small problem – the 80x86 CPUs in real mode limit the stack
segment to 65,536 bytes. Pascal avoids this problem by dynamically allocating local stor-
age upon entering a procedure and deallocating local storage upon return. Unless Proc1
and Proc2 are both active (which can only occur if Proc1 calls Proc2 or vice versa), there is
sufficient storage for this program. You don’t need the 30,001 words for Proc1 and the
20,001 words for Proc2 at the same time. So Proc1 allocates and uses 60,002 bytes of stor-
age, then deallocates this storage and returns (freeing up the 60,002 bytes). Next, Proc2
allocates 40,002 bytes of storage, uses them, deallocates them, and returns to its caller.
Note that Proc1 and Proc2 share many of the same memory locations. However, they do so
at different times. As long as these variables are temporaries whose values you needn’t
save from one invocation of the procedure to another, this form of local storage allocation
works great.

The following comparison between a Pascal procedure and its corresponding assem-
bly language code will give you a good idea of how to allocate local storage on the stack:

procedure LocalStuff(i,j,k:integer);
var l,m,n:integer; {local variables}
begin

l := i+2;
j := l*k+j;
n := j-l;
m := l+j+n;

end;

 Calling sequence:

Procedures and Functions

Page 605

LocalStuff(1,2,3);

 Assembly language code:

LStuff_i equ 8[bp]
LStuff_j equ 6[bp]
LStuff_k equ 4[bp]
LStuff_l equ -4[bp]
LStuff_m equ -6[bp]
LStuff_n equ -8[bp]

LocalStuff proc near
push bp
mov bp, sp
push ax
sub sp, 6 ;Allocate local variables.

L0: mov ax, LStuff_i
add ax, 2
mov LStuff_l, ax
mov ax, LStuff_l
mul LStuff_k
add ax, LStuff_j
mov LStuff_j, ax
sub ax, LStuff_l ;AX already contains j
mov LStuff_n, ax
add ax, LStuff_l ;AX already contains n
add ax, LStuff_j
mov LStuff_m, ax

add sp, 6 ;Deallocate local storage
pop ax
pop bp
ret 6

LocalStuff endp

The sub sp, 6 instruction makes room for three words on the stack. You can allocate
l, m, and n in these three words. You can reference these variables by indexing off the bp
register using negative offsets (see the code above). Upon reaching the statement at label
L0, the stack looks something like Figure 11.15.

This code uses the matching add sp, 6 instruction at the end of the procedure to deal-
locate the local storage. The value you add to the stack pointer must exactly match the
value you subtract when allocating this storage. If these two values don’t match, the stack
pointer upon entry to the routine will not match the stack pointer upon exit; this is like
pushing or popping too many items inside the procedure.

Unlike parameters, that have a fixed offset in the activation record, you can allocate
local variables in any order. As long as you are consistent with your location assignments,
you can allocate them in any way you choose. Keep in mind, however, that the 80x86 sup-
ports two forms of the disp[bp] addressing mode. It uses a one byte displacement when it is
in the range -128..+127. It uses a two byte displacement for values in the range
-32,768..+32,767. Therefore, you should place all primitive data types and other small
structures close to the base pointer, so you can use single byte displacements. You should
place large arrays and other data structures below the smaller variables on the stack.

Most of the time you don’t need to worry about allocating local variables on the stack.
Most programs don’t require more than 64K of storage. The CPU processes global vari-
ables faster than local variables. There are two situations where allocating local variables
as globals in the data segment is not practical: when interfacing assembly language to
HLLs like Pascal, and when writing recursive code. When interfacing to Pascal, your
assembly language code may not have a data segment it can use, recursion often requires
multiple instances of the same local variable.

Chapter 11

Page 606

11.9 Recursion

Recursion occurs when a procedure calls itself. The following, for example, is a recur-
sive procedure:

Recursive proc
call Recursive
ret

Recursive endp

Of course, the CPU will never execute the ret instruction at the end of this procedure.
Upon entry into Recursive, this procedure will immediately call itself again and control
will never pass to the ret instruction. In this particular case, run away recursion results in
an infinite loop.

In many respects, recursion is very similar to iteration (that is, the repetitive execution
of a loop). The following code also produces an infinite loop:

Recursive proc
jmp Recursive
ret

Recursive endp

There is, however, one major difference between these two implementations. The former
version of Recursive pushes a return address onto the stack with each invocation of the
subroutine. This does not happen in the example immediately above (since the jmp
instruction does not affect the stack).

Like a looping structure, recursion requires a termination condition in order to stop
infinite recursion. Recursive could be rewritten with a termination condition as follows:

Figure 11.16 The Stack upon Entering the Next Procedure

Previous Stack Contents

Original BP Value

 SP

If this is a
NEAR Procedure

Storage for L-4

-2

0

2

Offset from BP

Storage for N

-6

BP

-8

Return Address

Value of K parameter4

6

8

10

Value of I Parameter

Value of J Parameter

AX

Storage for M

Procedures and Functions

Page 607

Recursive proc
dec ax
jz QuitRecurse
call Recursive

QuitRecurse: ret
Recursive endp

This modification to the routine causes Recursive to call itself the number of times
appearing in the ax register. On each call, Recursive decrements the ax register by one and
calls itself again. Eventually, Recursive decrements ax to zero and returns. Once this hap-
pens, the CPU executes a string of ret instructions until control returns to the original call
to Recursive.

So far, however, there hasn’t been a real need for recursion. After all, you could effi-
ciently code this procedure as follows:

Recursive proc
RepeatAgain: dec ax

jnz RepeatAgain
ret

Recursive endp

Both examples would repeat the body of the procedure the number of times passed in
the ax register9. As it turns out, there are only a few recursive algorithms that you cannot
implement in an iterative fashion. However, many recursively implemented algorithms
are more efficient than their iterative counterparts and most of the time the recursive form
of the algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that almost always
appears in recursive form. A Pascal implementation of this algorithm follows:

procedure quicksort(var a:ArrayToSort; Low,High: integer);

procedure sort(l,r: integer);
var i,j,Middle,Temp: integer;
begin

i:=l;
j:=r;
Middle:=a[(l+r) DIV 2];
repeat

while (a[i] < Middle) do i:=i+1;
while (Middle < a[j]) do j:=j-1;
if (i <= j) then begin

Temp:=a[i];
a[i]:=a[j];
a[j]:=Temp;
i:=i+1;
j:=j-1;

end;

until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);

end;

begin {quicksort};

sort(Low,High);

end;

The sort subroutine is the recursive routine in this package. Recursion occurs at the last
two if statements in the sort procedure.

In assembly language, the sort routine looks something like this:

9. Although the latter version will do it considerably faster since it doesn’t have the overhead of the CALL/RET
instructions.

Chapter 11

Page 608

include stdlib.a
includelib stdlib.lib

cseg segment
assume cs:cseg, ds:cseg, ss:sseg, es:cseg

; Main program to test sorting routine

Main proc
mov ax, cs
mov ds, ax
mov es, ax

mov ax, 0
push ax
mov ax, 31
push ax
call sort

ExitPgm ;Return to DOS
Main endp

; Data to be sorted

a word 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16
word 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

; procedure sort (l,r:integer)
; Sorts array A between indices l and r

l equ 6[bp]
r equ 4[bp]
i equ -2[bp]
j equ -4[bp]

sort proc near
push bp
mov bp, sp
sub sp, 4 ;Make room for i and j.

mov ax, l ;i := l
mov i, ax
mov bx, r ;j := r

mov j, bx

; Note: This computation of the address of a[(l+r) div 2] is kind
; of strange. Rather than divide by two, then multiply by two
; (since A is a word array), this code simply clears the L.O. bit
; of BX.

add bx, l ;Middle := a[(l+r) div 2]
and bx, 0FFFEh
mov ax, a[bx] ;BX*2, because this is a word

; ; array,nullifies the “div 2”
; ; above.
;
; Repeat until i > j: Of course, I and J are in BX and SI.

lea bx, a ;Compute the address of a[i]
add bx, i ; and leave it in BX.
add bx, i

lea si, a ;Compute the address of a[j]
add si, j ; and leave it in SI.
add si, j

RptLp:

; While (a [i] < Middle) do i := i + 1;

sub bx, 2 ;We’ll increment it real
soon.
WhlLp1: add bx, 2

cmp ax, [bx] ;AX still contains middle
jg WhlLp1

; While (Middle < a[j]) do j := j-1

Procedures and Functions

Page 609

add si, 2 ;We’ll decrement it in loop
WhlLp2: add si, 2

cmp ax, [si] ;AX still contains middle
jl WhlLp2 ; value.
cmp bx, si
jnle SkipIf

; Swap, if necessary

mov dx, [bx]
xchg dx, [si]
xchg dx, [bx]

add bx, 2 ;Bump by two (integer values)
sub si, 2

SkipIf: cmp bx, si
jng RptLp

; Convert SI and BX back to I and J

lea ax, a
sub bx, ax
shr bx, 1
sub si, ax

shrsi, 1

; Now for the recursive part:

mov ax, l
cmp ax, si
jnl NoRec1
push ax
push si
call sort

NoRec1: cmp bx, r
jnl NoRec2
push bx
push r
call sort

NoRec2: mov sp, bp
pop bp
ret 4

Sort endp

cseg ends
sseg segment stack ‘stack’

word 256 dup (?)
sseg ends

end main

 Other than some basic optimizations (like keeping several variables in registers), this
code is almost a literal translation of the Pascal code. Note that the local variables i and j
aren’t necessary in this assembly language code (we could use registers to hold their val-
ues). Their use simply demonstrates the allocation of local variables on the stack.

There is one thing you should keep in mind when using recursion – recursive routines
can eat up a considerable stack space. Therefore, when writing recursive subroutines,
always allocate sufficient memory in your stack segment. The example above has an
extremely anemic 512 byte stack space, however, it only sorts 32 numbers therefore a 512
byte stack is sufficient. In general, you won’t know the depth to which recursion will take
you, so allocating a large block of memory for the stack may be appropriate.

There are several efficiency considerations that apply to recursive procedures. For
example, the second (recursive) call to sort in the assembly language code above need not
be a recursive call. By setting up a couple of variables and registers, a simple jmp instruc-
tion can can replace the pushes and the recursive call. This will improve the performance
of the quicksort routine (quite a bit, actually) and will reduce the amount of memory the
stack requires. A good book on algorithms, such as D.E. Knuth’s The Art of Computer
Programming, Volume 3, would be an excellent source of additional material on quick-

Chapter 11

Page 610

sort. Other texts on algorithm complexity, recursion theory, and algorithms would be a
good place to look for ideas on efficiently implementing recursive algorithms.

11.10 Sample Program

The following sample program demonstrates several concepts appearing in this chap-
ter, most notably, passing parameters on the stack. This program (Pgm11_1.asm appearing
on the companion CD-ROM) manipulates the PC’s memory-mapped text video display
screen (at address B800:0 for color displays, B000:0 for monochrome displays). It provides
routines that “capture” all the data on the screen to an array, write the contents of an array
to the screen, clear the screen, scroll one line up or down, position the cursor at an (X,Y)
coordinate, and retrieve the current cursor position.

Note that this code was written to demonstrate the use of parameters and local vari-
ables. Therefore, it is rather inefficient. As the comments point out, many of the functions
this package provides could be written to run much faster using the 80x86 string instruc-
tions. See the laboratory exercises for a different version of some of these functions that is
written in such a fashion. Also note that this code makes some calls to the PC’s BIOS to set
and obtain the cursor position as well as clear the screen. See the chapter on BIOS and
DOS for more details on these BIOS calls.

; Pgm11_1.asm
;
; Screen Aids.
;
; This program provides some useful screen manipulation routines
; that let you do things like position the cursor, save and restore
; the contents of the display screen, clear the screen, etc.
;
; This program is not very efficient. It was written to demonstrate
; parameter passing, use of local variables, and direct conversion of
; loops to assembly language. There are far better ways of doing
; what this program does (running about 5-10x faster) using the 80x86
; string instructions.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386 ;Comment out these two statements
option segment:use16 ; if you are not using an 80386.

; ScrSeg- This is the video screen's segment address. It should be
; B000 for mono screens and B800 for color screens.

ScrSeg = 0B800h

dseg segment para public 'data'

XPosn word ? ;Cursor X-Coordinate (0..79)
YPosn word ? ;Cursor Y-Coordinate (0..24)

; The following array holds a copy of the initial screen data.

SaveScr word 25 dup (80 dup (?))

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Procedures and Functions

Page 611

; Capture- Copies the data on the screen to the array passed
; by reference as a parameter.
;
; procedure Capture(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
; for x := 0 to 79 do
; SCREEN[y,x] := ScrCopy[y,x];
; end;
;
;
; Activation record for Capture:
;
; | |
; | Previous stk contents |
; -------------------------
; | ScrCopy Seg Adrs |
; -- --
; | ScrCopy offset Adrs |
; -------------------------
; | Return Adrs (near) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

ScrCopy_cap textequ <dword ptr [bp+4]>
X_cap textequ <word ptr [bp-2]>
Y_cap textequ <word ptr [bp-4]>

Capture proc
push bp
mov bp, sp
sub sp, 4 ;Allocate room for locals.

push es
push ds
push ax
push bx
push di

mov bx, ScrSeg ;Set up pointer to SCREEN
mov es, bx ; memory (ScrSeg:0).

lds di, ScrCopy_cap ;Get ptr to capture array.

mov Y_cap, 0
YLoop: mov X_cap, 0
XLoop: mov bx, Y_cap

imul bx, 80 ;Screen memory is a 25x80 array
add bx, X_cap ; stored in row major order
add bx, bx ; with two bytes per element.

mov ax, es:[bx] ;Read character code from screen.
mov [di][bx], ax ;Store away into capture array.

inc X_Cap ;Repeat for each character on this
cmp X_Cap, 80 ; row of characters (each character
jb XLoop ; in the row is two bytes).

inc Y_Cap ;Repeat for each row on the screen.

Chapter 11

Page 612

cmp Y_Cap, 25
jb YLoop

pop di
pop bx
pop ax
pop ds
pop es
mov sp, bp
pop bp
ret 4

Capture endp

; Fill- Copies array passed by reference onto the screen.
;
; procedure Fill(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
; for x := 0 to 79 do
; ScrCopy[y,x] := SCREEN[y,x];
; end;
;
;
; Activation record for Fill:
;
; | |
; | Previous stk contents |
; -------------------------
; | ScrCopy Seg Adrs |
; -- --
; | ScrCopy offset Adrs |
; -------------------------
; | Return Adrs (near) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

ScrCopy_fill textequ <dword ptr [bp+4]>
X_fill textequ <word ptr [bp-2]>
Y_fill textequ <word ptr [bp-4]>

Fill proc
push bp
mov bp, sp
sub sp, 4

push es
push ds
push ax
push bx
push di

mov bx, ScrSeg ;Set up pointer to SCREEN
mov es, bx ; memory (ScrSeg:0).

lds di, ScrCopy_fill ;Get ptr to data array.

mov Y_Fill, 0
YLoop: mov X_Fill, 0

Procedures and Functions

Page 613

XLoop: mov bx, Y_Fill
imul bx, 80 ;Screen memory is a 25x80 array
add bx, X_Fill ; stored in row major order
add bx, bx ; with two bytes per element.

mov ax, [di][bx] ;Store away into capture array.
mov es:[bx], ax ;Read character code from screen.

inc X_Fill ;Repeat for each character on this
cmp X_Fill, 80 ; row of characters (each character
jb XLoop ; in the row is two bytes).

inc Y_Fill ;Repeat for each row on the screen.
cmp Y_Fill, 25
jb YLoop

pop di
pop bx
pop ax
pop ds
pop es
mov sp, bp
pop bp
ret 4

Fill endp

; Scroll_up- Scrolls the screen up on line. It does this by copying the
; second line to the first, the third line to the second, the
; fourth line to the third, etc.
;
; procedure Scroll_up;
; var x,y:integer;
; begin
; for y := 1 to 24 do
; for x := 0 to 79 do
; SCREEN[Y-1,X] := SCREEN[Y,X];
; end;
;
; Activation record for Scroll_up:
;
; | |
; | Previous stk contents |
; -------------------------
; | Return Adrs (near) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

X_su textequ <word ptr [bp-2]>
Y_su textequ <word ptr [bp-4]>

Scroll_up proc
push bp
mov bp, sp
sub sp, 4 ;Make room for X, Y.

push ds
push ax
push bx

mov ax, ScrSeg
mov ds, ax

Chapter 11

Page 614

mov Y_su, 0
su_Loop1: mov X_su, 0

su_Loop2: mov bx, Y_su ;Compute index into screen
imul bx, 80 ; array.
add bx, X_su
add bx, bx ;Remember, this is a word array.

mov ax, [bx+160] ;Fetch word from source line.
mov [bx], ax ;Store into dest line.

inc X_su
cmp X_su, 80
jb su_Loop2

inc Y_su
cmp Y_su, 80
jb su_Loop1

pop bx
pop ax
pop ds
mov sp, bp
pop bp
ret

Scroll_up endp

; Scroll_dn- Scrolls the screen down one line. It does this by copying the
; 24th line to the 25th, the 23rd line to the 24th, the 22nd line
; to the 23rd, etc.
;
; procedure Scroll_dn;
; var x,y:integer;
; begin
; for y := 23 downto 0 do
; for x := 0 to 79 do
; SCREEN[Y+1,X] := SCREEN[Y,X];
; end;
;
; Activation record for Scroll_dn:
;
; | |
; | Previous stk contents |
; -------------------------
; | Return Adrs (near) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

X_sd textequ <word ptr [bp-2]>
Y_sd textequ <word ptr [bp-4]>

Scroll_dn proc
push bp
mov bp, sp
sub sp, 4 ;Make room for X, Y.

push ds
push ax
push bx

mov ax, ScrSeg

Procedures and Functions

Page 615

mov ds, ax
mov Y_sd, 23

sd_Loop1: mov X_sd, 0

sd_Loop2: mov bx, Y_sd ;Compute index into screen
imul bx, 80 ; array.
add bx, X_sd
add bx, bx ;Remember, this is a word array.

mov ax, [bx] ;Fetch word from source line.
mov [bx+160], ax ;Store into dest line.

inc X_sd
cmp X_sd, 80
jb sd_Loop2

dec Y_sd
cmp Y_sd, 0
jge sd_Loop1

pop bx
pop ax
pop ds
mov sp, bp
pop bp
ret

Scroll_dn endp

; GotoXY- Positions the cursor at the specified X, Y coordinate.
;
; procedure gotoxy(x,y:integer);
; begin
; BIOS(posnCursor,x,y);
; end;
;
; Activation record for GotoXY
;
; | |
; | Previous stk contents |
; -------------------------
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Return Adrs (near) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | Registers, etc. |
; ------------------------- <- SP

X_gxy textequ <byte ptr [bp+6]>
Y_gxy textequ <byte ptr [bp+4]>

GotoXY proc
push bp
mov bp, sp
push ax
push bx
push dx

mov ah, 2 ;Magic BIOS value for gotoxy.
mov bh, 0 ;Display page zero.
mov dh, Y_gxy ;Set up BIOS (X,Y) parameters.
mov dl, X_gxy
int 10h ;Make the BIOS call.

Chapter 11

Page 616

pop dx
pop bx
pop ax
mov sp, bp
pop bp
ret 4

GotoXY endp

; GetX- Returns cursor X-Coordinate in the AX register.

GetX proc
push bx
push cx
push dx

mov ah, 3 ;Read X, Y coordinates from
mov bh, 0 ; BIOS
int 10h

mov al, dl ;Return X coordinate in AX.
mov ah, 0

pop dx
pop cx
pop bx
ret

GetX endp

; GetY- Returns cursor Y-Coordinate in the AX register.

GetY proc
push bx
push cx
push dx

mov ah, 3
mov bh, 0
int 10h

mov al, dh ;Return Y Coordinate in AX.
mov ah, 0

pop dx
pop cx
pop bx
ret

GetY endp

; ClearScrn- Clears the screen and positions the cursor at (0,0).
;
; procedure ClearScrn;
; begin
; BIOS(Initialize)
; end;

ClearScrn proc
push ax
push bx
push cx
push dx

mov ah, 6 ;Magic BIOS number.
mov al, 0 ;Clear entire screen.
mov bh, 07 ;Clear with black spaces.

Procedures and Functions

Page 617

mov cx, 0000;Upper left corner is (0,0)
mov dl, 79 ;Lower X-coordinate
mov dh, 24 ;Lower Y-coordinate
int 10h ;Make the BIOS call.

push 0 ;Position the cursor to (0,0)
push 0 ; after the call.
call GotoXY

pop dx
pop cx
pop bx
pop ax
ret

ClearScrn endp

; A short main program to test out the above:

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Save the screen as it looks when this program is run.

push seg SaveScr
push offset SaveScr
call Capture

call GetX
mov XPosn, ax

call GetY
mov YPosn, ax

; Clear the screen to prepare for our stuff.

call ClearScrn

; Position the cursor in the middle of the screen and print some stuff.

push 30 ;X value
push 10 ;Y value
call GotoXY

print
byte "Screen Manipulatation Demo",0

push 30
push 11
call GotoXY

print
byte "Press any key to continue",0

getc

; Scroll the screen up two lines

call Scroll_up
call Scroll_up
getc

;Scroll the screen down four lines:

call Scroll_dn

Chapter 11

Page 618

call Scroll_dn
call Scroll_dn
call Scroll_dn
getc

; Restore the screen to what it looked like prior to this call.

push seg SaveScr
push offset SaveScr
call Fill

push XPosn
push YPosn
call GotoXY

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

11.11 Laboratory Exercises

This laboratory exercise demonstrates how a C/C++ program calls some assembly
language functions. This exercise consists of two program units: a Borland C++ program
(Ex11_1.cpp) and a MASM 6.11 program (Ex11_1a.asm). Since you may not have access to
a C++ compiler (and Borland C++ in particular)10, the EX11.EXE file contains a precom-
piled and linked version of these files. If you have a copy of Borland C++ then you can
compile/assemble these files using the makefile that also appears in the Chapter 11 subdi-
rectory.

The C++ program listing appears in Section 11.11.1. This program clears the screen
and then bounces a pound sign (“#”) around the screen until the user presses any key.
Then this program restores the screen to the previous display before running the program
and quits. All screen manipulation, as well as testing for a keypress, is taken care of by
functions written in assembly language. The “extern” statements at the beginning of the
program provide the linkage to these assembly language functions11. There are a few
important things to note about how C/C++ passes parameters to an assembly language
function:

• C++ pushes parameters on the stack in the reverse order that they appear
in a parameter list. For example, for the call “f(a,b);” C++ would push b
first and a second. This is opposite of most of the examples in this chapter.

• In C++, the caller is responsible for removing parameters from the stack.
In this chapter, the callee (the function itself) usually removed the param-
eters by specifying some value after the ret instruction. Assembly lan-
guage functions that C++ calls must not do this.

• C++ on the PC uses different memory models to control whether pointers
and functions are near or far. This particular program uses the compact

10. There is nothing Borland specific in this C++ program. Borland was chosen because it provides an option that
generates well annotated assembly output.
11. The extern “C” phrase instructs Borland C++ to generate standard C external names rather than C++ mangled
names. A C external name is the function name with an underscore in front of it (e.g., GotoXY becomes _GotoXY).
C++ completely changes the name to handle overloading and it is difficult to predict the actual name of the cor-
responding assembly language function.

Procedures and Functions

Page 619

memory model. This provides for near procedures and far pointers.
Therefore, all calls will be near (with only a two-byte return address on
the stack) and all pointers to data objects will be far.

• Borland C++ requires a function to preserve the segment registers, BP, DI,
and SI. The function need not preserve any other registers. If an assembly
language function needs to return a 16-bit function result to C++, it must
return this value in the AX register.

• See the Borland C++ Programmer’s Guide (or corresponding manual for
your C++ compiler) for more details about the C/C++ and assembly lan-
guage interface.

Most C++ compilers give you the option of generating assembly language output
rather than binary machine code. Borland C++ is nice because it generates nicely anno-
tated assembly output with comments pointing out which C++ statments correspond to a
given sequence of assembly language instructions. The assembly language output of BCC
appears in Section 11.11.2 (This is a slightly edited version to remove some superfluous
information). Look over this code and note that, subject to the rules above, the C++ com-
piler emits code that is very similar to that described throughout this chapter.

The Ex11_1a.asm file (see section 11.11.3) is the actual assembly code the C++ program
calls. This contains the functions for the GotoXY, GetXY, ClrScrn, tstKbd, Capture, Put-
Scrn, PutChar, and PutStr routines that Ex11_1.cpp calls. To avoid legal software distribu-
tion problems, this particular C/C++ program does not include any calls to C/C++
Standard Library functions. Furthermore, it does not use the standard C0m.obj file from
Borland that calls the main program. Borland’s liberal license agreement does not allow
one to distribute their librarys and object modules unlinked with other code. The assem-
bly language code provides the necessary I/O routines and it also provides a startup rou-
tine (StartPgm) that call the C++ main program when DOS/Windows transfers control to
the program. By supplying the routines this way, you do not need the Borland libraries or
object code to link these programs together.

One side effect of linking the modules in this fashion is that the compiler, assembler,
and linker cannot store the correct source level debugging information in the .exe file.
Therefore, you will not be able to use CodeView to view the actual source code. Instead,
you will have to work with disassembled machine code. This is where the assembly out-
put from Borland C++ (Ex11_1.asm) comes in handy. As you single step through the main
C++ program you can trace the program flow by looking at the Ex11_1.asm file.

For your lab report: single step through the StartPgm code until it calls the C++ main
function. When this happens, locate the calls to the routines in Ex11_1a.asm. Set break-
points on each of these calls using the F9 key. Run up to each breakpoint and then single
step into the function using the F8 key. Once inside, display the memory locations starting
at SS:SP. Identify each parameter passed on the stack. For reference parameters, you may
want to look at the memory locations whose address appears on the stack. Report your
findings in your lab report.

Include a printout of the Ex11_1.asm file and identify those instructions that push
each parameter onto the stack. At run time, determine the values that each parameter
push sequence pushes onto the stack and include these values in your lab report.

Many of the functions in the assembly file take a considerable amount of time to exe-
cute. Therefore, you should not single step through each of the functions. Instead, make
sure you’ve set up the breakpoints on each of the call instructions in the C++ program and
use the F5 key to run (at full speed) up to the next function call.

11.11.1 Ex11_1.cpp

extern "C" void GotoXY(unsigned y, unsigned x);
extern "C" void GetXY(unsigned &x, unsigned &y);
extern "C" void ClrScrn();
extern "C" int tstKbd();

Chapter 11

Page 620

extern "C" void Capture(unsigned ScrCopy[25][80]);
extern "C" void PutScr(unsigned ScrCopy[25][80]);
extern "C" void PutChar(char ch);
extern "C" void PutStr(char *ch);

int main()
{
 unsigned SaveScr[25][80];

 int dx,
 x,
 dy,
 y;

 long i;

 unsigned savex,
 savey;

 GetXY(savex, savey);
 Capture(SaveScr);
 ClrScrn();

 GotoXY(24,0);
 PutStr("Press any key to quit");

 dx = 1;
 dy = 1;
 x = 1;
 y = 1;
 while (!tstKbd())
 {

GotoXY(y, x);
 PutChar('#');

 for (i=0; i<500000; ++i);

 GotoXY(y, x);
 PutChar(' ');

x += dx;
 y += dy;
 if (x >= 79)

{
 x = 78;
 dx = -1;

}
 else if (x <= 0)

{
 x = 1;
 dx = 1;

}

 if (y >= 24)
{

 y = 23;
 dy = -1;

}
 else if (y <= 0)

{
 y = 1;
 dy = 1;

}

 }

 PutScr(SaveScr);

Procedures and Functions

Page 621

 GotoXY(savey, savex);
 return 0;
}

11.11.2 Ex11_1.asm

_TEXT segment byte public 'CODE'
_TEXT ends
DGROUP group _DATA,_BSS

assume cs:_TEXT,ds:DGROUP
_DATA segment word public 'DATA'
d@ label byte
d@w label word
_DATA ends
_BSS segment word public 'BSS'
b@ label byte
b@w label word
_BSS ends

_TEXT segment byte public 'CODE'
 ;
 ; int main()
 ;

assume cs:_TEXT
_main proc near

push bp
mov bp,sp
sub sp,4012
push si
push di

 ;
 ; {
 ; unsigned SaveScr[25][80];
 ;
 ; int dx,
 ; x,
 ; dy,
 ; y;
 ;
 ; long i;
 ;
 ; unsigned savex,
 ; savey;
 ;
 ;
 ;
 ; GetXY(savex, savey);
 ;

push ss
lea ax,word ptr [bp-12]
push ax
push ss
lea ax,word ptr [bp-10]
push ax
call near ptr _GetXY
add sp,8

 ;
 ; Capture(SaveScr);
 ;

push ss
lea ax,word ptr [bp-4012]
push ax
call near ptr _Capture
pop cx
pop cx

 ;

Chapter 11

Page 622

 ; ClrScrn();
 ;

call near ptr _ClrScrn
 ;
 ;
 ; GotoXY(24,0);
 ;

xor ax,ax
push ax
mov ax,24
push ax
call near ptr _GotoXY
pop cx
pop cx

 ;
 ; PutStr("Press any key to quit");
 ;

push ds
mov ax,offset DGROUP:s@
push ax
call near ptr _PutStr
pop cx
pop cx

 ;
 ;
 ; dx = 1;
 ;

mov word ptr [bp-2],1
 ;
 ; dy = 1;
 ;

mov word ptr [bp-4],1
 ;
 ; x = 1;
 ;

mov si,1
 ;
 ; y = 1;
 ;

mov di,1
jmp @1@422

@1@58:
 ;
 ; while (!tstKbd())
 ; {
 ;
 ; GotoXY(y, x);
 ;

push si
push di
call near ptr _GotoXY
pop cx
pop cx

 ;
 ; PutChar('#');
 ;

mov al,35
push ax
call near ptr _PutChar
pop cx

 ;
 ;
 ; for (i=0; i<500000; ++i);
 ;

mov word ptr [bp-6],0
mov word ptr [bp-8],0
jmp short @1@114

@1@86:
add word ptr [bp-8],1
adc word ptr [bp-6],0

Procedures and Functions

Page 623

@1@114:
cmp word ptr [bp-6],7
jl short @1@86
jne short @1@198
cmp word ptr [bp-8],-24288
jb short @1@86

@1@198:
 ;
 ;
 ; GotoXY(y, x);
 ;

push si
push di
call near ptr _GotoXY
pop cx
pop cx

 ;
 ; PutChar(' ');
 ;

mov al,32
push ax
call near ptr _PutChar
pop cx

 ;
 ;
 ;
 ;
 ; x += dx;
 ;

add si,word ptr [bp-2]
 ;
 ; y += dy;
 ;

add di,word ptr [bp-4]
 ;
 ; if (x >= 79)
 ;

cmp si,79
jl short @1@254

 ;
 ; {
 ; x = 78;
 ;

mov si,78
 ;
 ; dx = -1;
 ;

mov word ptr [bp-2],-1
 ;
 ; }
 ;

jmp short @1@310
@1@254:
 ;
 ; else if (x <= 0)
 ;

or si,si
jg short @1@310

 ;
 ; {
 ; x = 1;
 ;

mov si,1
 ;
 ; dx = 1;
 ;

mov word ptr [bp-2],1
@1@310:
 ;
 ; }

Chapter 11

Page 624

 ;
 ; if (y >= 24)
 ;

cmp di,24
jl short @1@366

 ;
 ; {
 ; y = 23;
 ;

mov di,23
 ;
 ; dy = -1;
 ;

mov word ptr [bp-4],-1
 ;
 ; }
 ;

jmp short @1@422
@1@366:
 ;
 ; else if (y <= 0)
 ;

or di,di
jg short @1@422

 ;
 ; {
 ; y = 1;
 ;

mov di,1
 ;
 ; dy = 1;
 ;

mov word ptr [bp-4],1
@1@422:

call near ptr _tstKbd
or ax,ax
jne @@0
jmp @1@58

@@0:
 ;
 ; }
 ;
 ;
 ; }
 ;
 ; PutScr(SaveScr);
 ;

push ss
lea ax,word ptr [bp-4012]
push ax
call near ptr _PutScr
pop cx
pop cx

 ;
 ; GotoXY(savey, savex);
 ;

push word ptr [bp-10]
push word ptr [bp-12]
call near ptr _GotoXY
pop cx
pop cx

 ;
 ; return 0;
 ;

xor ax,ax
jmp short @1@478

@1@478:
 ;
 ; }
 ;

Procedures and Functions

Page 625

pop di
pop si
mov sp,bp
pop bp
ret

_main endp

_TEXT ends

_DATA segment word public 'DATA'
s@ label byte

db 'Press any key to quit'
db 0

_DATA ends
_TEXT segment byte public 'CODE'
_TEXT ends

public _main
extrn _PutStr:near
extrn _PutChar:near
extrn _PutScr:near
extrn _Capture:near
extrn _tstKbd:near
extrn _ClrScrn:near
extrn _GetXY:near
extrn _GotoXY:near

_s@ equ s@
end

11.11.3 EX11_1a.asm

; Assembly code to link with a C/C++ program.
; This code directly manipulates the screen giving C++
; direct access control of the screen.
;
; Note: Like PGM11_1.ASM, this code is relatively inefficient.
; It could be sped up quite a bit using the 80x86 string instructions.
; However, its inefficiency is actually a plus here since we don't
; want the C/C++ program (Ex11_1.cpp) running too fast anyway.
;
;
; This code assumes that Ex11_1.cpp is compiled using the LARGE
; memory model (far procs and far pointers).

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386 ;Comment out these two statements
option segment:use16 ; if you are not using an 80386.

; ScrSeg- This is the video screen's segment address. It should be
; B000 for mono screens and B800 for color screens.

ScrSeg = 0B800h

_TEXT segment para public 'CODE'
 assume cs:_TEXT

; _Capture- Copies the data on the screen to the array passed
; by reference as a parameter.
;
; procedure Capture(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
; for x := 0 to 79 do

Chapter 11

Page 626

; SCREEN[y,x] := ScrCopy[y,x];
; end;
;
;
; Activation record for Capture:
;
; | |
; | Previous stk contents |
; -------------------------
; | ScrCopy Seg Adrs |
; -- --
; | ScrCopy offset Adrs |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

ScrCopy_cap textequ <dword ptr [bp+4]>
X_cap textequ <word ptr [bp-2]>
Y_cap textequ <word ptr [bp-4]>

public _Capture
_Capture proc near

push bp
mov bp, sp

push es
push ds
push si
push di
pushf
cld

mov si, ScrSeg ;Set up pointer to SCREEN
mov ds, si ; memory (ScrSeg:0).
sub si, si

les di, ScrCopy_cap ;Get ptr to capture array.

mov cx, 1000 ;4000 dwords on the screen
rep movsd

popf
pop di
pop si
pop ds
pop es
mov sp, bp
pop bp
ret

_Capture endp

; _PutScr- Copies array passed by reference onto the screen.
;
; procedure PutScr(var ScrCopy:array[0..24,0..79] of word);
; var x,y:integer;
; begin
;
; for y := 0 to 24 do
; for x := 0 to 79 do
; ScrCopy[y,x] := SCREEN[y,x];
; end;
;

Procedures and Functions

Page 627

;
; Activation record for PutScr:
;
; | |
; | Previous stk contents |
; -------------------------
; | ScrCopy Seg Adrs |
; -- --
; | ScrCopy offset Adrs |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | BP Value | <- BP
; -------------------------
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Registers, etc. |
; ------------------------- <- SP

ScrCopy_fill textequ <dword ptr [bp+4]>
X_fill textequ <word ptr [bp-2]>
Y_fill textequ <word ptr [bp-4]>

public _PutScr
_PutScr proc near

push bp
mov bp, sp

push es
push ds
push si
push di
pushf
cld

mov di, ScrSeg ;Set up pointer to SCREEN
mov es, di ; memory (ScrSeg:0).
sub di, di

lds si, ScrCopy_cap ;Get ptr to capture array.

mov cx, 1000 ;1000 dwords on the screen
rep movsd

popf
pop di
pop si
pop ds
pop es
mov sp, bp
pop bp
ret

_PutScr endp

; GotoXY-Positions the cursor at the specified X, Y coordinate.
;
; procedure gotoxy(y,x:integer);
; begin
; BIOS(posnCursor,x,y);
; end;
;
; Activation record for GotoXY
;

Chapter 11

Page 628

; | |
; | Previous stk contents |
; -------------------------
; | X coordinate value |
; -------------------------
; | Y coordinate value |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | Registers, etc. |
; ------------------------- <- SP

X_gxy textequ <byte ptr [bp+6]>
Y_gxy textequ <byte ptr [bp+4]>

public _GotoXY
_GotoXY proc near

push bp
mov bp, sp

mov ah, 2 ;Magic BIOS value for gotoxy.
mov bh, 0 ;Display page zero.
mov dh, Y_gxy ;Set up BIOS (X,Y) parameters.
mov dl, X_gxy
int 10h ;Make the BIOS call.

mov sp, bp
pop bp
ret

_GotoXY endp

; ClrScrn- Clears the screen and positions the cursor at (0,0).
;
; procedure ClrScrn;
; begin
; BIOS(Initialize)
; end;
;
; Activation record for ClrScrn
;
; | |
; | Previous stk contents |
; -------------------------
; | Return Adrs (offset) |
; ------------------------- <- SP

public _ClrScrn
_ClrScrn proc near

mov ah, 6 ;Magic BIOS number.
mov al, 0 ;Clear entire screen.
mov bh, 07 ;Clear with black spaces.
mov cx, 0000 ;Upper left corner is (0,0)
mov dl, 79 ;Lower X-coordinate
mov dh, 24 ;Lower Y-coordinate
int 10h ;Make the BIOS call.

push 0 ;Position the cursor to (0,0)
push 0 ; after the call.
call _GotoXY
add sp, 4 ;Remove parameters from stack.

ret
_ClrScrn endp

Procedures and Functions

Page 629

; tstKbd- Checks to see if a key is available at the keyboard.
;
; function tstKbd:boolean;
; begin
; if BIOSKeyAvail then eat key and return true
; else return false;
; end;
;
; Activation record for tstKbd
;
; | |
; | Previous stk contents |
; -------------------------
; | Return Adrs (offset) |
; ------------------------- <- SP

public _tstKbd
_tstKbd proc near

mov ah, 1 ;Check to see if key avail.
int 16h
je NoKey
mov ah, 0 ;Eat the key if there is one.
int 16h
mov ax, 1 ;Return true.
ret

NoKey: mov ax, 0 ;No key, so return false.
ret

_tstKbd endp

; GetXY- Returns the cursor's current X and Y coordinates.
;
; procedure GetXY(var x:integer; var y:integer);
;
; Activation record for GetXY
;
; | |
; | Previous stk contents |
; -------------------------
; | Y Coordinate |
; --- Address ---
; | |
; -------------------------
; | X coordinate |
; --- Address ---
; | |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | Registers, etc. |
; ------------------------- <- SP

GXY_X textequ <[bp+4]>
GXY_Y textequ <[bp+8]>

public _GetXY
_GetXY proc near

push bp
mov bp, sp
push es

mov ah, 3 ;Read X, Y coordinates from
mov bh, 0 ; BIOS
int 10h

Chapter 11

Page 630

les bx, GXY_X
mov es:[bx], dl
mov byte ptr es:[bx+1], 0

les bx, GXY_Y
mov es:[bx], dh
mov byte ptr es:[bx+1], 0

pop es
pop bp
ret

_GetXY endp

; PutChar- Outputs a single character to the screen at the current
; cursor position.
;
; procedure PutChar(ch:char);
;
; Activation record for PutChar
;
; | |
; | Previous stk contents |
; -------------------------
; | char (in L.O. byte |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | Registers, etc. |
; ------------------------- <- SP

ch_pc textequ <[bp+4]>

public _PutChar
_PutChar proc near

push bp
mov bp, sp

mov al, ch_pc
mov ah, 0eh
int 10h

pop bp
ret

_PutChar endp

; PutStr- Outputs a string to the display at the current cursor position.
; Note that a string is a sequence of characters that ends with
; a zero byte.
;
; procedure PutStr(var str:string);
;
; Activation record for PutStr
;

Procedures and Functions

Page 631

; | |
; | Previous stk contents |
; -------------------------
; | String |
; --- Address ---
; | |
; -------------------------
; | Return Adrs (offset) |
; -------------------------
; | Old BP |
; ------------------------- <- BP
; | Registers, etc. |
; ------------------------- <- SP

Str_ps textequ <[bp+4]>

public _PutStr
_PutStr proc near

push bp
mov bp, sp
push es

les bx, Str_ps
PS_Loop: mov al, es:[bx]

cmp al, 0
je PC_Done

push ax
call _PutChar
pop ax
inc bx
jmp PS_Loop

PC_Done: pop es
pop bp
ret

_PutStr endp

; StartPgm- This is where DOS starts running the program. This is
; a substitute for the C0L.OBJ file normally linked in by
; the Borland C++ compiler. This code provides this
; routine to avoid legal problems (i.e., distributing
; unlinked Borland libraries). You can safely ignore
; this code. Note that the C++ main program is a near
; procedure, so this code needs to be in the _TEXT segment.

extern _main:near
StartPgm proc near

mov ax, _DATA
mov ds, ax
mov es, ax
mov ss, ax
lea sp, EndStk

call near ptr _main
mov ah, 4ch
int 21h

StartPgm endp

_TEXT ends

_DATA segment word public "DATA"
stack word 1000h dup (?)
EndStk word ?
_DATA ends

Chapter 11

Page 632

sseg segment para stack 'STACK'
word 1000h dup (?)

sseg ends
end StartPgm

11.12 Programming Projects

1) Write a version of the matrix multiply program inputs two 4x4 integer matrices from the
user and compute their matrix product (see Chapter Eight question set). The matrix multi-
ply algorithm (computing C := A * B) is

for i := 0 to 3 do
for j := 0 to 3 do begin

c[i,j] := 0;
for k := 0 to 3 do
 c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

The program should have three procedures: InputMatrix, PrintMatrix, and MatrixMul.
They have the following prototypes:

Procedure InputMatrix(var m:matrix);
procedure PrintMatrix(var m:matrix);
procedure MatrixMul(var result, A, B:matrix);

In particular note that these routines all pass their parameters by reference. Pass these
parameters by reference on the stack.
Maintain all variables (e.g., i, j, k, etc.) on the stack using the techniques outlined in “Local
Variable Storage” on page 604. In particular, do not keep the loop control variables in reg-
ister.
Write a main program that makes appropriate calls to these routines to test them.

2) A pass by lazy evaluation parameter is generally a structure with three fields: a pointer to
the thunk to call to the function that computes the value, a field to hold the value of the
parameter, and a boolean field that contains false if the value field is uninitialized (the
value field becomes initialized if the procedure writes to the value field or calls the thunk
to obtain the value). Whenever the procedure writes a value to a pass by lazy evaluation
parameter, it stores the value in the value field and sets the boolean field to true. When-
ever a procedure wants to read the value, it first checks this boolean field. If it contains a
true value, it simply reads the value from the value field; if the boolean field contains
false, the procedure calls the thunk to compute the initial value. On return, the procedure
stores the thunk result in the value field and sets the boolean field to true. Note that dur-
ing any single activation of a procedure, the thunk for a parameter will be called, at most,
one time. Consider the following Panacea procedure:

SampleEval: procedure(select:boolean; eval a:integer; eval b:integer);
var

result:integer;
endvar;
begin SimpleEval;

if (select) then

result := a;

else
result := b;

endif;
writeln(result+2);

end SampleEval;

Write an assembly language program that implements SampleEval. From your main pro-

Procedures and Functions

Page 633

gram call SampleEval a couple of times passing it different thunks for the a and b parame-
ters. Your thunks can simply return a single value when called.

3) Write a shuffle routine to which you pass an array of 52 integers by reference. The routine
should fill the array with the values 1..52 and then randomly shuffle the items in the array.
Use the Standard Library random and randomize routines to select an index in the array to
swap. See Chapter Seven, “Random Number Generation: Random, Randomize” on
page 343 for more details about the random function. Write a main program that passes an
array to this procedure and prints out the result.

11.13 Summary

In an assembly language program, all you need is a call and ret instruction to imple-
ment procedures and functions. Chapter Seven covers the basic use of procedures in an
80x86 assembly language program; this chapter describes how to organize program units
like procedures and functions, how to pass parameters, allocate and access local variables,
and related topics.

This chapter begins with a review of what a procedure is, how to implement proce-
dures with MASM, and the difference between near and far procedures on the 80x86. For
details, see the following sections:

• “Procedures” on page 566
• “Near and Far Procedures” on page 568
• “Forcing NEAR or FAR CALLs and Returns” on page 568
• “Nested Procedures” on page 569

Functions are a very important construct in high level languages like Pascal. How-
ever, there really isn’t a difference between a function and a procedure in an assembly lan-
guage program. Logically, a function returns a result and a procedure does not; but you
declare and call procedures and functions identically in an assembly language program.
See

• “Functions” on page 572

Procedures and functions often produce side effects. That is, they modify the values of
registers and non-local variables. Often, these side effects are undesirable. For example, a
procedure may modify a register that the caller needs preserved. There are two basic
mechanisms for preserving such values: callee preservation and caller preservation. For
details on these preservation schemes and other important issues see

• “Saving the State of the Machine” on page 572
• “Side Effects” on page 602

One of the major benefits to using a procedural language like Pascal or C++ is that
you can easily pass parameters to and from procedures and functions. Although it is a lit-
tle more work, you can pass parameters to your assembly language functions and proce-
dures as well. This chapter discusses how and where to pass parameters. It also discusses
how to access the parameters inside a procedure or function. To read about this, see sec-
tions

• “Parameters” on page 574
• “Pass by Value” on page 574
• “Pass by Reference” on page 575
• “Pass by Value-Returned” on page 575
• “Pass by Name” on page 576
• “Pass by Lazy-Evaluation” on page 577
• “Passing Parameters in Registers” on page 578
• “Passing Parameters in Global Variables” on page 580
• “Passing Parameters on the Stack” on page 581
• “Passing Parameters in the Code Stream” on page 590
• “Passing Parameters via a Parameter Block” on page 598

Chapter 11

Page 634

Since assembly language doesn’t really support the notion of a function, per se, imple-
menting a function consists of writing a procedure with a return parameter. As such, func-
tion results are quite similar to parameters in many respects. To see the similarities, check
out the following sections:

• “Function Results” on page 600
• “Returning Function Results in a Register” on page 601
• “Returning Function Results on the Stack” on page 601
• “Returning Function Results in Memory Locations” on page 602

Most high level languages provide local variable storage associated with the activation
and deactivation of a procedure or function. Although few assembly language programs
use local variables in an identical fashion, it’s very easy to implement dynamic allocation
of local variables on the stack. For details, see section

• “Local Variable Storage” on page 604

Recursion is another HLL facility that is very easy to implement in an assembly lan-
guage program. This chapter discusses the technique of recursion and then presents a
simple example using the Quicksort algorithm. See

• “Recursion” on page 606

Procedures and Functions

Page 635

11.14 Questions

1) Explain how the CALL and RET instructions operate.

2) What are the operands for the PROC assembler directive? What is their function?

3) Rewrite the following code using PROC and ENDP:

FillMem: moval, 0FFh
FillLoop: mov[bx], al

incbx
loop FillLoop
ret

4) Modify your answer to problem (3) so that all affected registers are preserved by the Fill-
Mem procedure.

5) What happens if you fail to put a transfer of control instruction (such as a JMP or RET)
immediately before the ENDP directive in a procedure?

6) How does the assembler determine if a CALL is near or far? How does it determine if a
RET instruction is near or far?

7) How can you override the assembler’s default decision whether to use a near or far CALL
or RET?

8) Is there ever a need for nested procedures in an assembly language program? If so, give an
example.

 9) Give an example of why you might want to nest a segment inside a procedure.

10) What is the difference between a function, and a procedure?

11) Why should subroutines preserve the registers that they modify?

12) What are the advantages and disadvantages of caller-preserved values and callee-pre-
served values?

13) What are parameters?

14) How do the following parameter passing mechanisms work?

a) Pass by value

b) Pass by reference

c) Pass by value-returned

d) Pass by name

15) Where is the best place to pass parameters to a procedure?

16) List five different locations/methods for passing parameters to or from a procedure.

17) How are parameters that are passed on the stack accessed within a procedure?

18) What’s the best way to deallocate parameters passed on the stack when the procedure ter-
minates execution?

19) Given the following Pascal procedure definition:

procedure PascalProc(i,j,k:integer);

Explain how you would access the parameters of an equivalent assembly language pro-
gram, assuming that the procedure is a near procedure.

20) Repeat problem (19) assuming that the procedure is a far procedure.

21) What does the stack look like during the execution of the procedure in problem (19)?
Problem (20)?

22) How does an assembly language procedure gain access to parameters passed in the code
stream?

Chapter 11

Page 636

23) How does the 80x86 skip over parameters passed in the code stream and continue pro-
gram execution beyond them when the procedure returns to the caller?

24) What is the advantage to passing parameters via a parameter block?

25) Where are function results typically returned?

26) What is a side effect?

27) Where are local (temporary) variables typically allocated?

28) How do you allocate local (temporary) variables within a procedure?

29) Assuming you have three parameters passed by value on the stack and 4 different local
variables, what does the activation record look like after the local variables have been allo-
cated (assume a near procedure and no registers other than BP have been pushed onto the
stack).

30) What is recursion?

Page 639

Procedures: Advanced Topics Chapter 12

The last chapter described how to create procedures, pass parameters, and allocate
and access local variables. This chapter picks up where that one left off and describes how
to access non-local variables in other procedures, pass procedures as parameters, and
implement some user-defined control structures.

12.0 Chapter Overview

This chapter completes the discussion of procedures, parameters, and local variables
begun in the previous chapter. This chapter describes how block structured languages like
Pascal, Modula-2, Algol, and Ada access local and non-local variables. This chapter also
describes how to implement a user-defined control structure, the

iterator

. Most of the
material in this chapter is of interest to compiler writers and those who want to learn how
compilers generate code for certain types of program constructs. Few pure assembly lan-
guage programs will use the techniques this chapter describes. Therefore, none of the
material in this chapter is particularly important to those who are just learning assembly
language. However, if you are going to write a compiler, or you want to learn how compil-
ers generate code so you can write efficient HLL programs, you will want to learn the
material in this chapter sooner or later.

This chapter begins by discussing the notion of

scope

 and how HLLs like Pascal access
variables in nested procedures. The first section discusses the concept of lexical nesting
and the use of static links and displays to access non-local variables. Next, this chapter
discusses how to pass variables at different lex levels as parameters. The third section dis-
cusses how to pass parameters of one procedure as parameters to another procedure. The
fourth major topic this chapter covers is passing procedures as parameters. This chapter
concludes with a discussion of

iterators

, a user-defined control structure.

This chapter assumes a familiarity with a block structured language like Pascal or
Ada. If your only HLL experience is with a non-block structured language like C, C++,
BASIC, or FORTRAN, some of the concepts in this chapter may be completely new and
you will have trouble understanding them. Any introductory text on Pascal or Ada will
help explain any concept you don’t understand that this chapter assumes is a prerequisite.

12.1 Lexical Nesting, Static Links, and Displays

In block structured languages like Pascal

1

 it is possible to

nest

 procedures and func-
tions. Nesting one procedure within another limits the access to the nested procedure; you
cannot access the nested procedure from outside the enclosing procedure. Likewise, vari-
ables you declare within a procedure are visible inside that procedure and to all proce-
dures nested within that procedure

2

. This is the standard block structured language
notion of

scope

 that should be quite familiar to anyone who has written Pascal or Ada pro-
grams.

There is a good deal of complexity hidden behind the concept of scope, or lexical nest-
ing, in a block structured language. While accessing a local variable in the current activa-
tion record is efficient, accessing global variables in a block structured language can be
very inefficient. This section will describe how a HLL like Pascal deals with non-local
identifiers and how to access global variables and call non-local procedures and functions.

1. Note that C and C++ are not block structured languages. Other block structured languages include Algol, Ada,
and Modula-2.
2. Subject, of course, to the limitation that you not reuse the identifier within the nested procedure.

Thi d t t d ith F M k 4 0 2

Chapter 12

Page 640

12.1.1 Scope

Scope in most high level languages is a static, or compile-time concept

3

. Scope is the
notion of when a name is visible, or accessible, within a program. This ability to hide
names is useful in a program because it is often convenient to reuse certain (non-descrip-
tive) names. The

 i

variable used to control most

for

 loops in high level languages is a per-
fect example. Throughout this chapter you’ve seen equates like

xyz_i

,

xyz_j

, etc. The reason
for choosing such names is that MASM doesn’t support the same notion of scoped names
as high level languages. Fortunately, MASM 6.x and later

does

 support scoped names.

By default, MASM 6.x treats statement labels (those with a colon after them) as local
to a procedure. That is, you may only reference such labels within the procedure in which
they are declared.

This is true even if you nest one procedure inside another

. Fortunately, there
is no good reason why anyone would want to nest procedures in a MASM program.

Having local labels within a procedure is nice. It allows you to reuse statement labels
(e.g., loop labels and such) without worrying about name conflicts with other procedures.
Sometimes, however, you may want to turn off the scoping of names in a procedure; a
good example is when you have a case statement whose jump table appears outside the
procedure. If the case statement labels are local to the procedure, they will not be visible
outside the procedure and you cannot use them in the case statement jump table (see
“CASE Statements” on page 525). There are two ways you can turn off the scoping of
labels in MASM 6.x. The first way is to include the statement in your program:

option noscoped

This will turn off variable scoping from that point forward in your program’s source file.
You can turn scoping back on with a statement of the form

option scoped

By placing these statements around your procedure you can selectively control scoping.

Another way to control the scoping of individual names is to place a double colon
(“::”) after a label. This informs the assembler that this particular name should be global to
the enclosing procedure.

MASM, like the C programming language, supports three levels of scope: public, glo-
bal (or static), and local. Local symbols are visible only within the procedure they are
defined. Global symbols are accessible throughout a source file, but are not visible in other
program modules. Public symbols are visible throughout a program, across modules.
MASM uses the following default scoping rules:

• By default, statement labels appearing in a procedure are local to that
procedure.

• By default, all procedure names are public.
• By default, most other symbols are global.

Note that these rules apply to MASM 6.x only. Other assemblers and earlier versions of
MASM follow different rules.

Overriding the default on the first rule above is easy – either use the

option noscoped

statement or use a double colon to make a label global. You should be aware, though, that
you cannot make a local label public using the

public

 or

externdef

 directives. You must
make the symbol global (using either technique) before you make it public.

Having all procedure names public by default usually isn’t much of a problem. How-
ever, it might turn out that you want to use the same (local) procedure name in several dif-
ferent modules. If MASM automatically makes such names public, the linker will give you
an error because there are multiple public procedures with the same name. You can turn
on and off this default action using the following statements:

option proc:private ;procedures are global

3. There are languages that support dynamic, or run-time, scope; this text will not consider such languages.

Procedures: Advanced Topics

Page 641

option proc:export ;procedures are public

Note that some debuggers only provide symbolic information if a procedure’s name is
public. This is why MASM 6.x defaults to public names. This problem does not exist with
CodeView; so you can use whichever default is most convenient. Of course, if you elect to
keep procedure names private (global only), then you will need to use the

public

 or

extern-
def

 directive to make desired procedure names public.

This discussion of local, global, and public symbols applies

mainly

 to statement and
procedure labels. It does

not

 apply to variables you’ve declared in your data segment,
equates, macros, typedefs, or most other symbols. Such symbols are always global regard-
less of where you define them. The only way to make them public is to specify their names
in a

public

 or

externdef

 directive.

There is a way to declare parameter names and local variables, allocated on the stack,
such that their names are local to a given procedure. See the

proc

 directive in the MASM
reference manual for details.

The scope of a name limits its visibility within a program. That is, a program has
access to a variable name only within that name’s scope. Outside the scope, the program
cannot access that name. Many programming languages, like Pascal and C++, allow you
to reuse identifiers if the scopes of those multiple uses do not overlap. As you’ve seen,
MASM provides some minimal scoping features for statement labels. There is, however,
another issue related to scope:

address binding

 and

variable lifetime

. Address binding is the
process of associating a memory address with a variable name. Variable lifetime is that
portion of a program’s execution during which a memory location is bound to a variable.
Consider the following Pascal procedures:

procedure One(Entry:integer);
var

i,j:integer;

procedure Two(Parm:integer);
var j:integer;
begin

for j:= 0 to 5 do writeln(i+j);
if Parm < 10 then One(Parm+1);

end;

begin {One}
for i := 1 to 5 do Two(Entry);

end;

Figure 12.1 shows the scope of identifiers

One

,

Two

,

Entry

,

i

,

j

, and

Parm.

The local variable

j

 in

Two

 masks the identifier

j

 in procedure

One

 while inside

Two

.

Figure 12.1 Identifier Scope

One:

Two:

locals in Two: J, Parm
Globals in Two: I, Entry, One

Locals in One: Entry, I, J, Two

Chapter 12

Page 642

12.1.2 Unit Activation, Address Binding, and Variable Lifetime

Unit activation

 is the process of calling a procedure or function. The combination of
an activation record and some executing code is considered an

instance

 of a routine. When
unit activation occurs a routine binds machine addresses to its local variables. Address
binding (for local variables) occurs when the routine adjusts the stack pointer to make
room for the local variables. The lifetime of those variables is from that point until the rou-
tine destroys the activation record eliminating the local variable storage.

Although scope limits the visibility of a name to a certain section of code and does not
allow duplicate names within the same scope, this does not mean that there is only one
address bound to a name. It is quite possible to have several addresses bound to the same
name at the same time. Consider a recursive procedure call. On each activation the proce-
dure builds a new activation record. Since the previous instance still exists, there are now
two activation records on the stack containing local variables for that procedure. As addi-
tional recursive activations occur, the system builds more activation records each with an
address bound to the same name. To resolve the possible ambiguity (which address do
you access when operating on the variable?), the system always manipulates the variable
in the most recent activation record.

Note that procedures

One

 and

Two

 in the previous section are

indirectly recursive

. That
is, they both call routines which, in turn, call themselves. Assuming the parameter to

One

is less than 10 on the initial call, this code will generate multiple activation records (and,
therefore, multiple copies of the local variables) on the stack. For example, were you to
issue the call

 One(9)

, the stack would look like Figure 12.2 upon first encountering the

end

associated with the procedure

Two

.

As you can see, there are several copies of

I

 and

J

 on the stack at this point. Procedure

Two

 (the currently executing routine) would access

J

 in the most recent activation record
that is at the bottom of Figure 12.2. The previous instance of

Two

 will only access the vari-
able

J

 in its activation record when the current instance returns to

One

 and then back to

Two

.

The lifetime of a variable’s instance is from the point of activation record creation to
the point of activation record destruction. Note that the first instance of

J

 above (the one at
the top of the diagram above) has the longest lifetime and that the lifetimes of all instances
of

 J

 overlap.

12.1.3 Static Links

Pascal will allow procedure

 Two

 access to

I

 in procedure

One

. However, when there is
the possibility of recursion there may be several instances of

i

on the stack. Pascal, of
course, will only let procedure

Two

 access the most recent instance of

i

. In the stack dia-
gram in Figure 12.2, this corresponds to the value of

i

in the activation record that begins
with

“One(9+1)

parameter

.” The only problem is

how do you know where to find the activation
record containing

i

?

A quick, but poorly thought out answer, is to simply index backwards into the stack.
After all, you can easily see in the diagram above that

i

is at offset eight from

Two

’s activa-
tion record. Unfortunately, this is not always the case. Assume that procedure

Three

 also
calls procedure

Two

 and the following statement appears within procedure

One

:

If (Entry <5) then Three(Entry*2) else Two(Entry);

With this statement in place, it’s quite possible to have two different stack frames upon
entry into procedure

Two

: one with the activation record for procedure

Three

 sandwiched
between

One

 and

Two

’s activation records and one with the activation records for proce-
dures

One

 and

Two

 adjacent to one another. Clearly a fixed offset from

Two

’s activation
record will not always point at the

i

variable on

One

’s most recent activation record.

Procedures: Advanced Topics

Page 643

The astute reader might notice that the saved

bp

 value in

Two

’s activation record
points at the caller’s activation record. You might think you could use this as a pointer to

One

’s activation record. But this scheme fails for the same reason the fixed offset technique
fails.

Bp

’s old value, the

dynamic link

, points at the caller’s activation record. Since the
caller isn’t necessarily the enclosing procedure the dynamic link might not point at the
enclosing procedure’s activation record.

What is really needed is a pointer to the enclosing procedure’s activation record.
Many compilers for block structured languages create such a pointer, the

static link.

Con-
sider the following Pascal code:

procedure Parent;
var i,j:integer;

procedure Child1;
var j:integer;
begin

for j := 0 to 2 do writeln(i);

end {Child1};

procedure Child2;
var i:integer;
begin

for i := 0 to 1 do Child1;

end {Child2};

Figure 12.2 Indirect Recursion

10

Return Address

Saved BP Value

"I" Local Variable

"J" Local Variable

Previous Stack Contents

9
One(9) parameter

Two(9) parameter

One Activation Record

Two Activation Record

One(9+1) parameter

One Activation Record

Return Address

Saved BP Value

"I" Local Variable

"J" Local Variable

9

Return Address

Saved BP Value

"J" Local Variable

Two(9+1) parameter

Two Activation Record

1
0

Return Address

Saved BP Value

"J" Local Variable

Chapter 12

Page 644

begin {Parent}

Child2;
Child1;

end;

Just after entering

Child1

 for the first time, the stack would look like Figure 12.3. When

Child1

 attempts to access the variable

i

 from

Parent

, it will need a pointer, the static link, to

Parent’s activation record. Unfortunately, there is no way for Child1, upon entry, to figure
out on it’s own where Parent’s activation record lies in memory. It will be necessary for the
caller (Child2 in this example) to pass the static link to Child1. In general, the callee can treat
the static link as just another parameter; usually pushed on the stack immediately before
executing the call instruction.

To fully understand how to pass static links from call to call, you must first under-
stand the concept of a lexical level. Lexical levels in Pascal correspond to the static nesting
levels of procedures and functions. Most compiler writers specify lex level zero as the
main program. That is, all symbols you declare in your main program exist at lex level
zero. Procedure and function names appearing in your main program define lex level one,
no matter how many procedures or functions appear in the main program. They all begin a new
copy of lex level one. For each level of nesting, Pascal introduces a new lex level.
Figure 12.4 shows this.

During execution, a program may only access variables at a lex level less than or equal to
the level of the current routine. Furthermore, only one set of values at any given lex level
are accessible at any one time4 and those values are always in the most recent activation
record at that lex level.

Before worrying about how to access non-local variables using a static link, you need
to figure out how to pass the static link as a parameter. When passing the static link as a
parameter to a program unit (procedure or function), there are three types of calling
sequences to worry about:

• A program unit calls a child procedure or function. If the current lex level
is n, then a child procedure or function is at lex level n+1 and is local to

4. There is one exception. If you have a pointer to a variable and the pointer remains accessible, you can access the
data it points at even if the variable actually holding that data is inaccessible. Of course, in (standard) Pascal you
cannot take the address of a local variable and put it into a pointer. However, certain dialects of Pascal (e.g.,
Turbo) and other block structured languages will allow this operation.

Figure 12.3 Activation Records after Several Nested Calls

 SP

Previous Stack Contents

Activation record for Parent

Activation record for Child2

Activation record for Child1

Procedures: Advanced Topics

Page 645

the current program unit. Note that most block structured languages do
not allow calling procedures or functions at lex levels greater than n+1.

• A program unit calls a peer procedure or function. A peer procedure or
function is one at the same lexical level as the current caller and a single
program unit encloses both program units.

• A program unit calls an ancestor procedure or function. An ancestor unit
is either the parent unit, a parent of an ancestor unit, or a peer of an ances-
tor unit.

Calling sequences for the first two types of calls above are very simple. For the sake of this
example, assume the activation record for these procedures takes the generic form in
Figure 12.5.

When a parent procedure or function calls a child program unit, the static link is noth-
ing more than the value in the bp register immediately prior to the call. Therefore, to pass
the static link to the child unit, just push bp before executing the call instruction:

Figure 12.4 Procedure Schematic Showing Lexical Levels

Lex Level Zero

Lex Level One

Lex Level Two

Note: Each rectangle
represents a procedure
or function.

Figure 12.5 Generic Activation Record

 SP

Previous Stack Contents

Parameters

Static Link

Local variables

Any Registers Saved on Stack

Return Address

Dynamic Link (Old BP)

Chapter 12

Page 646

<Push Other Parameters onto the stack>
push bp
call ChildUnit

Of course the child unit can process the static link off the stack just like any other parame-
ter. In this case, that the static and dynamic links are exactly the same. In general, how-
ever, this is not true.

If a program unit calls a peer procedure or function, the current value in bp is not the
static link. It is a pointer to the caller’s local variables and the peer procedure cannot
access those variables. However, as peers, the caller and callee share the same parent pro-
gram unit, so the caller can simply push a copy of its static link onto the stack before call-
ing the peer procedure or function. The following code will do this, assuming all
procedures and functions are near:

<Push Other Parameters onto the Stack>
push [bp+4] ;Push static link onto stk.
call PeerUnit

If the procedure or function is far, the static link would be two bytes farther up the stack,
so you would need to use the following code:

<Push Other Parameters onto the Stack>
push [bp+6] ;Push static link onto stk.
call PeerUnit

Calling an ancestor is a little more complex. If you are currently at lex level n and you
wish to call an ancestor at lex level m (m < n), you will need to traverse the list of static
links to find the desired activation record. The static links form a list of activation records.
By following this chain of activation records until it ends, you can step through the most
recent activation records of all the enclosing procedures and functions of a particular pro-
gram unit. The stack diagram in Figure 12.6 shows the static links for a sequence of proce-
dure calls statically nested five lex levels deep.

If the program unit currently executing at lex level five wishes to call a procedure at
lex level three, it must push a static link to the most recently activated program unit at lex
level two. In order to find this static link you will have to traverse the chain of static links.
If you are at lex level n and you want to call a procedure at lex level m you will have to
traverse (n-m)+1 static links. The code to accomplish this is

Figure 12.6 Static Links

Lex Level 0

Eac h box represents an
activation record.

Each arror represents
a static link.

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5

Procedures: Advanced Topics

Page 647

; Current lex level is 5. This code locates the static link for,
; and then calls a procedure at lex level 2. Assume all calls are
; near:

<Push necessary parameters>

mov bx, [bp+4] ;Traverse static link to LL 4.
mov bx, ss:[bx+4] ;To Lex Level 3.
mov bx, ss:[bx+4] ;To Lex Level 2.
push ss:[bx+4] ;Ptr to most recent LL1 A.R.
call ProcAtLL2

Note the ss: prefix in the instructions above. Remember, the activation records are all in
the stack segment and bx indexes the data segment by default.

12.1.4 Accessing Non-Local Variables Using Static Links

In order to access a non-local variable, you must traverse the chain of static links until
you get a pointer to the desired activation record. This operation is similar to locating the
static link for a procedure call outlined in the previous section, except you traverse only
n-m static links rather than (n-m)+1 links to obtain a pointer to the appropriate activation
record. Consider the following Pascal code:

procedure Outer;
var i:integer;

procedure Middle;
var j:integer;

procedure Inner;
var k:integer;
begin

k := 3;
writeln(i+j+k);

end;

begin {middle}

j := 2;
writeln(i+j);
Inner;

end; {middle}

begin {Outer}

i := 1;
Middle;

end; {Outer}

The Inner procedure accesses global variables at lex level n-1 and n-2 (where n is the lex
level of the Inner procedure). The Middle procedure accesses a single global variable at lex
level m-1 (where m is the lex level of procedure Middle). The following assembly language
code could implement these three procedures:

Outer proc near
push bp
mov bp, sp
sub sp, 2 ;Make room for I.

mov word ptr [bp-2],1 ;Set I to one.
push bp ;Static link for Middle.
call Middle

mov sp, bp ;Remove local variables.
pop bp
ret 2 ;Remove static link on ret.

Outer endp

Middle proc near

Chapter 12

Page 648

push bp ;Save dynamic link
mov bp, sp ;Set up activation record.
sub sp, 2 ;Make room for J.

mov word ptr [bp-2],2 ;J := 2;
mov bx, [bp+4] ;Get static link to prev LL.
mov ax, ss:[bx-2] ;Get I’s value.
add ax, [bp-2] ;Add to J and then
puti ; print the sum.
putcr
push bp ;Static link for Inner.
call Inner

mov sp, bp
pop bp
ret 2 ;Remove static link on RET.

Middle endp

Inner proc near
push bp ;Save dynamic link
mov bp, sp ;Set up activation record.
sub sp, 2 ;Make room for K.

mov word ptr [bp-2],2 ;K := 3;
mov bx, [bp+4] ;Get static link to prev LL.
mov ax, ss:[bx-2] ;Get J’s value.
add ax, [bp-2] ;Add to K

mov bx, ss:[bx+4] ;Get ptr to Outer’s Act Rec.
add ax, ss:[bx-2] ;Add in I’s value and then
puti ; print the sum.
putcr

mov sp, bp
pop bp
ret 2 ;Remove static link on RET.

Inner endp

As you can see, accessing global variables can be very inefficient5.

Note that as the difference between the activation records increases, it becomes less
and less efficient to access global variables. Accessing global variables in the previous acti-
vation record requires only one additional instruction per access, at two lex levels you
need two additional instructions, etc. If you analyze a large number of Pascal programs,
you will find that most of them do not nest procedures and functions and in the ones
where there are nested program units, they rarely access global variables. There is one
major exception, however. Although Pascal procedures and functions rarely access local
variables inside other procedures and functions, they frequently access global variables
declared in the main program. Since such variables appear at lex level zero, access to such
variables would be as inefficient as possible when using the static links. To solve this
minor problem, most 80x86 based block structured languages allocate variables at lex
level zero directly in the data segment and access them directly.

12.1.5 The Display

After reading the previous section you might get the idea that one should never use
non-local variables, or limit non-local accesses to those variables declared at lex level zero.
After all, it’s often easy enough to put all shared variables at lex level zero. If you are
designing a programming language, you can adopt the C language designer’s philosophy
and simply not provide block structure. Such compromises turn out to be unnecessary.
There is a data structure, the display, that provides efficient access to any set of non-local
variables.

5. Indeed, perhaps one of the main reasons the C programming language is not block structured is because the
language designers wanted to avoid inefficient access to non-local variables.

Procedures: Advanced Topics

Page 649

A display is simply an array of pointers to activation records. Display[0] contains a
pointer to the most recent activation record for lex level zero, Display[1] contains a pointer
to the most recent activation record for lex level one, and so on. Assuming you’ve main-
tained the Display array in the current data segment (always a good place to keep it) it only
takes two instructions to access any non-local variable. Pictorially, the display works as
shown in Figure 12.7.

Note that the entries in the display always point at the most recent activation record for a
procedure at the given lex level. If there is no active activation record for a particular lex
level (e.g., lex level six above), then the entry in the display contains garbage.

The maximum lexical nesting level in your program determines how many elements
there must be in the display. Most programs have only three or four nested procedures (if
that many) so the display is usually quite small. Generally, you will rarely require more
than 10 or so elements in the display.

Another advantage to using a display is that each individual procedure can maintain
the display information itself, the caller need not get involved. When using static links the
calling code has to compute and pass the appropriate static link to a procedure. Not only
is this slow, but the code to do this must appear before every call. If your program uses a
display, the callee, rather than the caller, maintains the display so you only need one copy
of the code per procedure. Furthermore, as the next example shows, the code to handle
the display is short and fast.

Maintaining the display is very easy. Upon initial entry into a procedure you must
first save the contents of the display array at the current lex level and then store the
pointer to the current activation record into that same spot. Accessing a non-local variable
requires only two instructions, one to load an element of the display into a register and a
second to access the variable. The following code implements the Outer, Middle, and Inner
procedures from the static link examples.

; Assume Outer is at lex level 1, Middle is at lex level 2, and
; Inner is at lex level 3. Keep in mind that each entry in the
; display is two bytes. Presumably, the variable Display is defined
; in the data segment.

Outer proc near
push bp
mov bp, sp
push Display[2] ;Save current Display Entry
sub sp, 2 ;Make room for I.

Figure 12.7 The Display

Lex Level 0

0
1
2
3
4
5
6

Display

Lex Level 1

Lex Level 2

Lex Level 3

Lex Level 3

Lex Level 4

Lex Level 5

Lex Level 5

Lex Level 5

????

Chapter 12

Page 650

mov word ptr [bp-4],1 ;Set I to one.
call Middle

add sp, 2 ;Remove local variables
pop Display[2] ;Restore previous value.
pop bp
ret

Outer endp

Middle proc near
push bp ;Save dynamic link.
mov bp, sp ;Set up our activation

record.
push Display[4] ;Save old Display value.
sub sp, 2 ;Make room for J.

mov word ptr [bp-2],2 ;J := 2;
mov bx, Display[2] ;Get static link to prev LL.
mov ax, ss:[bx-4] ;Get I’s value.
add ax, [bp-2] ;Add to J and then
puti ; print the sum.
putcr
call Inner

add sp, 2 ;Remnove local variable.
pop Display[4] ;Restore old Display value.
pop bp
ret

Middle endp

Inner proc near
push bp ;Save dynamic link
mov bp, sp ;Set up activation record.
push Display[6] ;Save old display value
sub sp, 2 ;Make room for K.

mov word ptr [bp-2],2 ;K := 3;
mov bx, Display[4] ;Get static link to prev LL.
mov ax, ss:[bx-4] ;Get J’s value.
add ax, [bp-2] ;Add to K

mov bx, Display[2] ;Get ptr to Outer’s Act Rec.
add ax, ss:[bx-4] ;Add in I’s value and then
puti ; print the sum.
putcr

add sp, 2
pop Display [6]
pop bp
ret

Inner endp

Although this code doesn’t look particularly better than the former code, using a display
is often much more efficient than using static links.

12.1.6 The 80286 ENTER and LEAVE Instructions

When designing the 80286, Intel’s CPU designers decided to add two instructions to
help maintain displays. Unfortunately, although their design works, is very general, and
only requires data in the stack segment, it is very slow; much slower than using the tech-
niques in the previous section. Although many non-optimizing compilers use these
instructions, the best compilers avoid using them, if possible.

The leave instruction is very simple to understand. It performs the same operation as
the two instructions:

mov sp, bp
pop bp

Therefore, you may use the instruction for the standard procedure exit code if you have an
80286 or later microprocessor. On an 80386 or earlier processor, the leave instruction is

Procedures: Advanced Topics

Page 651

shorter and faster than the equivalent move and pop sequence. However, the leave
instruction is slower on 80486 and later processors.

The enter instruction takes two operands. The first is the number of bytes of local stor-
age the current procedure requires, the second is the lex level of the current procedure.
The enter instruction does the following:

; ENTER Locals, LexLevel

push bp ;Save dynamic link.
mov tempreg, sp ;Save for later.
cmp LexLevel, 0 ;Done if this is lex level zero.
je Lex0

lp: dec LexLevel
jz Done ;Quit if at last lex level.
sub bp, 2 ;Index into display in prev act rec
push [bp] ; and push each element there.
jmp lp ;Repeat for each entry.

Done: push tempreg ;Add entry for current lex level.
Lex0: mov bp, tempreg ;Ptr to current act rec.

sub sp, Locals ;Allocate local storage

As you can see from this code, the enter instruction copies the display from activation
record to activation record. This can get quite expensive if you nest the procedures to any
depth. Most HLLs, if they use the enter instruction at all, always specify a nesting level of
zero to avoid copying the display throughout the stack.

The enter instruction puts the value for the display[n] entry at location BP-(n*2). The
enter instruction does not copy the value for display[0] into each stack frame. Intel assumes that
you will keep the main program’s global variables in the data segment. To save time and
memory, they do not bother copying the display[0] entry.

The enter instruction is very slow, particularly on 80486 and later processors. If you
really want to copy the display from activation record to activation record it is probably a
better idea to push the items yourself. The following code snippets show how to do this:

; enter n, 0 ;14 cycles on the 486

push bp ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

; enter n, 1 ;17 cycles on the 486

push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
mov bp, sp ;1 cycle on the 486
add bp, 2 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

; enter n, 2 ;20 cycles on the 486

push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp-4] ;4 cycles on the 486
mov bp, sp ;1 cycle on the 486
add bp, 4 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

; enter n, 3 ;23 cycles on the 486

push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp-4] ;4 cycles on the 486
push [bp-6] ;4 cycles on the 486
mov bp, sp ;1 cycle on the 486
add bp, 6 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

Chapter 12

Page 652

; enter n, 4 ;26 cycles on the 486

push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp-4] ;4 cycles on the 486
push [bp-6] ;4 cycles on the 486
push [bp-8] ;4 cycles on the 486
mov bp, sp ;1 cycle on the 486
add bp, 8 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

; etc.

If you are willing to believe Intel’s cycle timings, you can see that the enter instruction
is almost never faster than a straight line sequence of instructions that accomplish the
same thing. If you are interested in saving space rather than writing fast code, the enter
instruction is generally a better alternative. The same is generally true for the leave
instruction as well. It is only one byte long, but it is slower than the corresponding
mov bp,sp and pop bp instructions.

Accessing non-local variables using the displays created by enter appears in the exer-
cises.

12.2 Passing Variables at Different Lex Levels as Parameters.

Accessing variables at different lex levels in a block structured program introduces
several complexities to a program. The previous section introduced you to the complexity
of non-local variable access. This problem gets even worse when you try to pass such vari-
ables as parameters to another program unit. The following subsections discuss strategies
for each of the major parameter passing mechanisms.

For the purposes of discussion, the following sections will assume that “local” refers
to variables in the current activation record, “global” refers to variables in the data seg-
ment, and “intermediate” refers to variables in some activation record other than the cur-
rent activation record. Note that the following sections will not assume that ds is equal to
ss. These sections will also pass all parameters on the stack. You can easily modify the
details to pass these parameters elsewhere.

12.2.1 Passing Parameters by Value in a Block Structured Language

Passing value parameters to a program unit is no more difficult than accessing the
corresponding variables; all you need do is push the value on the stack before calling the
associated procedure.

To pass a global variable by value to another procedure, you could use code like the
following:

push GlobalVar ;Assume “GlobalVar” is in DSEG.
call Procedure

To pass a local variable by value to another procedure, you could use the following code6:

push [bp-2] ;Local variable in current activation
call Procedure ; record.

To pass an intermediate variable as a value parameter, you must first locate that inter-
mediate variable’s activation record and then push its value onto the stack. The exact
mechanism you use depends on whether you are using static links or a display to keep
track of the intermediate variable’s activation records. If using static links, you might use

6. The non-global examples all assume the variable is at offset -2 in their activation record. Change this as appro-
priate in your code.

Procedures: Advanced Topics

Page 653

code like the following to pass a variable from two lex levels up from the current proce-
dure:

mov bx, [bp+4] ;Assume S.L. is at offset 4.
mov bx, ss:[bx+4] ;Traverse two static links
push ss:[bx-2] ;Push variables value.
call Procedure

Passing an intermediate variable by value when you are using a display is somewhat
easier. You could use code like the following to pass an intermediate variable from lex
level one:

mov bx, Display[1*2] ;Get Display[1] entry.
push ss:[bx-2] ;Push the variable’s value.
call Procedure

12.2.2 Passing Parameters by Reference, Result, and Value-Result in a Block
Structured Language

The pass by reference, result, and value-result parameter mechanisms generally pass
the address of parameter on the stack7. If global variables reside in the data segment, acti-
vation records all exist in the stack segment, and ds≠ss, then you must pass far pointers to
access all possible variables8.

To pass a far pointer you must push a segment value followed by an offset value on
the stack. For global variables, the segment value is found in the ds register; for non-global
values, ss contains the segment value. To compute the offset portion of the address you
would normally use the lea instruction. The following code sequence passes a global vari-
able by reference:

push ds ;Push segment adrs first.
lea ax, GlobalVar ;Compute offset.
push ax ;Push offset of GlobalVar
call Procedure

Global variables are a special case because the assembler can compute their run-time
offsets at assembly time. Therefore, for scalar global variables only, we can shorten the code
sequence above to

push ds ;Push segment adrs.
push offset GlobalVar ;Push offset portion.
call Procedure

To pass a local variable by reference you code must first push ss’s value onto the stack
and then push the local variable’s offset. This offset is the variable’s offset within the stack seg-
ment, not the offset within the activation record! The following code passes the address of a
local variable by reference:

push ss ;Push segment address.
lea ax, [bp-2] ;Compute offset of local
push ax ; variable and push it.
call Procedure

To pass an intermediate variable by reference you must first locate the activation
record containing the variable so you can compute the effective address into the stack seg-
ment. When using static links, the code to pass the parameter’s address might look like
the following:

7. As you may recall, pass by reference, value-result, and result all use the same calling sequence. The differences
lie in the procedures themselves.
8. You can use near pointers if ds=ss or if you keep global variables in the main program’s activation record in the
stack segment.

Chapter 12

Page 654

push ss ;Push segment portion.
mov bx, [bp+4] ;Assume S.L. is at offset 4.
mov bx, ss:[bx+4] ;Traverse two static links
lea ax, [bx-2] ;Compute effective address
push ax ;Push offset portion.
call Procedure

When using a display, the calling sequence might look like the following:

push ss ;Push segment portion.
mov bx, Display[1*2] ;Get Display[1] entry.
lea ax, [bx-2] ;Get the variable’s offset
push ax ; and push it.
call Procedure

As you may recall from the previous chapter, there is a second way to pass a parame-
ter by value-result. You can push the value onto the stack and then, when the procedure
returns, pop this value off the stack and store it back into the variable from whence it
came. This is just a special case of the pass by value mechanism described in the previous
section.

12.2.3 Passing Parameters by Name and Lazy-Evaluation in a Block Structured
Language

Since you pass the address of a thunk when passing parameters by name or by
lazy-evaluation, the presence of global, intermediate, and local variables does not affect
the calling sequence to the procedure. Instead, the thunk has to deal with the differing
locations of these variables. The following examples will present thunks for pass by name,
you can easily modify these thunks for lazy-evaluation parameters.

The biggest problem a thunk has is locating the activation record containing the vari-
able whose address it returns. In the last chapter, this wasn’t too much of a problem since
variables existed either in the current activation record or in the global data space. In the
presence of intermediate variables, this task becomes somewhat more complex. The easi-
est solution is to pass two pointers when passing a variable by name. The first pointer
should be the address of the thunk, the second pointer should be the offset of the activa-
tion record containing the variable the thunk must access9. When the procedure calls the
thunk, it must pass this activation record offset as a parameter to the thunk. Consider the
following Panacea procedures:

TestThunk:procedure(name item:integer; var j:integer);
begin TestThunk;

for j in 0..9 do item := 0;

end TestThunk;

CallThunk:procedure;
var

A: array[0..9] : integer;
I: integer;

endvar;
begin CallThunk;

TestThunk(A[I], I);

end CallThunk;

The assembly code for the above might look like the following:

; TestThunk AR:
;
; BP+10- Address of thunk

9. Actually, you may need to pass several pointers to activation records. For example, if you pass the variable
“A[i,j,k]” by name and A, i, j, and k are all in different activation records, you will need to pass pointers to each
activation record. We will ignore this problem here.

Procedures: Advanced Topics

Page 655

; BP+8- Ptr to AR for Item and J parameters (must be in the same AR).
; BP+4- Far ptr to J.

TestThunk proc near
push bp
mov bp, sp
push ax
push bx
push es

les bx, [bp+4] ;Get ptr to J.
mov word ptr es:[bx], 0 ;J := 0;

ForLoop: cmp word ptr es:[bx], 9 ;Is J > 9?
ja ForDone
push [bp+8] ;Push AR passed by caller.
call word ptr [bp+10] ;Call the thunk.
mov word ptr ss:[bx], 0 ;Thunk returns adrs in BX.
les bx, [bp+4] ;Get ptr to J.
inc word ptr es:[bx] ;Add one to it.
jmp ForLoop

ForDone: pop es
pop bx
pop ax
pop bp
ret 8

TestThunk endp

CallThunk proc near
push bp
mov bp, sp
sub sp, 12 ;Make room for locals.

jmp OverThunk
Thunk proc

push bp
mov bp, sp
mov bp, [bp+4] ;Get AR address.
mov ax, [bp-22] ;Get I’s value.
add ax, ax ;Double, since A is a word array.
add bx, -20 ;Offset to start of A
add bx, ax ;Compute address of A[I] and
pop bp ; return it in BX.
ret 2 ;Remove parameter from stack.

Thunk endp

OverThunk: push offset Thunk ;Push (near) address of thunk
push bp ;Push ptr to A/I’s AR for thunk
push ss ;Push address of I onto stack.
lea ax, [bp-22] ; Offset portion of I.
push ax
call TestThunk
mov sp, bp
ret

CallThunk endp

12.3 Passing Parameters as Parameters to Another Procedure

When a procedure passes one of its own parameters as a parameter to another proce-
dure, certain problems develop that do not exist when passing variables as parameters.
Indeed, in some (rare) cases it is not logically possible to pass some parameter types to
some other procedure. This section deals with the problems of passing one procedure’s
parameters to another procedure.

Pass by value parameters are essentially no different than local variables. All the tech-
niques in the previous sections apply to pass by value parameters. The following sections

Chapter 12

Page 656

deal with the cases where the calling procedure is passing a parameter passed to it by ref-
erence, value-result, result, name, and lazy evaluation.

12.3.1 Passing Reference Parameters to Other Procedures

Passing a reference parameter though to another procedure is where the complexity
begins. Consider the following (pseudo) Pascal procedure skeleton:

procedure HasRef(var refparm:integer);

procedure ToProc(???? parm:integer);
begin

 .
 .
 .

end;

begin {HasRef}
 .
 .
 .

ToProc(refParm);
 .
 .
 .

end;

The “????” in the ToProc parameter list indicates that we will fill in the appropriate param-
eter passing mechanism as the discussion warrants.

If ToProc expects a pass by value parameter (i.e., ???? is just an empty string), then Has-
Ref needs to fetch the value of the refparm parameter and pass this value to ToProc. The fol-
lowing code accomplishes this10:

les bx, [bp+4] ;Fetch address of refparm
push es:[bx] ;Push integer pointed at by refparm
call ToProc

To pass a reference parameter by reference, value-result, or result parameter is easy –
just copy the caller’s parameter as-is onto the stack. That is, if the parm parameter in ToProc
above is a reference parameter, a value-result parameter, or a result parameter, you would
use the following calling sequence:

push [bp+6] ;Push segment portion of ref parm.
push [bp+4] ;Push offset portion of ref parm.
call ToProc

To pass a reference parameter by name is fairly easy. Just write a thunk that grabs the
reference parameter’s address and returns this value. In the example above, the call to
ToProc might look like the following:

jmp SkipThunk
Thunk0 proc near

les bx, [bp+4] ;Assume BP points at HasRef’s AR.
ret

Thunk0 endp

SkipThunk: push offset Thunk0 ;Address of thunk.
push bp ;AR containing thunk’s vars.
call ToProc

Inside ToProc, a reference to the parameter might look like the following:

push bp ;Save our AR ptr.
mov bp, [bp+4] ;Ptr to Parm’s AR.
call near ptr [bp+6] ;Call the thunk.
pop bp ;Retrieve our AR ptr.
mov ax, es:[bx] ;Access variable.
 .
 .
 .

10. The examples in this section all assume the use of a display. If you are using static links, be sure to adjust all
the offsets and the code to allow for the static link that the caller must push immediately before a call.

Procedures: Advanced Topics

Page 657

To pass a reference parameter by lazy evaluation is very similar to passing it by name. The
only difference (in ToProc’s calling sequence) is that the thunk must return the value of the
variable rather than its address. You can easily accomplish this with the following thunk:

Thunk1 proc near
push es
push bx
les bx, [bp+4] ;Assume BP points at HasRef’s AR.
mov ax, es:[bx] ;Return value of ref parm in ax.
pop bx
pop es
ret

Thunk1 endp

12.3.2 Passing Value-Result and Result Parameters as Parameters

Assuming you’ve created a local variable that holds the value of a value-result or
result parameter, passing one of these parameters to another procedure is no different
than passing value parameters to other code. Once a procedure makes a local copy of the
value-result parameter or allocates storage for a result parameter, you can treat that vari-
able just like a value parameter or a local variable with respect to passing it on to other
procedures.

Of course, it doesn’t make sense to use the value of a result parameter until you’ve
stored a value into that parameter’s local storage. Therefore, take care when passing result
parameters to other procedures that you’ve initialized a result parameter before using its
value.

12.3.3 Passing Name Parameters to Other Procedures

Since a pass by name parameter’s thunk returns the address of a parameter, passing a
name parameter to another procedure is very similar to passing a reference parameter to
another procedure. The primary differences occur when passing the parameter on as a
name parameter.

When passing a name parameter as a value parameter, you first call the thunk, deref-
erence the address the thunk returns, and then pass the value to the new procedure. The
following code demonstrates such a call when the thunk returns the variable’s address in
es:bx (assume pass by name parameter’s AR pointer is at address bp+4 and the pointer to
the thunk is at address bp+6):

push bp ;Save our AR ptr.
mov bp, [bp+4] ;Ptr to Parm’s AR.
call near ptr [bp+6] ;Call the thunk.
push word ptr es:[bx] ;Push parameter’s value.
pop bp ;Retrieve our AR ptr.
call ToProc ;Call the procedure.
 .
 .
 .

Passing a name parameter to another procedure by reference is very easy. All you
have to do is push the address the thunk returns onto the stack. The following code, that is
very similar to the code above, accomplishes this:

push bp ;Save our AR ptr.
mov bp, [bp+4] ;Ptr to Parm’s AR.
call near ptr [bp+6] ;Call the thunk.
pop bp ;Retrieve our AR ptr.
push es ;Push seg portion of adrs.
push bx ;Push offset portion of adrs.
call ToProc ;Call the procedure.
 .
 .
 .

Chapter 12

Page 658

Passing a name parameter to another procedure as a pass by name parameter is very
easy; all you need to do is pass the thunk (and associated pointers) on to the new proce-
dure. The following code accomplishes this:

push [bp+6] ;Pass Thunk’s address.
push [bp+4] ;Pass adrs of Thunk’s AR.
call ToProc

To pass a name parameter to another procedure by lazy evaluation, you need to create
a thunk for the lazy-evaluation parameter that calls the pass by name parameter’s thunk,
dereferences the pointer, and then returns this value. The implementation is left as a pro-
gramming project.

12.3.4 Passing Lazy Evaluation Parameters as Parameters

Lazy evaluation parameters typically consist of three components: the address of a
thunk, a location to hold the value the thunk returns, and a boolean variable that deter-
mines whether the procedure must call the thunk to get the parameter’s value or if it can
simply use the value previously returned by the thunk (see the exercises in the previous
chapter to see how to implement lazy evaluation parameters). When passing a parameter
by lazy evaluation to another procedure, the calling code must first check the boolean
variable to see if the value field is valid. If not, the code must first call the thunk to get this
value. If the boolean field is true, the calling code can simply use the data in the value
field. In either case, once the value field has data, passing this data on to another proce-
dure is no different than passing a local variable or a value parameter to another proce-
dure.

12.3.5 Parameter Passing Summary

Table 48: Passing Parameters as Parameters to Another Procedure

Pass as Value
Pass as

Reference
Pass as

Value-Result
Pass as Result Pass as Name

Pass as Lazy
Evaluation

Value Pass the value Pass address of
the value
parameter

Pass address of
the value
parameter

Pass address of
the value
parameter

Create a thunk
that returns the
address of the
value parameter

Create a thunk
that returns the
value

Reference Dereference
parameter and
pass the value
it points at

Pass the address
(value of the
reference
parameter)

Pass the address
(value of the
reference
parameter)

Pass the address
(value of the
reference
parameter)

Create a thunk
that passes the
address (value
of the reference
parameter)

Create a thunk
that deferences
the reference
parameter and
returns its value

Value-Result Pass the local
value as the
value parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Create a thunk
that returns the
address of the
local value of
the value-result
parameter

Create a thunk
that returns the
value in the
local value of
the value-result
parameter

Result Pass the local
value as the
value parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Pass the address
of the local
value as the
parameter

Create a thunk
that returns the
address of the
local value of
the result
parameter

Create a thunk
that returns the
value in the
local value of
the result
parameter

Procedures: Advanced Topics

Page 659

12.4 Passing Procedures as Parameters

Many programming languages let you pass a procedure or function name as a param-
eter. This lets the caller pass along various actions to perform inside a procedure. The clas-
sic example is a plot procedure that graphs some generic math function passed as a
parameter to plot.

Standard Pascal lets you pass procedures and functions by declaring them as follows:

procedure DoCall(procedure x);
begin

x;

end;

The statement DoCall(xyz); calls DoCall that, in turn, calls procedure xyz.

Passing a procedure or function as a parameter may seem like an easy task – just pass
the address of the function or procedure as the following example demonstrates:

procedure PassMe;
begin

Writeln('PassMe was called');
end;

procedure CallPassMe(procedure x);
begin

x;
end;

begin {main}
CallPassMe(PassMe);

end.

Name Call the thunk,
dereference the
pointer, and
pass the value at
the address the
thunk returns

Call the thunk
and pass the
address it
returns as the
parameter

Call the thunk
and pass the
address it
returns as the
parameter

Call the thunk
and pass the
address it
returns as the
parameter

Pass the address
of the thunk and
any other values
associated with
the name
parameter

Write a thunk
that calls the
name parame-
ter’s thunk,
dereferences the
address it
returns, and
then returns the
value at that
address

Lazy
Evaluation

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Pass the local
value as the
value parameter

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Pass the address
of the local
value as the
parameter

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Pass the address
of the local
value as the
parameter

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Pass the address
of the local
value as the
parameter

If necessary,
call the thunk to
obtain the Lazy
Eval parame-
ter’s value.
Create a thunk
that returns the
address of the
Lazy Eval’s
value field

Create a thunk
that checks the
boolean field of
the caller’s
Lazy Eval
parameter. It
should call the
corresponding
thunk if this
variable is false.
It should set the
boolean field to
true and then
return the data
in the value
field

Table 48: Passing Parameters as Parameters to Another Procedure

Pass as Value
Pass as

Reference
Pass as

Value-Result
Pass as Result Pass as Name

Pass as Lazy
Evaluation

Chapter 12

Page 660

The 80x86 code to implement the above could look like the following:

PassMe proc near
print
byte "PassMe was called",cr,lf,0
ret

PassMe endp

CallPassMe proc near
push bp
mov bp, sp
call word ptr [bp+4]
pop bp
ret 2

CallPassMe endp

Main proc near
lea bx, PassMe ;Pass address of PassMe to
push bx ; CallPassMe
call CallPassMe
ExitPgm

Main endp

For an example as simple as the one above, this technique works fine. However, it
does not always work properly if PassMe needs to access non-local variables. The follow-
ing Pascal code demonstrates the problem that could occur:

program main;

procedure dummy;
begin end;

procedure Recurse1(i:integer; procedure x);

procedure Print;
begin

writeln(i);

end;

procedure Recurse2(j:integer; procedure y);
begin

if (j=1) then y
else if (j=5) then Recurse1(j-1, Print)
else Recurse1(j-1, y);

end;

begin {Recurse1}

Recurse2(i, x);

end;

begin {Main}

Recurse1(5,dummy);

end.

This code produces the following call sequence:

Recurse1(5,dummy) → Recurse2(5,dummy) → Recurse1(4,Print) →
Recurse2(4,Print) → Recurse1(3,Print) → Recurse2(3,Print) →
Recurse1(2,Print) → Recurse2(2,Print) → Recurse1(1,Print) →
Recurse2(1,Print) → Print

Print will print the value of Recurse1’s i variable to the standard output. However, there are
several activation records present on the stack that raises the obvious question, “which
copy of i does Print display?” Without giving it much thought, you might conclude that it
should print the value “1” since Recurse2 calls Print when Recurse1’s value for i is one.
Note, though, that when Recurse2 passes the address of Print to Recurse1, i’s value is four.
Pascal, like most block structured languages, will use the value of i at the point Recurse2

Procedures: Advanced Topics

Page 661

passes the address of Print to Recurse1. Hence, the code above should print the value four,
not the value one.

This creates a difficult implementation problem. After all, Print cannot simply access
the display to gain access to the global variable i – the display’s entry for Recurse1 points
at the latest copy of Recurse1’s activation record, not the entry containing the value four
which is what you want.

The most common solution in systems using a display is to make a local copy of each
display whenever calling a procedure or function. When passing a procedure or function
as a parameter, the calling code copies the display along with the address of the procedure
or function. This is why Intel’s enter instruction makes a copy of the display when build-
ing the activation record.

If you are passing procedures and functions as parameters, you may want to consider
using static links rather than a display. When using a static link you need only pass a sin-
gle pointer (the static link) along with the routine’s address. Of course, it is more work to
access non-local variables, but you don’t have to copy the display on every call, which is
quite expensive.

The following 80x86 code provides the implementation of the above code using static
links:

wp textequ <word ptr>

Dummy proc near
ret

Dummy endp

; PrintIt; (Use the name PrintIt to avoid conflict).
;
; stack:
;
; bp+4: static link.

PrintIt proc near
push bp
mov bp, sp
mov bx, [bp+4] ;Get static link
mov ax, ss:[bx-10] ;Get i’s value.
puti
pop bp
ret 2

PrintIt endp

; Recurse1(i:integer; procedure x);
;
; stack:
;
; bp+10: i
; bp+8: x’s static link
; bp+6: x’s address

Recurse1 proc near
push bp
mov bp, sp
push wp [bp+10] ;Push value of i onto stack.
push wp [bp+8] ;Push x’s static link.
push wp [bp+6] ;Push x’s address.
push bp ;Push Recurse1’s static link.
call Recurse1
pop bp
ret 6

Recurse1 endp

; Recurse2(i:integer; procedure y);
;
; stack:
;
; bp+10: j
; bp+8: y’s static link.

Chapter 12

Page 662

; bp+6: y’s address.
; bp+4: Recurse2’s static link.

Recurse2 proc near
push bp
mov bp, sp
cmp wp [bp+10], 1 ;Is j=1?
jne TryJeq5
push [bp+8] ;y’s static link.
call wp [bp+6] ;Call y.
jmp R2Done

TryJeq5: cmp wp [bp+10], 5 ;Is j=5?
jne Call1
mov ax, [bp+10]
dec ax
push ax
push [bp+4] ;Push static link to R1.
lea ax, PrintIt ;Push address of print.
push ax
call Recurse1
jmp R2Done

Call1: mov ax, [bp+10]
dec ax
push ax
push [bp+8] ;Pass along existing
push [bp+6] ; address and link.
call Recurse1

R2Done: pop bp
ret 6

Recurse1 endp

main proc
push bp
mov bp, sp
mov ax, 5 ;Push first parameter.
push ax
push bp ;Dummy static link.
lea ax, Dummy ;Push address of dummy.
push ax
call Recurse1
pop bp
ExitPgm

main endp

There are several ways to improve this code. Of course, this particular program
doesn’t really need to maintain a display or static list because only PrintIt accesses
non-local variables; however, ignore that fact for the time being and pretend it does. Since
you know that PrintIt only accesses variables at one particular lex level, and the program
only calls PrintIt indirectly, you can pass a pointer to the appropriate activation record; this
is what the above code does, although it maintains full static links as well. Compilers
must always assume the worst case and often generate inefficient code. If you study your
particular needs, however, you may be able to improve the efficiency of your code by
avoiding much of the overhead of maintaining static lists or copying displays.

Keep in mind that thunks are special cases of functions that you call indirectly.
They suffer from the same problems and drawbacks as procedure and function parame-
ters with respect to accessing non-local variables. If such routines access non-local vari-
ables (and thunks almost always will) then you must exercise care when calling such
routines. Fortunately, thunks never cause indirect recursion (which is responsible for the
crazy problems in the Recurse1 / Recurse2 example) so you can use the display to access
any non-local variables appearing within the thunk.

Procedures: Advanced Topics

Page 663

12.5 Iterators

An iterator is a cross between a control structure and a function. Although common
high level languages do not often support iterators, they are present in some very high
level languages11. Iterators provide a combination state machine/function call mechanism
that lets a function pick up where it last left off on each new call. Iterators are also part of a
loop control structure, with the iterator providing the value of the loop control variable on
each iteration.

To understand what an iterator is, consider the following for loop from Pascal:

for I := 1 to 10 do <some statement>;

When learning Pascal you were probably taught that this statement initializes i with one,
compares i with 10, and executes the statement if i is less than or equal to 10. After execut-
ing the statement, the for statement increments i and compares it with 10 again, repeating
the process over and over again until I is greater than 10.

While this description is semantically correct, and indeed, it’s the way that most Pas-
cal compilers implement the for loop, this is not the only point of view that describes how
the for loop operates. Suppose, instead, that you were to treat the “to” reserved word as an
operator. An operator that expects two parameters (one and ten in this case) and returns
the range of values on each successive execution. That is, on the first call the “to” operator
would return one, on the second call it would return two, etc. After the tenth call, the “to”
operator would fail which would terminate the loop. This is exactly the description of an
iterator.

In general, an iterator controls a loop. Different languages use different names for iter-
ator controlled loops, this text will just use the name foreach as follows:

foreach variable in iterator() do
statements;

endfor;

Variable is a variable whose type is compatible with the return type of the iterator. An
iterator returns two values: a boolean success or failure value and a function result. As
long as the iterator returns success, the foreach statement assigns the other return value to
variable and executes statements. If iterator returns failure, the foreach loop terminates and
executes the next sequential statement following the foreach loop’s body. In the case of fail-
ure, the foreach statement does not affect the value of variable.

Iterators are considerably more complex than normal functions. A typical function
call involves two basic operations: a call and a return. Iterator invocations involve four
basic operations:

1) Initial iterator call
2) Yielding a value
3) Resumption of an iterator
4) Termination of an iterator.

To understand how an iterator operates, consider the following short example from
the Panacea programming language12:

Range:iterator(start,stop:integer):integer;
begin range;

while (start <= stop) do

yield start;
start := start + 1;

endwhile;

11. Ada and PL/I support very limited forms of iterators, though they do not support the type of iterators found
in CLU, SETL, Icon, and other languages.
12. Panacea is a very high level language developed by Randall Hyde for use in compiler courses at UC Riverside.

Chapter 12

Page 664

end Range;

In the Panacea programming language, iterator calls may only appear in the foreach state-
ment. With the exception of the yield statement above, anyone familiar with Pascal or C++
should be able to figure out the basic logic of this iterator.

An iterator in the Panacea programming language may return to its caller using one
of two separate mechanisms, it can return to the caller, by exiting through the end
Range; statement or it may yield a value by executing the yield statement. An iterator
succeeds if it executes the yield statement, it fails if it simply returns to the caller. Therefore,
the foreach statement will only execute its corresponding statement if you exit an iterator
with a yield. The foreach statement terminates if you simply return from the iterator. In the
example above, the iterator returns the values start..stop via a yield and then the iterator ter-
minates. The loop

foreach i in Range(1,10) do
write(i);

endfor;

is comparable to the Pascal statement:

for i := 1 to 10 do write(i);

When a Panacea program first executes the foreach statement, it makes an initial call to
the iterator. The iterator runs until it executes a yield or it returns. If it executes the yield
statement, it returns the value of the expression following the yield as the iterator result
and it returns success. If it simply returns, the iterator returns failure and no iterator
result. In the current example, the initial call to the iterator returns success and the value
one.

Assuming a successful return (as in the current example), the foreach statement
assigns the iterator return value to the loop control variable and executes the foreach loop
body. After executing the loop body, the foreach statement calls the iterator again. How-
ever, this time the foreach statement resumes the iterator rather than making an initial call.
An iterator resumption continues with the first statement following the last yield it executed. In
the range example, a resumption would continue execution at the start := start + 1; state-
ment. On the first resumption, the Range iterator would add one to start, producing the
value two. Two is less than ten (stop’s value) so the while loop would repeat and the itera-
tor would yield the value two. This process would repeat over and over again until the
iterator yields ten. Upon resuming after yielding ten, the iterator would increment start to
eleven and then return, rather than yield, since this new value is not less than or equal to
ten. When the range iterator returns (fails), the foreach loop terminates.

12.5.1 Implementing Iterators Using In-Line Expansion

The implementation of an iterator is rather complex. To begin with, consider a first
attempt at an assembly implementation of the foreach statement above:

push 1 ;Assume 286 or better
push 10 ; and parms passed on stack.
call Range_Initial ;Make initial call to iter.
jc Failure ;C=0, 1 means success, fail.

ForLoop: puti ;Assume result is in AX.
call Range_Resume ;Resume iterator.
jnc ForLoop ;Carry clear is success!

Failure:

Although this looks like a straight-forward implementation project, there are several
issues to consider. First, the call to Range_Resume above looks simple enough, but there is
no fixed address that corresponds to the resume address. While it is certainly true that this
Range example has only one resume address, in general you can have as many yield state-
ments as you like in an iterator. For example, the following iterator returns the values 1, 2,
3, and 4:

Procedures: Advanced Topics

Page 665

OneToFour:iterator:integer;
begin OneToFour;

yield 1;
yield 2;
yield 3;
yield 4;

end OneToFour;

The initial call would execute the yield 1; statement. The first resumption would execute
the yield 2; statement, the second resumption would execute yield 3;, etc. Obviously there
is no single resume address the calling code can count on.

There are a couple of additional details left to consider. First, an iterator is free to call
procedures and functions13. If such a procedure or function executes the yield statement
then resumption by the foreach statement continues execution within the procedure or
function that executed the yield. Second, the semantics of an iterator require all local vari-
ables and parameters to maintain their values until the iterator terminates. That is, yield-
ing does not deallocate local variables and parameters. Likewise, any return addresses left
on the stack (e.g., the call to a procedure or function that executes the yield statement) must
not be lost when a piece of code yields and the corresponding foreach statement resumes
the iterator. In general, this means you cannot use the standard call and return sequence to
yield from or resume to an iterator because you have to preserve the contents of the stack.

While there are several ways to implement iterators in assembly language, perhaps
the most practical method is to have the iterator call the loop controlled by the iterator and
have the loop return back to the iterator function. Of course, this is counter-intuitive. Nor-
mally, one thinks of the iterator as the function that the loop calls on each iteration, not the
other way around. However, given the structure of the stack during the execution of an
iterator, the counter-intuitive approach turns out to be easier to implement.

Some high level languages support iterators in exactly this fashion. For example,
Metaware’s Professional Pascal Compiler for the PC supports iterators14. Were you to cre-
ate a code sequence as follows:

iterator OneToFour:integer;
begin

yield 1;
yield 2;
yield 3;
yield 4;

end;

and call it in the main program as follows:

for i in OneToFour do writeln(i);

Professional Pascal would completely rearrange your code. Instead of turning the iterator
into an assembly language function and call this function from within the for loop body,
this code would turn the for loop body into a function, expand the iterator in-line (much
like a macro) and call the for loop body function on each yield. That is, Professional Pascal
would probably produce assembly language that looks something like the following:

13. In Panacea an iterator could also call other types of program units, including other iterators, but you can
ignore this for now.
14. Obviously, this is a non-standard extension to the Pascal programming language provided in Professional Pas-
cal.

Chapter 12

Page 666

; The following procedure corresponds to the for loop body
; with a single parameter (I) corresponding to the loop
; control variable:

ForLoopCode proc near
push bp
mov bp, sp
mov ax, [bp+4] ;Get loop control value and
puti ; print it.
putcr
pop bp
ret 2 ;Pop loop control value off stk.

ForLoopCode endp

; The follow code would be emitted in-line upon encountering the
; for loop in the main program, it corresponds to an in-line
; expansion of the iterator as though it were a macro,
; substituting a call for the yield instructions:

push 1 ;On 286 and later processors only.
call ForLoopCode
push 2
call ForLoopCode
push 3
call ForLoopCode
push 4
call ForLoopCode

This method for implementing iterators is convenient and produces relatively effi-
cient (fast) code. It does, however, suffer from a couple drawbacks. First, since you must
expand the iterator in-line wherever you call it, much like a macro, your program could
grow large if the iterator is not short and you use it often. Second, this method of imple-
menting the iterator completely hides the underlying logic of the code and makes your
assembly language programs difficult to read and understand.

12.5.2 Implementing Iterators with Resume Frames

In-line expansion is not the only way to implement iterators. There is another method
that preserves the structure of your program at the expense of a slightly more complex
implementation. Several high level languages, including Icon and CLU, use this imple-
mentation.

To start with, you will need another stack frame: the resume frame. A resume frame
contains two entries: a yield return address (that is, the address of the next instruction
after the yield statement) and a dynamic link, which is a pointer to the iterator’s activation
record. Typically the dynamic link is just the value in the bp register at the time you exe-
cute the yield instruction. This version implements the four parts of an iterator as follows:

1) A call instruction for the initial iterator call,
2) A call instruction for the yield statement,
3) A ret instruction for the resume operation, and
4) A ret instruction to terminate the iterator.

To begin with, an iterator will require two return addresses rather than the single
return address you would normally expect. The first return address appearing on the
stack is the termination return address. The second return address is where the subroutine
transfers control on a yield operation. The calling code must push these two return
addresses upon initial invocation of the iterator. The stack, upon initial entry into the iter-
ator, should look something like Figure 12.8.

As an example, consider the Range iterator presented earlier. This iterator requires
two parameters, a starting value and an ending value:

foreach i in Range(1,10) do writeln(i);

Procedures: Advanced Topics

Page 667

The code to make the initial call to the Range iterator, producing a stack like the one
above, could be the following:

push 1 ;Push start parameter value.
push 10 ;Push stop parameter value.
push offset ForDone ;Push termination address.
call Range ;Pushes yield return address.

ForDone is the first statement immediately following the foreach loop, that is, the instruc-
tion to execute when the iterator returns failure. The foreach loop body must begin with
the first instruction following the call to Range. At the end of the foreach loop, rather than
jumping back to the start of the loop, or calling the iterator again, this code should just
execute a ret instruction. The reason will become clear in a moment. So the implementa-
tion of the above foreach statement could be the following:

push 1 ;Obviously, this requires a
push 10 ; 80286 or later processor.
push offset ForDone
call Range
mov bp, [bp] ;Explained a little later.
puti
putcr
ret

ForDone:

Granted, this doesn’t look anything at all like a loop. However, by playing some major
tricks with the stack, you’ll see that this code really does iterate the loop body (puti and
putcr) as intended.

Now consider the Range iterator itself, here’s the code to do the job:

Range_Start equ word ptr <[bp+8]> ;Address of Start parameter.
Range_Stop equ word ptr <[bp+6]> ;Address of Stop parameter.
Range_Yield equ word ptr <[bp+2]> ;Yield return address.

Range proc near
push bp
mov bp, sp

RangeLoop: mov ax, Range_Start ;Get start parameter and
cmp ax, Range_Stop ; compare against stop.
ja RangeDone ;Terminate if start > stop

; Okay, build the resume frame:

push bp ;Save dynamic link.
call Range_Yield ;Do YIELD operation.
pop bp ;Restore dynamic link.
inc Range_Start ;Bump up start value
jmp RangeLoop ;Repeat until start > stop.

RangeDone: pop bp ;Restore old BP
add sp, 2 ;Pop YIELD return address
ret 4 ;Terminate iterator.

Range endp

Figure 12.8 Iterator Activation Record

Previous Stack Contents

 SP

If this is a
NEAR Iterator

Yield Return Address

Parameters for Iterator

Termination Return Address

Chapter 12

Page 668

Although this routine is rather short, don’t let its size deceive you; it’s quite complex.
The best way to describe how this iterator operates is to take it a few instructions at a time.
The first two instructions are the standard entry sequence for a procedure. Upon execu-
tion of these two instructions, the stack looks like that in Figure 12.9.

The next three statements in the Range iterator, at label RangeLoop, implement the ter-
mination test of the while loop. When the Start parameter contains a value greater than the
Stop parameter, control transfers to the RangeDone label at which point the code pops the
value of bp off the stack, pops the yield return address off the stack (since this code will
not return back to the body of the iterator loop) and then returns via the termination
return address that is immediately above the yield return address on the stack. The return
instruction also pops the two parameters off the stack.

The real work of the iterator occurs in the body of the while loop. The push, call, and
pop instructions implement the yield statement. The push and call instructions build the
resume frame and then return control to the body of the foreach loop. The call instruction
is not calling a subroutine. What it is really doing here is finishing off the resume frame
(by storing the yield resume address into the resume frame) and then it returns control
back to the body of the foreach loop by jumping indirect through the yield return address
pushed on the stack by the initial call to the iterator. After the execution of this call, the
stack frame looks like that in Figure 12.9.

Also note that the ax register contains the return value for the iterator. As with functions,
ax is a good place to return the iterator return result.

Immediately after yielding back to the foreach loop, the code must reload bp with the
original value prior to the iterator invocation. This allows the calling code to correctly
access parameters and local variables in its own activation record rather than the activa-
tion record of the iterator. Since bp just happens to point at the original bp value for the
calling code, executing the mov bp, [bp] instruction reloads bp as appropriate. Of course,
in this example reloading bp isn’t necessary because the body of the foreach loop does not
reference any memory locations off the bp register, but in general you will need to restore
bp.

At the end of the foreach loop body the ret instruction resumes the iterator. The ret
instruction pops the return address off the stack which returns control back to the iterator
immediately after the call. The instruction at this point pops bp off the stack, increments
the Start variable, and then repeats the while loop.

Figure 12.9 Range Activation Record

Previous Stack Contents

Original BP Value

 SP, BP

If this is a
NEAR Iterator

0

2

Offset from BP

Yield Return Address

Termination Return Address4

6

8

10

Value of Start Parameter (1)

Value of Stop Parameter (10)

Procedures: Advanced Topics

Page 669

Of course, this is a lot of work to create a piece of code that simply repeats a loop ten
times. A simple for loop would have been much easier and quite a bit more efficient that
the foreach implementation described in this section. This section used the Range iterator
because it was easy to show how iterators work using Range, not because actually imple-
menting Range as an iterator is a good idea.

12.6 Sample Programs

The sample programs in this chapter provide two examples of iterators. The first
example is a simple iterator that processes characters in a string and returns the vowels
found in that string. The second iterator is a synthetic program (i.e., written just to demon-
strate iterators) that is considerably more complex since it deals with static links. The sec-
ond sample program also demonstrates another way to build the resume frame for an
iterator. Take a good look at the macros that this program uses. They can simplify the user
of iterators in your programs.

12.6.1 An Example of an Iterator

The following example demonstrates a simple iterator. This piece of code reads a
string from the user and then locates all the vowels (a, e, i, o, u, w, y) on the line and prints
their index into the string, the vowel at that position, and counts the occurrences of each
vowel. This isn’t a particularly good example of an iterator, however it does serve to dem-
onstrate an implementation and use.

First, a pseudo-Pascal version of the program:

program DoVowels(input,output);
const

Vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘y’, ‘w’,
 ‘A’, ‘E’, ‘I’, ‘O’, ‘U’, ‘Y’, ‘W’];

var

Figure 12.10 Range Resume Record

Previous Stack Contents

Original BP Value

 SP

Yield Return Address

Termination Return Address

Value of Start Parameter (1)

Value of Stop Parameter (10)

Resume Return Address

Dynamic Link (old BP)

Iterator
Activation
Record

 BP

Resume Frame

Chapter 12

Page 670

ThisVowel : integer;
VowelCnt : array [char] of integer;

iterator GetVowel(s:string) : integer;
var

CurIndex : integer;
begin

for CurIndex := 1 to length(s) do
if (s [CurIndex] in Vowels) then begin

 { If we have a vowel, bump the cnt by 1 }
 Vowels[s[CurIndex]] := Vowels[s[CurIndex]]+1;

 (Return index into string of current vowel }
 yield CurIndex;

end;
end;

begin {main}

{ First, initialize our vowel counters }

VowelCnt [‘a’] := 0;
VowelCnt [‘e’] := 0;
VowelCnt [‘i’] := 0;
VowelCnt [‘o’] := 0;
VowelCnt [‘u’] := 0;
VowelCnt [‘w’] := 0;
VowelCnt [‘y’] := 0;
VowelCnt [‘A’] := 0;
VowelCnt [‘E’] := 0;
VowelCnt [‘I’] := 0;
VowelCnt [‘O’] := 0;
VowelCnt [‘U’] := 0;
VowelCnt [‘W’] := 0;
VowelCnt [‘Y’] := 0;

{ Read and process the input string}

Write(‘Enter a string: ‘);
ReadLn(InputStr);
foreach ThisVowel in GetVowel(InputStr) do

WriteLn(‘Vowel ‘,InputStr [ThisVowel],
‘ at position ‘, ThisVowel);

{ Output the vowel counts }

WriteLn(‘# of A’’s:’,VowelCnt[‘a’] + VowelCnt[‘A’]);
WriteLn(‘# of E’’s:’,VowelCnt[‘e’] + VowelCnt[‘E’]);
WriteLn(‘# of I’’s:’,VowelCnt[‘i’] + VowelCnt[‘I’]);
WriteLn(‘# of O’’s:’,VowelCnt[‘o’] + VowelCnt[‘O’]);
WriteLn(‘# of U’’s:’,VowelCnt[‘u’] + VowelCnt[‘U’]);
WriteLn(‘# of W’’s:’,VowelCnt[‘w’] + VowelCnt[‘W’]);
WriteLn(‘# of Y’’s:’,VowelCnt[‘y’] + VowelCnt[‘Y’]);

end.

Here’s the working assembly language version:

.286 ;For PUSH imm instr.

.xlist
include stdlib.a
includelib stdlib.lib
.list

; Some “cute” equates:

Iterator textequ <proc>
endi textequ <endp>
wp textequ <word ptr>

; Necessary global variables:

dseg segment para public ‘data’

Procedures: Advanced Topics

Page 671

; As per UCR StdLib instructions, InputStr must hold
; at least 128 characters.

InputStr byte 128 dup (?)

; Note that the following statement initializes the
; VowelCnt array to zeros, saving us from having to
; do this in the main program.

VowelCnt word 256 dup (0)

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; GetVowel- This iterator searches for the next vowel in the
; input string and returns the index to the value
; as the iterator result. On entry, ES:DI points
; at the string to process. On yield, AX returns
; the zero-based index into the string of the
; current vowel.
;
; GVYield- Address to call when performing the yield.
; GVStrPtr- A local variable that points at our string.

GVYield textequ <word ptr [bp+2]>
GVStrPtr textequ <dword ptr [bp-4]>

GetVowel Iterator
push bp
mov bp, sp

; Create and initialize GVStrPtr. This is a pointer to the
; next character to process in the input string.

push es
push di

; Save original ES:DI values so we can restore them on YIELD
; and on termination.

push es
push di

; Okay, here’s the main body of the iterator. Fetch each
; character until the end of the string and see if it is
; a vowel. If it is a vowel, yield the index to it. If
; it is not a vowel, move on to the next character.

GVLoop: les di, GVStrPtr ;Ptr to next char.
mov al, es:[di] ;Get this character.
cmp al, 0 ;End of string?
je GVDone

; The following statement will convert all lower case
; characters to upper case. It will also translate other
; characters to who knows what, but we don’t care since
; we only look at A, E, I, O, U, W, and Y.

and al, 5fh

; See if this character is a vowel. This is a disgusting
; set membership operation.

cmp al, ‘A’
je IsAVowel
cmp al, ‘E’
je IsAVowel
cmp al, ‘I’
je IsAVowel
cmp al, ‘O’
je IsAVowel
cmp al, ‘U’
je IsAVowel
cmp al, ‘W’
je IsAVowel

Chapter 12

Page 672

cmp al, ‘Y’
jne NotAVowel

; If we’ve got a vowel we need to yield the index into
; the string to that vowel. To compute the index, we
; restore the original ES:DI values (which points at
; the beginning of the string) and subtract the current
; position (now in AX) from the first position. This
; produces a zero-based index into the string.
; This code must also increment the corresponding entry
; in the VowelCnt array so we can print the results
; later. Unlike the Pascal code, we’ve converted lower
; case to upper case so the count for upper and lower
; case characters will appear in the upper case slot.

IsAVowel: push bx ;Bump the vowel
mov ah, 0 ; count by one.
mov bx, ax
shl bx, 1
inc VowelCnt[bx]
pop bx

mov ax, di
pop di ;Restore original DI
sub ax, di ;Compute index.
pop es ;Restore original ES

push bp ;Save our frame pointer
call GVYield ;Yield to caller
pop bp ;Restore our frame pointer
push es ;Save ES:DI again
push di

; Whether it was a vowel or not, we’ve now got to move
; on to the next character in the string. Increment
; our string pointer by one and repeat the process
; over again.

NotAVowel: inc wp GVStrPtr
jmp GVLoop

; If we’ve reached the end of the string, terminate
; the iterator here. We need to restore the original
; ES:DI values, remove local variables, pop the YIELD
; address, and then return to the termination address.

GVDone: pop di ;Restore ES:DI
pop es
mov sp, bp ;Remove locals
add sp, 2 ;Pop YIELD address
pop bp
ret

GetVowel endi

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

print
byte “Enter a string: “,0
lesi InputStr
gets ;Read input line.

; The following is the foreach loop. Note that the label
; “FOREACH” is present for documentation purpose only.
; In fact, the foreach loop always begins with the first
; instruction after the call to GetVowel.
;
; One other note: this assembly language code uses
; zero-based indexes for the string. The Pascal version
; uses one-based indexes for strings. So the actual
; numbers printed will be different. If you want the
; values printed by both programs to be identical,

Procedures: Advanced Topics

Page 673

; uncomment the INC instruction below.

push offset ForDone ;Termination address.
call GetVowel ;Start iterator

FOREACH: mov bx, ax
print
byte “Vowel “,0
mov al, InputStr[bx]
putc
print
byte “ at position “,0
mov ax, bx

; inc ax
puti
putcr
ret ;Iterator resume.

ForDone: printf
byte “# of A’s: %d\n”
byte “# of E’s: %d\n”
byte “# of I’s: %d\n”
byte “# of O’s: %d\n”
byte “# of U’s: %d\n”
byte “# of W’s: %d\n”
byte “# of Y’s: %d\n”,0
dword VowelCnt + (‘A’*2)
dword VowelCnt + (‘E’*2)
dword VowelCnt + (‘I’*2)
dword VowelCnt + (‘O’*2)
dword VowelCnt + (‘U’*2)
dword VowelCnt + (‘W’*2)
dword VowelCnt + (‘Y’*2)

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

12.6.2 Another Iterator Example

One problem with the iterator examples appearing in this chapter up to this point is
that they do not access any global or intermediate variables. Furthermore, these examples
do not work if an iterator is recursive or calls other procedures that yield the value to the
foreach loop. The major problem with the examples up to this point has been that the
foreach loop body has been responsible for reloading the bp register with a pointer to the
foreach loop’s procedure’s activation record. Unfortunately, the foreach loop body has to
assume that bp currently points at the iterator’s activation record so it can get a pointer to
its own activation record from that activation record. This will not be the case if the itera-
tor’s activation record is not the one on the top of the stack.

To rectify this problem, the code doing the yield operation must set up the bp register
so that it points at the activation record of the procedure containing the foreach loop before
returning back to the loop. This is a somewhat complex operation. The following macro
accomplishes this from inside an iterator:

Yield macro
mov dx, [BP+2] ;Place to yield back to.
push bp ;Save Iterator link
mov bp, [bp] ;Get ptr to caller's A.R.

Chapter 12

Page 674

call dx ;Push resume address and rtn.
pop bp ;Restore ptr to our A. R.
endm

Note an unfortunate side effect of this code is that it modifies the dx register. Therefore, the
iterator does not preserve the dx register across a call to the iterator function.

The macro above assumes that the bp register points at the iterator’s activation record.
If it does not, then you must execution some additional instructions to follow the static
links back to the iterator’s activation record to obtain the address of the foreach loop proce-
dure’s activation record.

; ITERS.ASM
;
; Roughly corresponds to the example in Ghezzi & Jazayeri's
; "Programming Language Concepts" text.
;
; Randall Hyde
;
;
; This program demonstrates an implementation of:
;
; l := 0;
; foreach i in range(1,3) do
; foreach j in iter2() do
; writeln(i, ',', j, ',', l):
;
;
; iterator range(start,stop):integer;
; begin
;
; while start <= stop do begin
;
; yield start;
; start := start+1;
; end;
; end;
;
; iterator iter2:integer;
; var k:integer;
; begin
;
; foreach k in iter3 do
; yield k;
; end;
;
; iterator iter3:integer;
; begin
;
; l := l + 1;
; yield 1;
; l := l + 1;
; yield 2;
; l := l + 1;
; yield 0;
; end;
;
;
; This code will print:
;
; 1, 1, 1
; 1, 2, 2
; 1, 0, 3
; 2, 1, 4
; 2, 2, 5
; 2, 0, 6
; 3, 1, 7
; 3, 2, 8
; 3, 0, 9

Procedures: Advanced Topics

Page 675

.xlist
include stdlib.a
includelibstdlib.lib
.list

.286 ;Allow extra adrs modes.

dseg segment para stack 'data'

; Put the stack in the data segment so we can use the small memory model
; to simplify addressing:

stk byte 1024 dup ('stack')
EndStk word 0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg, ss:dseg

; Here's the structure of a resume frame. Note that this structure isn't
; actually used in this code. It is only provided to show you what data
; is sitting on the stack when Yield builds a resume frame.

RsmFrm struct
ResumeAdrs word ?
IteratorLink word ?
RsmFrm ends

; The following macro builds a resume frame and the returns to the caller
; of an iterator. It assumes that the iterator and whoever called the
; iterator have the standard activation record defined above and that we
; are building the standard resume frame described above.
;
; This code wipes out the DX register. Whoever calls the iterator cannot
; count on DX being preserved, likewise, the iterator cannot count on DX
; being preserved across a yield. Presumably, the iterator returns its
; value in AX.

ActRec struct
DynamicLink word ? ;Saved BP value.
YieldAdrs word ? ;Return Adrs for proc.
StaticLink word ? ;Static link for proc.
ActRec ends

AR equ [bp].ActRec

Yield macro
mov dx, AR.YieldAdrs ;Place to yield back to.
push bp ;Save Iterator link
mov bp, AR.DynamicLink ;Get ptr to caller's A.R.
call dx ;Push resume address and rtn.
pop bp ;Restore ptr to our A. R.
endm

; Range(start, stop) - Yields start..stop and then fails.

; The following structure defines the activation record for Range:

rngAR struct
DynamicLink word ? ;Saved BP value.
YieldAdrs word ? ;Return Adrs for proc.
StaticLink word ? ;Static link for proc.
FailAdrs word ? ;Go here when we fail
Stop word ? ;Stop parameter
Start word ? ;Start parameter

Chapter 12

Page 676

rngAR ends

rAR equ [bp].rngAR

Range proc
push bp
mov bp, sp

; While start <= stop, yield start:

WhlStartLEStop: mov ax, rAR.Start ;Also puts return value
cmp ax, rAR.Stop ; in AX.
jnle RangeFail

yield

inc rAR.Start
jmp WhlStartLEStop

RangeFail: pop bp ;Restore Dynamic Link.
add sp, 4 ;Skip ret adrs and S.L.
ret 4 ;Return through fail address.

Range endp

; Iter2- Just calls iter3() and returns whatever value it generates.
;
; Note: Since iter2 and iter3 are at the same lex level, the static link
; passed to iter3 must be the same as the static link passed to iter2.
; This is why the "push [bp]" instruction appears below (as opposed to the
; "push bp" instruction which appears in the calls to Range and iter2).
; Keep in mind, Range and iter2 are only called from main and bp contains
; the static link at that point. This is not true when iter2 calls iter3.

iter2 proc
push bp
mov bp, sp

push offset i3Fail ;Failure address.
push [bp] ;Static link is link to main.
call iter3
yield ;Return value returned by iter3
ret ;Resume Iter3.

i3Fail: pop bp ;Restore Dynamic Link.
add sp, 4 ;Skip return address & S.L.
ret ;Return through fail address.

iter2 endp

; Iter3() simply yields the values 1, 2, and 0:

iter3 proc
push bp
mov bp, sp

mov bx, AR.StaticLink;Point BX at main's AR.
inc word ptr [bx-6];Increment L in main.
mov ax, 1
yield

mov bx, AR.StaticLink
inc word ptr [bx-6]
mov ax, 2
yield
mov bx, AR.StaticLink
inc word ptr [bx-6]
mov ax, 0
yield

Procedures: Advanced Topics

Page 677

pop bp ;Restore Dynamic Link.
add sp, 4 ;Skip return address & S.L.
ret ;Return through fail address.

iter3 endp

; Main's local variables are allocated on the stack in order to justify
; the use of static links.

i equ [bp-2]
j equ [bp-4]
l equ [bp-6]

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
mov ss, ax
mov sp, offset EndStk

; Allocate storage for i, j, and l on the stack:

mov bp, sp
sub sp, 6

meminit

mov word ptr l, 0 ;Initialize l.

; foreach i in range(1,3) do:

push 1 ;Parameters.
push 3
push offset iFail ;Failure address.
push bp ;Static link points at our AR.
call Range

; Yield from range comes here. The label is for your benefit.

RangeYield: mov i, ax ;Save away loop control value.

; foreach j in iter2 do:

push offset jfail ;Failure address.
push bp ;Static link points at our AR.
call iter2

; Yield from iter2 comes here:

iter2Yield: mov j, ax

mov ax, i
puti
print
byte ", ",0
mov ax, j
puti
print
byte ", ",0
mov ax, l
puti
putcr

; Restart iter2:

ret ;Resume iterator.

; Restart Range down here:

Chapter 12

Page 678

jFail: ret ;Resume iterator.

; All Done!

iFail: print
byte cr,lf,"All Done!",cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!
; This is where the heap begins.

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

12.7 Laboratory Exercises

This chapter’s laboratory exercises consist of three components. In the first exercise
you will experiment with a fairly complex set of iterators. In the second exercise you will
learn how the 80286’s enter and leave instructions operate. In the third exercise, you will
run some experiments on parameter passing mechanisms.

12.7.1 Iterator Exercise

In this laboratory exercise you will be working with a program (Ex12_1.asm on the
companion CD-ROM) that uses four iterators. The first three iterators perform some fairly
simple computations, the fourth iterator returns (successively) pointers to the first three
iterators’ code that the main program can use to call these iterators.

For your lab report: study the following code and explain how it works. Run it and
explain the output. Assemble the program with the “/Zi” option, then from within Code-
View, set a breakpoint on the first instruction of the four iterators. Run the program up to
these break points and dump the memory starting at the current stack pointer value
(ss:sp). Describe the meaning of the data on the stack at each breakpoint. Also, set a break-
point on the “call ax” instruction. Trace into the routine ax points at upon each breakpoint
and describe which routine this instruction calls. How many times does this instruction
execute?

; EX12_1.asm
;
; Program to support the laboratory exercise in Chapter 12.
;
; This program combines iterators, passing parameters as parameters,
; and procedural parameters all into the same program.
;
;
; This program implements the following iterators (examples written in panacea):
;
; program EX12_1;
;
; fib:iterator(n:integer):integer;
; var
; CurIndex:integer;
; Fn1: integer;
; Fn2: integer;
; endvar;
; begin fib;
;

Procedures: Advanced Topics

Page 679

; yield 1; (* Always have at least n=0 *)
; if (n <> 0) then
;
; yield 1; (* Have at least n=1 at this point *)
;
; Fn1 := 1;
; Fn2 := 1;
; foreach CurIndex in 2..n do
;
; yield Fn1+Fn2;
; Fn2 = Fn1;
; Fn1 = CurIndex;
;
; endfor;
; endif;
;
; end fib;
;
;
;
; UpDown:iterator(n:integer):integer;
; var
; CurIndex:integer;
; endvar;
; begin UpDown;
;
; foreach CurIndex in 0..n do
;
; yield CurIndex;
;
; endfor;
; foreach CurIndex in n-1..0 do
;
; yield CurIndex;
;
; endfor;
;
; end UpDown;
;
;
;
; SumToN:iterator(n:integer):integer;
; var
; CurIndex:integer;
; Sum: integer;
; endvar;
; begin SumToN;
;
; Sum := 0;
; foreach CurIndex in 0..n do
;
; Sum := Sum + CurIndex;
; yield Sum;
;
; endfor;
;
; end SumToN;
;
;
; MultiIter returns a pointer to an iterator that accepts a single integer
parameter.
;
; MultiIter: iterator: [iterator(n:integer)];
; begin MultiIter;
;
; yield @Fib;(* Return pointers to the three iterators above *)
; yield @UpDown;(* as the result of this iterator.*)
; yield @SumToN;
;
; end MultiIter;

Chapter 12

Page 680

;
;
; var
; i:integer;
; n:integer;
; iter:[iterator(n:integer)];
; endvar;
;
; begin EX12_1;
;
; (* The following for loop repeats six times, passing its loop index as*)
; (* the parameter to the Fib, UpDown, and SumToN parameters.*)
;
; foreach n in 0..5 do
;
;
; (* The following (funny looking) iterator sequences through *)
; (* each of the three iterators: Fib, UpDown, and SumToN. It*)
; (* returns a pointer as the iterator value. The innermost *)
; (* foreach loop uses this pointer to call the appropriate *)
; (* iterator. *)
;
; foreach iter in MultiIter do
;
; (* Okay, this for loop invokes whatever iterator was *)
; (* return by the MultiIter iterator above. *)
;
; foreach i in [MultiIter](n) do
;
; write(i:3);
;
; endfor;
; writeln;
;
; endfor;
; writeln;
;
; endfor;
;
; end EX12_1;

.xlist
include stdlib.a
includelibstdlib.lib
.list

.286 ;Allow extra adrs modes.

wp textequ <word ptr>
ofs textequ <offset>

dseg segment para public 'code'
dseg ends

cseg segment para public 'code'
assume cs:cseg, ss:sseg

; The following macro builds a resume frame and the returns to the caller
; of an iterator. It assumes that the iterator and whoever called the
; iterator have the standard activation record defined above and that we
; are building the standard resume frame described above.
;
; This code wipes out the DX register. Whoever calls the iterator cannot
; count on DX being preserved, likewise, the iterator cannot count on DX
; being preserved across a yield. Presumably, the iterator returns its
; value in AX.

Procedures: Advanced Topics

Page 681

Yield macro
mov dx, [BP+2] ;Place to yield back to.
push bp ;Save Iterator link
mov bp, [bp] ;Get ptr to caller's A.R.
call dx ;Push resume address and rtn.
pop bp ;Restore ptr to our A. R.
endm

; Fib(n) - Yields the sequence of fibonacci numbers from F(0)..F(n).
; The fibonacci sequence is defined as:
;
; F(0) and F(1) = 1.
; F(n) = F(n-1) + F(n-2) for n > 1.

; The following structure defines the activation record for Fib

CurIndex textequ <[bp-6]> ;Current sequence value.
Fn1 textequ <[bp-4]> ;F(n-1) value.
Fn2 textequ <[bp-2]> ;F(n-2) value.
DynamicLink textequ <[bp]> ;Saved BP value.
YieldAdrs textequ <[bp+2]> ;Return Adrs for proc.
FailAdrs textequ <[bp+4]> ;Go here when we fail
n textequ <[bp+6]> ;The initial parameter

Fib proc
push bp
mov bp, sp
sub sp, 6 ;Make room for local variables.

; We will also begin yielding values starting at F(0).
; Since F(0) and F(1) are special cases, yield their values here.

mov ax, 1 ;Yield F(0) (we always return at least
yield ; F(0)).

cmp wp n, 1 ;See if user called this with n=0.
jb FailFib
mov ax, 1
yield

; Okay, n >=1 so we need to go into a loop to handle the remaining values.
; First, begin by initializing Fn1 and Fn2 as appropriate.

mov wp Fn1, 1
mov wp Fn2, 1
mov wp CurIndex, 2

WhlLp: mov ax, CurIndex ;See if CurIndex > n.
cmp ax, n
ja FailFib

push Fn1
mov ax, Fn1
add ax, Fn2
pop Fn2 ;Fn1 becomes the new Fn2 value.
mov Fn1, ax ;Current value becomes new Fn1 value.
yield ;Yield the current value.

inc wp CurIndex
jmp WhlLp

FailFib: mov sp, bp ;Deallocate local vars.
pop bp ;Restore Dynamic Link.

Chapter 12

Page 682

add sp, 2 ;Skip ret adrs.
ret 2 ;Return through fail address.

Fib endp

; UpDown- This function yields the sequence 0, 1, 2, ..., n, n-1,
; n-2, ..., 1, 0.

i textequ <[bp-2]> ;F(n-2) value.

UpDown proc
push bp
mov bp, sp
sub sp, 2 ;Make room for i.

mov wp i, 0 ;Initialize our index variable (i).
UptoN: mov ax, i

cmp ax, n
jae GoDown

yield

inc wp i
jmp UpToN

GoDown: mov ax, i
yield
mov ax, i
cmp ax, 0
je UpDownDone
dec wp i
jmp GoDown

UpDownDone: mov sp, bp ;Deallocate local vars.
pop bp ;Restore Dynamic Link.
add sp, 2 ;Skip ret adrs.
ret 2 ;Return through fail address.

UpDown endp

; SumToN(n)- This iterator returns 1, 2, 3, 6, 10, ... sum(n) where
; sum(n) = 1+2+3+4+...+n (e.g., n(n+1)/2);

j textequ <[bp-2]>
k textequ <[bp-4]>

SumToN proc
push bp
mov bp, sp
sub sp, 4 ;Make room for j and k.

mov wp j, 0 ;Initialize our index variable (j).
mov wp k, 0 ;Initialize our sum (k).

SumLp: mov ax, j
cmp ax, n
ja SumDone

add ax, k
mov k, ax

yield

inc wp j
jmp SumLp

SumDone: mov sp, bp ;Deallocate local vars.
pop bp ;Restore Dynamic Link.
add sp, 2 ;Skip ret adrs.
ret 2 ;Return through fail address.

Procedures: Advanced Topics

Page 683

SumToN endp

; MultiIter- This iterator returns a pointer to each of the above iterators.

MultiIter proc
push bp
mov bp, sp

mov ax, ofs Fib
yield
mov ax, ofs UpDown
yield
mov ax, ofs SumToN
yield

pop bp
add sp, 2
ret

MultiIter endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; foreach bx in 0..5 do

mov bx, 0 ;Loop control variable for outer loop.
WhlBXle5:

; foreach ax in MultiIter do

push ofs MultiDone ;Failure address.
call MultiIter ;Get iterator to call.

; foreach i in [ax](bx) do

push bx ;Push "n" (bx) onto the stack.
push ofs IterDone ;Failure Address
call ax ;Call the iterator pointed at by the

; ; return value from MultiIter.
;
; write(ax:3);

mov cx, 3
putisize
ret

; endfor, writeln;

IterDone: putcr ;Writeln;
ret

; endfor, writeln;

MultiDone: putcr
inc bx
cmp bx, 5
jbe WhlBXle5

; endfor

Quit: ExitPgm ;DOS macro to quit program.

Chapter 12

Page 684

Main endp

cseg ends

sseg segment para stack 'stack'
stk word 1024 dup (0)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

12.7.2 The 80x86 Enter and Leave Instructions

The following code (Ex12_2.asm on the companion CD-ROM) uses the 80x86 enter
and leave instructions to maintain a display in a block structured program. Assemble this
program with the “/Zi” option and load it into CodeView. Set breakpoints on the calls to
the Lex1, Lex2, Lex3, and Lex4 procedures. Run the program and when you encounter a
breakpoint, use the F8 key to single step into each procedure. Single step over the enter
instruction (to the following nop). Note the values of the bp and sp register before and after
the execution of the enter instruction.

For your lab report: explain the values in the bp and sp registers after executing each
enter instruction. Dump memory from ss:sp to about ss:sp+32 using a memory window or
the dw command in the command window. Describe the contents of the stack after the exe-
cution of each enter instruction.

After executing through the enter instruction in the Lex4 procedure, set a breakpoint
on each of the leave instructions. Run the program at full speed (using the F5 key) until
you hit each of these leave instructions. Note the values of the bp and sp registers before
and after the execution of each leave instruction. For your lab report: include these bp/sp
values in your lab report and explain them.

; EX12_2.asm
;
; Program to demonstrate the ENTER and LEAVE instructions in Chapter 12.
;
; This program simulates the following Pascal code:
;
; program EnterLeave;
; var i:integer;
;
; procedure Lex1;
; var j:integer;
;
; procedure Lex2;
; var k:integer;
;
; procedure Lex3;
; var m:integer;
;
; procedure Lex4;
; var n:integer;
; begin
;
; writeln('Lex4');
; for i:= 0 to 3 do
; for j:= 0 to 2 do
; write('(',i,',',j,') ');
; writeln;
; for k:= 1 downto 0 do
; for m:= 1 downto 0 do
; for n := 0 to 1 do
; write('(',m,',',k,',',n,') ');

Procedures: Advanced Topics

Page 685

; writeln;
; end;
;
; begin {Lex3}
;
; writeln('Lex3');
; for i := 0 to 1 do
; for j := 0 to 1 do
; for k := 0 to 1 do
; for m := 0 to 1 do
; writeln(i,j,k,m);
;
; Lex4;
;
; end; {Lex3}
;
; begin {Lex2}
;
; writeln('Lex2');
; for i := 1 downto 0 do
; for j := 0 to 1 do
; for k := 1 downto 0 do
; write(i,j,k,' ');
; writeln;
;
; Lex3;
;
; end; {Lex2}
;
; begin {Lex1}
;
; writeln('Lex1');
; Lex2;
;
; end; {Lex1}
;
; begin {Main (lex0)}
;
; writeln('Main Program');
; Lex1;
;
; end.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.286 ;Allow ENTER & LEAVE.

; Common equates all the procedures use:

wp textequ <word ptr>
disp1 textequ <word ptr [bp-2]>
disp2 textequ <word ptr [bp-4]>
disp3 textequ <word ptr [bp-6]>

; Note: the data segment and the stack segment are one and the same in this
; program. This is done to allow the use of the [bx] addressing mode when
; referencing local and intermediate variables without having to use a
; stack segment prefix.

sseg segment para stack 'stack'

i word ? ;Main program variable.
stk word 2046 dup (0)

sseg ends

cseg segment para public 'code'
assume cs:cseg, ds:sseg, ss:sseg

; Main's activation record looks like this:
;

Chapter 12

Page 686

; | return address |<- SP, BP
; |----------------|

Main proc
mov ax, ss ;Make SS=DS to simplify addressing
mov ds, ax ; (there will be no need to stick "SS:"
mov es, ax ; in front of addressing modes like

; "[bx]").

print
byte "Main Program",cr,lf,0
call Lex1

Quit: ExitPgm ;DOS macro to quit program.
Main endp

; Lex1's activation record looks like this:
;
; | return address |
; |----------------|
; | Dynamic Link | <- BP
; |----------------|
; | Lex1's AR Ptr | | Display
; |----------------|
; | J Local var | <- SP (BP-4)
; |----------------|

Lex1_J textequ <word ptr [bx-4]>

Lex1 proc near
enter 2, 1 ;A 2 byte local variable at lex level 1.
nop ;Spacer instruction for single stepping

print
byte "Lex1",cr,lf,0
call Lex2
leave
ret

Lex1 endp

; Lex2's activation record looks like this:
;
; | return address |
; |----------------|
; | Dynamic Link | <- BP
; |----------------|
; | Lex1's AR Ptr | |
; |----------------| | Display
; | Lex2's AR Ptr | |
; |----------------|
; | K Local var | <- SP (BP-6)
; |----------------|
;
; writeln('Lex2');
; for i := 1 downto 0 do
; for j := 0 to 1 do
; for k := 1 downto 0 do
; write(i,j,k,' ');
; writeln;
;
; Lex3;

Lex2_k textequ <word ptr [bx-6]>
k textequ <word ptr [bp-6]>

Lex2 proc near
enter 2, 2 ;A 2-byte local variable at lex level 2.

nop ;Spacer instruction for single stepping

print
byte "Lex2",cr,lf,0

mov i, 1

Procedures: Advanced Topics

Page 687

ForLpI: mov bx, disp1 ;"J" is at lex level one.
mov Lex1_J, 0

ForLpJ: mov k, 1 ;"K" is local.

ForLpK: mov ax, i
puti
mov bx, disp1
mov ax, Lex1_J
puti
mov ax, k
puti
mov al, ' '
putc

dec k ;Decrement from 1->0 and quit
jns ForLpK ; if we hit -1.

mov bx, disp1
inc Lex1_J
cmp Lex1_J, 2
jb ForLpJ

dec i
jns ForLpI

putcr
call Lex3

leave
ret

Lex2 endp

; Lex3's activation record looks like this:
;
; | return address |
; |----------------|
; | Dynamic Link | <- BP
; |----------------|
; | Lex1's AR Ptr | |
; |----------------| |
; | Lex2's AR Ptr | | Display
; |----------------| |
; | Lex3's AR Ptr | |
; |----------------|
; | M Local var | <- SP (BP-8)
; |----------------|
;
; writeln('Lex3');
; for i := 0 to 1 do
; for j := 0 to 1 do
; for k := 0 to 1 do
; for m := 0 to 1 do
; writeln(i,j,k,m);
;
; Lex4;

Lex3_M textequ <word ptr [bx-8]>
m textequ <word ptr [bp-8]>

Lex3 proc near
enter 2, 3 ;2-byte variable at lex level 3.

nop ;Spacer instruction for single stepping

print
byte "Lex3",cr,lf,0

mov i, 0
ForILp: mov bx, disp1

mov Lex1_J, 0
ForJlp: mov bx, disp2

mov Lex2_K, 0
ForKLp: mov m, 0
ForMLp: mov ax, i

Chapter 12

Page 688

puti
mov bx, disp1
mov ax, Lex1_J
puti
mov bx, disp2
mov ax, Lex2_k
puti
mov ax, m
puti
putcr

inc m
cmp m, 2
jb ForMLp

mov bx, disp2
inc Lex2_K
cmp Lex2_K, 2
jb ForKLp

mov bx, disp1
inc Lex1_J
cmp Lex1_J, 2
jb ForJLp

inc i
cmp i, 2
jb ForILp

call Lex4

leave
ret

Lex3 endp

; Lex4's activation record looks like this:
;
; | return address |
; |----------------|
; | Dynamic Link | <- BP
; |----------------|
; | Lex1's AR Ptr | |
; |----------------| |
; | Lex2's AR Ptr | |
; |----------------| | Display
; | Lex3's AR Ptr | |
; |----------------| |
; | Lex4's AR Ptr | |
; |----------------|
; | N Local var | <- SP (BP-10)
; |----------------|
;
;
; writeln('Lex4');
; for i:= 0 to 3 do
; for j:= 0 to 2 do
; write('(',i,',',j,') ');
; writeln;
; for k:= 1 downto 0 do
; for m:= 1 downto 0 do
; for n := 0 to 1 do
; write('(',m,',',k,',',n,') ');
; writeln;

n textequ <word ptr [bp-10]>

Lex4 proc near
enter 2, 4 ;2-byte local variable at lex level 4.

nop ;Spacer instruction for single stepping

print
byte "Lex4",cr,lf,0

Procedures: Advanced Topics

Page 689

mov i, 0
ForILp: mov bx, disp1

mov Lex1_J, 0
ForJLp: mov al, '('

putc
mov ax, i
puti
mov al, ','
putc
mov ax, Lex1_J ;Note that BX still contains disp1.
puti
print
byte ") ",0

inc Lex1_J ;BX still contains disp1.
cmp Lex1_J, 3
jb ForJLp

inc i
cmp i, 4
jb ForILp

putcr

mov bx, disp2
mov Lex2_K, 1

ForKLp: mov bx, disp3
mov Lex3_M, 1

ForMLp: mov n, 0
ForNLp: mov al, '('

putc

mov bx, disp3
mov ax, Lex3_M
puti
mov al, ','
putc
mov bx, disp2
mov ax, Lex2_K
puti
mov al, ','
putc
mov ax, n
puti
print
byte ") ",0

inc n
cmp n, 2
jb ForNLp

mov bx, disp3
dec Lex3_M
jns ForMLp

mov bx, disp2
dec Lex2_K
jns ForKLp

leave
ret

Lex4 endp
cseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 12

Page 690

12.7.3 Parameter Passing Exercises

The following exercise demonstrates some simple parameter passing. This program
passes arrays by reference, word variables by value and by reference, and some functions
and procedure by reference. The program itself sorts two arrays using a generic sorting
algorithm. The sorting algorithm is generic because the main program passes it a compar-
ison function and a procedure to swap two elements if one is greater than the other.

; Ex12_3.asm
;
; This program demonstrates different parameter passing methods.
; It corresponds to the following (pseudo) Pascal code:
;
;
; program main;
; var i:integer;
; a:array[0..255] of integer;
; b:array[0..255] of unsigned;
;
; function LTint(int1, int2:integer):boolean;
; begin
; LTint := int1 < int2;
; end;
;
; procedure SwapInt(var int1, int2:integer);
; var temp:integer;
; begin
; temp := int1;
; int1 := int2;
; int2 := temp;
; end;
;
; function LTunsigned(uns1, uns2:unsigned):boolean;
; begin
; LTunsigned := uns1 < uns2;
; end;
;
; procedure SwapUnsigned(uns1, uns2:unsigned);
; var temp:unsigned;
; begin
; temp := uns1;
; uns1 := uns2;
; uns2 := temp;
; end;
;
; (* The following is a simple Bubble sort that will sort arrays containing *)
; (* arbitrary data types. *)
;
; procedure sort(data:array; elements:integer; function LT:boolean; procedure
swap);
; var i,j:integer;
; begin
;
; for i := 0 to elements-1 do
; for j := i+1 to elements do
; if (LT(data[j], data[i])) then swap(data[i], data[j]);
; end;
;
;
; begin
;
; for i := 0 to 255 do A[i] := 128-i;
; for i := 0 to 255 do B[i] := 255-i;
; sort(A, 256, LTint, SwapInt);
; sort(B, 256, LTunsigned, SwapUnsigned);
;
; for i := 0 to 255 do
; begin

Procedures: Advanced Topics

Page 691

; if (i mod 8) = 0 then writeln;
; write(A[i]:5);
; end;
;
; for i := 0 to 255 do
; begin
; if (i mod 8) = 0 then writeln;
; write(B[i]:5);
; end;
;
; end;

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386
option segment:use16

wp textequ <word ptr>

dseg segment para public 'data'
A word 256 dup (?)
B word 256 dup (?)
dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg, ss:sseg

; function LTint(int1, int2:integer):boolean;
; begin
; LTint := int1 < int2;
; end;
;
; LTint's activation record looks like this:
;
; |----------------|
; | int1 |
; |----------------|
; | int2 |
; |----------------|
; | return address |
; |----------------|
; | old BP |<- SP, BP
; |----------------|

int1 textequ <word ptr [bp+6]>
int2 textequ <word ptr [bp+4]>

LTint proc near
push bp
mov bp, sp

mov ax, int1 ;Compare the two parameters
cmp ax, int2 ; and return true if int1<int2.
setl al ;Signed comparison here.
mov ah, 0 ;Be sure to clear H.O. byte.

pop bp
ret 4

LTint endp

; Swap's activation record looks like this:
;
; |----------------|
; | Address |
; |--- of ---|
; | int1 |
; |----------------|
; | Address |
; |--- of ---|
; | int2 |

Chapter 12

Page 692

; |----------------|
; | return address |
; |----------------|
; | old BP |<- SP, BP
; |----------------|
;
; The temporary variable is kept in a register.
;
; Note that swapping integers or unsigned integers can be done
; with the same code since the operations are identical for
; either type.
;
; procedure SwapInt(var int1, int2:integer);
; var temp:integer;
; begin
; temp := int1;
; int1 := int2;
; int2 := temp;
; end;
;
; procedure SwapUnsigned(uns1, uns2:unsigned);
; var temp:unsigned;
; begin
; temp := uns1;
; uns1 := uns2;
; uns2 := temp;
; end;
;

int1 textequ <dword ptr [bp+8]>
int2 textequ <dword ptr [bp+4]>

SwapInt proc near
push bp
mov bp, sp
push es
push bx

les bx, int1 ;Get address of int1 variable.
mov ax, es:[bx] ;Get int1's value.
les bx, int2 ;Get address of int2 variable.
xchg ax, es:[bx] ;Swap int1's value with int2's

les bx, int1 ;Get the address of int1 and
mov es:[bx], ax ; store int2's value there.

pop bx
pop es
pop bp
ret 8

SwapInt endp

; LTunsigned's activation record looks like this:
;
; |----------------|
; | uns1 |
; |----------------|
; | uns2 |
; |----------------|
; | return address |
; |----------------|
; | old BP |<- SP, BP
; |----------------|
;
; function LTunsigned(uns1, uns2:unsigned):boolean;
; begin
; LTunsigned := uns1 < uns2;
; end;

uns1 textequ <word ptr [bp+6]>
uns2 textequ <word ptr [bp+4]>

LTunsigned proc near

Procedures: Advanced Topics

Page 693

push bp
mov bp, sp

mov ax, uns1 ;Compare uns1 with uns2 and
cmp ax, uns2 ; return true if uns1<uns2.
setb al ;Unsigned comparison.
mov ah, 0 ;Return 16-bit boolean.

pop bp
ret 4

LTunsigned endp

; Sort's activation record looks like this:
;
; |----------------|
; | Data's |
; |--- ---|
; | Address |
; |----------------|
; | Elements |
; |----------------|
; | LT's |
; |--- ---|
; | Address |
; |----------------|
; | Swap's |
; |--- ---|
; | Address |
; |----------------|
; | return address |
; |----------------|
; | old BP |<- SP, BP
; |----------------|
;
; procedure sort(data:array; elements:integer; function LT:boolean; procedure
swap);
; var i,j:integer;
; begin
;
; for i := 0 to elements-1 do
; for j := i+1 to elements do
; if (LT(data[j], data[i])) then swap(data[i], data[j]);
; end;

data textequ <dword ptr [bp+10]>
elements textequ <word ptr [bp+8]>
funcLT textequ <word ptr [bp+6]>
procSwap textequ <word ptr [bp+4]>

i textequ <word ptr [bp-2]>
j textequ <word ptr [bp-4]>

sort proc near
push bp
mov bp, sp
sub sp, 4
push es
push bx

mov i, 0
ForILp: mov ax, i

inc i
cmp ax, Elements
jae IDone

mov j, ax
ForJLp: mov ax, j

cmp ax, Elements
ja JDone

les bx, data ;Push the value of
mov si, j ; data[j] onto the
add si, si ; stack.

Chapter 12

Page 694

push es:[bx+si]

les bx, data ;Push the value of
mov si, i ; data[i] onto the
add si, si ; stack.
push es:[bx+si]

call FuncLT ;See if data[i] < data[j]
cmp ax, 0 ;Test boolean result.
je NextJ

push wp data+2 ;Pass data[i] by reference.
mov ax, i
add ax, ax
add ax, wp data
push ax

push wp data+2 ;Pass data[j] by reference.
mov ax, j
add ax, ax
add ax, wp data
push ax

call ProcSwap

NextJ: inc j
jmp ForJLp

JDone: inc i
jmp ForILp

IDone: pop bx
pop es
mov sp, bp
pop bp
ret 10

sort endp

; Main's activation record looks like this:
;
; | return address |<- SP, BP
; |----------------|
;
; begin
;
; for i := 0 to 255 do A[i] := 128-i;
; for i := 0 to 255 do B[i] := 33000-i;
; sort(A, 256, LTint, SwapInt);
; sort(B, 256, LTunsigned, SwapUnsigned);
;
; for i := 0 to 255 do
; begin
; if (i mod 8) = 0 then writeln;
; write(A[i]:5);
; end;
;
; for i := 0 to 255 do
; begin
; if (i mod 8) = 0 then writeln;
; write(B[i]:5);
; end;
;
; end;

Main proc
mov ax, dseg ;Initialize the segment registers.
mov ds, ax
mov es, ax

; Note that the following code merges the two initialization for loops
; into a single loop.

mov ax, 128
mov bx, 0

Procedures: Advanced Topics

Page 695

mov cx, 33000
ForILp: mov A[bx], ax

mov B[bx], cx
add bx, 2
dec ax
dec cx
cmp bx, 256*2
jb ForILp

push ds ;Seg address of A
push offset A ;Offset of A
push 256 ;# of elements in A
push offset LTint ;Address of compare routine
push offset SwapInt ;Address of swap routine
call Sort

push ds ;Seg address of B
push offset B ;Offset of B
push 256 ;# of elements in A
push offset LTunsigned ;Address of compare routine
push offset SwapInt ;Address of swap routine
call Sort

; Print the values in A.

mov bx, 0
ForILp2: test bx, 0Fh ;See if (I mod 8) = 0

jnz NotMod ; note: BX mod 16 = I mod 8.
putcr

NotMod: mov ax, A[bx]
mov cx, 5
putisize
add bx, 2
cmp bx, 256*2
jb ForILp2

; Print the values in B.
mov bx, 0

ForILp3: test bx, 0Fh ;See if (I mod 8) = 0
jnz NotMod2 ; note: BX mod 16 = I mod 8.
putcr

NotMod2: mov ax, B[bx]
mov cx, 5
putusize
add bx, 2
cmp bx, 256*2
jb ForILp3

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk word 256 dup (0)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

12.8 Programming Projects

1) Write at iterator to which you pass an array of characters by reference. The iterator should
return an index into the array that points at a whitespace character (any ASCII code less
than or equal to a space) it finds. On each call, the iterator should return the index of the
next whitespace character. The iterator should fail if it encounters a byte containing the
value zero. Use local variables for any values the iterator needs.

Chapter 12

Page 696

2) Write a recursive routine that does the following:

function recursive(i:integer):integer;
var j,k:integer;
begin

j := i;
k := i*i;
if (i >= 0) then writeln(‘AR Address =’, Recursive(i-1));
writeln(i,’ ‘,j,’ ‘,k);
recursive := Value in BP Register;

end;
From your main program, call this procedure and pass it the value 10 on the stack. Verify
that you get correct results back. Explain the results.

3) Write a program that contains a procedure to which you pass four parameters on the
stack. These should be passed by value, reference, value-result, and result, respectively
(for the value-result parameter, pass the address of the object on the stack). Inside that
procedure, you should call three other procedures that also take four parameters (each).
However, the first parameter should use pass by value for all four parameters; the second
procedure should use pass by reference for all four parameters; and the third should use
pass by value-result for all four parameters. Pass the four parameters in the enclosing pro-
cedure as parameters to each of these three child procedures. Inside the child procedures,
print the parameter’s values and change their results. Immediately upon return from each
of these child procedures, print the parameters’ values. Write a main program that passes
four local (to the main program) variables you’ve initialized with different values to the
first procedure above. Run the program and verify that it is operating correctly and that it
is passing the parameters to each of these procedures in a reasonable fashion.

4) Write a program that implements the following Pascal program in assembly language.
Assume that all program variables (including globals in the main program) are allocated
in activation records on the stack.

program nest3;
var i:integer;

procedure A(k:integer);

procedure B(procedure c);
var m:integer;
begin

for m:= 0 to 4 do c(m);

end; {B}

procedure D(n:integer);
begin

for i:= 0 to n-1 do writeln(i);

end; {D}

procedure E;
begin

writeln(‘A stuff:’);
B(A);
writeln(‘D stuff:’);
B(D);

end; {E}

begin {A}

B(D);
writeln;
if k < 2 then E;

Procedures: Advanced Topics

Page 697

end; {A}

begin {nest3}

A(0);

end; {nest3}

5) The program in Section 12.7.2 (Ex12_2.asm on the companion CD-ROM) uses the 80286
enter and leave instructions to maintain the display in each activation record. As pointed
out in Section 12.1.6, these instructions are quite slow, especially on 80486 and later pro-
cessors. Rewrite this code by replacing the enter and leave instructions with the
straight-line code that does the same job. In CodeView, single step through the program as
per the second laboratory exercise (Section 12.7.2) to verify that your stack frames are
identical to those the enter and leave instructions produce.

6) The generic Bubble Sort program in Section 12.7.3 only works with data objects that are
two bytes wide. This is because the Sort procedure passes the values of Data[I] and Data[J]
on the stack to the comparison routines (LTint and LTunsigned) and because the sort rou-
tine multiplies the i and j indexes by two when indexing into the data array. This is a
severe shortcoming to this generic sort routine. Rewrite the program to make it truly
generic. Do this by writing a “CompareAndSwap” routine that will replace the LT and
Swap calls. To CompareAndSwap you should pass the array (by reference) and the two
array indexes (i and j) to compare and possibly swap. Write two versions of the
CompareAndSwap routine, one for unsigned integers and one for signed integers. Run
this program and verify that your implementation works properly.

12.9 Summary

Block structured languages, like Pascal, provide access to non-local variables at differ-
ent lex levels. Accessing non-local variables is a complex task requiring special data struc-
tures such as a static link chain or a display. The display is probably the most efficient way
to access non-local variables. The 80286 and later processors provide special instructions,
enter and leave for maintaining a display list, but these instructions are too slow for most
common uses. For additional details, see

• “Lexical Nesting, Static Links, and Displays” on page 639
• “Scope” on page 640
• “Static Links” on page 642
• “Accessing Non-Local Variables Using Static Links” on page 647
• “The Display” on page 648
• “The 80286 ENTER and LEAVE Instructions” on page 650
• “Passing Variables at Different Lex Levels as Parameters.” on page 652
• “Passing Parameters as Parameters to Another Procedure” on page 655
• “Passing Procedures as Parameters” on page 659

Iterators are a cross between a function and a looping construct. They are a very pow-
erful programming construct available in many very high level languages. Efficient imple-
mentation of iterators involves careful manipulation of the stack at run time. To see how
to implement iterators, read the following sections:

• “Iterators” on page 663
• “Implementing Iterators Using In-Line Expansion” on page 664
• “Implementing Iterators with Resume Frames” on page 666
• “An Example of an Iterator” on page 669
• “Another Iterator Example” on page 673

Chapter 12

Page 698

12.10 Questions

1) What is an iterator?

2) What is a resume frame?

3) How do the iterators in this chapter implement the success and failure results?

4) What does the stack look like when executing the body of a loop controlled by an iterator?

5 What is a static link?

6) What is a display?

7) Describe how to access a non-local variable when using static links.

8) Describe how to access a non-local variable when using a display.

9) How would you access a non-local variable when using the display built by the 80286
ENTER instruction?

10) Draw a picture of the activation record for a procedure at lex level 4 that uses the ENTER
instruction to build the display.

11) Explain why the static links work better than a display when passing procedures and
functions as parameters.

12) Suppose you want to pass an intermediate variable by value-result using the technique
where you push the value before calling the procedure and then pop the value (storing it
back into the intermediate variable) upon return from the procedure. Provide two exam-
ples, one using static links and one using a display, that implement pass by value-result in
this fashion.

13) Convert the following (pseudo) Pascal code into 80x86 assembly language. Assume Pascal
supports pass by name and pass by lazy evaluation parameters as suggested by the fol-
lowing code.

program main;
var k:integer;

procedure one(LazyEval i:integer);
begin

writeln(i);
end;

procedure two(name j:integer);
begin

one(j);
end;

begin {main}
k := 2;
two(k);

end;

Page 699

MS-DOS, PC-BIOS, and File I/O Chapter 13

A typical PC system consists of many component besides the 80x86 CPU and memory.
MS-DOS and the PC’s BIOS provide a software connection between your application pro-
gram and the underlying hardware. Although it is sometimes necessary to program the
hardware directly yourself, more often than not it’s best to let the system software
(MS-DOS and the BIOS) handle this for you. Furthermore, it’s much easier for you to sim-
ply call a routine built into your system than to write the routine yourself.

You can access the IBM PC system hardware at one of three general levels from
assembly language. You can program the hardware directly, you can use ROM BIOS rou-
tines to access the hardware for you, or you can make MS-DOS calls to access the hard-
ware. Each level of system access has its own set of advantages and disadvantages.

Programming the hardware directly offers two advantages over the other schemes:
control and efficiency. If you’re controlling the hardware modes, you can get that last drop
of performance out of the system by taking advantage of special hardware tricks or other
details which a general purpose routine cannot. For some programs, like screen editors
(which must have high speed access to the video display), accessing the hardware directly
is the only way to achieve reasonable performance levels.

On the other hand, programming the hardware directly has its drawbacks as well.
The screen editor which directly accesses video memory may not work if a new type of
video display card appears for the IBM PC. Multiple display drivers may be necessary for
such a program, increasing the amount of work to create and maintain the program. Fur-
thermore, had you written several programs which access the screen memory directly and
IBM produced a new, incompatible, display adapter, you’d have to rewrite all your pro-
grams to work with the new display card.

Your work load would be reduced tremendously if IBM supplied, in a fixed, known,
location, some routines which did all the screen I/O operations for you. Your programs
would all call these routines. When a manufacturer introduces a new display adapter, it
supplies a new set of video display routines with the adapter card. These new routines
would patch into the old ones (replacing or augmenting them) so that calls to the old rou-
tines would now call the new routines. If the program interface is the same between the
two set of routines, your programs will still work with the new routines.

IBM has implemented such a mechanism in the PC system firmware. Up at the high
end of the one megabyte memory space in the PC are some addresses dedicated to ROM
data storage. These ROM memory chips contain special software called the PC Basic Input
Output System, or BIOS. The BIOS routines provide a hardware-independent interface to
various devices in the IBM PC system. For example, one of the BIOS services is a video
display driver. By making various calls to the BIOS video routines, your software will be
able to write characters to the screen regardless of the actual display board installed.

At one level up is MS-DOS. While the BIOS allows you to manipulate devices in a
very low level fashion, MS-DOS provides a high-level interface to many devices. For
example, one of the BIOS routines allows you to access the floppy disk drive. With this
BIOS routine you may read or write blocks on the diskette. Unfortunately, the BIOS
doesn’t know about things like files and directories. It only knows about blocks. If you
want to access a file on the disk drive using a BIOS call, you’ll have to know exactly where
that file appears on the diskette surface. On the other hand, calls to MS-DOS allow you to
deal with filenames rather than file disk addresses. MS-DOS keeps track of where files are
on the disk surface and makes calls to the ROM BIOS to read the appropriate blocks for
you. This high-level interface greatly reduces the amount of effort your software need
expend in order to access data on the disk drive.

The purpose of this chapter is to provide a brief introduction to the various BIOS and
DOS services available to you. This chapter does not attempt to begin to describe all of the
routines or the options available to each routine. There are several other texts the size of
this one which attempt to discuss

just

 the BIOS or

just

 MS-DOS. Furthermore, any attempt

Thi d t t d ith F M k 4 0 2

Chapter 13

Page 700

to provide complete coverage of MS-DOS or the BIOS in a single text is doomed to failure
from the start– both are a moving target with specifications changing with each new ver-
sion. So rather than try to explain everything, this chapter will simply attempt to present
the flavor. Check in the bibliography for texts dealing directly with BIOS or MS -DOS.

13.0 Chapter Overview

This chapter presents material that is specific to the PC. This information on the PC’s
BIOS and MS-DOS is not necessary if you want to learn about assembly language pro-
gramming; however, this is important information for anyone wanting to write assembly
language programs that run under MS-DOS on a PC compatible machine. As a result,
most of the information in this chapter is optional for those wanting to learn generic 80x86
assembly language programming. On the other hand, this information is handy for those
who want to write applications in assembly language on a PC.

The sections below that have a “•” prefix are essential. Those sections with a “

❏

” dis-
cuss advanced topics that you may want to put off for a while.

• The IBM PC BIOS

 ❏

Print screen.
• Video services.

 ❏

Equipment installed.

 ❏

Memory available.

 ❏

Low level disk services
• Serial I/O.

 ❏

Miscellaneous services.
• Keyboard services.
• Printer services.

 ❏

Run BASIC.

 ❏

Reboot computer.

 ❏

Real time clock.
• MS-DOS calling sequence.
• MS-DOS character functions

 ❏

MS-DOS drive commands.

 ❏

MS-DOS date and time functions.

 ❏

MS-DOS memory management functions.

 ❏

MS-DOS process control functions.
• MS_DOS “new” filing calls.
• Open file.
• Create file.
• Close file.
• Read from a file.
• Write to a file.

 ❏

Seek.

 ❏

Set disk transfer address.

 ❏

Find first file.

 ❏

Find next file.
• Delete file.
• Rename file.

 ❏

Change/get file attributes.

 ❏

Get/set file date and time.

 ❏

Other DOS calls
• File I/O examples.
• Blocked file I/O.

 ❏

The program segment prefix.

 ❏

Accessing command line parameters.

 ❏

ARGC and ARGV.
• UCR Standard Library file I/O routines.

MS-DOS, PC BIOS, and File I/O

Page 701

• FOPEN.
• FCREATE.
• FCLOSE.
• FFLUSH.
• FGETC.
• FREAD.
• FPUTC
• FWRITE.

 ❏

Redirection I/O through the STDLIB file I/O routines.

13.1 The IBM PC BIOS

Rather than place the BIOS routines at fixed memory locations in ROM, IBM used a
much more flexible approach in the BIOS design. To call a BIOS routine, you use one of the
80x86’s

int

 software interrupt instructions. The

int

instruction uses the following syntax:

int

value

Value is some number in the range 0..255. Execution of the

int

instruction will cause the
80x86 to transfer control to one of 256 different interrupt handlers. The interrupt vector
table, starting at physical memory location 0:0, holds the addresses of these interrupt han-
dlers. Each address is a full segmented address, requiring four bytes, so there are 400h
bytes in the interrupt vector table -- one segmented address for each of the 256 possible
software interrupts. For example,

int 0

transfers control to the routine whose address is at
location 0:0,

int 1

transfers control to the routine whose address is at 0:4, int 2 via 0:8,

int 3

via 0:C, and

int 4

via 0:10.

When the PC resets, one of the first operations it does is initialize several of these
interrupt vectors so they point at BIOS service routines. Later, when you execute an
appropriate

int

instruction, control transfers to the appropriate BIOS code.

If all you’re doing is calling BIOS routines (as opposed to writing them), you can view
the

int

instruction as nothing more than a special

call

instruction.

13.2 An Introduction to the BIOS’ Services

The IBM PC BIOS uses software interrupts 5 and 10h..1Ah to accomplish various
operations. Therefore, the

int 5

, and

int 10h

..

int 1ah

instructions provide the interface to
BIOS. The following table summarizes the BIOS services:

INT Function

 5 Print Screen operation.
10h Video display services.
11h Equipment determination.
12h Memory size determination.
13h Diskette and hard disk services.
14h Serial I/O services.
15h Miscellaneous services.
16h Keyboard services.
17h Printer services.
18h BASIC.
19h Reboot.
1Ah Real time clock services.

Most of these routines require various parameters in the 80x86’s registers. Some
require additional parameters in certain memory locations. The following sections
describe the exact operation of many of the BIOS routine.

Chapter 13

Page 702

13.2.1 INT 5- Print Screen

Instruction:

int 5h

BIOS Operation: Print the current text screen.
Parameters: None

If you execute the

int 5h

instruction, the PC will send a copy of the screen image to the
printer exactly as though you’d pressed the PrtSc key on the keyboard. In fact, the BIOS
issues an

int 5

instruction when you press the PrtSc, so the two operations are absolutely
identical (other than one is under software control rather than manual control). Note that
the 80286 and later also uses

int 5

for the BOUNDS trap.

13.2.2 INT 10h - Video Services

Instruction:

int 10h

BIOS Operation: Video I/O Services
Parameters: Several, passed in

ax, bx, cx, dx,

and

es:bp

registers.

The

int 10h

instruction does several video display related functions. You can use it to
initialize the video display, set the cursor size and position, read the cursor position,
manipulate a light pen, read or write the current display page, scroll the data in the screen
up or down, read and write characters, read and write pixels in a graphics display mode,
and write strings to the display. You select the particular function to execute by passing a
value in the

ah

register.

The video services represent one of the largest set of BIOS calls available. There are
many different video display cards manufactured for PCs, each with minor variations and
often each having its own set of unique BIOS functions. The BIOS reference in the appen-
dices lists some of the more common functions available, but as pointed out earlier, this
list is quite incomplete and out of date given the rapid change in technology.

Probably the most commonly used video service call is the character output routine:

Name: Write char to screen in TTY mode
Parameters

ah

= 0Eh,

al

= ASCII code (In graphics mode,

bl

= Page number)

This routine writes a single character to the display. MS-DOS calls this routine to display
characters on the screen. The UCR Standard Library also provides a call which lets you
write characters directly to the display using BIOS calls.

Most BIOS video display routines are poorly written. There is not much else that can
be said about them. They are extremely slow and don’t provide much in the way of func-
tionality. For this reason, most programmers (who need a high-performance video display
driver) end up writing their own display code. This provides speed at the expense of port-
ability. Unfortunately, there is rarely any other choice. If you need functionality rather
than speed, you should consider using the ANSI.SYS screen driver provided with
MS-DOS. This display driver provides all kinds of useful services such as clear to end of
line, clear to end of screen, etc. For more information, consult your DOS manual.

Table 49: BIOS Video Functions (Partial List)

AH Input
Parameters

Output
Parameters

Description

0 al=mode Sets the video display mode.

1

ch

- Starting line.

cl

- ending line
Sets the shape of the cursor. Line values are in the
range 0..15. You can make the cursor disappear
by loading

ch

 with 20h.

MS-DOS, PC BIOS, and File I/O

Page 703

Note that there are many other BIOS 10h subfunctions. Mostly, these other functions
deal with graphics modes (the BIOS is too slow for manipulating graphics, so you
shouldn’t use those calls) and extended features for certain video display cards. For more
information on these calls, pick up a text on the PC’s BIOS.

2

bh

- page

dh

- y coordinate

dl

- x coordinate

Position cursor to location (x,y) on the screen.
Generally you would specify page zero. BIOS
maintains a separate cursor for each page.

3

bh

- page

ch

- starting line

cl

- ending line

dl

- x coordinate

dh

- y coordinate

Get cursor position and shape.

4

Obsolete (Get Light Pen Position).

5

al

- display page Set display page. Switches the text display page
to the specified page number. Page zero is the
standard text page. Most color adapters support
up to eight text pages (0..7).

6

al-

Number of lines to
scroll.

bh-

Screen attribute for
cleared area.

cl

- x coordinate UL

ch

- y coordinate UL

dl

- x coordinate LR

dh

- y coordinate LR

Clear or scroll up. If

al

 contains zero, this function
clears the rectangular portion of the screen speci-
fied by

cl/ch

 (the upper left hand corner) and

dl/dh

(the lower right hand corner). If

al

 contains any
other value, this service will scroll that rectangu-
lar window up the number of lines specified in

al

.

7

al-

Number of lines to
scroll.

bh-

Screen attribute for
cleared area.

cl

- x coordinate UL

ch

- y coordinate UL

dl

- x coordinate LR

dh

- y coordinate LR

Clear or scroll down. If

al

 contains zero, this func-
tion clears the rectangular portion of the screen
specified by

cl/ch

 (the upper left hand corner) and

dl/dh

 (the lower right hand corner). If

al

 contains
any other value, this service will scroll that rect-
angular window down the number of lines speci-
fied in

al

.

8

bh

- display page

al

- char read

ah

- char attribute
Read character’s ASCII code and attribute byte
from current screen position.

9

al-

character

bh

- page

bl

- attribute

cx

- # of times to repli-
cate character

This call writes cx copies of the character and
attribute in

al/bl

 starting at the current cursor
position on the screen. It does not change the cur-
sor’s position.

0Ah

al-

character

bh

- page
Writes character in al to the current screen posi-
tion using the existing attribute. Does not change
cursor position.

0Bh bh- 0
bl- color

Sets the border color for the text display.

0Eh al- character
bh- page

Write a character to the screen. Uses existing
attribute and repositions cursor after write.

0Fh ah- # columns
al- display mode
bh- page

Get video mode

Table 49: BIOS Video Functions (Partial List)

AH Input
Parameters

Output
Parameters

Description

Chapter 13

Page 704

13.2.3 INT 11h - Equipment Installed

Instruction: int 11h
BIOS Operation: Return an equipment list
Parameters: On entry: None, on exit: AX contains equipment list

On return from int 11h, the AX register contains a bit-encoded equipment list with the fol-
lowing values:

Bit 0 Floppy disk drive installed
Bit 1 Math coprocessor installed
Bits 2,3 System board RAM installed (obsolete)
Bits 4,5 Initial video mode
 00- none
 01- 40x25 color
 10- 80x25 color
 11- 80x25 b/w
Bits 6,7 Number of disk drives
Bit 8 DMA present
Bits 9,10,11 Number of RS-232 serial cards installed
Bit 12 Game I/O card installed
Bit 13 Serial printer attached
Bits 14,15 Number of printers attached.

Note that this BIOS service was designed around the original IBM PC with its very
limited hardware expansion capabilities. The bits returned by this call are almost mean-
ingless today.

13.2.4 INT 12h - Memory Available

Instruction: int 12h
 BIOS Operation: Determine memory size
Parameters: Memory size returned in AX

Back in the days when IBM PCs came with up to 64K memory installed on the moth-
erboard, this call had some meaning. However, PCs today can handle up to 64 megabytes
or more. Obviously this BIOS call is a little out of date. Some PCs use this call for different
purposes, but you cannot rely on such calls working on any machine.

13.2.5 INT 13h - Low Level Disk Services

Instruction: int 13h
BIOS Operation: Diskette Services
Parameters: ax, es:bx, cx, dx (see below)

The int 13h function provides several different low-level disk services to PC programs:
Reset the diskette system, get the diskette status, read diskette sectors, write diskette sec-
tors, verify diskette sectors, and format a diskette track and many more. This is another
example of a BIOS routine which has changed over the years. When this routine was first
developed, a 10 megabyte hard disk was considered large. Today, a typical high perfor-
mance game requires 20 to 30 megabytes of storage.

MS-DOS, PC BIOS, and File I/O

Page 705

Table 50: Some Common Disk Subsystem BIOS Calls

AH Input
Parameters

Output
Parameters

Description

0 dl- drive (0..7fh is
floppy, 80h..ffh is hard)

ah- status (0 and
carry clear if no
error, error code if
error).

Resets the specified disk drive. Resetting a hard
disk also resets the floppy drives.

1 dl- drive (as above) ah- 0
al- status of previous
disk operation.

This call returns the following status values in al:
0- no error
1- invalid command
2- address mark not found
3- disk write protected
4- couldn’t find sector
5- reset error
6- removed media
7- bad parameter table
8- DMA overrun
9- DMA operation crossed 64K boundary
10- illegal sector flag
11- illegal track flag
12- illegal media
13- invalid # of sectors
14- control data address mark encountered
15- DMA error
16- CRC data error
17- ECC corrected data error
32- disk controller failed
64- seek error
128- timeout error
170- drive not ready
187- undefined error
204- write error
224- status error
255- sense failure

2 al- # of sectors to read
es:bx- buffer address
cl- bits 0..5: sector #
cl- bits 6/7- track bits 8
& 9
ch- track bits 0..7.
dl- drive # (as above)
dh- bits 0..5: head #
dh- bits 6&7: track bits
10 & 11.

ah- return status
al- burst error length
carry- 0:success,
1:error

Reads the specified number of 512 byte sectors
from the disk. Data read must be 64 Kbytes or
less.

3 same as (2) above same as (2) above Writes the specified number of 512 byte sectors to
the disk. Data written must not exceed 64 Kbytes
in length.

4 Same as (2) above
except there is no need
for a buffer.

same as (2) above Verifies the data in the specified number of 512
byte sectors on the disk.

0Ch Same as (4) above
except there is no need
for a sector #

Same as (4) above Sends the disk head to the specified track on the
disk.

Chapter 13

Page 706

Note: see appropriate BIOS documentation for additional information about disk sub-
system BIOS support.

13.2.6 INT 14h - Serial I/O

Instruction: int 14h
BIOS Operation: Access the serial communications port
Parameters: ax, dx

The IBM BIOS supports up to four different serial communications ports (the hard-
ware supports up to eight). In general, most PCs have one or two serial ports (COM1: and
COM2:) installed. Int 14h supports four subfunctions- initialize, transmit a character,
receive a character, and status. For all four services, the serial port number (a value in the
range 0..3) is in the dx register (0=COM1:, 1=COM2:, etc.). Int 14h expects and returns other
data in the al or ax register.

13.2.6.1 AH=0: Serial Port Initialization

Subfunction zero initializes a serial port. This call lets you set the baud rate, select par-
ity modes, select the number of stop bits, and the number of bits transmitted over the
serial line. These parameters are all specified by the value in the al register using the fol-
lowing bit encodings:

Bits Function
5..7 Select baud rate

 000- 110 baud
001- 150
010- 300
011- 600
100- 1200
101- 2400
110- 4800
111- 9600

3..4 Select parity
00- No parity
01- Odd parity
10- No parity
11- Even parity

2 Stop bits
 0-One stop bit
 1-Two stop bits

0..1 Character Size
 10- 7 bits
 11- 8 bits

0Dh dl- drive # (80h or 81h) ah- return status
carry-0:no error
1:error

Reset the hard disk controller

Table 50: Some Common Disk Subsystem BIOS Calls

AH Input
Parameters

Output
Parameters

Description

MS-DOS, PC BIOS, and File I/O

Page 707

Although the standard PC serial port hardware supports 19,200 baud, some BIOSes
may not support this speed.

Example: Initialize COM1: to 2400 baud, no parity, eight bit data, and two stop bits-

mov ah, 0 ;Initialize opcode
mov al, 10100111b ;Parameter data.
mov dx, 0 ;COM1: port.
int 14h

After the call to the initialization code, the serial port status is returned in ax (see
Serial Port Status, ah=3, below).

13.2.6.2 AH=1: Transmit a Character to the Serial Port

This function transmits the character in the al register through the serial port specified
in the dx register. On return, if ah contains zero, then the character was transmitted prop-
erly. If bit 7 of ah contains one, upon return, then some sort of error occurred. The remain-
ing seven bits contain all the error statuses returned by the GetStatus call except time out
error (which is returned in bit seven). If an error is reported, you should use subfunction
three to get the actual error values from the serial port hardware.

Example: Transmit a character through the COM1: port

mov dx, 0 ;Select COM1:
mov al, ‘a’ ;Character to transmit
mov ah, 1 ;Transmit opcode
int 14h
test ah, 80h ;Check for error
jnz SerialError

This function will wait until the serial port finishes transmitting the last character (if
any) and then it will store the character into the transmit register.

13.2.6.3 AH=2: Receive a Character from the Serial Port

Subfunction two is used to read a character from the serial port. On entry, dx contains
the serial port number. On exit, al contains the character read from the serial port and bit
seven of ah contains the error status. When this routine is called, it does not return to the
caller until a character is received at the serial port.

Example: Reading a character from the COM1: port

mov dx, 0 ;Select COM1:
mov ah, 2 ;Receive opcode
int 14h
test ah, 80h ;Check for error
jnz SerialError

<Received character is now in AL>

13.2.6.4 AH=3: Serial Port Status

This call returns status information about the serial port including whether or not an
error has occurred, if a character has been received in the receive buffer, if the transmit
buffer is empty, and other pieces of useful information. On entry into this routine, the dx
register contains the serial port number. On exit, the ax register contains the following val-
ues:

Chapter 13

Page 708

AX: Bit Meaning
15 Time out error
14 Transmitter shift register empty
13 Transmitter holding register empty
12 Break detection error
11 Framing error
10 Parity error
9 Overrun error
8 Data available
7 Receive line signal detect
6 Ring indicator
5 Data set ready (DSR)
4 Clear to send (CTS)
3 Delta receive line signal detect
2 Trailing edge ring detector
1 Delta data set ready
0 Delta clear to send

There are a couple of useful bits, not pertaining to errors, returned in this status infor-
mation. If the data available bit is set (bit #8), then the serial port has received data and
you should read it from the serial port. The Transmitter holding register empty bit (bit
#13) tells you if the transmit operation will be delayed while waiting for the current char-
acter to be transmitted or if the next character will be immediately transmitted. By testing
these two bits, you can perform other operations while waiting for the transmit register to
become available or for the receive register to contain a character.

If you’re interested in serial communications, you should obtain a copy of Joe Camp-
bell’s C Programmer’s Guide to Serial Communications. Although written specifically for
C programmers, this book contains a lot of information useful to programmers working in
any programming language. See the bibliography for more details.

13.2.7 INT 15h - Miscellaneous Services

Originally, int 15h provided cassette tape read and write services1. Almost immedi-
ately, everyone realized that cassettes were history, so IBM began using int 15h for many
other services. Today, int 15h is used for a wide variety of function including accessing
expanded memory, reading the joystick/game adapter card, and many, many other oper-
ations. Except for the joystick calls, most of these services are beyond the scope of this text.
Check on the bibliography if you interested in obtaining information on this BIOS call.

13.2.8 INT 16h - Keyboard Services

Instruction: int 16h
BIOS Operation: Read a key, test for a key, or get keyboard status
Parameters: al

The IBM PC BIOS provides several function calls dealing with the keyboard. As with
many of the PC BIOS routines, the number of functions has increased over the years. This
section describes the three calls that were available on the original IBM PC.

1. For those who do not remember that far back, before there were hard disks people used to use only floppy
disks. And before there were floppy disks, people used to use cassette tapes to store programs and data. The orig-
inal IBM PC was introduced in late 1981 with a cassette port. By early 1982, no one was using cassette tape for
data storage.

MS-DOS, PC BIOS, and File I/O

Page 709

13.2.8.1 AH=0: Read a Key From the Keyboard

If int 16h is called with ah equal to zero, the BIOS will not return control to the caller
until a key is available in the system type ahead buffer. On return, al contains the ASCII
code for the key read from the buffer and ah contains the keyboard scan code. Keyboard
scan codes are described in the appendices.

Certain keys on the PC’s keyboard do not have any corresponding ASCII codes. The
function keys, Home, PgUp, End, PgDn, the arrow keys, and the Alt keys are all good
examples. When such a key is pressed, int 16h returns a zero in al and the keyboard scan
code in ah. Therefore, whenever an ASCII code of zero is returned, you must check the ah
register to determine which key was pressed.

Note that reading a key from the keyboard using the BIOS int 16h call does not echo
the key pressed to the display. You have to call putc or use int 10h to print the character
once you’ve read it if you want it echoed to the screen.

Example: Read a sequence of keystrokes from the keyboard until Enter is pressed.

ReadLoop: mov ah, 0 ;Read Key opcode
int 16h
cmp al, 0 ;Special function?
jz ReadLoop ;If so, don’t echo this keystroke
putc
cmp al, 0dh ;Carriage return (ENTER)?
jne ReadLoop

13.2.8.2 AH=1: See if a Key is Available at the Keyboard

This particular int 16h subfunction allows you to check to see if a key is available in the
system type ahead buffer. Even if a key is not available, control is returned (right away!) to
the caller. With this call you can occasionally poll the keyboard to see if a key is available
and continue processing if a key hasn’t been pressed (as opposed to freezing up the com-
puter until a key is pressed).

There are no input parameters to this function. On return, the zero flag will be clear if
a key is available, set if there aren’t any keys in the type ahead buffer. If a key is available,
then ax will contain the scan and ASCII codes for that key. However, this function will not
remove that keystroke from the typeahead buffer. Subfunction #0 must be used to remove
characters. The following example demonstrates how to build a random number genera-
tor using the test keyboard function:

Example: Generating a random number while waiting for a keystroke

; First, clear any characters out of the type ahead buffer

ClrBuffer: mov ah, 1 ;Is a key available?
int 16h
jz BufferIsClr ;If not, Discontinue flushing
mov ah, 0 ;Flush this character from the
int 16h ; buffer and try again.
jmp ClrBuffer

BufferIsClr: mov cx, 0 ;Initialize “random” number.
GenRandom: inc cx

mov ah, 1 ;See if a key is available yet.
int 16h
jz GenRandom
xor cl, ch ;Randomize even more.
mov ah, 0 ;Read character from buffer
int 16h

; Random number is now in CL, key pressed by user is in AX

Chapter 13

Page 710

While waiting for a key, this routine is constantly incrementing the cx register. Since
human beings cannot respond rapidly (at least in terms of microseconds) the cl register
will overflow many times, even for the fastest typist. As a result, cl will contain a random
value since the user will not be able to control (to better than about 2ms) when a key is
pressed.

13.2.8.3 AH=2: Return Keyboard Shift Key Status

This function returns the state of various keys on the PC keyboard in the al register.
The values returned are as follows:

Bit Meaning
7 Insert state (toggle by pressing INS key)
6 Caps lock (1=capslock on)
5 Num lock (1=numlock on)
4 Scroll lock (1=scroll lock on)
3 Alt (1=Alt key currently down)
2 Ctrl (1=Ctrl key currently down)
1 Left shift (1=left shift key down)
0 Right shift (1=right shift key down)

Due to a bug in the BIOS code, these bits only reflect the current status of these keys,
they do not necessarily reflect the status of these keys when the next key to be read from
the system type ahead buffer was depressed. In order to ensure that these status bits corre-
spond to the state of these keys when a scan code is read from the type ahead buffer,
you’ve got to flush the buffer, wait until a key is pressed, and then immediately check the
keyboard status.

13.2.9 INT 17h - Printer Services

Instruction: int 17h
BIOS Operation: Print data and test the printer status
Parameters: ax, dx

Int 17h controls the parallel printer interfaces on the IBM PC in much the same way the
int 14h controls the serial ports. Since programming a parallel port is considerably easier
than controlling a serial port, using the int 17h routine is somewhat easier than using the
int 14h routines.

Int 17h provides three subfunctions, specified by the value in the ah register. These sub-
functions are:

0-Print the character in the AL register.
1-Initialize the printer.
2-Return the printer status.

Each of these functions is described in the following sections.

Like the serial port services, the printer port services allow you to specify which of the
three printers installed in the system you wish to use (LPT1:, LPT2:, or LPT3:). The value
in the dx register (0..2) specifies which printer port is to be used.

One final note- under DOS it’s possible to redirect all printer output to a serial port.
This is quite useful if you’re using a serial printer. The BIOS printer services only talk to
parallel printer adapters. If you need to send data to a serial printer using BIOS, you’ll
have to use int 14h to transmit the data through a serial port.

MS-DOS, PC BIOS, and File I/O

Page 711

13.2.9.1 AH=0: Print a Character

If ah is zero when you call int 17h, then the BIOS will print the character in the al regis-
ter. Exactly how the character code in the al register is treated is entirely up to the printer
device you’re using. Most printers, however, respect the printable ASCII character set and
a few control characters as well. Many printers will also print all the symbols in the
IBM/ASCII character set (including European, line drawing, and other special symbols).
Most printers treat control characters (especially ESC sequences) in completely different
manners. Therefore, if you intend to print something other than standard ASCII charac-
ters, be forewarned that your software may not work on printers other than the brand
you’re developing your software on.

Upon return from the int 17h subfunction zero routine, the ah register contains the cur-
rent status. The values actually returned are described in the section on subfunction num-
ber two.

13.2.9.2 AH=1: Initialize Printer

Executing this call sends an electrical impulse to the printer telling it to initialize itself.
On return, the ah register contains the printer status as per function number two.

13.2.9.3 AH=2: Return Printer Status

This function call checks the printer status and returns it in the ah register. The values
returned are:

AH: Bit Meaning
7 1=Printer busy, 0=printer not busy
6 1=Acknowledge from printer
5 1=Out of paper signal
4 1=Printer selected
3 1=I/O error
2 Not used
1 Not used
0 Time out error

Acknowledge from printer is, essentially, a redundant signal (since printer busy/not
busy gives you the same information). As long as the printer is busy, it will not accept
additional data. Therefore, calling the print character function (ah=0) will result in a delay.

The out of paper signal is asserted whenever the printer detects that it is out of paper.
This signal is not implemented on many printer adapters. On such adapters it is always
programmed to a logic zero (even if the printer is out of paper). Therefore, seeing a zero in
this bit position doesn’t always guarantee that there is paper in the machine. Seeing a one
here, however, definitely means that your printer is out of paper.

The printer selected bit contains a one as long as the printer is on-line. If the user takes
the printer off-line, then this bit will be cleared.

The I/O error bit contains a one if some general I/O error has occurred.

The time out error bit contains a one if the BIOS routine waited for an extended period
of time for the printer to become “not busy” yet the printer remained busy.

Note that certain peripheral devices (other than printers) also interface to the parallel
port, often in addition to a parallel printer. Some of these devices use the error/status sig-
nal lines to return data to the PC. The software controlling such devices often takes over
the int 17h routine (via a technique we’ll talk about later on) and always returns a “no
error” status or “time out error” status if an error occurs on the printing device. Therefore,

Chapter 13

Page 712

you should take care not to depend too heavily on these signals changing when you make
the int 17h BIOS calls.

13.2.10 INT 18h - Run BASIC

Instruction: int 18h
BIOS Operation: Activate ROM BASIC
Parameters: None

Executing int 18h activates the ROM BASIC interpreter in an IBM PC. However, you
shouldn’t use this mechanism to run BASIC since many PC compatibles do not have
BASIC in ROM and the result of executing int 18h is undefined.

13.2.11 INT 19h - Reboot Computer

Instruction: int 19h
BIOS Operation: Restart the system
Parameters: None

Executing this interrupt has the same effect as pressing control-alt-del on the key-
board. For obvious reasons, this interrupt service should be handled carefully!

13.2.12 INT 1Ah - Real Time Clock

Instruction: int 1ah
BIOS Operation: Real time clock services
Parameters: ax, cx, dx

There are two services provided by this BIOS routine- read the clock and set the clock.
The PC’s real time clock maintains a counter that counts the number of 1/18ths of a sec-
ond that have transpired since midnight. When you read the clock, you get the number of
”ticks” which have occurred since then. When you set the clock, you specify the number
of “ticks” which have occurred since midnight. As usual, the particular service is selected
via the value in the ah register.

13.2.12.1 AH=0: Read the Real Time Clock

If ah = 0, then int 1ah returns a 33-bit value in al:cx:dx as follows:

Reg Value Returned
dx L.O. word of clock count
cx H.O. word of clock count
al Zero if timer has not run for more than 24 hours

Non-zero otherwise.

The 32-bit value in cx:dx represents the number of 55 millisecond periods which have
elapsed since midnight.

MS-DOS, PC BIOS, and File I/O

Page 713

13.2.12.2 AH=1: Setting the Real Time Clock

This call allows you to set the current system time value. cx:dx contains the current
count (in 55ms increments) since last midnight. Cx contains the H.O. word, dx contains the
L.O. word.

13.3 An Introduction to MS-DOS

MS-DOS provides all of the basic file manager and device manager functions required
by most application programs running on an IBM PC. MS-DOS handles file I/O, character
I/0, memory management, and other miscellaneous functions in a (relatively) consistent
manner. If you’re serious about writing software for the PC, you’ll have to get real friendly
with MS-DOS.

The title of this section is “An Introduction to MS-DOS”. And that’s exactly what it
means. There is no way MS-DOS can be completely covered in a single chapter. Given all
of the different books that already exist on the subject, it probably cannot even be covered
by a single book (it certainly hasn’t been yet. Microsoft wrote a 1,600 page book on the
subject and it didn’t even cover the subject fully). All this is leading up to a cop-out. There
is no way this subject can be treated in more than a superficial manner in a single chapter.
If you’re serious about writing programs in assembly language for the PC, you’ll need to
complement this text with several others. Additional books on MS-DOS include: MS-DOS
Programmer’s Reference (also called the MS-DOS Technical Reference Manual), Peter
Norton’s Programmer’s Guide to the IBM PC, The MS-DOS Encyclopedia, and the
MS-DOS Developer’s Guide. This, of course, is only a partial list of the books that are
available. See the bibliography in the appendices for more details. Without a doubt, the
MS-DOS Technical Reference Manual is the most important text to get your hands on.
This is the official description of MS-DOS calls and parameters.

MS-DOS has a long and colorful history2. Throughout its lifetime, it has undergone
several revisions, each purporting to be better than the last. MS-DOS’ origins go all the
way back to the CP/M-80 operating system written for the Intel 8080 microprocessor chip.
In fact, MS-DOS v1.0 was nothing much more than a clone of CP/M-80 for Intel’s 8088
microprocessor. Unfortunately, CP/M-80’s file handling capabilities were horrible, to say
the least. Therefore, DOS3 improved on CP/M. New file handling capabilities, compatible
with Xenix and Unix, were added to DOS, producing MS-DOS v2.0. Additional calls were
added to later versions of MS-DOS. Even with the introduction of OS/2 and Windows NT
(which, as this is being written, have yet to take the world by storm), Microsoft is still
working on enhancements to MS-DOS which may produce even later versions.

Each new feature added to DOS introduced new DOS functions while preserving all
of the functionality of the previous versions of DOS. When Microsoft rewrote the DOS file
handling routines in version two, they didn’t replace the old calls, they simply added new
ones. While this preserved software compatibility of programs that ran under the old ver-
sion of DOS, what it produced was a DOS with two sets of functionally identical, but oth-
erwise incompatible, file services.

We’re only going to concentrate on a small subset of the available DOS commands in
this chapter. We’re going to totally ignore those obsolete commands that have been aug-
mented by newer, better, commands in later versions of DOS. Furthermore, we’re going to
skip over a description of those calls that have very little use in day to day programming.
For a complete, detailed, look at the commands not covered in this chapter, you should
consider the acquisition of one of the aforementioned books.

2. The MS-DOS Encyclopedia gives Microsoft’s account of the history of MS-DOS. Of course, this is a one-sided
presentation, but it’s interesting nonetheless.
3. This text uses “DOS” to mean MS-DOS.

Chapter 13

Page 714

13.3.1 MS-DOS Calling Sequence

MS-DOS is called via the int 21h instruction. To select an appropriate DOS function,
you load the ah register with a function number before issuing the int 21h instruction. Most
DOS calls require other parameters as well. Generally, these other parameters are passed
in the CPU’s register set. The specific parameters will be discussed along with each call.
Unless MS-DOS returns some specific value in a register, all of the CPU’s registers are pre-
served across a call to DOS4.

13.3.2 MS-DOS Character Oriented Functions

DOS provides 12 character oriented I/O calls. Most of these deal with writing and
reading data to/from the keyboard, video display, serial port, and printer port. All of
these functions have corresponding BIOS services. In fact, DOS usually calls the appropri-
ate BIOS function to handle the I/O operation. However, due to DOS’ redirected I/O and
device driver facilities, these functions don’t always call the BIOS routines. Therefore, you
shouldn’t call the BIOS routines (rather than DOS) simply because DOS ends up calling
BIOS. Doing so may prevent your program from working with certain DOS-supported
devices.

Except for function code seven, all of the following character oriented calls check the
console input device (keyboard) for a control-C. If the user presses a control-C, DOS exe-
cutes an int 23h instruction. Usually, this instruction will cause the program to abort and
control will be returned to DOS. Keep this in mind when issuing these calls.

Microsoft considers these calls obsolete and does not guarantee they will be present in
future versions of DOS. So take these first 12 routines with a rather large grain of salt.
Note that the UCR Standard Library provides the functionality of many of these calls any-
way, and they make the proper DOS calls, not the obsolete ones.

4. So Microsoft claims. This may or may not be true across all versions of DOS.

Table 51: DOS Character Oriented Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

1 al- char read Console Input w/Echo: Reads a single character
from the keyboard and displays typed character
on screen.

2 dl- output char Console Output: Writes a single character to the
display.

3 al- char read Auxiliary Input: Reads a single character from
the serial port.

4 dl- output char Auxiliary Output: Writes a single character to the
output port

5 dl- output char Printer Output: Writes a single character to the
printer

MS-DOS, PC BIOS, and File I/O

Page 715

Functions 1, 2, 3, 4, 5, 9, and 0Ah are obsolete and you should not use them. Use the
DOS file I/O calls instead (opcodes 3Fh and 40h).

6 dl- output char
(if not 0FFh)

al- char read (if
input dl = 0FFh)

Direct Console I/O: On input, if dl contains 0FFh,
this function attempts to read a character from
the keyboard. If a character is available, it returns
the zero flag clear and the character in al. If no
character is available, it returns the zero flag set.
On input, if dl contains a value other than 0FFh,
this routine sends the character to the display.
This routine does not do ctrl-C checking.

7 al- char read Direct Console Input: Reads a character from the
keyboard. Does not echo the character to the dis-
play. This call does not check for ctrl-C

8 al- char read Read Keyboard w/o Echo: Just like function 7
above, except this call checks for ctrl-C.

9 ds:dx- pointer to
string termi-
nated with “$”.

Display String: This function displays the charac-
ters from location ds:dx up to (but not including)
a terminating “$” character.

0Ah ds:dx- pointer to
input buffer.

Buffered Keyboard Input: This function reads a
line of text from the keyboard and stores it into
the input buffer pointed at by ds:dx. The first byte
of the buffer must contain a count between one
and 255 that contains the maximum number of
allowable characters in the input buffer. This rou-
tine stores the actual number of characters read in
the second byte. The actual input characters
begin at the third byte of the buffer.

0Bh al- status (0=not
ready,
0FFh=ready)

Check Keyboard Status: Determines whether a
character is available from the keyboard.

0Ch al- DOS opcode 0,
1, 6, 7, or 8

al- input charac-
ter if opcode 1, 6,
7, or 8.

Flush Buffer: This call empties the system type
ahead buffer and then executes the DOS com-
mand specified in the al register (if al=0, no fur-
ther action).

Table 51: DOS Character Oriented Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 716

13.3.3 MS-DOS Drive Commands

MS-DOS provides several commands that let you set the default drive, determine
which drive is the default, and perform some other operations. The following table lists
those functions.

Table 52: DOS Disk Drive Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

0Dh Reset Drive: Flushes all file buffers to disk. Gen-
erally called by ctrl-C handlers or sections of code
that need to guaranteed file consistency because
an error may occur.

0Eh dl- drive number al- number of
logical drives

Set Default Drive: sets the DOS default drive to
the specified value (0=A, 1=B, 2=C, etc.). Returns
the number of logical drives in the system,
although they may not be contiguous from 0-al.

19H al- default drive
number

Get Default Drive: Returns the current system
default drive number (0=A, 1=B, 2=C, etc.).

1Ah ds:dx- Disk
Transfer Area
address.

Set Disk Transfer Area Address: Sets the address
that MS-DOS uses for obsolete file I/O and Find
First/Find Next commands.

1Bh al- sectors/clus-
ter
cx- bytes/sector
dx- # of clusters
ds:bx - points at
media descriptor
byte

Get Default Drive Data: Returns information
about the disk in the default drive. Also see func-
tion 36h. Typical values for the media descriptor
byte include:
0F0h- 3.5”
0F8h- Hard disk
0F9h- 720K 3.5” or 1.2M 5.25”
0FAh- 320K 5.25”
0FBh- 640K 3.5”
0FCh- 180K 5.25”
0FDh- 360K 5.25:
0FEh- 160K 5.25”
0FFh- 320K 5.25”

1Ch dl- drive number See above Get Drive Data: same as above except you can
specify the drive number in the dl register
(0=default, 1=A, 2=B, 3=C, etc.).

MS-DOS, PC BIOS, and File I/O

Page 717

13.3.4 MS-DOS “Obsolete” Filing Calls

DOS functions 0Fh - 18h, 1Eh, 20h-24h, and 26h - 29h are the functions left over from
the days of CP/M-80. In general, you shouldn’t bother at all with these calls since

1Fh al- contains 0FFh
if error, 0 if no
error.
ds:bx- ptr to DPB

Get Default Disk Parameter Block (DPB): If suc-
cessful, this function returns a pointer to the fol-
lowing structure:
Drive (byte) - Drive number (0-A, 1=B, etc.).
Unit (byte) - Unit number for driver.
SectorSize (word) - # bytes/sector.
ClusterMask (byte) - sectors/cluster minus one.
Cluster2 (byte) - 2clusters/sector

FirstFAT (word) - Address of sector where FAT
starts.
FATCount (byte) - # of FATs.
RootEntries (word) - # of entries in root directory.
FirstSector (word) - first sector of first cluster.
MaxCluster (word) - # of clusters on drive, plus
one.
FATsize (word) - # of sectors for FAT.
DirSector (word) - first sector containing direc-
tory.
DriverAdrs (dword) - address of device driver.
Media (byte) - media descriptor byte.
FirstAccess (byte) - set if there has been an access
to drive.
NextDPB (dword) - link to next DPB in list.
NextFree (word) - last allocated cluster.
FreeCnt (word) - number of free clusters.

2Eh al- verify flag
(0=no verify,
1=verify on).

Set/Reset Verify Flag: Turns on and off write ver-
ification. Usually off since this is a slow opera-
tion, but you can turn it on when performing
critical I/O.

2Fh es:bx- pointer to
DTA

Get Disk Transfer Area Address: Returns a
pointer to the current DTA in es:bx..

32h dl- drive number. Same as 1Fh Get DPB: Same as function 1Fh except you get to
specify the driver number (0=default, 1=A, 2=B,
3=C, etc.).

33h al- 05 (subfunc-
tion code)

dl- startup drive
#.

Get Startup Drive: Returns the number of the
drive used to boot DOS (1=A, 2=B, 3=C, etc.).

36h dl- drive number. ax- sectors/clus-
ter
bx- available clus-
ters
cx- bytes/sector
dx- total clusters

Get Disk Free Space: Reports the amount of free
space. This call supersedes calls 1Bh and 1Ch that
only support drives up to 32Mbytes. This call
handles larger drives. You can compute the
amount of free space (in bytes) by bx*ax*cx. If an
error occurs, this call returns 0FFFFh in ax.

54h al- verify state. Get Verify State: Returns the current state of the
write verify flag (al=0 if off, al=1 if on).

Table 52: DOS Disk Drive Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 718

MS-DOS v2.0 and later provides a much better way to accomplish the operations per-
formed by these calls.

13.3.5 MS-DOS Date and Time Functions

The MS-DOS date and time functions return the current date and time based on inter-
nal values maintained by the real time clock (RTC). Functions provided by DOS include
reading and setting the date and time. These date and time values are used to perform
date and time stamping of files when files are created on the disk. Therefore, if you change
the date or time, keep in mind that it will have an effect on the files you create thereafter.
Note that the UCR Standard Library also provides a set of date and time functions which,
in many cases, are somewhat easier to use than these DOS calls.

13.3.6 MS-DOS Memory Management Functions

MS-DOS provides three memory management functions- allocate, deallocate, and
resize (modify). For most programs, these three memory allocation calls are not used.
When DOS executes a program, it gives all of the available memory, from the start of that
program to the end of RAM, to the executing process. Any attempt to allocate memory
without first giving unused memory back to the system will produce an “insufficient
memory” error.

Sophisticated programs which terminate and remain resident, run other programs, or
perform complex memory management tasks, may require the use of these memory man-
agement functions. Generally these types of programs immediately deallocate all of the
memory that they don’t use and then begin allocating and deallocating storage as they see
fit.

Table 53: Date and Time Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

2Ah al- day (0=Sun,
1=Mon, etc.).
cx- year
dh- month
(1=Jan, 2=Feb,
etc.).
dl- Day of month
(1-31).

Get Date: returns the current MS-DOS date.

2Bh cx- year (1980 -
2099)
dh- month (1-12)
dl- day (1-31)

Set Date: sets the current MS-DOS date.

2CH ch- hour (24hr
fmt)
cl- minutes
dh- seconds
dl- hundredths

Get Time: reads the current MS-DOS time. Note
that the hundredths of a second field has a reso-
lution of 1/18 second.

2Dh ch- hour
cl- minutes
dh- seconds
dl- hundredths

Set Time: sets the current MS-DOS time.

MS-DOS, PC BIOS, and File I/O

Page 719

Since these are complex functions, they shouldn’t be used unless you have a very spe-
cific purpose for them. Misusing these commands may result in loss of system memory
that can be reclaimed only by rebooting the system. Each of the following calls returns the
error status in the carry flag. If the carry is clear on return, then the operation was com-
pleted successfully. If the carry flag is set when DOS returns, then the ax register contains
one of the following error codes:

7- Memory control blocks destroyed
8- Insufficient memory
9- Invalid memory block address

Additional notes about these errors will be discussed as appropriate.

13.3.6.1 Allocate Memory

Function (ah): 48h
Entry parameters: bx- Requested block size (in paragraphs)
Exit parameters: If no error (carry clear):

ax:0 points at allocated memory block

If an error (carry set):
bx- maximum possible allocation size
ax- error code (7 or 8)

This call is used to allocate a block of memory. On entry into DOS, bx contains the size
of the requested block in paragraphs (groups of 16 bytes). On exit, assuming no error, the
ax register contains the segment address of the start of the allocated block. If an error
occurs, the block is not allocated and the ax register is returned containing the error code.
If the allocation request failed due to insufficient memory, the bx register is returned con-
taining the maximum number of paragraphs actually available.

13.3.6.2 Deallocate Memory

Function (ah): 49h
Entry parameters: es:0- Segment address of block to be deallocated
Exit parameters: If the carry is set, ax contains the error code (7,9)

This call is used to deallocate memory allocated via function 48h above. The es regis-
ter cannot contain an arbitrary memory address. It must contain a value returned by the
allocate memory function. You cannot use this call to deallocate a portion of an allocated
block. The modify allocation function is used for that operation.

13.3.6.3 Modify Memory Allocation

Function (ah): 4Ah
Entry parameters: es:0- address of block to modify allocation size

bx- size of new block
Exit parameters: If the carry is set, then

ax contains the error code 7, 8, or 9
bx contains the maximum size possible (if error 8)

This call is used to change the size of an allocated block. On entry, es must contain the
segment address of the allocated block returned by the memory allocation function. Bx
must contain the new size of this block in paragraphs. While you can almost always
reduce the size of a block, you cannot normally increase the size of a block if other blocks
have been allocated after the block being modified. Keep this in mind when using this
function.

Chapter 13

Page 720

13.3.6.4 Advanced Memory Management Functions

The MS-DOS 58h opcode lets programmers adjust MS-DOS’ memory allocation strat-
egy and control the use of upper memory blocks (UMBs). There are four subfunctions to
this call, with the subfunction value appearing in the al register. The following table
describes these calls:

Table 54: Advanced Memory Management Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

58h al-0 ax- strategy Get Allocation Strategy: Returns the current allo-
cation strategy in ax (see table below for details).

58h al-1
bx- strategy

Set Allocation Strategy: Sets the MS-DOS alloca-
tion strategy to the value specified in bx (see the
table below for details).

58H al- 2 al- link flag Get Upper Memory Link: Returns true/false
(1/0) in al to determine whether a program can
allocate memory in the upper memory blocks.

58h al- 3
bx- link flag
(0=no link,
1=link okay).

Set Upper Memory Link: Links or unlinks the
upper memory area. When linked, an application
can allocate memory from the UMB (using the
normal DOS allocate call).

Table 55: Memory Allocation Strategies

Value Name Description

0 First Fit Low Search conventional memory for the first free block of
memory large enough to satisfy the allocation request.
This is the default case.

1 Best Fit Low Search conventional memory for the smallest block
large enough to satisfy the request.

2 Last Fit Low Search conventional memory from the highest address
downward for the first block large enough to satisfy
the request.

80h First Fit High Search high memory, then conventional memory, for
the first available block that can satisfy the allocation
request.

81h Best Fit High Search high memory, then conventional memory for
the smallest block large enough to satisfy the alloca-
tion request.

82h Last Fit High Search high memory from high addresses to low, then
conventional memory from high addresses to low, for
the first block large enough to satisfy the request.

40h First Fit Highonly Search high memory only for the first block large
enough to satisfy the request.

41h Best Fit Highonly Search high memory only for the smallest block large
enough to satisfy the request.

MS-DOS, PC BIOS, and File I/O

Page 721

These different allocation strategies can have an impact on system performance. For
an analysis of different memory management strategies, please consult a good operating
systems theory text.

13.3.7 MS-DOS Process Control Functions

DOS provides several services dealing with loading, executing, and terminating pro-
grams. Many of these functions have been rendered obsolete by later versions of DOS.
There are three5 functions of general interest- program termination, terminate and stay
resident, and execute a program. These three functions will be discussed in the following
sections.

13.3.7.1 Terminate Program Execution

Function (ah): 4Ch
Entry parameters: al- return code
Exit parameters: Does not return to your program

This is the function call normally used to terminate your program. It returns control to
the calling process (normally, but not necessarily, DOS). A return code can be passed to the
calling process in the al register. Exactly what meaning this return code has is entirely up
to you. This return code can be tested with the DOS “IF ERRORLEVEL return code” com-
mand in a DOS batch file. All files opened by the current process will be automatically
closed upon program termination.

Note that the UCR Standard Library function “ExitPgm” is simply a macro which
makes this particular DOS call. This is the normal way of returning control back to
MS-DOS or some other program which ran the currently active application.

13.3.7.2 Terminate, but Stay Resident

Function (ah): 31h
Entry parameters: al- return code

dx- memory size, in paragraphs
Exit parameters: does not return to your program

This function also terminates program execution, but upon returning to DOS, the
memory in use by the process is not returned to the DOS free memory pool. Essentially,
the program remains in memory. Programs which remain resident in memory after
returning to DOS are often called TSRs (terminate and stay resident programs).

When this command is executed, the dx register contains the number of memory para-
graphs to leave around in memory. This value is measured from the beginning of the
“program segment prefix”, a segment marking the start of your file in memory. The
address of the PSP (program segment prefix) is passed to your program in the ds register

5. Actually, there are others. See the DOS technical reference manual for more details. We will only consider these
three here.

42h Last Fit Highonly Search high memory only, from the end of memory
downward, for the first block large enough to satisfy
the request.

Table 55: Memory Allocation Strategies

Value Name Description

Chapter 13

Page 722

when your program is first executed. You’ll have to save this value if your program is a
TSR6.

Programs that terminate and stay resident need to provide some mechanism for
restarting. Once they return to DOS they cannot normally be restarted. Most TSRs patch
into one of the interrupt vectors (such as a keyboard, printer, or serial interrupt vector) in
order to restart whenever some hardware related event occurs (such as when a key is
pressed). This is how “pop-up” programs like SmartKey work.

Generally, TSR programs are pop-ups or special device drivers. The TSR mechanism
provides a convenient way for you to load your own routines to replace or augment BIOS’
routines. Your program loads into memory, patches the appropriate interrupt vector so
that it points at an interrupt handler internal to your code, and then terminates and stays
resident. Now, when the appropriate interrupt instruction is executed, your code will be
called rather than BIOS’.

There are far too many details concerning TSRs including compatibility issues, DOS
re-entrancy issues, and how interrupts are processed, to be considered here. Additional
details will appear in a later chapter.

13.3.7.3 Execute a Program

Function (ah): 40h
Entry parameters: ds:dx- pointer to pathname of program to execute
 es:bx- Pointer to parameter block
 al- 0=load and execute, 1=load only, 3=load overlay.
Exit parameters: If carry is set, ax contains one of the following error codes:

 1- invalid function
 2- file not found

 5- access denied
 8- not enough memory

 10- bad environment
11- bad format

The execute (exec) function is an extremely complex, but at the same time, very useful
operation. This command allows you to load or load and execute a program off of the disk
drive. On entry into the exec function, the ds:dx registers contain a pointer to a zero termi-
nated string containing the name of the file to be loaded or executed, es:bx points at a
parameter block, and al contains zero or one depending upon whether you want to load
and execute a program or simply load it into memory. On return, if the carry is clear, then
DOS properly executed the command. If the carry flag is set, then DOS encountered an
error while executing the command.

The filename parameter can be a full pathname including drive and subdirectory
information. “B:\DIR1\DIR2\MYPGM.EXE” is a perfectly valid filename (remember,
however, it must be zero terminated). The segmented address of this pathname is passed
in the ds:dx registers.

The es:bx registers point at a parameter block for the exec call. This parameter block
takes on three different forms depending upon whether a program is being loaded and
executed (al=0), just loaded into memory (al=1), or loaded as an overlay (al=3).

If al=0, the exec call loads and executes a program. In this case the es:bx registers point
at a parameter block containing the following values:

 Offset Description
0 A word value containing the segment address of the default environment (usually this

is set to zero which implies the use of the standard DOS environment).
2 Double word pointer containing the segment address of a command line string.

6. DOS also provides a call which will return the PSP for your program.

MS-DOS, PC BIOS, and File I/O

Page 723

6 Double word pointer to default FCB at address 5Ch
0Ah Double word pointer to default FCB at address 6Ch

The environment area is a set of strings containing default pathnames and other infor-
mation (this information is provided by DOS using the PATH, SET, and other DOS com-
mands). If this parameter entry contains zero, then exec will pass the standard DOS
environment on to the new procedure. If non-zero, then this parameter contains the seg-
ment address of the environment block that your process is passing on to the program
about to be executed. Generally, you should store a zero at this address.

The pointer to the command string should contain the segmented address of a length
prefixed string which is also terminated by a carriage return character (the carriage return
character is not figured into the length of the string). This string corresponds to the data
that is normally typed after the program name on the DOS command line. For example, if
you’re executing the linker automatically, you might pass a command string of the follow-
ing form:

CmdStr byte 16,”MyPgm+Routines /m”,0dh

The second item in the parameter block must contain the segmented address of this
string.

The third and fourth items in the parameter block point at the default FCBs. FCBs are
used by the obsolete DOS filing commands, so they are rarely used in modern application
programs. Since the data structures these two pointers point at are rarely used, you can
point them at a group of 20 zeros.

 Example: Format a floppy disk in drive A: using the FORMAT.EXE command

mov ah, 4Bh
mov al, 0
mov dx, seg PathName
mov ds, dx
lea dx, PathName
mov bx, seg ParmBlock
mov es, bx
lea bx, ParmBlock
int 21h
 .
 .
 .

PathName byte ‘C:\DOS\FORMAT.EXE’,0
ParmBlock word 0 ;Default environment

dword CmdLine ;Command line string
dword Dummy,Dummy ;Dummy FCBs

CmdLine byte 3,’ A:’,0dh
Dummy byte 20 dup (?)

MS-DOS versions earlier than 3.0 do not preserve any registers except cs:ip when you
execute the exec call. In particular, ss:sp is not preserved. If you’re using DOS v2.x or ear-
lier, you’ll need to use the following code:

;Example: Format a floppy disk in drive A: using the FORMAT.EXE command

<push any registers you need preserved>

mov cs:SS_Save, ss ;Save SS:SP to a location
mov cs:SP_Save, sp ; we have access to later.
mov ah, 4Bh ;EXEC DOS opcode.
mov al, 0 ;Load and execute.
mov dx, seg PathName ;Get filename into DS:DX.
mov ds, dx
lea dx, PathName
mov bx, seg ParmBlock ;Point ES:BX at parameter
mov es, bx ; block.
lea bx, ParmBlock
int 21h
mov ss, cs:SS_Save ;Restore SS:SP from saved
mov sp, cs:SP_Save ; locations.

Chapter 13

Page 724

<Restore registers pushed onto the stack>
 .
 .
 .

SS_Save word ?
SP_Save word ?

 .
 .
 .

PathName byte ‘C:\DOS\FORMAT.EXE’,0
ParmBlock word 0 ;Default environment

dword CmdLine ;Command line string
dword Dummy,Dummy;Dummy ;FCBs

CmdLine byte 3,’ A:’,0dh
Dummy byte 20 dup (?)

SS_Save and SP_Save must be declared inside your code segment. The other variables can
be declared anywhere.

The exec command automatically allocates memory for the program being executed.
If you haven’t freed up unused memory before executing this command, you may get an
insufficient memory error. Therefore, you should use the DOS deallocate memory com-
mand to free up unused memory before attempting to use the exec command.

If al=1 when the exec function executes, DOS will load the specified file but will not
execute it. This function is generally used to load a program to execute into memory but
give the caller control and let the caller start that code. When this function call is made,
es:bx points at the following parameter block:

Offset Description
0 Word value containing the segment address of the environment block for the new pro-

cess. If you want to use the parent process’ environment block set this word to zero.
2 Dword pointer to the command tail for this operation. The command tail is the com-

mand line string which will appear at location PSP:80 (See “The Program Segment Pre-
fix (PSP)” on page 739 and “Accessing Command Line Parameters” on page 742).

6 Address of default FCB #1. For most programs, this should point at a block of 20 zeros
(unless, of course, you’re running a program which uses FCBs.).

0Ah Address of default FCB #2. Should also point at a block of 20 zeros.
0Eh SS:SP value. You must load these four bytes into SS and SP before starting the applica-

tion.
12h CS:IP value. These four bytes contain the starting address of the program.

The SSSP and CSIP fields are output values. DOS fills in the fields and returns them in the
load structure. The other fields are all inputs which you must fill in before calling the exec
function with al=1.

When you execute the exec command with al=-3, DOS simply loads an overlay into
memory. Overlays generally consist of a single code segment which contains some func-
tions you want to execute. Since you are not creating a new process, the parameter block
for this type of load is much simpler than for the other two types of load operations. On
entry, es:bx must point at the following parameter block in memory:

Offset Description
0 Word value containing the segment address of where this file is going to be loaded into

memory. The file will be loaded at offset zero within this segment.
2 Word value containing a relocation factor for this file.

Unlike the load and execute functions, the overlay function does not automatically
allocate storage for the file being loaded. Your program has to allocate sufficient storage
and then pass the address of this storage block to the exec command (though the parame-
ter block above). Only the segment address of this block is passed to the exec command,
the offset is always assumed to be zero. The relocation factor should also contain the seg-
ment address for “.EXE” files. For “.COM” files, the relocation factor parameter should be
zero.

MS-DOS, PC BIOS, and File I/O

Page 725

The overlay command is quite useful for loading overlays from disk into memory. An
overlay is a segment of code which resides on the disk drive until the program actually
needs to execute its code. Then the code is loaded into memory and executed. Overlays
can reduce the amount of memory your program takes up by allowing you to reuse the
same portion of memory for different overlay procedures (clearly, only one such proce-
dure can be active at any one time). By placing seldom-used code and initialization code
into overlay files, you can help reduce the amount of memory used by your program file.
One word of caution, however, managing overlays is a very complex task. This is not
something a beginning assembly language programmer would want to tackle right away.
When loading a file into memory (as opposed to loading and executing a file), DOS does
not scramble all of the registers, so you needn’t take the extra care necessary to preserve
the ss:sp and other registers.

The MS-DOS Encyclopedia contains an excellent description of the use of the exec
function.

13.3.8 MS-DOS “New” Filing Calls

Starting with DOS v2.0, Microsoft introduced a set of file handling procedures which
(finally) made disk file access bearable under MS-DOS. Not only bearable, but actually
easy to use! The following sections describe the use of these commands to access files on a
disk drive.

File commands which deal with filenames (Create, Open, Delete, Rename, and others)
are passed the address of a zero-terminated pathname. Those that actually open a file
(Create and Open) return a file handle as the result (assuming, of course, that there wasn’t
an error). This file handle is used with other calls (read, write, seek, close, etc.) to gain
access to the file you’ve opened. In this respect, a file handle is not unlike a file variable in
Pascal. Consider the following Microsoft/Turbo Pascal code:

program DemoFiles; var F:TEXT;
begin

assign(f,’FileName.TXT’);
rewrite(f);
writeln(f,’Hello there’);
close(f);

end.

The file variable “f” is used in this Pascal example in much the same way that a file
handle is used in an assembly language program – to gain access to the file that was cre-
ated in the program.

All the following DOS filing commands return an error status in the carry flag. If the
carry flag is clear when DOS returns to your program, then the operation was completed
successfully. If the carry flag is set upon return, then some sort of error has occurred and
the AX register contains the error number. The actual error return values will be discussed
along with each function in the following sections.

13.3.8.1 Open File

Function (ah): 3Dh
Entry parameters:

al- file access value
 0- File opened for reading

 1- File opened for writing
2- File opened for reading and writing

ds:dx- Point at a zero terminated string containing the filename.
Exit parameters: If the carry is set, ax contains one of the following error codes:

 2- File not found

Chapter 13

Page 726

 4- Too many open files
 5- Access denied

 12- Invalid access
If the carry is clear, ax contains the file handle value assigned by DOS.

A file must be opened before you can access it. The open command opens a file that
already exists. This makes it quite similar to Pascal’s Reset procedure. Attempting to open
a file that doesn’t exist produces an error. Example:

lea dx, Filename ;Assume DS points at segment
mov ah, 3dh ; of filename
mov al, 0 ;Open for reading.
int 21h
jc OpenError
mov FileHandle, ax

If an error occurs while opening a file, the file will not be opened. You should always
check for an error after executing a DOS open command, since continuing to operate on
the file which hasn’t been properly opened will produce disastrous consequences. Exactly
how you handle an open error is up to you, but at the very least you should print an error
message and give the user the opportunity to specify a different filename.

If the open command completes without generating an error, DOS returns a file han-
dle for that file in the ax register. Typically, you should save this value away somewhere so
you can use it when accessing the file later on.

13.3.8.2 Create File

Function (ah): 3Ch
Entry parameters: ds:dx- Address of zero terminated pathname

cx- File attribute
Exit parameters: If the carry is set, ax contains one of the following error codes:

 3- Path not found
 4- Too many open files

 5- Access denied
If the carry is clear, ax is returned containing the file handle

Create opens a new file for output. As with the OPEN command, ds:dx points at a zero
terminated string containing the filename. Since this call creates a new file, DOS assumes
that you’re opening the file for writing only. Another parameter, passed in cx, is the initial
file attribute settings. The L.O. six bits of cx contain the following values:

Bit Meaning if equal to one
0 File is a Read-Only file
1 File is a hidden file
2 File is a system file
3 File is a volume label name
4 File is a subdirectory
5 File has been archived

In general, you shouldn’t set any of these bits. Most normal files should be created
with a file attribute of zero. Therefore, the cx register should be loaded with zero before
calling the create function.

Upon exit, the carry flag is set if an error occurs. The “Path not found” error requires
some additional explanation. This error is generated, not if the file isn’t found (which
would be most of the time since this command is typically used to create a new file), but if
a subdirectory in the pathname cannot be found.

If the carry flag is clear when DOS returns to your program, then the file has been
properly opened for output and the ax register contains the file handle for this file.

MS-DOS, PC BIOS, and File I/O

Page 727

13.3.8.3 Close File

Function (ah): 3Eh
Entry parameters: bx- File Handle
Exit parameters: If the carry flag is set, ax contains 6, the only possible error, which is an invalid handle

error.

This call is used to close a file opened with the Open or Create commands above. It is
passed the file handle in the bx register and, assuming the file handle is valid, closes the
specified file.

You should close all files your program uses as soon as you’re through with them to
avoid disk file corruption in the event the user powers the system down or resets the
machine while your files are left open.

Note that quitting to DOS (or aborting to DOS by pressing control-C or control-break)
automatically closes all open files. However, you should never rely on this feature since
doing so is an extremely poor programming practice.

13.3.8.4 Read From a File

Function (ah): 3Fh
Entry parameters: bx- File handle

cx- Number of bytes to read
 ds:dx- Array large enough to hold bytes read
Exit parameters: If the carry flag is set, ax contains one of the following error codes

 5- Access denied
 6- Invalid handle

If the carry flag is clear, ax contains the number of bytes actually read from the file.

The read function is used to read some number of bytes from a file. The actual number
of bytes is specified by the cx register upon entry into DOS. The file handle, which speci-
fies the file from which the bytes are to be read, is passed in the bx register. The ds:dx regis-
ter contains the address of a buffer into which the bytes read from the file are to be stored.

On return, if there wasn’t an error, the ax register contains the number of bytes actu-
ally read. Unless the end of file (EOF) was reached, this number will match the value
passed to DOS in the cx register. If the end of file has been reached, the value return in ax
will be somewhere between zero and the value passed to DOS in the cx register. This is the
only test for the EOF condition.

Example: This example opens a file and reads it to the EOF

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at filename
int 21h ; segment.
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF
mov al, Buffer ;Get character read
putc ;Print it
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file

Chapter 13

Page 728

int 21h
jc CloseError

This code segment will read the entire file whose (zero-terminated) filename is found
at address “Filename” in the current data segment and write each character in the file to
the standard output device using the UCR StdLib putc routine. Be forewarned that
one-character-at-a-time I/O such as this is extremely slow. We’ll discuss better ways to
quickly read a file a little later in this chapter.

13.3.8.5 Write to a File

Function (ah): 40h
Entry parameters: bx- File handle

cx- Number of bytes to write
ds:dx- Address of buffer containing data to write

Exit parameters: If the carry is set, ax contains one of the following error codes
 5- Accessed denied
 6- Invalid handle

If the carry is clear on return, ax contains the number of bytes actually written to the
file.

This call is almost the converse of the read command presented earlier. It writes the
specified number of bytes at ds:dx to the file rather than reading them. On return, if the
number of bytes written to the file is not equal to the number originally specified in the cx
register, the disk is full and this should be treated as an error.

If cx contains zero when this function is called, DOS will truncate the file to the cur-
rent file position (i.e., all data following the current position in the file will be deleted).

13.3.8.6 Seek (Move File Pointer)

Function (ah): 42h Entry parameters:
al- Method of moving
 0- Offset specified is from the beginning of the file.

 1- Offset specified is distance from the current file pointer.
 2- The pointer is moved to the end of the file minus the specified offset.

bx- File handle.
cx:dx- Distance to move, in bytes.

Exit parameters: If the carry is set, ax contains one of the following error codes
 1- Invalid function
 6- Invalid handle

If the carry is clear, dx:ax contains the new file position

This command is used to move the file pointer around in a random access file. There
are three methods of moving the file pointer, an absolute distance within the file (if al=0),
some positive distance from the current file position (if al=1), or some distance from the
end of the file (if al=2). If AL doesn’t contain 0, 1, or 2, DOS will return an invalid function
error. If this call is successfully completed, the next byte read or written will occur at the
specified location.

Note that DOS treats cx:dx as an unsigned integer. Therefore, a single seek command
cannot be used to move backwards in the file. Instead, method #0 must be used to posi-
tion the file pointer at some absolute position in the file. If you don’t know where you cur-
rently are and you want to move back 256 bytes, you can use the following code:

mov ah, 42h ;Seek command
mov al, 1 ;Move from current location
xor cx, cx ;Zero out CX and DX so we
xor dx, dx ; stay right here

MS-DOS, PC BIOS, and File I/O

Page 729

mov bx, FileHandle
int 21h
jc SeekError
sub ax, 256 ;DX:AX now contains the
sbb dx, 0 ; current file position, so
mov cx, dx ; compute a location 256
mov dx, ax ; bytes back.
mov ah, 42h
mov al, 0 ;Absolute file position
int 21h ;BX still contains handle.

13.3.8.7 Set Disk Transfer Address (DTA)

Function (ah): 1Ah Entry parameters:
ds:dx- Pointer to DTA

Exit parameters: None

This command is called “Set Disk Transfer Address” because it was (is) used with the
original DOS v1.0 file functions. We wouldn’t normally consider this function except for
the fact that it is also used by functions 4Eh and 4Fh (described next) to set up a pointer to
a 43-byte buffer area. If this function isn’t executed before executing functions 4Eh or 4Fh,
DOS will use the default buffer space at PSP:80h.

13.3.8.8 Find First File

Function (ah): 4Eh
Entry parameters: cx- Attributes

ds:dx- Pointer to filename
Exit parameters: If carry is set, ax contains one of the following error codes

 2- File not found
 18- No more files

The Find First File and Find Next File (described next) functions are used to search for
files specified using ambiguous file references. An ambiguous file reference is any file-
name containing the “*” and “?” wildcard characters. The Find First File function is used
to locate the first such filename within a specified directory, the Find Next File function is
used to find successive entries in the directory.

Generally, when an ambiguous file reference is provided, the Find First File command
is issued to locate the first occurrence of the file, and then a loop is used, calling Find Next
File, to locate all other occurrences of the file within that loop until there are no more files
(error #18). Whenever Find First File is called, it sets up the following information at the
DTA:

Offset Description
0 Reserved for use by Find Next File
21 Attribute of file found
22 Time stamp of file
24 Date stamp of file
26 File size in bytes
30 Filename and extension (zero terminated)

 (The offsets are decimal)

Assuming Find First File doesn’t return some sort of error, the name of the first file
matching the ambiguous file description will appear at offset 30 in the DTA.

Note: if the specified pathname doesn’t contain any wildcard characters, then Find
First File will return the exact filename specified, if it exists. Any subsequent call to Find
Next File will return an error.

Chapter 13

Page 730

The cx register contains the search attributes for the file. Normally, cx should contain
zero. If non-zero, Find First File (and Find Next File) will include file names which have
the specified attributes as well as all normal file names.

13.3.8.9 Find Next File

Function (ah): 4Fh
Entry parameters: none
Exit parameters: If the carry is set, then there aren’t any more files and ax will be returned containing 18.

The Find Next File function is used to search for additional file names matching an
ambiguous file reference after a call to Find First File. The DTA must point at a data record
set up by the Find First File function.

Example: The following code lists the names of all the files in the current directory
that end with “.EXE”. Presumably, the variable “DTA” is in the current data segment:

mov ah, 1Ah ;Set DTA
lea dx, DTA
int 21h
xor cx, cx ;No attributes.
lea dx, FileName
mov ah, 4Eh ;Find First File
int 21h
jc NoMoreFiles ;If error, we’re done

DirLoop: lea si, DTA+30 ;Address of filename
cld

PrtName: lodsb
test al, al ;Zero byte?
jz NextEntry
putc ;Print this character
jmp PrtName

NextEntry: mov ah, 4Fh ;Find Next File
int 21h
jnc DirLoop ;Print this name

13.3.8.10 Delete File

Function (ah): 41h
Entry parameters: ds:dx- Address of pathname to delete
Exit parameters: If carry set, ax contains one of the following error codes

 2- File not found
 5- Access denied

This function will delete the specified file from the directory. The filename must be an
unambiguous filename (i.e., it cannot contain any wildcard characters).

13.3.8.11 Rename File

Function (ah): 56h Entry parameters:
ds:dx- Pointer to pathname of existing file
es:di- Pointer to new pathname

Exit parameters: If carry set, ax contains one of the following error codes
 2- File not found
 5- Access denied
 17- Not the same device

MS-DOS, PC BIOS, and File I/O

Page 731

This command serves two purposes: it allows you to rename one file to another and it
allows you to move a file from one directory to another (as long as the two subdirectories
are on the same disk).

Example: Rename “MYPGM.EXE” to “YOURPGM.EXE”

; Assume ES and DS both point at the current data segment
; containing the filenames.

lea dx, OldName
lea di, NewName
mov ah, 56h
int 21h
jc BadRename

 .
 .
 .

OldName byte “MYPGM.EXE”,0
NewName byte “YOURPGM.EXE”,0

Example #2: Move a filename from one directory to another:
; Assume ES and DS both point at the current data segment
; containing the filenames.

lea dx, OldName
lea di, NewName
mov ah, 56h
int 21h
jc BadRename

 .
 .
 .

OldName byte “\DIR1\MYPGM.EXE”,0
NewName byte “\DIR2\MYPGM.EXE”,0

13.3.8.12 Change/Get File Attributes

Function (ah): 43h
Entry parameters: al- Subfunction code

 0- Return file attributes in cx
 1- Set file attributes to those in cx

 cx- Attribute to be set if AL=01
 ds:dx- address of pathname

Exit parameters: If carry set, ax contains one of the following error codes:
 1- Invalid function
3- Pathname not found
5- Access denied

If the carry is clear and the subfunction was zero cx will contain the file’s attributes.

This call is useful for setting/resetting and reading a file’s attribute bits. It can be used
to set a file to read-only, set/clear the archive bit, or otherwise mess around with the file
attributes.

13.3.8.13 Get/Set File Date and Time

Function (ah): 57h
Entry parameters: al- Subfunction code

 0- Get date and time
 1- Set date and time

 bx- File handle
 cx- Time to be set (if AL=01)
 dx- Date to be set (if AL=01)

Chapter 13

Page 732

Exit parameters: If carry set, ax contains one of the following error codes
 1- Invalid subfunction
 6- Invalid handle

If the carry is clear, cx/dx is set to the time/date if al=00

This call sets the “last-write” date/time for the specified file. The file must be open
(using open or create) before using this function. The date will not be recorded until the
file is closed.

13.3.8.14 Other DOS Calls

The following tables briefly list many of the other DOS calls. For more information on
the use of these DOS functions consult the Microsoft MS-DOS Programmer’s Reference or
the MS-DOS Technical Reference.

Table 56: Miscellaneous DOS File Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

39h ds:dx- pointer to
zero terminated
pathname.

Create Directory: Creates a new directory with
the specified name.

3Ah ds:dx- pointer to
zero terminated
pathname.

Remove Directory: Deletes the directory with the
specified pathname. Error if directory is not
empty or the specified directory is the current
directory.

3Bh ds:dx- pointer to
zero terminated
pathname.

Change Directory: Changes the default directory
to the specified pathname.

45h bx- file handle ax- new handle Duplicate File Handle: creates a copy of a file
handle so a program can access a file using two
separate file variables. This allows the program
to close the file with one handle and continue
accessing it with the other.

46h bx- file handle
cx- duplicate
handle

Force Duplicate File Handle: Like function 45h
above, except you specify which handle (in cx)
you want to refer to the existing file (specified by
bx).

47h ds:si- pointer to
buffer
dl- drive

Get Current Directory: Stores a string containing
the current pathname (terminated with a zero)
starting at location ds:si. These registers must
point at a buffer containing at least 64 bytes. The
dl register specifies the drive number (0=default,
1=A, 2=B, 3=C, etc.).

5Ah cx- attributes
ds:dx- pointer to
temporary path.

ax- handle Create Temporary File: Creates a file with a
unique name in the directory specified by the
zero terminated string at which ds:dx points.
There must be at least 13 zero bytes beyond the
end of the pathname because this function will
store the generated filename at the end of the
pathname. The attributes are the same as for the
Create call.

MS-DOS, PC BIOS, and File I/O

Page 733

5Bh cx- attributes
ds:dx- pointer to
zero terminated
pathname.

ax- handle Create New File: Like the create call, but this call
insists that the file not exist. It returns an error if
the file exists (rather than deleting the old file).

67h bx- handles Set Maximum Handle Count: This function sets
the maximum number of handles a program can
use at any one given time.

68h bx- handle Commit File: Flushes all data to a file without
closing it, ensuring that the file’s data is current
and consistent.

Table 57: Miscellaneous DOS Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

25h al- interrupt #
ds:dx- pointer to
interrupt service
routine.

Set Interrupt Vector: Stores the specified address
in ds:dx into the interrupt vector table at the
entry specified by the al register.

30h al- major version
ah- minor version
bh- Version flag
bl:cx- 24 bit serial
number

Get Version Number: Returns the current version
number of DOS (or value set by SETVER).

33h al- 0 dl- break flag
(0=off, 1=on)

Get Break Flag: Returns the status of the DOS
break flag. If on, MS-DOS checks for ctrl-C when
processing any DOS command; if off, MS-DOS
only checks on functions 1-0Ch.

33h al- 1
dl- break flag.

Set Break Flag: Sets the MS-DOS break flag
according to the value in dl (see function above
for details).

33h al- 6 bl- major version
bh- minor version
dl- revision
dh- version flags

Get MS-DOS Version: Returns the “real” version
number, not the one set by the SETVER com-
mand. Bits three and four of the version flags are
one if DOS is in ROM or DOS is in high memory,
respectively.

34h es:bx- pointer to
InDOS flag.

Get InDOS Flag Address: Returns the address of
the InDOS flag. This flag helps prevent reen-
trancy in TSR applications

35h al- interrupt # es:bx- pointer to
interrupt service
routine.

Get Interrupt Vector: Returns a pointer to the
interrupt service routine for the specified inter-
rupt number. See function 25h above for more
details.

44h al- subcode
Other parame-
ters!

Device Control: This is a whole family of addi-
tional DOS commands to control various devices.
See the DOS programmer’s reference manual for
more details.

Table 56: Miscellaneous DOS File Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

Chapter 13

Page 734

In addition to the above commands, there are several additional DOS calls that deal
with networks and international character sets. See the MS-DOS reference for more
details.

13.3.9 File I/O Examples

Of course, one of the main reasons for making calls to DOS is to manipulate files on a
mass storage device. The following examples demonstrate some uses of character I/O
using DOS.

13.3.9.1 Example #1: A Hex Dump Utility

This program dumps a file in hexadecimal format. The filename must be hard coded
into the file (see “Accessing Command Line Parameters” later in this chapter).

include stdlib.a
includelib stdlib.lib

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov ds, ax
mov es, ax
mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen

4Dh al- return value
ah- termination
method

Get Child Program Return Value: Returns the last
result code from a child program in al. The ah
register contains the termination method, which
is one of the following values: 0-normal, 1-ctrl-C,
2-critical device error, 3-terminate and stay resi-
dent.

50h bx- PSP address Set PSP Address: Set DOS’ current PSP address to
the value specified in the bx register.

51h bx- PSP address Get PSP Address: Returns a pointer to the current
PSP in the bx register.

59h ax- extended
error
bh- error class
bl- error action
ch- error location

Get Extended Error: Returns additional informa-
tion when an error occurs on a DOS call. See the
DOS programmer’s guide for more details on
these errors and how to handle them.

5Dh al- 0Ah
ds:si- pointer to
extended error
structure.

Set Extended Error: copies the data from the
extended error structure to DOS’ internal record.

Table 57: Miscellaneous DOS Functions

Function
#

(AH)

Input
Parameters

Output
Parameters

Description

MS-DOS, PC BIOS, and File I/O

Page 735

print
byte ‘Cannot open file, aborting program...’,cr,0
jmp PgmExit

GoodOpen: mov FileHandle, ax ;Save file handle
mov Position, 0 ;Initialize file pos counter

ReadFileLp: mov al, byte ptr Position
and al, 0Fh ;Compute (Position MOD 16)
jnz NotNewLn ;Start new line each 16 bytes
putcr
mov ax, Position ;Print offset into file
xchg al, ah
puth
xchg al, ah
puth
print
byte ‘: ‘,0

NotNewLn: inc Position ;Increment character count
mov bx, FileHandle
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jnz AtEOF
mov al, Buffer ;Get the character read and
puth ; print it in hex
mov al, ‘ ‘ ;Print a space between values
putc
jmp ReadFileLp

BadRead: print
byte cr, lf
byte ‘Error reading data from file, aborting’
byte cr,lf,0

AtEOF: mov bx, FileHandle ;Close the file
mov ah, 3Eh
int 21h

PgmExit: ExitPgm
MainPgm endp

cseg ends
dseg segment byte public ‘data’

Filename byte ‘hexdump.asm’,0 ;Filename to dump
FileHandle word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

13.3.9.2 Example #2: Upper Case Conversion

The following program reads one file, converts all the lower case characters to upper
case, and writes the data to a second output file.

include stdlib.a
includelib stdlib.lib

Chapter 13

Page 736

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov ds, ax
mov es, ax

;--
;
; Convert UCCONVRT.ASM to uppercase
;
; Open input file:

mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen
print
byte ‘Cannot open file, aborting program...’,cr,lf,0
jmp PgmExit

GoodOpen: mov FileHandle1, ax ;Save input file handle

; Open output file:

mov ah, 3Ch ;Create file call
mov cx, 0 ;Normal file attributes
lea dx, OutFileName ;File to open
int 21h
jnc GoodOpen2
print
byte ‘Cannot open output file, aborting program...’
byte cr,lf,0
mov ah, 3eh ;Close input file
mov bx, FileHandle1
int 21h
jmp PgmExit ;Ignore any error.

GoodOpen2: mov FileHandle2, ax ;Save output file handle

ReadFileLp: mov bx, FileHandle1
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jz ReadOK
jmp AtEOF

ReadOK: mov al, Buffer ;Get the character read and
cmp al, ‘a’ ; convert it to upper case
jb NotLower
cmp al, ‘z’
ja NotLower
and al, 5fh ;Set Bit #5 to zero.

NotLower: mov Buffer, al

; Now write the data to the output file

mov bx, FileHandle2
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 40h ;Write operation
int 21h
jc BadWrite
cmp ax, 1 ;Make sure disk isn’t full
jz ReadFileLp

BadWrite: print

MS-DOS, PC BIOS, and File I/O

Page 737

byte cr, lf
byte ‘Error writing data to file, aborting operation’
byte cr,lf,0
jmp short AtEOF

BadRead: print
byte cr, lf
byte ‘Error reading data from file, aborting ‘
byte ‘operation’,cr,lf,0

AtEOF: mov bx, FileHandle1 ;Close the file
mov ah, 3Eh
int 21h
mov bx, FileHandle2
mov ah, 3eh
int 21h

;--

PgmExit: ExitPgm
MainPgm endp
cseg ends

dseg segment byte public ‘data’

Filename byte ‘ucconvrt.asm’,0 ;Filename to convert
OutFileName byte ‘output.txt’,0 ;Output filename
FileHandle1 word ?
FileHandle2 word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

13.3.10 Blocked File I/O

The examples in the previous section suffer from a major drawback, they are
extremely slow. The performance problems with the code above are entirely due to DOS.
Making a DOS call is not, shall we say, the fastest operation in the world. Calling DOS
every time we want to read or write a single character from/to a file will bring the system
to its knees. As it turns out, it doesn’t take (practically) any more time to have DOS read or
write two characters than it does to read or write one character. Since the amount of time
we (usually) spend processing the data is negligible compared to the amount of time DOS
takes to return or write the data, reading two characters at a time will essentially double
the speed of the program. If reading two characters doubles the processing speed, how
about reading four characters? Sure enough, it almost quadruples the processing speed.
Likewise processing ten characters at a time almost increases the processing speed by an
order of magnitude. Alas, this progression doesn’t continue forever. There comes a point
of diminishing returns- when it takes far too much memory to justify a (very) small
improvement in performance (keeping in mind that reading 64K in a single operation
requires a 64K memory buffer to hold the data). A good compromise is 256 or 512 bytes.
Reading more data doesn’t really improve the performance much, yet a 256 or 512 byte
buffer is easier to deal with than larger buffers.

Reading data in groups or blocks is called blocked I/O. Blocked I/O is often one to two
orders of magnitude faster than single character I/O, so obviously you should use
blocked I/O whenever possible.

Chapter 13

Page 738

There is one minor drawback to blocked I/O-- it’s a little more complex to program
than single character I/O. Consider the example presented in the section on the DOS read
command:

Example: This example opens a file and reads it to the EOF

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF
mov al, Buffer ;Get character read
putc ;Print it (IOSHELL call)
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jc CloseError

There isn’t much to this program at all. Now consider the same example rewritten to use
blocked I/O:

Example: This example opens a file and reads it to the EOF using blocked I/O

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx;EOF reached?
jne EOF
mov si, 0 ;Note: CX=256 at this point.

PrtLp: mov al, Buffer[si] ;Get character read
putc ;Print it
inc si
loop PrtLp
jmp LP ;Read next block

; Note, just because the number of bytes read doesn’t equal 256,
; don’t get the idea we’re through, there could be up to 255 bytes
; in the buffer still waiting to be processed.

EOF: mov cx, ax
jcxz EOF2 ;If CX is zero, we’re really done.
mov si, 0 ;Process the last block of data read

Finis: mov al, Buffer[si]; from the file which contains
putc ; 1..255 bytes of valid data.
inc si
loop Finis

EOF2: mov bx, FHndl
mov ah, 3eh ;Close file

MS-DOS, PC BIOS, and File I/O

Page 739

int 21h
jc CloseError

This example demonstrates one major hassle with blocked I/O – when you reach the
end of file, you haven’t necessarily processed all of the data in the file. If the block size is
256 and there are 255 bytes left in the file, DOS will return an EOF condition (the number
of bytes read don’t match the request). In this case, we’ve still got to process the characters
that were read. The code above does this in a rather straight-forward manner, using a sec-
ond loop to finish up when the EOF is reached. You’ve probably noticed that the two print
loops are virtually identical. This program can be reduced in size somewhat using the fol-
lowing code which is only a little more complex:

Example: This example opens a file and reads it to the EOF using blocked I/O

mov ah, 3dh ;Open the file
mov al, 0 ;Open for reading
lea dx, Filename ;Presume DS points at

filename
int 21h ; segment.
jc BadOpen
mov FHndl, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
mov bx, ax ;Save for later
mov cx, ax
jcxz EOF
mov si, 0 ;Note: CX=256 at this point.

PrtLp: mov al, Buffer[si] ;Get character read
putc ;Print it
inc si
loop PrtLp
cmp bx, 256 ;Reach EOF yet?
je LP

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jc CloseError

 Blocked I/O works best on sequential files. That is, those files opened only for read-
ing or writing (no seeking). When dealing with random access files, you should read or
write whole records at one time using the DOS read/write commands to process the
whole record. This is still considerably faster than manipulating the data one byte at a
time.

13.3.11 The Program Segment Prefix (PSP)

When a program is loaded into memory for execution, DOS first builds up a program
segment prefix immediately before the program is loaded into memory. This PSP contains
lots of information, some of it useful, some of it obsolete. Understanding the layout of the
PSP is essential for programmers designing assembly language programs.

The PSP is 256 bytes long and contains the following information:

Offset Length Description
0 2 An INT 20h instruction is stored here
2 2 Program ending address
4 1 Unused, reserved by DOS
5 5 Call to DOS function dispatcher
0Ah 4 Address of program termination code

Chapter 13

Page 740

0Eh 4 Address of break handler routine
12h 4 Address of critical error handler routine
16h 22 Reserved for use by DOS
2Ch 2 Segment address of environment area
2Eh 34 Reserved by DOS
50h 3 INT 21h, RETF instructions
53h 9 Reserved by DOS
5Ch 16 Default FCB #1
6Ch 20 Default FCB #2
80h 1 Length of command line string
81h 127 Command line string

Note: locations 80h..FFh are used for the default DTA.

Most of the information in the PSP is of little use to a modern MS-DOS assembly lan-
guage program. Buried in the PSP, however, are a couple of gems that are worth knowing
about. Just for completeness, however, we’ll take a look at all of the fields in the PSP.

The first field in the PSP contains an int 20h instruction. Int 20h is an obsolete mecha-
nism used to terminate program execution. Back in the early days of DOS v1.0, your pro-
gram would execute a jmp to this location in order to terminate. Nowadays, of course, we
have DOS function 4Ch which is much easier (and safer) than jumping to location zero in
the PSP. Therefore, this field is obsolete.

Field number two contains a value which points at the last paragraph allocated to
your program By subtracting the address of the PSP from this value, you can determine
the amount of memory allocated to your program (and quit if there is insufficient memory
available).

The third field is the first of many “holes” left in the PSP by Microsoft. Why they’re
here is anyone’s guess.

The fourth field is a call to the DOS function dispatcher. The purpose of this (now
obsolete) DOS calling mechanism was to allow some additional compatibility with
CP/M-80 programs. For modern DOS programs, there is absolutely no need to worry
about this field.

The next three fields are used to store special addresses during the execution of a pro-
gram. These fields contain the default terminate vector, break vector, and critical error
handler vectors. These are the values normally stored in the interrupt vectors for int 22h,
int 23h, and int 24h. By storing a copy of the values in the vectors for these interrupts, you
can change these vectors so that they point into your own code. When your program ter-
minates, DOS restores those three vectors from these three fields in the PSP. For more
details on these interrupt vectors, please consult the DOS technical reference manual.

The eighth field in the PSP record is another reserved field, currently unavailable for
use by your programs.

The ninth field is another real gem. It’s the address of the environment strings area.
This is a two-byte pointer which contains the segment address of the environment storage
area. The environment strings always begin with an offset zero within this segment. The
environment string area consists of a sequence of zero-terminated strings. It uses the fol-
lowing format:

string1 0 string2 0 string3 0 ... 0 stringn 0 0

That is, the environment area consists of a list of zero terminated strings, the list itself
being terminated by a string of length zero (i.e., a zero all by itself, or two zeros in a row,
however you want to look at it). Strings are (usually) placed in the environment area via
DOS commands like PATH, SET, etc. Generally, a string in the environment area takes the
form

 name = parameters

MS-DOS, PC BIOS, and File I/O

Page 741

For example, the “SET IPATH=C:\ASSEMBLY\INCLUDE” command copies the string
“IPATH=C:\ASSEMBLY\INCLUDE” into the environment string storage area.

Many languages scan the environment storage area to find default filename paths and
other pieces of default information set up by DOS. Your programs can take advantage of
this as well.

The next field in the PSP is another block of reserved storage, currently undefined by
DOS.

The 11th field in the PSP is another call to the DOS function dispatcher. Why this call
exists (when the one at location 5 in the PSP already exists and nobody really uses either
mechanism to call DOS) is an interesting question. In general, this field should be ignored
by your programs.

The 12th field is another block of unused bytes in the PSP which should be ignored.

The 13th and 14th fields in the PSP are the default FCBs (File Control Blocks). File con-
trol blocks are another archaic data structure carried over from CP/M-80. FCBs are used
only with the obsolete DOS v1.0 file handling routines, so they are of little interest to us.
We’ll ignore these FCBs in the PSP.

Locations 80h through the end of the PSP contain a very important piece of informa-
tion- the command line parameters typed on the DOS command line along with your pro-
gram’s name. If the following is typed on the DOS command line:

MYPGM parameter1, parameter2

the following is stored into the command line parameter field:

23, “ parameter1, parameter2”, 0Dh

Location 80h contains 2310, the length of the parameters following the program name.
Locations 81h through 97h contain the characters making up the parameter string. Loca-
tion 98h contains a carriage return. Notice that the carriage return character is not figured
into the length of the command line string.

Processing the command line string is such an important facet of assembly language
programming that this process will be discussed in detail in the next section.

Locations 80h..FFh in the PSP also comprise the default DTA. Therefore, if you don’t
use DOS function 1Ah to change the DTA and you execute a FIND FIRST FILE, the file-
name information will be stored starting at location 80h in the PSP.

One important detail we’ve omitted until now is exactly how you access data in the
PSP. Although the PSP is loaded into memory immediately before your program, that
doesn’t necessarily mean that it appears 100h bytes before your code. Your data segments
may have been loaded into memory before your code segments, thereby invalidating this
method of locating the PSP. The segment address of the PSP is passed to your program in
the ds register. To store the PSP address away in your data segment, your programs
should begin with the following code:

push ds ;Save PSP value
mov ax, seg DSEG ;Point DS and ES at our data
mov ds, ax ; segment.
mov es, ax
pop PSP ;Store PSP value into “PSP”

; variable.
 .
 .
 .

Another way to obtain the PSP address, in DOS 5.0 and later, is to make a DOS call. If
you load ah with 51h and execute an int 21h instruction, MS-DOS will return the segment
address of the current PSP in the bx register.

There are lots of tricky things you can do with the data in the PSP. Peter Norton’s Pro-
grammer’s Guide to the IBM PC lists all kinds of tricks. Such operations won’t be dis-
cussed here because they’re a little beyond the scope of this manual.

Chapter 13

Page 742

13.3.12 Accessing Command Line Parameters

Most programs like MASM and LINK allow you to specify command line parameters
when the program is executed. For example, by typing

ML MYPGM.ASM

you can instruct MASM to assemble MYPGM without any further intervention from the
keyboard. “MYPGM.ASM;” is a good example of a command line parameter.

When DOS’ COMMAND.COM command interpreter parses your command line, it
copies most of the text following the program name to location 80h in the PSP as
described in the previous section. For example, the command line above will store the fol-
lowing at PSP:80h

11, “ MYPGM.ASM”, 0Dh

The text stored in the command line tail storage area in the PSP is usually an exact
copy of the data appearing on the command line. There are, however, a couple of excep-
tions. First of all, I/O redirection parameters are not stored in the input buffer. Neither are
command tails following the pipe operator (“|”). The other thing appearing on the com-
mand line which is absent from the data at PSP:80h is the program name. This is rather
unfortunate, since having the program name available would allow you to determine the
directory containing the program. Nevertheless, there is lots of useful information present
on the command line.

The information on the command line can be used for almost any purpose you see fit.
However, most programs expect two types of parameters in the command line parameter
buffer-- filenames and switches. The purpose of a filename is rather obvious, it allows a
program to access a file without having to prompt the user for the filename. Switches, on
the other hand, are arbitrary parameters to the program. By convention, switches are pre-
ceded by a slash or hyphen on the command line.

Figuring out what to do with the information on the command line is called parsing
the command line. Clearly, if your programs are to manipulate data on the command line,
you’ve got to parse the command line within your code.

Before a command line can be parsed, each item on the command line has to be sepa-
rated out apart from the others. That is, each word (or more properly, lexeme7) has to be
identified in the command line. Separation of lexemes on a command line is relatively
easy, all you’ve got to do is look for sequences of delimiters on the command line. Delim-
iters are special symbols used to separate tokens on the command line. DOS supports six
different delimiter characters: space, comma, semicolon, equal sign, tab, or carriage
return.

Generally, any number of delimiter characters may appear between two tokens on a
command line. Therefore, all such occurrences must be skipped when scanning the com-
mand line. The following assembly language code scans the entire command line and
prints all of the tokens that appear thereon:

include stdlib.a
includelib stdlib.lib

cseg segment byte public ‘CODE’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; Equates into command line-

CmdLnLen equ byte ptr es:[80h] ;Command line length
CmdLn equ byte ptr es:[81h] ;Command line data

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

7. Many programmers use the term “token” rather than lexeme. Technically, a token is a different entity.

MS-DOS, PC BIOS, and File I/O

Page 743

push ds ;Save PSP
mov ax, seg dseg
mov ds, ax
pop PSP

;---

print
byte cr,lf
byte ‘Items on this line:’,cr,lf,lf,0

mov es, PSP ;Point ES at PSP
lea bx, CmdLn ;Point at command line

PrintLoop: print
byte cr,lf,’Item: ‘,0
call SkipDelimiters ;Skip over leading delimiters

PrtLoop2: mov al, es:[bx] ;Get next character
call TestDelimiter ;Is it a delimiter?
jz EndOfToken ;Quit this loop if it is
putc ;Print char if not.
inc bx ;Move on to next character
jmp PrtLoop2

EndOfToken: cmp al, cr ;Carriage return?
jne PrintLoop ;Repeat if not end of line

print
byte cr,lf,lf
byte ‘End of command line’,cr,lf,lf,0
ExitPgm

MainPgm endp

; The following subroutine sets the zero flag if the character in
; the AL register is one of DOS’ six delimiter characters,
; otherwise the zero flag is returned clear. This allows us to use
; the JE/JNE instructions afterwards to test for a delimiter.

TestDelimiter proc near
cmp al, ‘ ‘
jz ItsOne
cmp al,’,’
jz ItsOne
cmp al,Tab
jz ItsOne
cmp al,’;’
jz ItsOne
cmp al,’=’
jz ItsOne
cmp al, cr

ItsOne: ret
TestDelimiter endp

; SkipDelimiters skips over leading delimiters on the command
; line. It does not, however, skip the carriage return at the end
; of a line since this character is used as the terminator in the
; main program.

SkipDelimiters proc near
dec bx ;To offset INC BX below

SDLoop: inc bx ;Move on to next character.
mov al, es:[bx] ;Get next character
cmp al, 0dh ;Don’t skip if CR.
jz QuitSD
call TestDelimiter ;See if it’s some other
jz SDLoop ; delimiter and repeat.

QuitSD: ret
SkipDelimiters endp

cseg ends

dseg segment byte public ‘data’

PSP word ? ;Program segment prefix
dseg ends

Chapter 13

Page 744

sseg segment byte stack ‘stack’
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

Once you can scan the command line (that is, separate out the lexemes), the next step
is to parse it. For most programs, parsing the command line is an extremely trivial pro-
cess. If the program accepts only a single filename, all you’ve got to do is grab the first lex-
eme on the command line, slap a zero byte onto the end of it (perhaps moving it into your
data segment), and use it as a filename. The following assembly language example modi-
fies the hex dump routine presented earlier so that it gets its filename from the command
line rather than hard-coding the filename into the program:

include stdlib.a
includelib stdlib.lib

cseg segment byte public 'CODE'
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; Note CR and LF are already defined in STDLIB.A

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov es, ax ;Leave DS pointing at PSP

;---
;
; First, parse the command line to get the filename:

mov si, 81h ;Pointer to command line
lea di, FileName ;Pointer to FileName buffer

SkipDelimiters:
lodsb ;Get next character
call TestDelimiter
je SkipDelimiters

; Assume that what follows is an actual filename

dec si ;Point at 1st char of name
GetFName: lodsb

cmp al, 0dh
je GotName
call TestDelimiter
je GotName
stosb ;Save character in file name
jmp GetFName

; We're at the end of the filename, so zero-terminate it as
; required by DOS.

GotName: mov byte ptr es:[di], 0
mov ax, es ;Point DS at DSEG
mov ds, ax

; Now process the file

mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename ;File to open
int 21h
jnc GoodOpen
print
byte 'Cannot open file, aborting program...',cr,0
jmp PgmExit

GoodOpen: mov FileHandle, ax ;Save file handle

MS-DOS, PC BIOS, and File I/O

Page 745

mov Position, 0 ;Initialize file position
ReadFileLp: mov al, byte ptr Position

and al, 0Fh ;Compute (Position MOD 16)
jnz NotNewLn ;Every 16 bytes start a line
putcr
mov ax, Position ;Print offset into file
xchg al, ah
puth
xchg al, ah
puth
print
byte ': ',0

NotNewLn: inc Position ;Increment character count
mov bx, FileHandle
mov cx, 1 ;Read one byte
lea dx, buffer ;Place to store that byte
mov ah, 3Fh ;Read operation
int 21h
jc BadRead
cmp ax, 1 ;Reached EOF?
jnz AtEOF
mov al, Buffer ;Get the character read and
puth ; print it in hex
mov al, ' ' ;Print a space between values
putc
jmp ReadFileLp

BadRead: print
byte cr, lf
byte 'Error reading data from file, aborting.'
byte cr,lf,0

AtEOF: mov bx, FileHandle ;Close the file
mov ah, 3Eh
int 21h

;---

PgmExit: ExitPgm
MainPgm endp

TestDelimiter proc near
cmp al, ' '
je xit
cmp al, ','
je xit
cmp al, Tab
je xit
cmp al, ';'
je xit
cmp al, '='

xit: ret
TestDelimiter endp
cseg ends

dseg segment byte public 'data'

PSP word ?
Filename byte 64 dup (0) ;Filename to dump
FileHandle word ?
Buffer byte ?
Position word 0

dseg ends

sseg segment byte stack 'stack'
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

Chapter 13

Page 746

end MainPgm

The following example demonstrates several concepts dealing with command line
parameters. This program copies one file to another. If the “/U” switch is supplied (some-
where) on the command line, all of the lower case characters in the file are converted to
upper case before being written to the destination file. Another feature of this code is that
it will prompt the user for any missing filenames, much like the MASM and LINK pro-
grams will prompt you for filename if you haven’t supplied any.

include stdlib.a
includelib stdlib.lib

cseg segment byte public 'CODE'
assume cs:cseg, ds:nothing, es:dseg, ss:sseg

; Note: The constants CR (0dh) and LF (0ah) appear within the
; stdlib.a include file.

tab equ 09h

MainPgm proc far

; Properly set up the segment registers:

mov ax, seg dseg
mov es, ax ;Leave DS pointing at PSP

;---

; First, parse the command line to get the filename:

mov es:GotName1, 0 ;Init flags that tell us if
mov es:GotName2, 0 ; we’ve parsed the filenames
mov es:ConvertLC,0 ; and the “/U" switch.

; Okay, begin scanning and parsing the command line

mov si, 81h ;Pointer to command line
SkipDelimiters:

lodsb ;Get next character
call TestDelimiter
je SkipDelimiters

; Determine if this is a filename or the /U switch

cmp al, '/'
jnz MustBeFN

; See if it's "/U" here-

lodsb
and al, 5fh ;Convert "u" to "U"
cmp al, 'U'
jnz NotGoodSwitch
lodsb ;Make sure next char is
cmp al, cr ; a delimiter of some sort
jz GoodSwitch
call TestDelimiter
jne NotGoodSwitch

; Okay, it's "/U" here.

GoodSwitch: mov es:ConvertLC, 1 ;Convert LC to UC
dec si ;Back up in case it's CR
jmp SkipDelimiters ;Move on to next item.

; If a bad switch was found on the command line, print an error
; message and abort-

NotGoodSwitch:
print
byte cr,lf
byte 'Illegal switch, only "/U" is allowed!',cr,lf
byte 'Aborting program execution.',cr,lf,0
jmp PgmExit

; If it's not a switch, assume that it's a valid filename and
; handle it down here-

MS-DOS, PC BIOS, and File I/O

Page 747

MustBeFN: cmp al, cr ;See if at end of cmd line
je EndOfCmdLn

; See if it's filename one, two, or if too many filenames have been
; specified-

cmp es:GotName1, 0
jz Is1stName
cmp es:GotName2, 0
jz Is2ndName

; More than two filenames have been entered, print an error message
; and abort.

print
byte cr,lf
byte 'Too many filenames specified.',cr,lf
byte 'Program aborting...',cr,lf,lf,0
jmp PgmExit

; Jump down here if this is the first filename to be processed-

Is1stName: lea di, FileName1
mov es:GotName1, 1
jmp ProcessName

Is2ndName: lea di, FileName2
mov es:GotName2, 1

ProcessName:
stosb ;Store away character in name
lodsb ;Get next char from cmd line
cmp al, cr
je NameIsDone
call TestDelimiter
jne ProcessName

NameIsDone: mov al, 0 ;Zero terminate filename
stosb
dec si ;Point back at previous char
jmp SkipDelimiters ;Try again.

; When the end of the command line is reached, come down here and
; see if both filenames were specified.

assume ds:dseg

EndOfCmdLn: mov ax, es ;Point DS at DSEG
mov ds, ax

; We're at the end of the filename, so zero-terminate it as
; required by DOS.

GotName: mov ax, es ;Point DS at DSEG
mov ds, ax

; See if the names were supplied on the command line.
; If not, prompt the user and read them from the keyboard

cmp GotName1, 0 ;Was filename #1 supplied?
jnz HasName1
mov al, '1' ;Filename #1
lea si, Filename1
call GetName ;Get filename #1

HasName1: cmp GotName2, 0 ;Was filename #2 supplied?
jnz HasName2
mov al, '2' ;If not, read it from kbd.
lea si, FileName2
call GetName

; Okay, we've got the filenames, now open the files and copy the
; source file to the destination file.

HasName2 mov ah, 3dh
mov al, 0 ;Open file for reading
lea dx, Filename1 ;File to open

Chapter 13

Page 748

int 21h
jnc GoodOpen1

print
byte 'Cannot open file, aborting program...',cr,lf,0
jmp PgmExit

; If the source file was opened successfully, save the file handle.

GoodOpen1: mov FileHandle1, ax ;Save file handle

; Open (CREATE, actually) the second file here.

mov ah, 3ch ;Create file
mov cx, 0 ;Standard attributes
lea dx, Filename2 ;File to open
int 21h
jnc GoodCreate

; Note: the following error code relies on the fact that DOS
; automatically closes any open source files when the program
; terminates.

print
byte cr,lf
byte 'Cannot create new file, aborting operation'
byte cr,lf,lf,0
jmp PgmExit

GoodCreate: mov FileHandle2, ax ;Save file handle

; Now process the files

CopyLoop: mov ah, 3Fh ;DOS read opcode
mov bx, FileHandle1 ;Read from file #1
mov cx, 512 ;Read 512 bytes
lea dx, buffer ;Buffer for storage
int 21h
jc BadRead
mov bp, ax ;Save # of bytes read

cmp ConvertLC,0 ;Conversion option active?
jz NoConversion

; Convert all LC in buffer to UC-

mov cx, 512
lea si, Buffer
mov di, si

ConvertLC2UC:
lodsb
cmp al, 'a'
jb NoConv
cmp al, 'z'
ja NoConv
and al, 5fh

NoConv: stosb
loop ConvertLC2UC

NoConversion:
mov ah, 40h ;DOS write opcode
mov bx, FileHandle2 ;Write to file #2
mov cx, bp ;Write however many bytes
lea dx, buffer ;Buffer for storage
int 21h
jc BadWrite
cmp ax, bp ;Did we write all of the
jnz jDiskFull ; bytes?
cmp bp, 512 ;Were there 512 bytes read?
jz CopyLoop
jmp AtEOF

jDiskFull: jmp DiskFull

; Various error messages:

BadRead: print

MS-DOS, PC BIOS, and File I/O

Page 749

byte cr,lf
byte 'Error while reading source file, aborting '
byte 'operation.',cr,lf,0
jmp AtEOF

BadWrite: print
byte cr,lf
byte 'Error while writing destination file, aborting’
byte ' operation.',cr,lf,0
jmp AtEOF

DiskFull: print
byte cr,lf
byte 'Error, disk full. Aborting operation.',cr,lf,0

AtEOF: mov bx, FileHandle1 ;Close the first file
mov ah, 3Eh
int 21h
mov bx, FileHandle2 ;Close the second file
mov ah, 3Eh
int 21h

PgmExit: ExitPgm
MainPgm endp

TestDelimiter proc near
cmp al, ' '
je xit
cmp al, ','
je xit
cmp al, Tab
je xit
cmp al, ';'
je xit
cmp al, '='

xit: ret
TestDelimiter endp

; GetName- Reads a filename from the keyboard. On entry, AL
; contains the filename number and DI points at the buffer in ES
; where the zero-terminated filename must be stored.

GetName proc near
print
byte 'Enter filename #',0
putc
mov al, ':'
putc
gets
ret

GetName endp
cseg ends

dseg segment byte public 'data'

PSP word ?
Filename1 byte 128 dup (?);Source filename
Filename2 byte 128 dup (?);Destination filename
FileHandle1 word ?
FileHandle2 word ?
GotName1 byte ?
GotName2 byte ?
ConvertLC byte ?
Buffer byte 512 dup (?)

dseg ends

sseg segment byte stack 'stack'
stk word 0ffh dup (?)
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end MainPgm

Chapter 13

Page 750

As you can see, there is more effort expended processing the command line parame-
ters than actually copying the files!

13.3.13 ARGC and ARGV

The UCR Standard Library provides two routines, argc and argv, which provide easy
access to command line parameters. Argc (argument count) returns the number of items on
the command line. Argv (argument vector) returns a pointer to a specific item in the com-
mand line.

These routines break up the command line into lexemes using the standard delimit-
ers. As per MS-DOS convention, argc and argv treat any string surrounded by quotation
marks on the command line as a single command line item.

Argc will return in cx the number of command line items. Since MS-DOS does not
include the program name on the command line, this count does not include the program
name either. Furthermore, redirection operands (“>filename” and “<filename”) and items
to the right of a pipe (“| command”) do not appear on the command line either. As such,
argc does not count these, either.

Argv returns a pointer to a string (allocated on the heap) of a specified command line
item. To use argv you simply load ax with a value between one and the number returned
by argc and execute the argv routine. On return, es:di points at a string containing the spec-
ified command line option. If the number in ax is greater than the number of command
line arguments, then argv returns a pointer to an empty string (i.e., a zero byte). Since argv
calls malloc to allocate storage on the heap, there is the possibility that a memory allocation
error will occur. Argv returns the carry set if a memory allocation error occurs. Remember
to free the storage allocated to a command line parameter after you are through with it.

Example: The following code echoes the command line parameters to the screen.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

ArgCnt word 0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Must call the memory manager initialization routine if you use
; any routine which calls malloc! ARGV is a good example of a
; routine which calls malloc.

meminit

argc ;Get the command line arg count.
jcxz Quit ;Quit if no cmd ln args.
mov ArgCnt, 1 ;Init Cmd Ln count.

PrintCmds: printf ;Print the item.
byte "\n%2d: ",0
dword ArgCnt

mov ax, ArgCnt ;Get the next command line guy.
argv
puts
inc ArgCnt ;Move on to next arg.
loop PrintCmds ;Repeat for each arg.
putcr

Quit: ExitPgm ;DOS macro to quit program.

MS-DOS, PC BIOS, and File I/O

Page 751

Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

;zzzzzzseg is required by the standard library routines.

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

13.4 UCR Standard Library File I/O Routines

Although MS-DOS’ file I/O facilities are not too bad, the UCR Standard Library pro-
vides a file I/O package which makes blocked sequential I/O as easy as character at a
time file I/O. Furthermore, with a tiny amount of effort, you can use all the StdLib rou-
tines like printf, print, puti, puth, putc, getc, gets, etc., when performing file I/O. This greatly
simplifies text file operations in assembly language.

Note that record oriented, or binary I/O, is probably best left to pure DOS. any time
you want to do random access within a file. The Standard Library routines really only
support sequential text I/O. Nevertheless, this is the most common form of file I/O
around, so the Standard Library routines are quite useful indeed.

The UCR Standard Library provides eight file I/O routines: fopen, fcreate, fclose, fgetc,
fread, fputc, and fwrite. Fgetc and fputc perform character at a time I/O, fread and fwrite let
you read and write blocks of data, the other four functions perform the obvious DOS
operations.

The UCR Standard Library uses a special file variable to keep track of file operations.
There is a special record type, FileVar, declared in stdlib.a8. When using the StdLib file I/O
routines you must create a variable of type FileVar for every file you need open at the same
time. This is very easy, just use a definition of the form:

MyFileVar FileVar {}

Please note that a Standard Library file variable is not the same thing as a DOS file
handle. It is a structure which contains the DOS file handle, a buffer (for blocked I/O), and
various index and status variables. The internal structure of this type is of no interest
(remember data encapsulation!) except to the implementor of the file routines. You will
pass the address of this file variable to the various Standard Library file I/O routines.

13.4.1 Fopen

Entry parameters: ax- File open mode
 0- File opened for reading
 1- File opened for writing

dx:si- Points at a zero terminated string containing the filename.
es:di- Points at a StdLib file variable.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fopen opens a sequential text file for reading or writing. Unlike DOS, you cannot open
a file for reading and writing. Furthermore, this is a sequential text file which does not
support random access. Note that the file must exist or fopen will return an error. This is
even true when you open the file for writing.

8. Actually, it’s declared in file.a. Stdlib.a includes file.a so this definition appears inside stdlib.a as well.

Chapter 13

Page 752

Note that if you open a file for writing and that file already exists, any data written to
the file will overwrite the existing data. When you close the file, any data appearing in the
file after the data you wrote will still be there. If you want to erase the existing file before
writing data to it, use the fcreate function.

13.4.2 Fcreate

Entry parameters: dx:si- Points at a zero terminated string containing the filename.
es:di- Points at a StdLib file variable.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fcreate creates a new file and opens it for writing. If the file already exists, fcreate
deletes the existing file and creates a new one. It initializes the file variable for output but
is otherwise identical to the fopen call.

13.4.3 Fclose

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fclose closes a file and updates any internal housekeeping information. It is very
important that you close all files opened with fopen or fcreate using this call. When making DOS
file calls, if you forget to close a file DOS will automatically do that for you when your
program terminates. However, the StdLib routines cache up data in internal buffers. the
fclose call automatically flushes these buffers to disk. If you exit your program without
calling fclose, you may lose some data written to the file but not yet transferred from the
internal buffer to the disk.

If you are in an environment where it is possible for someone to abort the program
without giving you a chance to close the file, you should call the fflush routines (see the
next section) on a regular basis to avoid losing too much data.

13.4.4 Fflush

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

This routine immediately writes any data in the internal file buffer to disk. Note that
you should only use this routine in conjunction with files opened for writing (or opened
by fcreate). If you write data to a file and then need to leave the file open, but inactive, for
some time period, you should perform a flush operation in case the program terminates
abnormally.

13.4.5 Fgetc

Entry parameters: es:di- Points at a StdLib file variable.
Exit parameters: If the carry flag is clear, al contains the character read from the file.

If the carry is set, ax contains the returned DOS error code (see DOS open function).
ax will contain zero if you attempt to read beyond the end of file.

Fgetc reads a single character from the file and returns this character in the al register.
Unlike calls to DOS, single character I/O using fgetc is relatively fast since the StdLib rou-
tines use blocked I/O. Of course, multiple calls to fgetc will never be faster than a call to
fread (see the next section), but the performance is not too bad.

MS-DOS, PC BIOS, and File I/O

Page 753

Fgetc is very flexible. As you will see in a little bit, you may redirect the StdLib input
routines to read their data from a file using fgetc. This lets you use the higher level rou-
tines like gets and getsm when reading data from a file.

13.4.6 Fread

Entry parameters: es:di- Points at a StdLib file variable.
dx:si- Points at an input data buffer.
cx- Contains a byte count.

Exit parameters: If the carry flag is clear, ax contains the actual number of bytes read from the file.
If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fread is very similar to the DOS read command. It lets you read a block of bytes, rather
than just one byte, from a file. Note that if all you are doing is reading a block of bytes
from a file, the DOS call is slightly more efficient than fread. However, if you have a mix-
ture of single byte reads and multi-byte reads, the combination of fread and fgetc work
very well.

As with the DOS read operation, if the byte count returned in ax does not match the
value passed in the cx register, then you’ve read the remaining bytes in the file. When this
occurs, the next call to fread or fgetc will return an EOF error (carry will be set and ax will
contain zero). Note that fread does not return EOF unless there were zero bytes read from
the file.

13.4.7 Fputc

Entry parameters: es:di- Points at a StdLib file variable.
al- Contains the character to write to the file.

Exit parameters: If the carry is set, ax contains the returned DOS error code (see DOS open function).

Fputc writes a single character (in al) to the file specified by the file variable whose
address is in es:di. This call simply adds the character in al to an internal buffer (part of the
file variable) until the buffer is full. Whenever the buffer is filled or you call fflush (or close
the file with fclose), the file I/O routines write the data to disk.

13.4.8 Fwrite

Entry parameters: es:di- Points at a StdLib file variable.
dx:si- Points at an output data buffer.
cx- Contains a byte count.

Exit parameters: If the carry flag is clear, ax contains the actual number of bytes written to the file.
If the carry is set, ax contains the returned DOS error code (see DOS open function).

Like fread, fwrite works on blocks of bytes. It lets you write a block of bytes to a file
opened for writing with fopen or fcreate.

13.4.9 Redirecting I/O Through the StdLib File I/O Routines

The Standard Library provides very few file I/O routines. Fputc and fwrite are the only
two output routines, for example. The “C” programming language standard library (on
which the UCR Standard Library is based) provides many routines like fprintf, fputs, fscanf,
etc. None of these are necessary in the UCR Standard Library because the UCR library
provides an I/O redirection mechanism that lets you reuse all existing I/O routines to
perform file I/O.

Chapter 13

Page 754

The UCR Standard Library putc routine consists of a single jmp instruction. This
instruction transfers control to some actual output routine via an indirect address internal
to the putc code. Normally, this pointer variable points at a piece of code which writes the
character in the al register to the DOS standard output device. However, the Standard
Library also provides four routines which let you manipulate this indirect pointer. By
changing this pointer you can redirect the output from its current routine to a routine of
your choosing. All Standard Library output routines (e.g., printf, puti, puth, puts) call putc to
output individual characters. Therefore, redirecting the putc routine affects all the output
routines.

Likewise, the getc routine is nothing more than an indirect jmp whose pointer variable
normally points at a piece of code which reads data from the DOS standard input. Since
all Standard Library input routines call the getc function to read each character you can
redirect file input in a manner identical to file output.

The Standard Library GetOutAdrs, SetOutAdrs, PushOutAdrs, and PopOutAdrs are the
four main routines which manipulate the output redirection pointer. GetOutAdrs returns
the address of the current output routine in the es:di registers. Conversely, SetOutAdrs
expects you to pass the address of a new output routine in the es:di registers and it stores
this address into the output pointer. PushOutAdrs and PopOutAdrs push and pop the
pointer on an internal stack. These do not use the 80x86’s hardware stack. You are limited
to a small number of pushes and pops. Generally, you shouldn’t count on being able to
push more than four of these addresses onto the internal stack without overflowing it.

GetInAdrs, SetInAdrs, PushInAdrs, and PopInAdrs are the complementary routines for the
input vector. They let you manipulate the input routine pointer. Note that the stack for
PushInAdrs/PopInAdrs is not the same as the stack for PushOutAdrs/PopOutAdrs. Pushes and
pops to these two stacks are independent of one another.

Normally, the output pointer (which we will henceforth refer to as the output hook)
points at the Standard Library routine PutcStdOut9. Therefore, you can return the output
hook to its normal initialization state at any time by executing the statements10:

mov di, seg SL_PutcStdOut
mov es, di
mov di, offset SL_PutcStdOut
SetOutAdrs

The PutcStdOut routine writes the character in the al register to the DOS standard out-
put, which itself might be redirected to some file or device (using the “>” DOS redirection
operator). If you want to make sure your output is going to the video display, you can
always call the PutcBIOS routine which calls the BIOS directly to output a character11. You
can force all Standard Library output to the standard error device using a code sequence
like:

mov di, seg SL_PutcBIOS
mov es, di
mov di, offset SL_PutcBIOS
SetOutAdrs

Generally, you would not simply blast the output hook by storing a pointer to your
routine over the top of whatever pointer was there and then restoring the hook to PutcStd-
Out upon completion. Who knows if the hook was pointing at PutcStdOut in the first place?
The best solution is to use the Standard Library PushOutAdrs and PopOutAdrs routines to
preserve and restore the previous hook. The following code demonstrates a gentler way of
modifying the output hook:

9. Actually, the routine is SL_PutcStdOut. The Standard Library macro by which you would normally call this rou-
tine is PutcStdOut.
10. If you do not have any calls to PutcStdOut in your program, you will also need to add the statement “extern-
def SL_PutcStdOut:far” to your program.
11. It is possible to redirect even the BIOS output, but this is rarely done and not easy to do from DOS.

MS-DOS, PC BIOS, and File I/O

Page 755

PushOutAdrs ;Save current output routine.
mov di, seg Output_Routine
mov es, di
mov di, offset Output_Routine
SetOutAdrs

<Do all output to Output_Routine here>

PopOutAdrs ;Restore previous output routine.

Handle input in a similar fashion using the corresponding input hook access routines and
the SL_GetcStdOut and SL_GetcBIOS routines. Always keep in mind that there are a limited
number of entries on the input and output hook stacks so what how many items you push
onto these stacks without popping anything off.

To redirect output to a file (or redirect input from a file) you must first write a short
routine which writes (reads) a single character from (to) a file. This is very easy. The code
for a subroutine to output data to a file described by file variable OutputFile is

ToOutput proc far
push es
push di

; Load ES:DI with the address of the OutputFile variable. This
; code assumes OutputFile is of type FileVar, not a pointer to
; a variable of type FileVar.

mov di, seg OutputFile
mov es, di
mov di, offset OutputFile

; Output the character in AL to the file described by “OutputFile”

fputc

pop di
pop es
ret

ToOutput endp

Now with only one additional piece of code, you can begin writing data to an output
file using all the Standard Library output routines. That is a short piece of code which
redirects the output hook to the “ToOutput” routine above:

SetOutFile proc
push es
push di

PushOutAdrs ;Save current output hook.
mov di, seg ToOutput
mov es, di
mov di, offset ToOutput
SetOutAdrs

pop di
pop es
ret

SetOutFile endp

There is no need for a separate routine to restore the output hook to its previous value;
PopOutAdrs will handle that task by itself.

13.4.10 A File I/O Example

The following piece of code puts everything together from the last several sections.
This is a short program which adds line numbers to a text file. This program expects two
command line parameters: an input file and an output file. It copies the input file to the
output file while appending line numbers to the beginning of each line in the output file.
This code demonstrates the use of argc, argv, the Standard Library file I/O routines, and
I/O redirection.

Chapter 13

Page 756

; This program copies the input file to the output file and adds
; line numbers while it is copying the file.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

ArgCnt word 0
LineNumber word 0
DOSErrorCode word 0
InFile dword ? ;Ptr to Input file name.
OutFile dword ? ;Ptr to Output file name
InputLine byte 1024 dup (0) ;Input/Output data buffer.
OutputFile FileVar {}
InputFile FileVar {}

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; ReadLn- Reads a line of text from the input file and stores the
; data into the InputLine buffer:

ReadLn proc
push ds
push es
push di
push si
push ax

mov si, dseg
mov ds, si
mov si, offset InputLine
lesi InputFile

GetLnLp:
fgetc
jc RdLnDone ;If some bizzarre error.
cmp ah, 0 ;Check for EOF.
je RdLnDone ;Note:carry is set.
mov ds:[si], al
inc si
cmp al, lf ;At EOLN?
jne GetLnLp
dec si ;Back up before LF.
cmp byte ptr ds:[si-1], cr ;CR before LF?
jne RdLnDone
dec si ;If so, skip it too.

RdLnDone: mov byte ptr ds:[si], 0 ;Zero terminate.
pop ax
pop si
pop di
pop es
pop ds
ret

ReadLn endp

; MyOutput- Writes the single character in AL to the output file.

MyOutput proc far
push es
push di
lesi OutputFile
fputc
pop di
pop es
ret

MyOutput endp

; The main program which does all the work:

Main proc

MS-DOS, PC BIOS, and File I/O

Page 757

mov ax, dseg
mov ds, ax
mov es, ax

; Must call the memory manager initialization routine if you use
; any routine which calls malloc! ARGV is a good example of a
; routine calls malloc.

meminit

; We expect this program to be called as follows:
; fileio file1, file2
; anything else is an error.

argc
cmp cx, 2 ;Must have two parameters.
je Got2Parms

BadParms: print
byte "Usage: FILEIO infile, outfile",cr,lf,0
jmp Quit

; Okay, we've got two parameters, hopefully they're valid names.
; Get copies of the filenames and store away the pointers to them.

Got2Parms: mov ax, 1 ;Get the input filename
argv
mov word ptr InFile, di
mov word ptr InFile+2, es

mov ax, 2 ;Get the output filename
argv
mov word ptr OutFile, di
mov word ptr OutFile+2, es

; Output the filenames to the standard output device

printf
byte "Input file: %^s\n"
byte "Output file: %^s\n",0
dword InFile, OutFile

; Open the input file:

lesi InputFile
mov dx, word ptr InFile+2
mov si, word ptr InFile
mov ax, 0
fopen
jnc GoodOpen
mov DOSErrorCode, ax
printf
byte "Could not open input file, DOS: %d\n",0
dword DOSErrorCode
jmp Quit

; Create a new file for output:

GoodOpen: lesi OutputFile
mov dx, word ptr OutFile+2
mov si, word ptr OutFile
fcreate
jnc GoodCreate
mov DOSErrorCode, AX
printf
byte "Could not open output file, DOS: %d\n",0
dword DOSErrorCode
jmp Quit

; Okay, save the output hook and redirect the output.

GoodCreate: PushOutAdrs
lesi MyOutput
SetOutAdrs

WhlNotEOF: inc LineNumber

; Okay, read the input line from the user:

Chapter 13

Page 758

call ReadLn
jc BadInput

; Okay, redirect the output to our output file and write the last
; line read prefixed with a line number:

printf
byte "%4d: %s\n",0
dword LineNumber, InputLine
jmp WhlNotEOF

BadInput: push ax ;Save error code.
PopOutAdrs ;Restore output hook.
pop ax ;Retrieve error code.
test ax, ax ;EOF error? (AX = 0)
jz CloseFiles
mov DOSErrorCode, ax
printf
byte "Input error, DOS: %d\n",0
dword LineNumber

; Okay, close the files and quit:

CloseFiles: lesi OutputFile
fclose
lesi InputFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

13.5 Sample Program

If you want to use the Standard Library’s output routines (putc, print, printf, etc.) to
output data to a file, you can do so by manually redirecting the output before and after
each call to these routines. Unfortunately, this can be a lot of work if you mix interactive
I/O with file I/O. The following program presents several macros that simplify this task
for you.

; FileMacs.asm
;
; This program presents a set of macros that make file I/O with the
; Standard Library even easier to do.
;
; The main program writes a multiplication table to the file "MyFile.txt".

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

CurOutput dword ?

Filename byte "MyFile.txt",0

i word ?
j word ?

MS-DOS, PC BIOS, and File I/O

Page 759

TheFile filevar {}

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; For-Next macros from Chapter Eight.
; See Chapter Eight for details on how this works.

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV&= 0

else
$$For&LCV&= $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

ForLoop textequ @catstr($$For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jg @catstr($$Next&LCV&, %$$For&LCV&)
endm

Next macro LCV
local NextLbl
inc LCV
jmp @catstr($$For&LCV&, %$$For&LCV&)

NextLbl textequ @catstr($$Next&LCV&, %$$For&LCV&)
&NextLbl&:

endm

; File I/O macros:
;
;
; SetPtr sets up the CurOutput pointer variable. This macro is called
; by the other macros, it's not something you would normally call directly.
; Its whole purpose in life is to shorten the other macros and save a little
; typing.

SetPtr macro fvar
push es
push di

mov di, offset fvar
mov word ptr CurOutput, di
mov di, seg fvar
mov word ptr CurOutput+2, di

PushOutAdrs
lesi FileOutput
SetOutAdrs
pop di
pop es
endm

;
;
;
; fprint- Prints a string to the display.

Chapter 13

Page 760

;
; Usage:
; fprint filevar,"String or bytes to print"
;
; Note: you can supply optional byte or string data after the string above by
; enclosing the data in angle brackets, e.g.,
;
; fprint filevar,<"string to print",cr,lf>
;
; Do *NOT* put a zero terminating byte at the end of the string, the fprint
; macro will do that for you automatically.

fprint macro fvar:req, string:req
SetPtr fvar

print
byte string
byte 0

PopOutAdrs
endm

; fprintf- Prints a formatted string to the display.
; fprintff- Like fprintf, but handles floats as well as other items.
;
; Usage:
; fprintf filevar,"format string", optional data values
; fprintff filevar,"format string", optional data values
; Examples:
;
; fprintf FileVariable,"i=%d, j=%d\n", i, j
; fprintff FileVariable,"f=%8.2f, i=%d\n", f, i
;
; Note: if you want to specify a list of strings and bytes for the format
; string, just surround the items with an angle bracket, e.g.,
;
; fprintf FileVariable, <"i=%d, j=%d",cr,lf>, i, j
;
;

fprintf macro fvar:req, FmtStr:req, Operands:vararg
setptr fvar

printf
byte FmtStr
byte 0

for ThisVal, <Operands>
dword ThisVal
endm

PopOutAdrs
endm

fprintff macro fvar:req, FmtStr:req, Operands:vararg
setptr fvar

printff
byte FmtStr
byte 0

for ThisVal, <Operands>
dword ThisVal
endm

PopOutAdrs
endm

; F- This is a generic macro that converts stand-alone (no code stream parms)

MS-DOS, PC BIOS, and File I/O

Page 761

; stdlib functions into file output routines. Use it with putc, puts,
; puti, putu, putl, putisize, putusize, putlsize, putcr, etc.
;
; Usage:
;
; F StdLibFunction, FileVariable
;
; Examples:
;
; mov al, 'A'
; F putc, TheFile
; mov ax, I
; mov cx, 4
; F putisize, TheFile

F macro func:req, fvar:req
setptr fvar
func
PopOutAdrs
endm

; WriteLn- Quick macro to handle the putcr operation (since this code calls
; putcr so often).

WriteLn macro fvar:req
F putcr, fvar
endm

; FileOutput- Writes the single character in AL to an output file.
; The macros above redirect the standard output to this routine
; to print data to a file.

FileOutput proc far
push es
push di
push ds
mov di, dseg
mov ds, di

les di, CurOutput
fputc

pop ds
pop di
pop es
ret

FileOutput endp

; A simple main program that tests the code above.
; This program writes a multiplication table to the file "MyFile.txt"

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Rewrite(TheFile, FileName);

ldxi FileName
lesi TheFile
fcreate

; writeln(TheFile);
; writeln(TheFile,' ');
; for i := 0 to 5 do write(TheFile,'|',i:4,' ');
; writeln(TheFile);

Chapter 13

Page 762

WriteLn TheFile
fprint TheFile," "

forlp i,0,5
fprintf TheFile, "|%4d ", i
next i
WriteLn TheFile

; for j := -5 to 5 do begin
;
; write(TheFile,'----');
; for i := 0 to 5 do write(TheFile, '+-----');
; writeln(TheFile);
;
; write(j:3, ' |');
; for i := 0 to 5 do write(i*j:4, ' |);
; writeln(TheFile);
;
; end;

forlp j,-5,5

fprint TheFile,"----"
forlp i,0,5
fprintf TheFile,"+-----"
next i
fprint TheFile,<"+",cr,lf>

fprintf TheFile, "%3d |", j

forlp i,0,5

mov ax, i
imul j
mov cx, 4
F putisize, TheFile
fprint TheFile, " |"

next i
Writeln TheFile

next j
WriteLn TheFile

; Close(TheFile);

lesi TheFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

MS-DOS, PC BIOS, and File I/O

Page 763

13.6 Laboratory Exercises

The following three programs all do the same thing: they copy the file ”ex13_1.in” to
the file “ex13_1.out”. The difference is the way they copy the files. The first program,
ex13_1a, copies the data from the input file to the output file using character at a time I/O
under DOS. The second program, ex13_1b, uses blocked I/O under DOS. The third pro-
gram, ex13_1c, uses the Standard Library’s file I/O routines to copy the data.

Run these three programs and measure the amount of time they take to run12. For
your lab report: report the running times and comment on the relative efficiencies of these
data transfer methods. Is the loss of performance of the Standard Library routines (com-
pared to block I/O) justified in terms of the ease of use of these routines? Explain.

; EX13_1a.asm
;
; This program copies one file to another using character at a time I/O.
; It is easy to write, read, and understand, but character at a time I/O
; is quite slow. Run this program and time its execution. Then run the
; corresponding blocked I/O exercise and compare the execution times of
; the two programs.

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

FHndl word ?
FHndl2 word ?
Buffer byte ?

FName equ this word
FNamePtr dword FileName

Filename byte "Ex13_1.in",0
Filename2 byte "Ex13_1.out",0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ah, 3dh ;Open the input file
mov al, 0 ; for reading
lea dx, Filename ;DS points at filename’s
int 21h ; segment
jc BadOpen
mov FHndl, ax ;Save file handle

mov FName, offset Filename2 ;Set this up in case there
mov FName+2, seg FileName2 ; is an error during open.

mov ah, 3ch ;Open the output file for writing
mov cx, 0 ; with normal file attributes

12. If you have a really fast machine you may want to make the ex13_1.in file larger (by copying and pasting data
in the file) to make it larger.

Chapter 13

Page 764

lea dx, Filename2 ;Presume DS points at filename
int 21h ; segment
jc BadOpen
mov FHndl2, ax ;Save file handle

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Read one byte
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF

mov ah,40h ;Write data to the file
lea dx, Buffer ;Address of data buffer
mov cx, 1 ;Write one byte
mov bx, FHndl2 ;Get file handle value
int 21h
jc WriteError
jmp LP ;Read next byte

EOF: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jmp Quit

ReadError: printf
byte "Error while reading data from file '%s'.",cr,lf,0
dword FileName
jmp Quit

WriteError: printf
byte "Error while writing data to file '%s'.",cr,lf,0
dword FileName2
jmp Quit

BadOpen: printf
byte "Could not open '%^s'. Make sure this file is “
byte “in the ",cr,lf
byte "current directory before attempting to run “
byte this program again.", cr,lf,0
dword FName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; EX13_1b.asm
;
; This program copies one file to another using blocked I/O.
; Run this program and time its execution. Compare the execution time of
; this program against that of the character at a time I/O and the
; Standard Library File I/O example (ex13_1a and ex13_1c).

include stdlib.a

MS-DOS, PC BIOS, and File I/O

Page 765

includelib stdlib.lib

dseg segment para public 'data'

; File handles for the files we will open.

FHndl word ? ;Input file handle
FHndl2 word ? ;Output file handle

Buffer byte 256 dup (?) ;File buffer area

FName equ this word ;Ptr to current file name
FNamePtr dword FileName

Filename byte "Ex13_1.in",0 ;Input file name
Filename2 byte "Ex13_1.out",0 ;Output file name

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ah, 3dh ;Open the input file
mov al, 0 ; for reading
lea dx, Filename ;Presume DS points at
int 21h ; filename’s segment
jc BadOpen
mov FHndl, ax ;Save file handle

mov FName, offset Filename2 ;Set this up in case there
mov FName+2, seg FileName2 ; is an error during open.

mov ah, 3ch ;Open the output file for writing
mov cx, 0 ; with normal file attributes
lea dx, Filename2 ;Presume DS points at filename
int 21h ; segment
jc BadOpen
mov FHndl2, ax ;Save file handle

; The following loop reads 256 bytes at a time from the file and then
; writes those 256 bytes to the output file.

LP: mov ah,3fh ;Read data from the file
lea dx, Buffer ;Address of data buffer
mov cx, 256 ;Read 256 bytes
mov bx, FHndl ;Get file handle value
int 21h
jc ReadError
cmp ax, cx ;EOF reached?
jne EOF

mov ah, 40h ;Write data to file
lea dx, Buffer ;Address of output buffer
mov cx, 256 ;Write 256 bytes
mov bx, FHndl2 ;Output handle
int 21h
jc WriteError
jmp LP ;Read next block

; Note, just because the number of bytes read does not equal 256,

Chapter 13

Page 766

; don't get the idea we're through, there could be up to 255 bytes
; in the buffer still waiting to be processed.

EOF: mov cx, ax ;Put # of bytes to write in CX.
jcxz EOF2 ;If CX is zero, we're really done.
mov ah, 40h ;Write data to file
lea dx, Buffer ;Address of output buffer
mov bx, FHndl2 ;Output handle
int 21h
jc WriteError

EOF2: mov bx, FHndl
mov ah, 3eh ;Close file
int 21h
jmp Quit

ReadError: printf
byte "Error while reading data from file '%s'.",cr,lf,0
dword FileName
jmp Quit

WriteError: printf
byte "Error while writing data to file '%s'.",cr,lf,0
dword FileName2
jmp Quit

BadOpen: printf
byte "Could not open '%^s'. Make sure this file is in “
byte “the ",cr,lf
byte "current directory before attempting to run “
byte “this program again.", cr,lf,0
dword FName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; EX13_1c.asm
;
; This program copies one file to another using the standard library
; file I/O routines. The Standard Library file I/O routines let you do
; character at a time I/O, but they block up the data to transfer to improve
; system performance. You should find that the execution time of this
; code is somewhere between blocked I/O (ex13_1b) and character at a time
; I/O (EX13_1a); it will, however, be much closer to the block I/O time
; (probably about twice as long as block I/O).

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

InFile filevar {}
OutFile filevar {}

Filename byte "Ex13_1.in",0;Input file name

MS-DOS, PC BIOS, and File I/O

Page 767

Filename2 byte "Ex13_1.out",0;Output file name

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Open the input file:

mov ax, 0 ;Open for reading
ldxi Filename
lesi InFile
fopen
jc BadOpen

; Open the output file:

mov ax, 1 ;Open for output
ldxi Filename2
lesi OutFile
fcreate
jc BadCreate

; Copy the input file to the output file:

CopyLp: lesi InFile
fgetc
jc GetDone

lesi OutFile
fputc
jmp CopyLp

BadOpen: printf
byte "Error opening '%s'",cr,lf,0
dword Filename
jmp Quit

BadCreate: printf
byte "Error creating '%s'",cr,lf,0
dword Filename2
jmp CloseIn

GetDone: cmp ax, 0 ;Check for EOF
je AtEOF

print
byte "Error copying files (read error)",cr,lf,0

AtEOF: lesi OutFile
fclose

CloseIn: lesi InFile
fclose

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

Chapter 13

Page 768

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

13.7 Programming Projects

1) The sample program in Section 13.5 reroutes the standard output through the Standard
Library’s file I/O routines allowing you to use any of the output routines to write data to
a file. Write a similar set of routines and macros that let you read data from a file using the
Standard Library’s input routines (getc, gets, getsm scanf, etc.). Redirect the input through
the Standard Library’s file input functions.

2) The last sample program in section 13.3.12 (copyuc.asm on the companion CD-ROM) cop-
ies one file to another, possibly converting lower case characters to upper case. This pro-
gram currently parses the command line directly and uses blocked I/O to copy the data in
the file. Rewrite this program using argv/argc to process the command line parameters
and use the Standard Library file I/O routines to process each character in the file.

3) Write a “word count” program that counts the number of characters, words, and lines
within a file. Assume that a word is any sequence of characters between spaces, tabs, car-
riage returns, line feeds, the beginning of a file, and the end of a file (if you want to save
some effort, you can assume a “whitespace” symbol is any ASCII code less than or equal
to a space).

4) Write a program that prints an ASCII text file to the printer. Use the BIOS int 17h services
to print the characters in the file.

5) Write two programs, “xmit” and “rcv”. The xmit program should fetch a command line
filename and transmit this file across the serial port. It should transmit the filename and
the number of bytes in the file (hint: use the DOS seek command to determine the length
of the file). The rcv program should read the filename and file length from the serial port,
create the file by the specified name, read the specified number of bytes from the serial
port, and then close the file.

13.8 Summary

MS-DOS and BIOS provide many system services which control the hardware on a
PC. They provide a machine independent and flexible interface. Unfortunately, the PC has
grown up quite a bit since the days of the original 5 Mhz 8088 IBM PC. Many BIOS and
DOS calls are now obsolete, having been superseded by newer calls. To ensure backwards
compatibility, MS-DOS and BIOS generally support all of the older obsolete calls as well
as the newer calls. However, your programs should not use the obsolete calls, they are
there for backwards compatibility only.

The BIOS provides many services related to the control of devices such as the video
display, the printer port, the keyboard, the serial port, the real time clock, etc. Descriptions
of the BIOS services for these devices appear in the following sections:

• “INT 5- Print Screen” on page 702
• “INT 10h - Video Services” on page 702
• “INT 11h - Equipment Installed” on page 704
• “INT 12h - Memory Available” on page 704
• “INT 13h - Low Level Disk Services” on page 704
• “INT 14h - Serial I/O” on page 706
• “INT 15h - Miscellaneous Services” on page 708
• “INT 16h - Keyboard Services” on page 708
• “INT 17h - Printer Services” on page 710
• “INT 18h - Run BASIC” on page 712
• “INT 19h - Reboot Computer” on page 712

MS-DOS, PC BIOS, and File I/O

Page 769

• “INT 1Ah - Real Time Clock” on page 712

MS-DOS provides several different types of services. This chapter concentrated on the
file I/O services provided by MS-DOS. In particular, this chapter dealt with implementing
efficient file I/O operations using blocked I/O. To learn how to perform file I/O and per-
form other MS-DOS operations, check out the following sections:

• “MS-DOS Calling Sequence” on page 714
• “MS-DOS Character Oriented Functions” on page 714
• “MS-DOS “Obsolete” Filing Calls” on page 717
• “MS-DOS Date and Time Functions” on page 718
• “MS-DOS Memory Management Functions” on page 718
• “MS-DOS Process Control Functions” on page 721
• “MS-DOS “New” Filing Calls” on page 725
• “File I/O Examples” on page 734
• “Blocked File I/O” on page 737

Accessing command line parameters is an important operation within MS-DOS appli-
cations. DOS’ PSP (Program Segment Prefix) contains the command line and several other
pieces of important information. To learn about the various fields in the PSP and see how
to access command line parameters, check out the following sections in this chapter:

• “The Program Segment Prefix (PSP)” on page 739
• “Accessing Command Line Parameters” on page 742
• “ARGC and ARGV” on page 750

Of course, the UCR Standard Library provides some file I/O routines as well. This
chapter closes up by describing some of the StdLib file I/O routines along with their
advantages and disadvantages. See

• “Fopen” on page 751
• “Fcreate” on page 752
• “Fclose” on page 752
• “Fflush” on page 752
• “Fgetc” on page 752\
• “Fread” on page 753
• “Fputc” on page 753
• “Fwrite” on page 753
• “Redirecting I/O Through the StdLib File I/O Routines” on page 753
• “A File I/O Example” on page 755

Chapter 13

Page 770

13.9 Questions

1) How are BIOS routines called?

2) Which BIOS routine is used to write a character to the:

a) video display b) serial port c) printer port

3) When the serial transmit or receive services return to the caller, the error status is returned
in the AH register. However, there is a problem with the value returned. What is this prob-
lem?

4) Explain how you could test the keyboard to see if a key is available. 5)What is wrong
with the keyboard shift status function?

6) How are special key codes (those keystrokes not returning ASCII codes) returned by the
read keyboard call?

7) How would you send a character to the printer?

8) How do you read the real time clock?

9) Given that the RTC increments a 32-bit counter every 55ms, how long will the system run
before overflow of this counter occurs?

10) Why should you reset the clock if, when reading the clock, you’ve determined that the
counter has overflowed?

11) How do assembly language programs call MS-DOS?

12) Where are parameters generally passed to MS-DOS?

13) Why are there two sets of filing functions in MS-DOS?

14) Where can the DOS command line be found?

15) What is the purpose of the environment string area?

16) How can you determine the amount of memory available for use by your program?

17) Which is more efficient: character I/O or blocked I/O? Why?

18) What is a good blocksize for blocked I/O?

19) What can’t you use blocked I/O on random access files?

20) Explain how to use the seek command to move the file pointer 128 bytes backwards in the
file from the current file position.

21) Where is the error status normally returned after a call to DOS?

22) Why is it difficult to use blocked I/O on a random access file? Which would be easier, ran-
dom access on a blocked I/O file opened for input or random access on a blocked I/O file
opened for reading and writing?

23) Describe how you might implement blocked I/O on files opened for random access read-
ing and writing.

24) What are two ways you can obtain the address of the PSP?

25) How do you determine that you’ve reached the end of file when using MS-DOS file I/O
calls? When using UCR Standard Library file I/O calls?

Page 771

Floating Point Arithmetic Chapter 14

Although integers provide an exact representation for numeric values, they suffer
from two major drawbacks: the inability to represent fractional values and a limited
dynamic range. Floating point arithmetic solves these two problems at the expense of
accuracy and, on some processors, speed. Most programmers are aware of the speed loss
associated with floating point arithmetic; however, they are blithely unware of the prob-
lems with accuracy.

For many applications, the benefits of floating point outweigh the disadvantages.
However, to properly use floating point arithmetic in

any

 program, you must learn how
floating point arithmetic operates. Intel, understanding the importance of floating point
arithmetic in modern programs, provided support for floating point arithmetic in the ear-
liest designs of the 8086 – the 80x87 FPU (floating point unit or math coprocessor). How-
ever, on processors eariler than the 80486 (or on the 80486sx), the floating point processor
is an optional device; it this device is not present you must simulate it in software.

This chapter contains four main sections. The first section discusses floating point
arithmetic from a mathematical point of view. The second section discusses the binary
floating point formats commonly used on Intel processors. The third discusses software
floating point and the math routines from the UCR Standard Library. The fourth section
discusses the 80x87 FPU chips.

14.0 Chapter Overview

This chapter contains four major sections: a description of floating point formats and
operations (two sections), a discussion of the floating point support in the UCR Standard
Library, and a discussion of the 80x87 FPU (floating point unit). The sections below that
have a “•” prefix are essential. Those sections with a “

❏

” discuss advanced topics that you
may want to put off for a while.

• The mathematics of floating point arithmetic.
• IEEE floating point formats.
• The UCR Standard Library floating point routines.
• The 80x87 floating point coprocessors.
• FPU data movement instructions.

 ❏

Conversions.
• Arithmetic instructions.
• Comparison instructions.

 ❏

Constant instructiuons.

 ❏

Transcendental instructions.

 ❏

Miscellaneous instructions.

 ❏

Integer operations.

 ❏

Additional trigonometric functions.

14.1 The Mathematics of Floating Point Arithmetic

A big problem with floating point arithmetic is that it does not follow the standard
rules of algebra. Nevertheless, many programmers apply normal algebraic rules when
using floating point arithmetic. This is a source of bugs in many programs. One of the pri-
mary goals of this section is to describe the limitations of floating point arithmetic so you
will understand how to use it properly.

Normal algebraic rules apply only to

infinte precision

 arithmetic. Consider the simple
statement

x:=x+1

, x is an integer. On any modern computer this statement follows the nor-
mal rules of algebra

as long as overflow does not occur.

 That is, this statement is valid only for

Thi d t t d ith F M k 4 0 2

Chapter 14

Page 772

certain values of x (minint <= x < maxint). Most programmers do not have a problem with
this because they are well aware of the fact that integers in a program do not follow the
standard algebraic rules (e.g., 5/2

≠

 2.5).

Integers do not follow the standard rules of algebra because the computer represents
them with a finite number of bits. You cannot represent any of the (integer) values above
the maximum integer or below the minimum integer. Floating point values suffer from
this same problem, only worse. After all, the integers are a subset of the real numbers.
Therefore, the floating point values must represent the same infinite set of integers. How-
ever, there are an infinite number of values between any two real values, so this problem
is infinitely worse. Therefore, as well as having to limit your values between a maximum
and minimum range, you cannot represent all the values between those two ranges,
either.

To represent real numbers, most floating point formats employ scientific notation and
use some number of bits to represent a

mantissa

 and a smaller number of bits to represent
an

exponent

. The end result is that floating point numbers can only represent numbers
with a specific number of

significant

 digits. This has a big impact on how floating point
arithmetic operations. To easily see the impact of limited precision arithmetic, we will
adopt a simplified decimal floating point format for our examples. Our floating point for-
mat will provide a mantissa with three significant digits and a decimal exponent with two
digits. The mantissa and exponents are both signed values (see Figure 14.1).

When adding and subtracting two numbers in scientific notation, you must adjust the
two values so that their exponents are the same. For example, when adding 1.23e1 and
4.56e0, you must adjust the values so they have the same exponent. One way to do this is
to to convert 4.56e0 to 0.456e1 and then add. This produces 1.686e1. Unfortunately, the
result does not fit into three significant digits, so we must either

round

 or

truncate

 the
result to three significant digits. Rounding generally produces the most accurate result, so
let’s round the result to obtain 1.69e1. As you can see, the lack of

precision

 (the number of
digits or bits we maintain in a computation) affects the accuracy (the correctness of the
computation).

In the previous example, we were able to round the result because we maintained

four

significant digits

during

 the calculation. If our floating point calculation is limited to three
significant digits

during

 computation, we would have had to truncate the last digit of the
smaller number, obtaining 1.68e1 which is even less correct. Extra digits available during a
computation are known as

guard digits

 (or

guard bits

 in the case of a binary format). They
greatly enhance accuracy during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to worry about
unless you are greatly concerned about the accuracy of your computations. However, if
you compute a value which is the result of a sequence of floating point operations, the
error can

accumulate

 and greatly affect the computation itself. For example, suppose we
were to add 1.23e3 with 1.00e0. Adjusting the numbers so their exponents are the same
before the addition produces 1.23e3 + 0.001e3. The sum of these two values, even after
rounding, is 1.23e3. This might seem perfectly reasonable to you; after all, we can only
maintain three significant digits, adding in a small value shouldn’t affect the result at all.
However, suppose we were to add 1.00e0 1.23e3

ten times

. The first time we add 1.00e0 to
1.23e3 we get 1.23e3. Likewise, we get this same result the second, third, fourth, ..., and
tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added 1.00e0 to itself ten
times, then added the result (1.00e1) to 1.23e3, we would have gotten a different result,
1.24e3. This is the most important thing to know about limited precision arithmetic:

Figure 14.1 Simple Floating Point Format

e±±

Floating Point Arithmetic

Page 773

The order of evaluation can effect the accuracy of the result.

You will get more accurate results if the relative magnitudes (that is, the exponents)
are close to one another. If you are performing a chain calculation involving addition and
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up with

false pre-
cision

. Consider the computation 1.23e0 - 1.22 e0. This produces 0.01e0. Although this is
mathematically equivalent to 1.00e-2, this latter form suggests that the last two digits are
exactly zero. Unfortunately, we’ve only got a single significant digit at this time. Indeed,
some FPUs or floating point software packages might actually insert random digits (or
bits) into the L.O. positions. This brings up a second important rule concerning limited
precision arithmetic:

Whenever subtracting two numbers with the same signs or adding two numbers
with different signs, the accuracy of the result may be less than the precision
available in the floating point format.

Multiplication and division do not suffer from the same problems as addition and
subtraction since you do not have to adjust the exponents before the operation; all you
need to do is add the exponents and multiply the mantissas (or subtract the exponents
and divide the mantissas). By themselves, multiplication and division do not produce par-
ticularly poor results. However, they tend to multiply any error which already exists in a
value. For example, if you multiply 1.23e0 by two, when you should be multiplying 1.24e0
by two, the result is even less accurate. This brings up a third important rule when work-
ing with limited precision arithmetic:

When performing a chain of calculations involving addition, subtraction, multi-
plication, and division, try to perform the multiplication and division operations
first.

Often, by applying normal algebraic transformations, you can arrange a calculation so
the multiply and divide operations occur first. For example, suppose you want to com-
pute x*(y+z). Normally you would add y and z together and multiply their sum by x.
However, you will get a little more accuracy if you transform x*(y+z) to get x*y+x*z and
compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying
two very large or very small numbers, it is quite possible for

overflow

 or

underflow

 to
occur. The same situation occurs when dividing a small number by a large number or
dividing a large number by a small number. This brings up a fourth rule you should
attempt to follow when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange the multiplica-
tions so that they multiply large and small numbers together; likewise, try to
divide numbers that have the same relative magnitudes.

Comparing floating pointer numbers is very dangerous. Given the inaccuracies
present in any computation (including converting an input string to a floating point
value), you should

never

 compare two floating point values to see if they are equal. In a
binary floating point format, different computations which produce the same (mathemati-
cal) result may differ in their least significant bits. For example, adding 1.31e0+1.69e0
should produce 3.00e0. Likewise, adding 2.50e0+1.50e0 should produce 3.00e0. However,
were you to compare (1.31e0+1.69e0) agains (2.50e0+1.50e0) you might find out that these
sums are

not

equal to one another. The test for equality succeeds if and only if all bits (or
digits) in the two operands are exactly the same. Since this is not necessarily true after two
different floating point computations which should produce the same result, a straight
test for equality may not work.

The standard way to test for equality between floating point numbers is to determine
how much error (or tolerance) you will allow in a comparison and check to see if one
value is within this error range of the other. The straight-forward way to do this is to use a
test like the following:

if Value1 >= (Value2-error) and Value1 <= (Value2+error) then …

Chapter 14

Page 774

Another common way to handle this same comparison is to use a statement of the form:

if abs(Value1-Value2) <= error then …

Most texts, when discussing floating point comparisons, stop immediately after dis-
cussing the problem with floating point equality, assuming that other forms of compari-
son are perfectly okay with floating point numbers. This isn’t true! If we are assuming that
x=y if x is within y

±

error, then a simple bitwise comparison of x and y will claim that x<y
if y is greater than x but less than y+error. However, in such a case x should really be
treated as equal to y, not less than y. Therefore, we must always compare two floating
point numbers using ranges, regardless of the actual comparison we want to perform. Try-
ing to compare two floating point numbers directly can lead to an error. To compare two
floating point numbers, x and y, against one another, you should use one of the following
forms:

= if abs(x-y) <= error then …

≠

if abs(x-y) > error then …
< if (x-y) < error then …

≤

if (x-y) <= error then …
> if (x-y) > error then …

≥

if (x-y) >= error then …

You must exercise care when choosing the value for

error

. This should be a value
slightly greater than the largest amount of error which will creep into your computations.
The exact value will depend upon the particular floating point format you use, but more
on that a little later. The final rule we will state in this section is

When comparing two floating point numbers, always compare one value to see if
it is in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values.
This text can only point out some of the major problems and make you aware of the fact
that you cannot treat floating point arithmetic like real arithmetic – the inaccuracies
present in limited precision arithmetic can get you into trouble if you are not careful. A
good text on numerical analysis or even scientific computing can help fill in the details
which are beyond the scope of this text. If you are going to be working with floating point
arithmetic,

in any language

, you should take the time to study the effects of limited preci-
sion arithmetic on your computations.

14.2 IEEE Floating Point Formats

When Intel planned to introduce a floating point coprocessor for their new 8086
microprocessor, they were smart enough to realize that the electrical engineers and
solid-state physicists who design chips were, perhaps, not the best people to do the neces-
sary numerical analysis to pick the best possible binary representation for a floating point
format. So Intel went out and hired the best numerical analyst they could find to design a
floating point format for their 8087 FPU. That person then hired two other experts in the
field and the three of them (Kahn, Coonan, and Stone) designed Intel’s floating point for-
mat. They did such a good job designing the KCS Floating Point Standard that the IEEE
organization adopted this format for the IEEE floating point format

1

.

To handle a wide range of performance and accuracy requirements, Intel actually
introduced

three

 floating point formats: single precision, double precision, and extended
precision. The single and double precision formats corresponded to C’s float and double
types or FORTRAN’s real and double precision types. Intel intended to use extended pre-
cision for long chains of computations. Extended precision contains 16 extra bits that the

1. There were some minor changes to the way certain degenerate operations were handled, but the bit representa-
tion remained essentially unchanged.

Floating Point Arithmetic

Page 775

calculations could use for guard bits before rounding down to a double precision value
when storing the result.

The single precision format uses a one’s complement 24 bit mantissa and an eight bit
excess-128 exponent. The mantissa usually represents a value between 1.0 to just under
2.0. The H.O. bit of the mantissa is always assumed to be one and represents a value just to
the left of the

binary point

2

. The remaining 23 mantissa bits appear to the right of the
binary point. Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The “mmmm…” characters represent the 23 bits of the mantissa. Keep in mind that we are
working with binary numbers here. Therefore, each position to the right of the binary
point represents a value (zero or one) times a successive negative power of two. The
implied one bit is always multiplied by 2

0

, which is one. This is why the mantissa is
always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value one

3

. Of course, even if we had an almost infi-
nite number of one bits after the binary point, they still would not add up to two. This is
why the mantissa can represent values in the range one to just under two.

Although there are an infinite number of values between one and two, we can only
represent eight million of them because we a 23 bit mantissa (the 24

th

 bit is always one).
This is the reason for inaccuracy in floating point arithmetic – we are limited to 23 bits of
precision in compuations involving single precision floating point values.

The mantissa uses a

 one’s complement

format rather than two’s complement. This
means that the 24 bit value of the mantissa is simply an unsigned binary number and the
sign bit determines whether that value is positive or negative. One’s complement num-
bers have the unusual property that there are two representations for zero (with the sign
bit set or clear). Generally, this is important only to the person designing the floating point
software or hardware system. We will assume that the value zero always has the sign bit
clear.

To represent values outside the range 1.0 to just under 2.0, the exponent portion of the
floating point format comes into play. The floating point format raise two to the power
specified by the exponent and then multiplies the mantissa by this value. The exponent is
eight bits and is stored in an

excess-127

 format. In excess-127 format, the exponent 2

0

 is
represented by the value 127 (7fh). Therefore, to convert an exponent to excess-127 format
simply add 127 to the exponent value. The use of excess-127 format makes it easier to
compare floating point values. The single precision floating point format takes the form
shown in Figure 14.2.

With a 24 bit mantissa, you will get approximately 6-

1

/

2

 digits of precision (one half
digit of precision means that the first six digits can all be in the range 0..9 but the seventh
digit can only be in the range 0..x where x<9 and is generally close to five). With an eight

2. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal
numbers.
3. Actually, this isn’t necessarily true. Thye IEEE floating point format supports

denormalized

values where the
H.O. bit is not zero. However, we will ignore denormalized values in our discussion.

Figure 14.2 32 Bit Single Precision Floating Point Format

31 2 3 15 7 0

Mantissa BitsExponent BitsSign
Bit

1

The 24th mantissa bit is
implied and is always one.

Chapter 14

Page 776

bit excess-128 exponent, the dynamic range of single precision floating point numbers is
approximately 2

±

128

 or about 10

±

38

.

Although single precision floating point numbers are perfectly suitable for many
applications, the dynamic range is somewhat small for many scientific applications and
the very limited precision is unsuitable for many financial, scientific, and other applica-
tions. Furthermore, in long chains of computations, the limited precision of the single pre-
cision format may introduce serious error.

The double precision format helps overcome the problems of single preicision floating
point. Using twice the space, the double precision format has an 11-bit excess-1023 expo-
nent and a 53 bit mantissa (with an implied H.O. bit of one) plus a sign bit. This provides
a dynamic range of about 10

±

308

and 14-

1

/

2

 digits of precision, sufficient for most applica-
tions. Double precision floating point values take the form shown in Figure 14.3.

In order to help ensure accuracy during long chains of computations involving dou-
ble precision floating point numbers, Intel designed the extended precision format. The
extended precision format uses 80 bits. Twelve of the additional 16 bits are appended to
the mantissa, four of the additional bits are appended to the end of the exponent. Unlike
the single and double precision values, the extended precision format does not have an
implied H.O. bit which is always one. Therefore, the extended precision format provides a
64 bit mantissa, a 15 bit excess-16383 exponent, and a one bit sign. The format for the
extended precision floating point value is shown in Figure 14.4.

On the 80x87 FPUs and the 80486 CPU, all computations are done using the extended
precision form. Whenever you load a single or double precision value, the FPU automati-
cally converts it to an extended precision value. Likewise, when you store a single or dou-
ble precision value to memory, the FPU automatically rounds the value down to the
appropriate size before storing it. By always working with the extended precision format,
Intel guarantees a large number of guard bits are present to ensure the accuracy of your
computations. Some texts erroneously claim that you should never use the extended pre-
cision format in your own programs, because Intel only guarantees accurate computations
when using the single or double precision formats. This is foolish. By performing all com-
putations using 80 bits, Intel helps ensure (but not guarantee) that you will get full 32 or
64 bit accuracy in your computations. Since the 80x87 FPUs and 80486 CPU do not pro-
vide a large number of guard bits in 80 bit computations, some error will inevitably creep
into the L.O. bits of an extended precision computation. However, if your computation is
correct to 64 bits, the 80 bit computation will always provide

at least

 64 accurate bits. Most
of the time you will get even more. While you cannot assume that you get an accurate 80

Figure 14.3 64 Bit Double Precision Floating Point Format

63 52 7 0

Mantissa BitsExponent BitsSign
Bit

1

The 53rd mantissa bit is
implied and is always one.

……

Figure 14.4 80 Bit Extended Precision Floating Point Format

79 64 7 0

Mantissa BitsExponent BitsSign
Bit

……

Floating Point Arithmetic

Page 777

bit computation, you can usually do better than 64 when using the extended precision for-
mat.

To maintain maximum precision during computation, most computations use

normal-
ized

values. A normalized floating point value is one that has a H.O. mantissa bit equal to
one. Almost any non-normalized value can be normalized by shifting the mantissa bits to
the left and decrementing the exponent by one until a one appears in the H.O. bit of the
mantissa. Remember, the exponent is a binary exponent. Each time you increment the
exponent, you multiply the floating point value by two. Likewise, whenever you decre-
ment the exponent, you divide the floating point value by two. By the same token, shifting
the mantissa to the left one bit position multiplies the floating point value by two; like-
wise, shifting the mantissa to the right divides the floating point value by two. Therefore,
shifting the mantissa to the left one position

and

 decrementing the exponent does not
change the value of the floating point number at all.

Keeping floating point numbers normalized is beneficial because it maintains the
maximum number of bits of precision for a computation. If the H.O. bits of the mantissa
are all zero, the mantissa has that many fewer bits of precision available for computation.
Therefore, a floating point computation will be more accurate if it involves only normal-
ized values.

There are two important cases where a floating point number cannot be normalized.
The value 0.0 is a special case. Obviously it cannot be normalized because the floating
point representation for zero has no one bits in the mantissa. This, however, is not a prob-
lem since we can exactly represent the value zero with only a single bit.

The second case is when we have some H.O. bits in the mantissa which are zero but
the biased exponent is also zero (and we cannot decrement it to normalize the mantissa).
Rather than disallow certain small values, whose H.O. mantissa bits and biased exponent
are zero (the most negative exponent possible), the IEEE standard allows special

denormalized

 values to represent these smaller values

4

. Although the use of denormalized
values allows IEEE floating point computations to produce better results than if under-
flow occurred, keep in mind that denormalized values offer less bits of precision and are
inherently less accurate.

Since the 80x87 FPUs and 80486 CPU always convert single and double precision val-
ues to extended precision, extended precision arithmetic is actually

faster

 than single or
double precision. Therefore, the expected performance benefit of using the smaller for-
mats is not present on these chips. However, when designing the Pentium/586 CPU, Intel
redesigned the built-in floating point unit to better compete with RISC chips. Most RISC
chips support a native 64 bit double precision format which is faster than Intel’s extended
precision format. Therefore, Intel provided native 64 bit operations on the Pentium to bet-
ter compete against the RISC chips. Therefore, the double precision format is the fastest on
the Pentium and later chips.

14.3 The UCR Standard Library Floating Point Routines

In most assembly language texts, which bother to cover floating point arithmetic, this
section would normally describe how to design your own floating point routines for addi-
tion, subtraction, multiplication, and division. This text will not do that for several rea-
sons. First, to design a

good

 floating point library requires a solid background in numerical
analysis; a prerequisite this text does not assume of its readers. Second, the UCR Standard
Library already provides a reasonable set of floating point routines in source code form;
why waste space in this text when the sources are readily available elsewhere? Third,
floating point units are quickly becoming standard equipment on all modern CPUs or
motherboards; it makes no more sense to describe how to manually perform a floating
point computation than it does to describe how to manually perform an integer computa-
tion. Therefore, this section will describe how to use the UCR Standard Library routines if

4. The alternative would be to underflow the values to zero.

Chapter 14

Page 778

you do not have an FPU available; a later section will describe the use of the floating point
unit.

The UCR Standard Library provides a large number of routines to support floating
point computation and I/O. This library uses the same memory format for 32, 64, and 80
bit floating point numbers as the 80x87 FPUs. The UCR Standard Library’s floating point
routines do not exactly follow the IEEE requirements with respect to error conditions and
other degenerate cases, and it may produce slightly different results than an 80x87 FPU,
but the results will be very close

5

. Since the UCR Standard Library uses the same memory
format for 32, 64, and 80 bit numbers as the 80x87 FPUs, you can freely mix computations
involving floating point between the FPU and the Standard Library routines.

The UCR Standard Library provides numerous routines to manipulate floating point
numbes. The following sections describe each of these routines, by category.

14.3.1 Load and Store Routines

Since 80x86 CPUs without an FPU do not provide any 80-bit registers, the UCR Stan-
dard Library must use memory-based variables to hold floating point values during com-
putation. The UCR Standard Library routines use two

pseudo registers

, an accumlator
register and an operand register, when performing floating point operations. For example,
the floating point addition routine adds the value in the floating point operand register to
the floating point accumulator register, leaving the result in the accumulator. The load and
store routines allow you to load floating point values into the floating point accumulator
and operand registers as well as store the value of the floating point accumulator back to
memory. The routines in this category include

accop, xaccop, lsfpa, ssfpa, ldfpa, sdfpa, lefpa,
sefpa,

lefpal, lsfpo, ldfpo, lefpo,

 and lefpol.

The

accop

 routine copies the value in the floating point accumulator to the floating
point operand register. This routine is useful when you want to use the result of one com-
putation as the second operand of a second computation.

The

xaccop

routine exchanges the values in the floating point accumuator and oper-
and registers. Note that many floating point computations destory the value in the float-
ing point operand register, so you cannot blindly assume that the routines preserve the
operand register. Therefore, calling this routine only makes sense after performing some
computation which you know does not affect the floating point operand register.

Lsfpa, ldfpa, and lefpa

 load the floating point accumulator with a single, double, or
extended precision floating point value, respectively. The UCR Standard Library uses its
own internal format for computations. These routines convert the specified values to the
internal format during the load. On entry to each of these routines,

es:di

 must contain the
address of the variable you want to load into the floating point accumulator. The follow-
ing code demonstrates how to call these routines:

rVar real4 1.0
drVar real8 2.0
xrVar real10 3.0

 .
 .
 .

lesi rVar
lsfpa

 .
 .
 .

lesi drVar
ldfpa

 .
 .
 .

5. Note, by the way, that different floating point chips, especially across different CPU lines, but even within the
Intel family, produce slightly different results. So the fact that the UCR Standard Library does not produce the
exact same results as a particular FPU is not that important.

Floating Point Arithmetic

Page 779

lesi xrVar
lefpa

The

lsfpo, ldfpo,

 and

lefpo

 routines are similar to the

lsfpa

,

ldfpa

, and

lefpa

 routines
except, of course, they load the floating point operand register rather than the floating
point accumulator with the value at address

es:di

.

Lefpal

 and

lefpol

 load the floating point accumulator or operand register with a literal
80 bit floating point constant appearing in the code stream. To use these two routines, sim-
ply follow the call with a

real10

 directive and the appropriate constant, e.g.,

lefpal
real10 1.0
lefpol
real10 2.0e5

The ssfpa, sdfpa, and sefpa routines store the value in the floating point accumulator
into the memory based floating point variable whose address appears in es:di. There are
no corresponding ssfpo, sdfpo, or sefpo routines because a result you would want to store
should never appear in the floating point operand register. If you happen to get a value in
the floating point operand that you want to store into memory, simply use the xaccop rou-
tine to swap the accumulator and operand registers, then use the store accumulator rou-
tines to save the result. The following code demonstrates the use of these routines:

rVar real4 1.0
drVar real8 2.0
xrVar real10 3.0

 .
 .
 .

lesi rVar
ssfpa
 .
 .
 .

lesi drVar
sdfpa
 .
 .
 .

lesi xrVar
sefpa

14.3.2 Integer/Floating Point Conversion

The UCR Standard Library includes several routines to convert between binary inte-
gers and floating point values. These routines are itof, utof, ltof, ultof, ftoi, ftou, ftol, and ftoul.
The first four routines convert signed and unsigned integers to floating point format, the
last four routines truncate floating point values and convert them to an integer value.

Itof converts the signed 16-bit value in ax to a floating point value and leaves the result
in the floating point accumulator. This routine does not affect the floating point operand
register. Utof converts the unsigned integer in ax in a similar fashion. Ltof and ultof convert
the 32 bit signed (ltof) or unsigned (ultof) integer in dx:ax to a floating point value, leaving
the value in the floating point accumulator. These routines always succeed.

Ftoi converts the value in the floating point accumulator to a signed integer value,
leaving the result in ax. Conversion is by truncation; this routine keeps the integer portion
and throws away the fractional part. If an overflow occurs because the resulting integer
portion does not fit into 16 bits, ftoi returns the carry flag set. If the conversion occurs with-
out error, ftoi return the carry flag clear. Ftou works in a similar fashion, except it converts
the floating point value to an unsigned integer in ax; it returns the carry set if the floating
point value was negative.

Ftol and ftoul converts the value in the floating point accumulator to a 32 bit integer
leaving the result in dx:ax. Ftol works on signed values, ftoul works with unsigned values.
As with ftoi and ftou, these routines return the carry flag set if a conversion error occurs.

Chapter 14

Page 780

14.3.3 Floating Point Arithmetic

Floating point arithmetic is handled by the fpadd, fp sub, fpcmp, fpmul, and fpdiv rou-
tines. Fpadd adds the value in the floating point accumulator to the floating point accumu-
lator. Fpsub subtracts the value in the floating point operand from the floating point
accumulator. Fpmul multiplies the value in the floating accumulator by the floating point
operand. Fpdiv divides the value in the floating point accumulator by the value in the
floating point operand register. Fpcmp compares the value in the floating point accumula-
tor against the floating point operand.

The UCR Standard Library arithmetic routines do very little error checking. For exam-
ple, if arithmetic overflow occurs during addition, subtraction, multiplication, or division,
the Standard Library simply sets the result to the largest legal value and returns. This is
one of the major deviations from the IEEE floating point standard. Likewise, when under-
flow occurs the routines simply set the result to zero and return. If you divide any value
by zero, the Standard Library routines simply set the result to the largest possible value
and return. You may need to modify the standard library routines if you need to check for
overflow, underflow, or division by zero in your programs.

The floating point comparison routine (fpcmp) compares the floating point accumula-
tor against the floating point operand and returns -1, 0, or 1 in the ax register if the accu-
mulator is less than, equal, or greater than the floating point operand. It also compares ax
with zero immediately before returning so it sets the flags so you can use the jg, jge, jl, jle,
je, and jne instructions immediately after calling fpcmp. Unlike fpadd, fpsub, fpmul, and fpdiv,
fpcmp does not destroy the value in the floating point accumulator or the floating point
operand register. Keep in mind the problems associated with comparing floating point
numbers!

14.3.4 Float/Text Conversion and Printff

The UCR Standard Library provides three routines, ftoa, etoa, and atof, that let you
convert floating point numbers to ASCII strings and vice versa; it also provides a special
version of printf, printff, that includes the ability to print floating point values as well as
other data types.

Ftoa converts a floating point number to an ASCII string which is a decimal represen-
tation of that floating point number. On entry, the floating point accumulator contains the
number you want to convert to a string. The es:di register pair points at a buffer in mem-
ory where ftoa will store the string. The al register contains the field width (number of
print positions). The ah register contains the number of positions to display to the right of
the decimal point. If ftoa cannot display the number using the print format specified by al
and ah, it will create a string of “#” characters, ah characters long. Es:di must point at a
byte array containing at least al+1 characters and al should contain at least five. The field
width and decimal length values in the al and ah registers are similar to the values
appearing after floating point numbers in the Pascal write statement, e.g.,

write(floatVal:al:ah);

Etoa outputs the floating point number in exponential form. As with ftoa, es:di points
at the buffer where etoa will store the result. The al register must contain at least eight and
is the field width for the number. If al contains less than eight, etoa will output a string of
“#” characters. The string that es:di points at must contain at least al+1 characters. This
conversion routine is similar to Pascal’s write procedure when writing real values with a
single field width specification:

write(realvar:al);

The Standard Library printff routine provides all the facilities of the standard printf
routine plus the ability to handle floating point output. The printff routine includes sev-

Floating Point Arithmetic

Page 781

eral new format specifications to print floating point numbers in decimal form or using
scientific notation. The specifications are

• %x.yF Prints a 32 bit floating point number in decimal form.
• %x.yGF Prints a 64 bit floating point number in decimal form.
• %x.yLF Prints an 80 bit floating point number in decimal form.
• %zE Prints a 32 bit floating point number using scientific notation.
• %zGE Prints a 64 bit floating point number using scientific notation.
• %zLE Prints an 80 bit floating point value using scientific notation.

In the format strings above, x and z are integer constants that denote the field width of the
number to print. The y item is also an integer constant that specifies the number of posi-
tions to print after the decimal point. The x.y values are comparable to the values passed
to ftoa in al and ah. The z value is comparable to the value etoa expects in the al register.

Other than the addition of these six new formats, the printff routine is identical to the
printf routine. If you use the printff routine in your assembly language programs, you
should not use the printf routine as well. Printff duplicates all the facilities of printf and using
both would only waste memory.

14.4 The 80x87 Floating Point Coprocessors

When the 8086 CPU first appeared in the late 1970’s, semiconductor technology was
not to the point where Intel could put floating point instrutions directly on the 8086 CPU.
Therefore, they devised a scheme whereby they could use a second chip to perform the
floating point calculations – the floating point unit (or FPU)6. They released their original
floating point chip, the 8087, in 1980. This particular FPU worked with the 8086, 8088,
80186, and 80188 CPUs. When Intel introduced the 80286 CPU, they released a redesigned
80287 FPU chip to accompany it. Although the 80287 was compatible with the 80386 CPU,
Intel designed a better FPU, the 80387, for use in 80386 systems. The 80486 CPU was the
first Intel CPU to include an on-chip floating point unit. Shortly after the release of the
80486, Intel introduced the 80486sx CPU that was an 80486 without the built-in FPU. To
get floating point capabilities on this chip, you had to add an 80487 chip, although the
80487 was really nothing more than a full-blown 80486 which took over for the “sx” chip
in the system. Intel’s Pentium/586 chips provide a high-performance floating point unit
directly on the CPU. There is no floating point coprocessor available for the Pentium chip.

Collectively, we will refer to all these chips as the 80x87 FPU. Given the obsolesence of
the 8086, 80286, 8087, and 80287 chips, this text will concentrate on the 80387 and later
chips. There are some differences between the 80387/80486/Pentium floating point units
and the earlier FPUs. If you need to write code that will execute on those earlier machines,
you should consult the appropriate Intel documentation for those devices.

14.4.1 FPU Registers

The 80x87 FPUs add 13 registers to the 80386 and later processors: eight floating point
data registers, a control register, a status register, a tag register, an instruction pointer, and
a data pointer. The data registers are similar to the 80x86’s general purpose register set
insofar as all floating point calculations take place in these registers. The control register
contains bits that let you decide how the 80x87 handles certain degenerate cases like
rounding of inaccurate computations, control precision, and so on. The status register is
similar to the 80x86’s flags register; it contains the condition code bits and several other
floating point flags that describe the state of the 80x87 chip. The tag register contains sev-
eral groups of bits that determine the state of the value in each of the eight general pur-
pose registers. The instruction and data pointer registers contain certain state information

6. Intel has also refered to this device as the Numeric Data Processor (NDP), Numeric Processor Extension (NPX),
and math coprocessor.

Chapter 14

Page 782

about the last floating point instruction executed. We will not consider the last three regis-
ters in this text, see the Intel documentation for more details.

14.4.1.1 The FPU Data Registers

The 80x87 FPUs provide eight 80 bit data registers organized as a stack. This is a sig-
nificant departure from the organization of the general purpose registers on the 80x86
CPU that comprise a standard general-purpose register set. Intel refers to these registers
as ST(0), ST(1), …, ST(7). Most assemblers will accept ST as an abbreviation for ST(0).

The biggest difference between the FPU register set and the 80x86 register set is the
stack organization. On the 80x86 CPU, the ax register is always the ax register, no matter
what happens. On the 80x87, however, the register set is an eight element stack of 80 bit
floating point values (see Figure 14.5). ST(0) refers to the item on the top of the stack, ST(1)
refers to the next item on the stack, and so on. Many floating point instructions push and
pop items on the stack; therefore, ST(1) will refer to the previous contents of ST(0) after
you push something onto the stack. It will take some thought and practice to get used to
the fact that the registers are changing under you, but this is an easy problem to overcome.

14.4.1.2 The FPU Control Register

When Intel designed the 80x87 (and, essentially, the IEEE floating point standard),
there were no standards in floating point hardware. Different (mainframe and mini) com-
puter manufacturers all had different and incompatible floating point formats. Unfortu-
nately, much application software had been written taking into account the idiosyncrasies
of these different floating point formats. Intel wanted to designed an FPU that could work
with the majority of the software out there (keep in mind, the IBM PC was three to four
years away when Intel began designing the 8087, they couldn’t rely on that “mountain” of
software available for the PC to make their chip popular). Unfortunately, many of the fea-
tures found in these older floating point formats were mutually exclusive. For example, in
some floating point systems rounding would occur when there was insufficient precision;
in others, truncation would occur. Some applications would work with one floating point
system but not with the other. Intel wanted as many applications as possible to work with
as few changes as possible on their 80x87 FPUs, so they added a special register, the FPU
control register, that lets the user choose one of several possible operating modes for the
80x87.

The 80x87 control register contains 16 bits organized as shown in Figure 14.6.

Bit 12 of the control register is only present on the 8087 and 80287 chips. It controls
how the 80x87 responds to infinity. The 80387 and later chips always use a form of
infinitly known and affine closure because this is the only form supported by the IEEE

Figure 14.5 80x87 Floating Point Register Stack

st(0)

st(1)

st(2)

st(3)

st(4)

st(5)

st(6)

st(7)

79 64 0

Floating Point Arithmetic

Page 783

754/854 standards. As such, we will ignore any further use of this bit and assume that it is
always programmed with a one.

Bits 10 and 11 provide rounding control according to the following values:

The “00” setting is the default. The 80x87 rounds values above one-half of the least
significant bit up. It rounds values below one-half of the least significant bit down. If the
value below the least significant bit is exactly one-half the least significant bit, the 80x87
rounds the value towards the value whose least significant bit is zero. For long strings of
computations, this provides a reasonable, automatic, way to maintain maximum preci-
sion.

The round up and round down options are present for those computations where it is
important to keep track of the accuracy during a computation. By setting the rounding
control to round down and performing the operation, the repeating the operation with the
rounding control set to round up, you can determine the minimum and maximum ranges
between which the true result will fall.

The truncate option forces all computations to truncate any excess bits during the
computation. You will rarely use this option if accuracy is important to you. However, if
you are porting older software to the 80x87, you might use this option to help when port-
ing the software.

Bits eight and nine of the control register control the precision during computation.
This capability is provided mainly to allow compatbility with older software as required
by the IEEE 754 standard. The precision control bits use the following values:

Table 58: Rounding Control

Bits 10 & 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

Figure 14.6 80x87 Control Register

Exception Masks
Precision
Control

Rounding
Control

Reserved on 80387
 and later FPUs.

00 - To nearest or even
01 - Round down
10 - Round up
11 - Truncate result

00 - 24 bits
01 - reserved
10 - 53 bits
11 - 64 bits

Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation

 15 11 10 9 8 5 4 3 2 1 0

Chapter 14

Page 784

For modern applications, the precision control bits should always be set to “11” to
obtain 64 bits of precision. This will produce the most accurate results during numerical
computation.

Bits zero through five are the exception masks. These are similar to the interrupt enable
bit in the 80x86’s flags register. If these bits contain a one, the corresponding condition is
ignored by the 80x87 FPU. However, if any bit contains zero, and the corresponding con-
dition occurs, then the FPU immediately generates an interrupt so the program can han-
dle the degenerate condition.

Bit zero corresponds to an invalid operation error. This generally occurs as the result
of a programming error. Problem which raise the invalid operation exception include
pushing more than eight items onto the stack or attempting to pop an item off an empty
stack, taking the square root of a negative number, or loading a non-empty register.

Bit one masks the denormalized interrupt which occurs whenever you try to manipu-
late denormalized values. Denormalized values generally occur when you load arbitrary
extended precision values into the FPU or work with very small numbers just beyond the
range of the FPU’s capabilities. Normally, you would probably not enable this exception.

Bit two masks the zero divide exception. If this bit contains zero, the FPU will generate
an interrupt if you attempt to divide a nonzero value by zero. If you do not enable the zero
division exception, the FPU will produce NaN (not a number) whenever you perform a
zero division.

Bit three masks the overflow exception. The FPU will raise the overflow exception if a
calculation overflows or if you attempt to store a value which is too large to fit into a des-
tination operand (e.g., storing a large extended precision value into a single precision vari-
able).

Bit four, if set, masks the underflow exception. Underflow occurs when the result is too
small to fit in the desintation operand. Like overflow, this exception can occur whenever
you store a small extended precision value into a smaller variable (single or double preci-
sion) or when the result of a computation is too small for extended precision.

Bit five controls whether the precision exception can occur. A precision exception
occurs whenever the FPU produces an imprecise result, generally the result of an internal
rounding operation. Although many operations will produce an exact result, many more
will not. For example, dividing one by ten will produce an inexact result. Therefore, this
bit is usually one since inexact results are very common.

Bits six and thirteen through fifteen in the control register are currently undefined and
reserved for future use. Bit seven is the interrupt enable mask, but it is only active on the
8087 FPU; a zero in this bit enables 8087 interrupts and a one disables FPU interrupts.

The 80x87 provides two instructions, FLDCW (load control word) and FSTCW (store
control word), that let you load and store the contents of the control register. The single
operand to these instructions must be a 16 bit memory location. The FLDCW instruction
loads the control register from the specified memory location, FSTCW stores the control
register into the specified memory location.

Table 59: Mantissa Precision Control Bits

Bits 8 & 9 Precision Control
00 24 bits

01 Reserved

10 53 bits

11 64 bits

Floating Point Arithmetic

Page 785

14.4.1.3 The FPU Status Register

The FPU status register provides the status of the coprocessor at the instant you read
it. The FSTSW instruction stores the16 bit floating point status register into the
mod/reg/rm operand. The status register s a 16 bit register, its layout appears in
Figure 14.7.

Bits zero through five are the exception flags. These bits are appear in the same order
as the exception masks in the control register. If the corresponding condition exists, then
the bit is set. These bits are independent of the exception masks in the control register. The
80x87 sets and clears these bits regardless of the corresponding mask setting.

Bit six (active only on 80386 and later processors) indicates a stack fault. A stack fault
occurs whenever there is a stack overflow or underflow. When this bit is set, the C1 condi-
tion code bit determines whether there was a stack overflow (C1=1) or stack underflow
(C1=0) condition.

Bit seven of the status register is set if any error condition bit is set. It is the logical OR
of bits zero through five. A program can test this bit to quickly determine if an error condi-
tion exists.

Bits eight, nine, ten, and fourteen are the coprocessor condition code bits. Various
instructions set the condition code bits as shown in the following table:

Table 60: FPU Condition Code Bits

Instruction Condition Code Bits

C3 C2 C1 C0

Condition

fcom, fcomp,
fcompp,
ficom,
ficomp

0 0 X 0

0 0 X 1

1 0 X 0

1 1 X 1

ST > source

ST < source

ST = source

ST or source undefined

X = Don’t care

Figure 14.7 FPU Status Register

Exception Flags

Reserved on 80387
 and later FPUs.

Exception Flag
Stack Fault
Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation

 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Busy C3 Top of stack
Pointer

C2 C1 C0

Condition Codes

Chapter 14

Page 786

ftst 0 0 X 0

0 0 X 1

1 0 X 0

1 1 X 1

ST is positive

ST is negative

ST is zero (+ or -)

ST is uncomparable

fxam 0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 X X 1

+ Unnormalized

-Unnormalized

+Normalized

-Normalized

+0

-0

+Denormalized

-Denormalized

+NaN

-NaN

+Infinity

-Infinity

Empty register

fucom,
fucomp,
fucompp

0 0 X 0

0 0 X 1

1 0 X 0

1 1 X 1

ST > source

ST < source

ST = source

Unorder

Table 60: FPU Condition Code Bits

Instruction Condition Code Bits

C3 C2 C1 C0

Condition

X = Don’t care

Floating Point Arithmetic

Page 787

Table 61: Condition Code Interpretation

Insruction(s) C0 C3 C2 C1

fcom, fcomp,
fcmpp, ftst,
fucom,
fucomp,
fucompp,
ficom,
ficomp

Result of

comparison.

See table above.

Result of

comparison.

See table above.

Operand is not
comparable.

Result of com-
parison (see
table above) or
stack over-
flow/underflow
(if stack excep-
tion bit is set).

fxam See previous
table.

See previous
table.

See previous
table.

Sign of result, or
stack over-
flow/underflow
(if stack excep-
tion bit is set).

fprem,
fprem1

Bit 2 of remain-
der

Bit 0 of remain-
der

0- reduction
done.

1- reduction
incomplete.

Bit 1 of remain-
der or stack over-
flow/underflow
(if stack excep-
tion bit is set).

fist, fbstp,
frndint, fst,
fstp, fadd,
fmul, fdiv,
fdivr, fsub,
fsubr, fscale,
fsqrt, fpatan,
f2xm1, fyl2x,
fyl2xp1

Undefined Undefined Undefined

Round up
occurred or stack
overflow/under-
flow (if stack
exception bit is
set).

fptan, fsin,
fcos, fsincos Undefined Undefined

0- reduction
done.

1- reduction
incomplete.

Round up
occurred or stack
overflow/under-
flow (if stack
exception bit is
set).

fchs, fabs,
fxch, fincstp,
fdecstp,
constant loads
, fxtract, fld,
fild, fbld,
fstp (80 bit)

Undefined Undefined Undefined

Zero result or
stack over-
flow/underflow
(if stack excep-
tion bit is set).

fldenv, fstor Restored from
memory oper-
and.

Restored from
memory oper-
and.

Restored from
memory oper-
and.

Restored from
memory oper-
and.

fldcw,
fstenv,
fstcw, fstsw,
fclex

Undefined Undefined Undefined Undefined

finit, fsave Cleared to zero. Cleared to zero. Cleared to zero. Cleared to zero.

Chapter 14

Page 788

Bits 11-13 of the FPU status register provide the register number of the top of stack.
During computations, the 80x87 adds (modulo eight) the logical register numbers sup-
plied by the programmer to these three bits to determine the physical register number at
run time.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is busy. Most pro-
grams will have little reason to access this bit.

14.4.2 FPU Data Types

The 80x87 FPU supports seven different data types: three integer types, a packed dec-
imal type, and three floating point types. Since the 80x86 CPUs already support integer
data types, these are few reasons why you would want to use the 80x87 integer types. The
packed decimal type provides a 17 digit signed decimal (BCD) integer. However, we are
avoiding BCD arithmetic in this text, so we will ignore this data type in the 80x87 FPU.
The remaining three data types are the 32 bit, 64 bit, and 80 bit floating point data types
we’ve looked at so far. The 80x87 data types appear in Figure 14.8, Figure 14.9, and
Figure 14.10.

Figure 14.8 80x87 Floating Point Formats

31 23 15 7 0

32 bit Single Precision Floating Point Format

63 52 7 0

……

64 bit Double Precision Floating Point Format

79 64 7 0

……

80 bit Extended Precision Floating Point Format

Figure 14.9 80x87 Integer Formats

15 7 0

16 Bit Two's Complement Integer

31 23 15 7 0

32 bit Two's Complement Integer

63 52 7 0
……

64 bit Two's Complement Integer

Floating Point Arithmetic

Page 789

The 80x87 FPU generally stores values in a normalized format. When a floating point
number is normalized, the H.O. bit is always one. In the 32 and 64 bit floating point for-
mats, the 80x87 does not actually store this bit, the 80x87 always assumes that it is one.
Therefore, 32 and 64 bit floating point numbers are always normalized. In the extended
precision 80 bit floating point format, the 80x87 does not assume that the H.O. bit of the
mantissa is one, the H.O. bit of the number appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of bits. How-
ever, there are a large number of non-normalized values which we can represent with the
80 bit format. These values are very close to zero and represent the set of values whose
mantissa H.O. bit is not zero. The 80x87 FPUs support a special form of 80 bit known as
denormalized values. Denormalized values allow the 80x87 to encode very small values it
cannot encode using normalized values, but at a price. Denormalized values offer less bits
of precision than normalized values. Therefore, using denormalized values in a computa-
tion may introduce some slight inaccuracy into a computation. Of course, this is always
better than underflowing the denormalized value to zero (which could make the compu-
tation even less accurate), but you must keep in mind that if you work with very small
values you may lose some accuracy in your computations. Note that the 80x87 status reg-
ister contains a bit you can use to detect when the FPU uses a denormalized value in a
computation.

14.4.3 The FPU Instruction Set

The 80387 (and later) FPU adds over 80 new instructions to the 80x86 instruction set.
We can classify these instructions as data movement instructions, conversions, arithmetic
instructions, comparisons, constant instructions, transcendental instructions, and miscellaneous
instructions. The following sections describe each of the instructions in these categories.

14.4.4 FPU Data Movement Instructions

The data movement instructions transfer data between the internal FPU registers and
memory. The instructions in this category are fld, fst, fstp, and fxch. The fld instructions
always pushes its operand onto the floating point stack. The fstp instruction always pops
the top of stack after storing the top of stack (tos) into its operation. The remaining instruc-
tions do not affect the number of items on the stack.

14.4.4.1 The FLD Instruction

The fld instruction loads a 32 bit, 64 bit, or 80 bit floating point value onto the stack.
This instruction converts 32 and 64 bit operand to an 80 bit extended precision value
before pushing the value onto the floating point stack.

The fld instruction first decrements the tos pointer (bits 11-13 of the status register) and
then stores the 80 bit value in the physical register specified by the new tos pointer. If the
source operand of the fld instruction is a floating point data register, ST(i), then the actual

Figure 14.10 80x87 Packed Decimal Formats

79 72 68 64 60 7 4 0

…

D0D1D2D14D15D16D17

80 Bit Packed Decimal Integer (BCD)

Sign Unused

Chapter 14

Page 790

register the 80x87 uses for the load operation is the register number before decrementing
the tos pointer. Therefore, fld st or fld st(0) duplicates the value on the top of the stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets the the denor-
malized exception bit if you load an 80 bit denormalized value. It sets the invalid opera-
tion bit if you attempt to load an empty floating point register onto the stop of stack (or
perform some other invalid operation).

Examples:

fld st(1)
fld mem_32
fld MyRealVar
fld mem_64[bx]

14.4.4.2 The FST and FSTP Instructions

The fst and fstp instructions copy the value on the top of the floating point register
stack to another floating point register or to a 32, 64, or 80 bit memory variable. When
copying data to a 32 or 64 bit memory variable, the 80 bit extended precision value on the
top of stack is rounded to the smaller format as specified by the rounding control bits in
the FPU control register.

The fstp instruction pops the value off the top of stack when moving it to the destina-
tion location. It does this by incrementing the top of stack pointer in the status register
after accessing the data in st(0). If the destination operand is a floating point register, the
FPU stores the value at the specified register number before popping the data off the top of
the stack.

Executing an fstp st(0) instruction effectively pops the data off the top of stack with no
data transfer. Examples:

fst mem_32
fstp mem_64
fstp mem_64[ebx*8]
fst mem_80
fst st(2)
fstp st(1)

The last example above effectively pops st(1) while leaving st(0) on the top of the stack.

The fst and fstp instructions will set the stack exception bit if a stack underflow occurs
(attempting to store a value from an empty register stack). They will set the precision bit if
there is a loss of precision during the store operation (this will occur, for example, when
storing an 80 bit extended precision value into a 32 or 64 bit memory variable and there
are some bits lost during conversion). They will set the underflow exception bit when
storing an 80 bit value value into a 32 or 64 bit memory variable, but the value is too small
to fit into the destination operand. Likewise, these instructions will set the overflow
exception bit if the value on the top of stack is too big to fit into a 32 or 64 bit memory vari-
able. The fst and fstp instructions set the denormalized flag when you try to store a denor-
malized value into an 80 bit register or variable7. They set the invalid operation flag if an
invalid operation (such as storing into an empty register) occurs. Finally, these instruc-
tions set the C1 condition bit if rounding occurs during the store operation (this only
occurs when storing into a 32 or 64 bit memory variable and you have to round the man-
tissa to fit into the destination).

14.4.4.3 The FXCH Instruction

The fxch instruction exchanges the value on the top of stack with one of the other FPU
registers. This instruction takes two forms: one with a single FPU register as an operand,

7. Storing a denormalized value into a 32 or 64 bit memory variable will always set the underflow exception bit.

Floating Point Arithmetic

Page 791

the second without any operands. The first form exchanges the top of stack with the spec-
ified register. The second form of fxch swaps the top of stack with st(1).

Many FPU instructions, e.g., fsqrt, operate only on the top of the register stack. If you
want to perform such an operation on a value that is not on the top of stack, you can use
the fxch instruction to swap that register with tos, perform the desired operation, and then
use the fxch to swap the tos with the original register. The following example takes the
square root of st(2):

fxch st(2)
fsqrt
fxch st(2)

The fxch instruction sets the stack exception bit if the stack is empty. It sets the invalid
operation bit if you specify an empty register as the operand. This instruction always
clears the C1 condition code bit.

14.4.5 Conversions

The 80x87 chip performs all arithmetic operations on 80 bit real quantities. In a sense,
the fld and fst/fstp instructions are conversion instructions as well as data movement
instructions because they automatically convert between the internal 80 bit real format
and the 32 and 64 bit memory formats. Nonetheless, we’ll simply classify them as data
movement operations, rather than conversions, because they are moving real values to
and from memory. The 80x87 FPU provides five routines which convert to or from integer
or binary coded decimal (BCD) format when moving data. These instructions are fild, fist,
fistp, fbld, and fbstp.

14.4.5.1 The FILD Instruction

The fild (integer load) instruction converts a 16, 32, or 64 bit two’s complement integer
to the 80 bit extended precision format and pushes the result onto the stack. This instruc-
tion always expects a single operand. This operand must be the address of a word, double
word, or quad word integer variable. Although the instruction format for fild uses the
familiar mod/rm fields, the operand must be a memory variable, even for 16 and 32 bit
integers. You cannot specify one of the 80386’s 16 or 32 bit general purpose registers. If
you want to push an 80x86 general purpose register onto the FPU stack, you must first
store it into a memory variable and then use fild to push that value of that memory vari-
able.

The fild instruction sets the stack exception bit and C1 (accordingly) if stack overflow
occurs while pushing the converted value. Examples:

fild mem_16
fild mem_32[ecx*4]
fild mem_64[ebx+ecx*8]

14.4.5.2 The FIST and FISTP Instructions

The fist and fistp instructions convert the 80 bit extended precision variable on the top
of stack to a 16, 32, or 64 bit integer and store the result away into the memory variable
specified by the single operand. These instructions convert the value on tos to an integer
according to the rounding setting in the FPU control register (bits 10 and 11). As for the fild
instruction, the fist and fistp instructions will not let you specify one of the 80x86’s general
purpose 16 or 32 bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer and then stores
the result; it does not otherwise affect the floating point register stack. The fistp instruction
pops the value off the floating point register stack after storing the converted value.

Chapter 14

Page 792

These instructions set the stack exception bit if the floating point register stack is
empty (this will also clear C1). They set the precision (imprecise operation) and C1 bits if
rounding occurs (that is, if there is any fractional component to the value in st(0)). These
instructions set the underflow exception bit if the result is too small (i.e., less than one but
greater than zero or less than zero but greater than -1). Examples:

fist mem_16[bx]
fist mem_64
fistp mem_32

Don’t forget that these instructions use the rounding control settings to determine
how they will convert the floating point data to an integer during the store operation. Be
default, the rouding control is usually set to “round” mode; yet most programmers expect
fist/fistp to truncate the decimal portion during conversion. If you want fist/fistp to truncate
floating point values when converting them to an integer, you will need to set the round-
ing control bits appropriately in the floating point control register.

14.4.5.3 The FBLD and FBSTP Instructions

The fbld and fbstp instructions load and store 80 bit BCD values. The fbld instruction
converts a BCD value to its 80 bit extended precision equivalent and pushes the result
onto the stack. The fbstp instruction pops the extended precision real value on tos, con-
verts it to an 80 bit BCD value (rounding according to the bits in the floating point control
register), and stores the converted result at the address specified by the destination mem-
ory operand. Note that there is no fbst instruction which stores the value on tos without
popping it.

The fbld instruction sets the stack exception bit and C1 if stack overflow occurs. It sets
the invalid operation bit if you attempt to load an invalid BCD value. The fbstp instruction
sets the stack exception bit and clears C1 if stack underflow occurs (the stack is empty). It
sets the underflow flag under the same conditions as fist and fistp. Examples:

; Assuming fewer than eight items on the stack, the following
; code sequence is equivalent to an fbst instruction:

fld st(0) ;Duplicate value on TOS.
fbstp mem_80

; The following example easily converts an 80 bit BCD value to
; a 64 bit integer:

fbld bcd_80 ;Get BCD value to convert.
fist mem_64 ;Store as an integer.

14.4.6 Arithmetic Instructions

The arithmetic instructions make up a small, but important, subset of the 80x87’s
instruction set. These instructions fall into two general categories – those which operate
on real values and those which operate on a real and an integer value.

14.4.6.1 The FADD and FADDP Instructions

These two instructions take the following forms:

fadd
faddp
fadd st(i), st(0)
fadd st(0), st(i)
faddp st(i), st(0)
fadd mem

Floating Point Arithmetic

Page 793

The first two forms are equivalent. They pop the two values on the top of stack, add
them, and push their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register operands,
behave like the 80x86’s add instruction. They add the value in the second register operand
to the value in the first register operand. Note that one of the register operands must be
st(0)8.

The faddp instruction with two operands adds st(0) (which must always be the second
operand) to the destination (first) operand and then pops st(0). The destination operand
must be one of the other FPU registers.

The last form above, fadd with a memory operand, adds a 32 or 64 bit floating point
variable to the value in st(0). This instruction will convert the 32 or 64 bit operands to an 80
bit extended precision value before performing the addition. Note that this instruction
does not allow an 80 bit memory operand.

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If a stack fault exception occurs, C1
denotes stack overflow or underflow.

14.4.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions

These four instructions take the following forms:

fsub
fsubp
fsubr
fsubrp

fsub st(i). st(0)
fsub st(0), st(i)
fsubp st(i), st(0)
fsub mem

fsubr st(i). st(0)
fsubr st(0), st(i)
fsubrp st(i), st(0)
fsubr mem

With no operands, the fsub and fsubp instructions operate identically. They pop st(0)
and st(1) from the register stack, compute st(0)-st(1), and the push the difference back onto
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in an almost iden-
tical fashion except they compute st(1)-st(0) and push that difference.

With two register operands (destination, source) the fsub instruction computes destina-
tion := destination - source. One of the two registers must be st(0). With two registers as
operands, the fsubp also computes destination := destination - source and then it pops st(0)
off the stack after computing the difference. For the fsubp instruction, the source operand
must be st(0).

With two register operands, the fsubr and fsubrp instruction work in a similar fashion
to fsub and fsubp, except they compute destination := source - destination.

The fsub mem and fsubr mem instructions accept a 32 or 64 bit memory operand. They
convert the memory operand to an 80 bit extended precision value and subtract this from
st(0) (fsub) or subtract st(0) from this value (fsubr) and store the result back into st(0).

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If a stack fault exception occurs, C1
denotes stack overflow or underflow.

8. Because you will use st(0) quite a bit when programming the 80x87, MASM allows you to use the abbreviation
st for st(0). However, this text will explicitly state st(0) so there will be no confusion.

Chapter 14

Page 794

14.4.6.3 The FMUL and FMULP Instructions

The fmul and fmulp instructions multiply two floating point values. These instructions
allow the following forms:

fmul
fmulp

fmul st(0), st(i)
fmul st(i), st(0)
fmul mem

fmulp st(i), st(0)

With no operands, fmul and fmulp both do the same thing – they pop st(0) and st(1),
multiply these values, and push their product back onto the stack. The fmul instructions
with two register operands compute destination := destination * source. One of the registers
(source or destination) must be st(0).

The fmulp st(i), st(0) instruction computes st(i) := st(i) * st(0) and then pops st(0). This
instruction uses the value for i before popping st(0). The fmul mem instruction requires a 32
or 64 bit memory operand. It converts the specified memory variable to an 80 bit extended
precision value and the multiplies st(0) by this value.

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If rounding occurs during the computa-
tion, these instructions set the C1 condition code bit. If a stack fault exception occurs, C1
denotes stack overflow or underflow.

14.4.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions

These four instructions allow the following forms:

fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(i)
fdiv st(i), st(0)
fdivp st(i), st(0)

fdivr st(0), st(i)
fdivr st(i), st(0)
fdivrp st(i), st(0)

fdiv mem
fdivr mem

With zero operands, the fdiv and fdivp instructions pop st(0) and st(1), compute
st(0)/st(1), and push the result back onto the stack. The fdivr and fdivrp instructions also pop
st(0) and st(1) but compute st(1)/st(0) before pushing the quotient onto the stack.

With two register operands, these instructions compute the following quotients:

fdiv st(0), st(i) ;st(0) := st(0)/st(i)
fdiv st(i), st(0) ;st(i) := st(i)/st(0)
fdivp st(i), st(0) ;st(i) := st(i)/st(0)
fdivr st(i), st(i) ;st(0) := st(0)/st(i)
fdivrp st(i), st(0) ;st(i) := st(0)/st(i)

The fdivp and fdivrp instructions also pop st(0) after performing the division operation. The
value for i in this two instructions is computed before popping st(0).

These instructions can raise the stack, precision, underflow, overflow, denormalized,
zero divide, and illegal operation exceptions, as appropriate. If rounding occurs during
the computation, these instructions set the C1 condition code bit. If a stack fault exception
occurs, C1 denotes stack overflow or underflow.

Floating Point Arithmetic

Page 795

14.4.6.5 The FSQRT Instruction

The fsqrt routine does not allow any operands. It computes the square root of the value
on tos and replaces st(0) with this result. The value on tos must be zero or positive, other-
wise fsqrt will generate an invalid operation exception.

This instruction can raise the stack, precision, denormalized, and invalid operation
exceptions, as appropriate. If rounding occurs during the computation, fsqrt sets the C1
condition code bit. If a stack fault exception occurs, C1 denotes stack overflow or under-
flow.

Example:

; Compute Z := sqrt(x**2 + y**2);

fld x ;Load X.
fld st(0) ;Duplicate X on TOS.
fmul ;Compute X**2.

fld y ;Load Y.
fld st(0) ;Duplicate Y on TOS.
fmul ;Compute Y**2.

fadd ;Compute X**2 + Y**2.
fsqrt ;Compute sqrt(x**2 + y**2).
fst Z ;Store away result in Z.

14.4.6.6 The FSCALE Instruction

The fscale instruction pops two values off the stack. It multiplies st(0) by 2st(1) and
pushes the result back onto the stack. If the value in st(1) is not an integer, fscale truncates
it towards zero before performing the operation.

This instruction raises the stack exception if there are not two items currently on the
stack (this will also clear C1 since stack underflow occurs). It raises the precision exception
if there is a loss of precision due to this operation (this occurs when st(1) contains a large,
negative, value). Likewise, this instruction sets the underflow or overflow exception bits if
you multiply st(0) by a very large positive or negative power of two. If the result of the
multiplication is very small, fscale could set the denormalized bit. Also, this instruction
could set the invalid operation bit if you attempt to fscale illegal values. Fscale sets C1 if
rounding occurs in an otherwise correct computation. Example:

fild Sixteen ;Push sixteen onto the stack.
fld x ;Compute x * (2**16).
fscale
 .
 .
 .

Sixteen word 16

14.4.6.7 The FPREM and FPREM1 Instructions

The fprem and fprem1 instructions compute a partial remainder. Intel designed the fprem
instruction before the IEEE finalized their floating point standard. In the final draft of the
IEEE floating point standard, the definition of fprem was a little different than Intel’s origi-
nal design. Unfortunately, Intel needed to maintain compatibility with the existing soft-
ware that used the fprem instruction, so they designed a new version to handle the IEEE
partial remainder operation, fprem1. You should always use fprem1 in new software you
write, therefore we will only discuss fprem1 here, although you use fprem in an identical
fashion.

Fprem1 computes the partial remainder of st(0)/st(1). If the difference between the
exponents of st(0) and st(1) is less than 64, fprem1 can compute the exact remainder in one

Chapter 14

Page 796

operation. Otherwise you will have to execute the fprem1 two or more times to get the cor-
rect remainder value. The C2 condition code bit determines when the computation is com-
plete. Note that fprem1 does not pop the two operands off the stack; it leaves the partial
remainder in st(0) and the original divisor in st(1) in case you need to compute another
partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two values on the
top of stack. It sets the underflow and denormal exception bits if the result is too small. It
sets the invalid operation bit if the values on tos are inappropriate for this operation. It
sets the C2 condition code bit if the partial remainder operation is not complete. Finally, it
loads C3, C1, and C0 with bits zero, one, and two of the quotient, respectively.

Example:

; Compute Z := X mod Y

fld y
fld x

PartialLp: fprem1
fstsw ax ;Get condition bits in AX.
test ah, 100b ;See if C2 is set.
jnz PartialLp ;Repeat if not done yet.
fstp Z ;Store remainder away.
fstp st(0) ;Pop old y value.

14.4.6.8 The FRNDINT Instruction

The frndint instruction rounds the value on tos to the nearest integer using the round-
ing algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the tos (it will also
clear C1 in this case). It sets the precision and denormal exception bits if there was a loss of
precision. It sets the invalid operation flag if the value on the tos is not a valid number.

14.4.6.9 The FXTRACT Instruction

The fxtract instruction is the complement to the fscale instruction. It pops the value off
the top of the stack and pushes a value which is the integer equivalent of the exponent (in
80 bit real form), and then pushes the mantissa with an exponent of zero (3fffh in biased
form).

This instruction raises the stack exception if there is a stack underflow when popping
the original value or a stack overflow when pushing the two results (C1 determines
whether stack overflow or underflow occurs). If the original top of stack was zero, fxtract
sets the zero division exception flag. The denormalized flag is set if the result warrants it;
and the invalid operation flag is set if there are illegal input values when you execute
fxtract.

Example:

; The following example extracts the binary exponent of X and
; stores this into the 16 bit integer variable Xponent.

fld x
fxtract
fstp st(0)
fistp Xponent

14.4.6.10 The FABS Instruction

Fabs computes the absolute value of st(0) by clearing the sign bit of st(0). It sets the
stack exception bit and invalid operation bits if the stack is empty.

Floating Point Arithmetic

Page 797

Example:

; Compute X := sqrt(abs(x));

fld x
fabs
fsqrt
fstp x

14.4.6.11 The FCHS Instruction

Fchs changes the sign of st(0)’s value by inverting its sign bit. It sets the stack excep-
tion bit and invalid operation bits if the stack is empty. Example:

; Compute X := -X if X is positive, X := X if X is negative.

fld x
fabs
fchs
fstp x

14.4.7 Comparison Instructions

The 80x87 provides several instructions for comparing real values. The fcom, fcomp,
fcompp, fucom, fucomp, and fucompp instructions compare the two values on the top of stack
and set the condition codes appropriately. The ftst instruction compares the value on the
top of stack with zero. The fxam instrution checks the value on tos and reports sign, nor-
malization, and tag information.

Generally, most programs test the condition code bits immediately after a compari-
son. Unfortunately, there are no conditional jump instructions that branch based on the
FPU condition codes. Instead, you can use the fstsw instruction to copy the floating point
status register (see “The FPU Status Register” on page 785) into the ax register; then you
can use the sahf instruction to copy the ah register into the 80x86’s condition code bits.
After doing this, you can can use the conditional jump instructions to test some condition.
This technique copies C0 into the carry flag, C2 into the parity flag, and C3 into the zero
flag. The sahf instruction does not copy C1 into any of the 80x86’s flag bits.

Since the sahf instruction does not copy any 80x87 processor status bits into the sign or
overflow flags, you cannot use the jg, jl, jge, or jle instructions. Instead, use the ja, jae, jb, jbe,
je, and jz instructions when testing the results of a floating point comparison. Yes, these con-
ditional jumps normally test unsigned values and floating point numbers are signed values. How-
ever, use the unsigned conditional branches anyway; the fstsw and sahf instructions set the
80x86 flags register to use the unsigned jumps.

14.4.7.1 The FCOM, FCOMP, and FCOMPP Instructions

The fcom, fcomp, and fcompp instructions compare st(0) to the specified operand and
set the corresponding 80x87 condition code bits based on the result of the comparison. The
legal forms for these instructions are

fcom
fcomp
fcompp

fcom st(i)
fcomp st(i)

fcom mem
fcomp mem

Chapter 14

Page 798

With no operands, fcom, fcomp, and fcompp compare st(0) against st(1) and set the pro-
cessor flags accordingly. In addition, fcomp pops st(0) off the stack and fcompp pops both
st(0) and st(1) off the stack.

With a single register operand, fcom and fcomp compare st(0) against the specified reg-
ister. Fcomp also pops st(0) after the comparison.

With a 32 or 64 bit memory operand, the fcom and fcomp instructions convert the
memory variable to an 80 bit extended precision value and then compare st(0) against this
value, setting the condition code bits accordingly. Fcomp also pops st(0) after the compari-
son.

These instructions set C2 (which winds up in the parity flag) if the two operands are
not comparable (e.g., NaN). If it is possible for an illegal floating point value to wind up in
a comparison, you should check the parity flag for an error before checking the desired
condition.

These instructions set the stack fault bit if there aren’t two items on the top of the reg-
ister stack. They set the denormalized exception bit if either or both operands are denor-
malized. They set the invalid operation flag if either or both operands are quite NaNs.
These instructions always clear the C1 condition code.

14.4.7.2 The FUCOM, FUCOMP, and FUCOMPP Instructions

These instructions are similar to the fcom, fcomp, and fcompp instructions, although
they only allow the following forms:

fucom
fucomp
fucompp
fucom st(i)
fucomp st(i)

The difference between fcom/fcomp/fcompp and fucom/fucomp/fucompp is rela-
tively minor. The fcom/fcomp/fcompp instructions set the invalid operation exception bit
if you compare two NaNs. The fucom/fucomp/fucompp instructions do not. In all other
cases, these two sets of instructions behave identically.

14.4.7.3 The FTST Instruction

The ftst instruction compares the value in st(0) against 0.0. It behaves just like the fcom
instruction would if st(1) contained 0.0. Note that this instruction does not differentiate
-0.0 from +0.0. If the value in st(0) is either of these values, ftst will set C3 to denote equal-
ity. If you need to differentiate -0.0 from +0.0, use the fxam instruction. Note that this
instruction does not pop st(0) off the stack.

14.4.7.4 The FXAM Instruction

The fxam instruction examines the value in st(0) and reports the results in the condi-
tion code bits (see “The FPU Status Register” on page 785 for details on how fxam sets
these bits). This instruction does not pop st(0) off the stack.

14.4.8 Constant Instructions

The 80x87 FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault, invalid opera-

Floating Point Arithmetic

Page 799

tion, and C1 flags if a stack overflow occurs; they do not otherwise affect the FPU flags.
The specific instructions in this category include:

fldz ;Pushes +0.0.
fld1 ;Pushes +1.0.
fldpi ;Pushes π.
fldl2t ;Pushes log2(10).
fldl2e ;Pushes log2(e).
fldlg2 ;Pushes log10(2).
fldln2 ;Pushes ln(2).

14.4.9 Transcendental Instructions

The 80387 and later FPUs provide eight transcendental (log and trigonometric)
instructions to compute a partial tangent, partial arctangent, 2x-1, y * log2(x), and y *
log2(x+1). Using various algebraic identities, it is easy to compute most of the other com-
mon transcendental functions using these instructions.

14.4.9.1 The F2XM1 Instruction

F2xm1 computes 2st(0)-1. The value in st(0) must be in the range -1.0 ≤ st(0) ≤ +1.0. If
st(0) is out of range f2xm1 generates an undefined result but raises no exceptions. The com-
puted value replaces the value in st(0). Example:

; Compute 10x using the identity: 10x = 2x*lg(10) (lg = log2).

fld x
fldl2t
fmul
f2xm1
fld1
fadd

Note that f2xm1 computes 2x-1, which is why the code above adds 1.0 to the result at the
end of the computation.

14.4.9.2 The FSIN, FCOS, and FSINCOS Instructions

These instructions pop the value off the top of the register stack and compute the sine,
cosine, or both, and push the result(s) back onto the stack. The fsincos pushes the sine fol-
lowed by the cosine of the original operand, hence it leaves cos(st(0)) in st(0) and sin(st(0))
in st(1).

These instructions assume st(0) specifies an angle in radians and this angle must be in
the range -263 < st(0) < +263. If the original operand is out of range, these instructions set
the C2 flag and leave st(0) unchanged. You can use the fprem1 instruction, with a divisor of
2π, to reduce the operand to a reasonable range.

These instructions set the stack fault/C1, precision, underflow, denormalized, and
invalid operation flags according to the result of the computation.

14.4.9.3 The FPTAN Instruction

Fptan computes the tangent of st(0) and pushes this value and then it pushes 1.0 onto
the stack. Like the fsin and fcos instructions, the value of st(0) is assumed to be in radians
and must be in the range -263<st(0)<+263. If the value is outside this range, fptan sets C2 to
indicate that the conversion did not take place. As with the fsin, fcos, and fsincos instruc-
tions, you can use the fprem1 instruction to reduce this operand to a reasonable range
using a divisor of 2π.

Chapter 14

Page 800

If the argument is invalid (i.e., zero or π radians, which causes a division by zero) the
result is undefined and this instruction raises no exceptions. Fptan will set the stack fault,
precision, underflow, denormal, invalid operation, C2, and C1 bits as required by the oper-
ation.

14.4.9.4 The FPATAN Instruction

This instruction expects two values on the top of stack. It pops them and computes the
following:

st(0) = tan-1(st(1) / st(0))

The resulting value is the arctangent of the ratio on the stack expressed in radians. If
you have a value you wish to compute the tangent of, use fld1 to create the appropriate
ratio and then execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denormal, and
invalid operation bits if an problem occurs during the computation. It sets the C1 condi-
tion code bit if it has to round the result.

14.4.9.5 The FYL2X and FYL2XP1 Instructions

The fyl2x and fyl2xp1 instructions compute st(1) * log2(st(0)) and st(1) * log2(st(0)+1),
respectively. Fyl2x requires that st(0) be greater than zero, fyl2xp1 requires st(0) to be in the
range:

Fyl2x is useful for computing logs to bases other than two; fyl2xp1 is useful for comput-
ing compound interest, maintaining the maximum precision during computation.

Fyl2x can affect all the exception flags. C1 denotes rounding if there is not other error,
stack overflow/underflow if the stack fault bit is set.

The fyl2xp1 instruction does not affect the overflow or zero divide exception flags.
These exceptions occur when st(0) is very small or zero. Since fyl2xp1 adds one to st(0)
before computing the function, this condition never holds. Fyl2xp1 affects the other flags in
a manner identical to fyl2x.

14.4.10 Miscellaneous instructions

The 80x87 FPU includes several additional instructions which control the FPU, syn-
chronize operations, and let you test or set various status bits. These instructions include
finit/fninit, fdisi/fndisi, feni/fneni, fldcw, fstcw/fnstcw, fclex/fnclex, fsave/fnsave, frstor, frstpm,
fstsw/fnstsw, fstenv/fnstenv, fldenv, fincstp, fdecstp, fwait, fnop, and ffree. The fdisi/fndisi, feni/fneni,
and frstpm are active only on FPUs earlier than the 80387, so we will not consider them
here.

Many of these instructions have two forms. The first form is Fxxxx and the second
form is FNxxxx. The version without the “N” emits an fwait instruction prior to opcode
(which is standard for most coprocessor instructions). The version with the “N” does not
emit the fwait opcode (“N” stands for no wait).

14.4.10.1 The FINIT and FNINIT Instructions

The finit instruction intializes the FPU for proper operation. Your applications should
execute this instruction before executing any other FPU instructions. This instruction ini-

1–
2

2

–

st 0() 1

2
2

–
 < <

Floating Point Arithmetic

Page 801

tializes the control register to 37Fh (see “The FPU Control Register” on page 782), the sta-
tus register to zero (see “The FPU Status Register” on page 785) and the tag word to
0FFFFh. The other registers are unaffected.

14.4.10.2 The FWAIT Instruction

The fwait instruction pauses the system until any currently executing FPU instruction
completes. This is required because the FPU on the 80486sx and earlier CPU/FPU combi-
nations can execute instructions in parallel with the CPU. Therefore, any FPU instruction
which reads or writes memory could suffer from a data hazard if the main CPU accesses
that same memory location before the FPU reads or writes that location. The fwait instruc-
tion lets you synchronize the operation of the FPU by waiting until the completion of the
current FPU instruction. This resolves the data hazard by, effectively, inserting an explict
“stall” into the execution stream.

14.4.10.3 The FLDCW and FSTCW Instructions

The fldcw and fstcw instructions require a single 16 bit memory operand:

fldcw mem_16
fstcw mem_16

These two instructions load the control register (see “The FPU Control Register” on
page 782) from a memory location (fldcw) or store the control word to a 16 bit memory
location (fstcw).

When using the fldcw instruction to turn on one of the exceptions, if the corresponding
exception flag is set when you enable that exception, the FPU will generate an immediate
interrupt before the CPU executes the next instruction. Therefore, you should use the fclex
instruction to clear any pending interrupts before changing the FPU exception enable bits.

14.4.10.4 The FCLEX and FNCLEX Instructions

The fclex and fnclex instructions clear all exception bits the stack fault bit, and the busy
flag in the FPU status register (see “The FPU Status Register” on page 785).

14.4.10.5 The FLDENV, FSTENV, and FNSTENV Instructions

fstenv mem_14b
fnstenv mem_14b
fldenv mem_14b

The fstenv/fnstenv instructions store a 14-byte FPU environment record to the memory
operand specified. When operating in real mode (the only mode this text considers), the
environment record takes the form appearing in Figure 14.11.

You must execute the fstenv and fnstenv instructions with the CPU interrupts disabled.
Furthermore, you should always ensure that the FPU is not busy before executing this
instruction. This is easily accomplished by using the following code:

pushf ;Preserve I flag.
cli ;Disable interrupts.
fstenv mem_14b ;Implicit wait for not busy.
fwait ;Wait for operation to finish.
popf ;Restore I flag.

The fldenv instruction loads the FPU environment from the specified memory oper-
and. Note that this instruction lets you load the the status word. There is no explicit
instruction like fldcw to accomplish this.

Chapter 14

Page 802

14.4.10.6 The FSAVE, FNSAVE, and FRSTOR Instructions

fsave mem_94b
fnsave mem_94b
frstor mem_94b

These instructions save and restore the state of the FPU. This includes saving all the
internal control, status, and data registers. The destination location for fsave/fnsave (source
location for frstor) must be 94 bytes long. The first 14 bytes correspond to the environment
record the fldenv and fstenv instructions use; the remaining 80 bytes hold the data from the
FPU register stack written out as st(0) through st(7). Frstor reloads the environment record
and floating point registers from the specified memory operand.

The fsave/fnsave and frstor instructions are mainly intended for task switching. You can
also use fsave/fnsave and frstor as a “push all” and “pop all” sequence to preserve the state
of the FPU.

Like the fstenv and fldenv instructions, interrupts should be disabled while saving or
restoring the FPU state. Otherwise another interrupt service routine could manipulate the
FPU registers and invalidate the operation of the fsave/fnsave or frestore operation. The fol-
lowing code properly protects the environment data while saving and restore the FPU sta-
tus:

; Preserve the FPU state, assume di points at the environment
; record in memory.

pushf
cli
fsave [si]
fwait
popf
 .
 .
 .

pushf
cli
frstor [si]
fwait
popf

Figure 14.11 FPU Environment Record (16 Bit Real Mode)

Data Ptr Bits 16-19 Unused Bits (set to zero)

Data Ptr (Bits 0-15)

Instr Ptr Bits 16-19 0 Instruction opcode (11 bits)

Instr Ptr (Bits 0-15)

Tag Word

Status Word

Control Word

Offset

12

10

8

6

4

2

0

Floating Point Arithmetic

Page 803

14.4.10.7 The FSTSW and FNSTSW Instructions

fstsw ax
fnstsw ax
fstsw mem_16
fnstsw mem_16

These instructions store the FPU status register (see “The FPU Status Register” on
page 785) into a 16 bit memory location or the ax register. These instructions are unusual
in the sense that they can copy an FPU value into one of the 80x86 general purpose regis-
ters. Of course, the whole purpose behind allowing the transfer of the status register into
ax is to allow the CPU to easily test the condition code register with the sahf instruction.

14.4.10.8 The FINCSTP and FDECSTP Instructions

The fincstp and fdecstp instructions do not take any operands. They simply increment
and decrement the stack pointer bits (mod 8) in the FPU status register. These two instruc-
tions clear the C1 flag, but do not otherwise affect the condition code bits in the FPU status
register.

14.4.10.9 The FNOP Instruction

The fnop instruction is simply an alias for fst st, st(0). It performs no other operation on
the FPU.

14.4.10.10The FFREE Instruction

ffree st(i)

This instruction modifies the tag bits for register i in the tags register to mark the spec-
ified register as emtpy. The value is unaffected by this instruction, but the FPU will no
longer be able to access that data (without resetting the appropriate tag bits).

14.4.11 Integer Operations

The 80x87 FPUs provide special instructions that combine integer to extended preci-
sion conversion along with various arithmetic and comparison operations. These instruc-
tions are the following:

fiadd int
fisub int
fisubr int
fimul int
fidiv int
fidivr int

ficom int
ficomp int

These instructions convert their 16 or 32 bit integer operands to an 80 bit extended
precision floating point value and then use this value as the source operand for the speci-
fied operation. These instructions use st(0) as the destination operand.

Chapter 14

Page 804

14.5 Sample Program: Additional Trigonometric Functions

This section provides various examples of 80x87 FPU programming. This group of
routines provides several trigonometric, inverse trigonometric, logarithmic, and exponen-
tial functions using various algebraic identities. All these functions assume that the input
values are on the stack are are within valid ranges for the given functions. The trigono-
metric routines expect angles expressed in radians and the inverse trig routines produce
angles measured in radians.

This program (transcnd.asm) appears on the companion CD-ROM.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386

.387
option segment:use16

dseg segment para public ‘data’

result real8 ?

; Some variables we use to test the routines in this package:

cotvar real8 3.0
cotRes real8 ?
acotRes real8 ?

cscvar real8 1.5
cscRes real8 ?
acscRes real8 ?

secvar real8 0.5
secRes real8 ?
asecRes real8 ?

sinvar real8 0.75
sinRes real8 ?
asinRes real8 ?

cosvar real8 0.25
cosRes real8 ?
acosRes real8 ?

Two2xvar real8 -2.5
Two2xRes real8 ?
lgxRes real8 ?

Ten2xVar real8 3.75
Ten2xRes real8 ?
logRes real8 ?

expVar real8 3.25
expRes real8 ?
lnRes real8 ?

Y2Xx real8 3.0
Y2Xy real8 3.0
Y2XRes real8 ?

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Floating Point Arithmetic

Page 805

; COT(x) - Computes the cotangent of st(0) and leaves result in st(0).
; st(0) contains x (in radians) and must be between
; -2**63 and +2**63
;
; There must be at least one free register on the stack for
; this routine to operate properly.
;
; cot(x) = 1/tan(x)

cot proc near
fsincos
fdivr
ret

cot endp

; CSC(x) - computes the cosecant of st(0) and leaves result in st(0).
; st(0) contains x (in radians) and must be between
; -2**63 and +2**63.
; The cosecant of x is undefined for any value of sin(x) that
; produces zero (e.g., zero or pi radians).
;
; There must be at least one free register on the stack for
; this routine to operate properly.
;
; csc(x) = 1/sin(x)

csc proc near
fsin
fld1
fdivr
ret

csc endp

; SEC(x) - computes the secant of st(0) and leaves result in st(0).
; st(0) contains x (in radians) and must be between
; -2**63 and +2**63.
;
; The secant of x is undefined for any value of cos(x) that
; produces zero (e.g., pi/2 radians).
;
; There must be at least one free register on the stack for
; this routine to operate properly.
;
; sec(x) = 1/cos(x)

sec proc near
fcos
fld1
fdivr
ret

sec endp

; ASIN(x)- Computes the arcsine of st(0) and leaves the result in st(0).
; Allowable range: -1<=x<=+1
; There must be at least two free registers for this
; function to operate properly.
;
; asin(x) = atan(sqrt(x*x/(1-x*x)))

asin proc near
fld st(0) ;Duplicate X on tos.
fmul ;Compute X**2.
fld st(0) ;Duplicate X**2 on tos.
fld1 ;Compute 1-X**2.
fsubr
fdiv ;Compute X**2/(1-X**2).
fsqrt ;Compute sqrt(x**2/(1-X**2)).
fld1 ;To compute full arctangent.
fpatan ;Compute atan of the above.
ret

Chapter 14

Page 806

asin endp

; ACOS(x)- Computes the arccosine of st(0) and leaves the
; result in st(0).
; Allowable range: -1<=x<=+1
; There must be at least two free registers for
; this function to operate properly.
;
; acos(x) = atan(sqrt((1-x*x)/(x*x)))

acos proc near
fld st(0) ;Duplicate X on tos.
fmul ;Compute X**2.
fld st(0) ;Duplicate X**2 on tos.
fld1 ;Compute 1-X**2.
fsubr
fdiv ;Compute (1-x**2)/X**2.
fsqrt ;Compute sqrt((1-X**2)/X**2).
fld1 ;To compute full arctangent.
fpatan ;Compute atan of the above.
ret

acos endp

; ACOT(x)- Computes the arccotangent of st(0) and leaves the
; result in st(0).
; X cannot equal zero.
; There must be at least one free register for
; this function to operate properly.
;
; acot(x) = atan(1/x)

acot proc near
fld1 ;fpatan computes
fxch ; atan(st(1)/st(0)).
fpatan ; we want atan(st(0)/st(1)).
ret

acot endp

; ACSC(x)- Computes the arccosecant of st(0) and leaves the
; result in st(0).
; abs(X) must be greater than one.
; There must be at least two free registers for
; this function to operate properly.
;
; acsc(x) = atan(sqrt(1/(x*x-1)))

acsc proc near
fld st(0) ;Compute x*x
fmul
fld1 ;Compute x*x-1
fsub
fld1 ;Compute 1/(x*x-1)
fdivr
fsqrt ;Compute sqrt(1/(x*x-1))
fld1
fpatan ;Compute atan of above.
ret

acsc endp

; ASEC(x)- Computes the arcsecant of st(0) and leaves the
; result in st(0).
; abs(X) must be greater than one.
; There must be at least two free registers for
; this function to operate properly.
;
; asec(x) = atan(sqrt(x*x-1))

asec proc near
fld st(0) ;Compute x*x
fmul

Floating Point Arithmetic

Page 807

fld1 ;Compute x*x-1
fsub
fsqrt ;Compute sqrt(x*x-1)
fld1
fpatan ;Compute atan of above.
ret

asec endp

; TwoToX(x)- Computes 2**x.
; It does this by using the algebraic identity:
;
; 2**x = 2**int(x) * 2**frac(x).
; We can easily compute 2**int(x) with fscale and
; 2**frac(x) using f2xm1.
;
; This routine requires three free registers.

SaveCW word ?
MaskedCW word ?

TwoToX proc near
fstcw cseg:SaveCW

; Modify the control word to truncate when rounding.

fstcw cseg:MaskedCW
or byte ptr cseg:MaskedCW+1, 1100b
fldcw cseg:MaskedCW

fld st(0) ;Duplicate tos.
fld st(0)
frndint ;Compute integer portion.

fxch ;Swap whole and int values.
fsub st(0), st(1) ;Compute fractional part.

f2xm1 ;Compute 2**frac(x)-1.
fld1
fadd ;Compute 2**frac(x).

fxch ;Get integer portion.
fld1 ;Compute 1*2**int(x).
fscale
fstp st(1) ;Remove st(1) (which is 1).

fmul ;Compute 2**int(x) * 2**frac(x).

fldcw cseg:SaveCW ;Restore rounding mode.
ret

TwoToX endp

; TenToX(x)- Computes 10**x.
;
; This routine requires three free registers.
;
; TenToX(x) = 2**(x * lg(10))

TenToX proc near
fldl2t ;Put lg(10) onto the stack
fmul ;Compute x*lg(10)
call TwoToX ;Compute 2**(x * lg(10)).
ret

TenToX endp

; exp(x)- Computes e**x.
;
; This routine requires three free registers.
;
; exp(x) = 2**(x * lg(e))

Chapter 14

Page 808

exp proc near
fldl2e ;Put lg(e) onto the stack.
fmul ;Compute x*lg(e).
call TwoToX ;Compute 2**(x * lg(e))
ret

exp endp

; YtoX(y,x)- Computes y**x (y=st(1), x=st(0)).
;
; This routine requires three free registers.
;
; Y must be greater than zero.
;
; YtoX(y,x) = 2 ** (x * lg(y))

YtoX proc near
fxch ;Compute lg(y).
fld1
fxch
fyl2x

fmul ;Compute x*lg(y).
call TwoToX ;Compute 2**(x*lg(y)).
ret

YtoX endp

; LOG(x)- Computes the base 10 logarithm of x.
;
; Usual range for x (>0).
;
; LOG(x) = lg(x)/lg(10).

log proc near
fld1
fxch
fyl2x ;Compute 1*lg(x).
fldl2t ;Load lg(10).
fdiv ;Compute lg(x)/lg(10).
ret

log endp

; LN(x)- Computes the base e logarithm of x.
;
; X must be greater than zero.
;
; ln(x) = lg(x)/lg(e).

ln proc near
fld1
fxch
fyl2x ;Compute 1*lg(x).
fldl2e ;Load lg(e).
fdiv ;Compute lg(x)/lg(10).
ret

ln endp

; This main program tests the various functions in this package.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit

; Check to see if cot and acot are working properly.

Floating Point Arithmetic

Page 809

fld cotVar
call cot
fst cotRes
call acot
fstp acotRes

printff
byte “x=%8.5gf, cot(x)=%8.5gf, acot(cot(x)) = %8.5gf\n”,0
dword cotVar, cotRes, acotRes

; Check to see if csc and acsc are working properly.

fld cscVar
call csc
fst cscRes
call acsc
fstp acscRes

printff
byte “x=%8.5gf, csc(x)=%8.5gf, acsc(csc(x)) = %8.5gf\n”,0
dword cscVar, cscRes, acscRes

; Check to see if sec and asec are working properly.

fld secVar
call sec
fst secRes
call asec
fstp asecRes

printff
byte “x=%8.5gf, sec(x)=%8.5gf, asec(sec(x)) = %8.5gf\n”,0
dword secVar, secRes, asecRes

; Check to see if sin and asin are working properly.

fld sinVar
fsin
fst sinRes
call asin
fstp asinRes

printff
byte “x=%8.5gf, sin(x)=%8.5gf, asin(sin(x)) = %8.5gf\n”,0
dword sinVar, sinRes, asinRes

; Check to see if cos and acos are working properly.

fld cosVar
fcos
fst cosRes
call acos
fstp acosRes

printff
byte “x=%8.5gf, cos(x)=%8.5gf, acos(cos(x)) = %8.5gf\n”,0
dword cosVar, cosRes, acosRes

; Check to see if 2**x and lg(x) are working properly.

fld Two2xVar
call TwoToX
fst Two2xRes
fld1
fxch
fyl2x
fstp lgxRes

printff
byte “x=%8.5gf, 2**x =%8.5gf, lg(2**x) = %8.5gf\n”,0

Chapter 14

Page 810

dword Two2xVar, Two2xRes, lgxRes

; Check to see if 10**x and l0g(x) are working properly.

fld Ten2xVar
call TenToX
fst Ten2xRes
call LOG
fstp logRes

printff
byte “x=%8.5gf, 10**x =%8.2gf, log(10**x) = %8.5gf\n”,0
dword Ten2xVar, Ten2xRes, logRes

; Check to see if exp(x) and ln(x) are working properly.

fld expVar
call exp
fst expRes
call ln
fstp lnRes

printff
byte “x=%8.5gf, e**x =%8.2gf, ln(e**x) = %8.5gf\n”,0
dword expVar, expRes, lnRes

; Check to see if y**x is working properly.

fld Y2Xy
fld Y2Xx
call YtoX
fstp Y2XRes

printff
byte “x=%8.5gf, y =%8.5gf, y**x = %8.4gf\n”,0
dword Y2Xx, Y2Xy, Y2XRes

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Sample program output:
x= 3.00000, cot(x)=-7.01525, acot(cot(x)) = 3.00000
x= 1.50000, csc(x)= 1.00251, acsc(csc(x)) = 1.50000
x= 0.50000, sec(x)= 1.13949, asec(sec(x)) = 0.50000
x= 0.75000, sin(x)= 0.68163, asin(sin(x)) = 0.75000
x= 0.25000, cos(x)= 0.96891, acos(cos(x)) = 0.25000
x=-2.50000, 2**x = 0.17677, lg(2**x) = -2.50000
x= 3.75000, 10**x = 5623.41, log(10**x) = 3.75000
x= 3.25000, e**x = 25.79, ln(e**x) = 3.25000
x= 3.00000, y = 3.00000, y**x = 27.0000

14.6 Laboratory Exercises

Floating Point Arithmetic

Page 811

14.6.1 FPU vs StdLib Accuracy

In this laboratory exercise you will will run two programs that perform 20,000,000
floating point additions. These programs do the first 10,000,000 additions using the 80x87
FPU, they do the second 10,000,000 additions using the Standard Library’s floating point
routines. This exercise demonstrates the relative accuracy of the two floating point mecha-
nisms.

For your lab report: assemble and run the EX14_1.asm program (it’s on the compan-
ion CD-ROM). This program adds together 10,000,000 64-bit floating point values and
prints their sum. Describe the results in your lab report. Time these operations and report
the time difference in your lab report. Note that the exact sum these operations should pro-
duce is 1.00000010000e+0000.

After running Ex14_1.asm, repeat this process for the Ex14_2.asm file. Ex14_2 differs
from Ex14_1 insofar as Ex14_2 lets the Standard Library routines operate on 80-bit mem-
ory operands (the FPU cannot operate on 80-bit memory operands, so this part remains
unchanged). Time the execution of Ex14_2’s two components. Compare these times
against the running time of Ex14_1 and explain any differences.

; EX14_1.asm
;
; This program runs some tests to determine how well the floating point
; arithmetic in the Standard Library compares with the floating point
; arithmetic on the 80x87. It does this performing various operations
; using both methods and comparing the result.
;
; Of course, you must have an 80x87 FPU (or 80486 or later processor)
; in order to run this code.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

; Since this is an accuracy test, this code uses REAL8 values for
; all operations

slValue1 real8 1.0
slSmallVal real8 1.0e-14

Value1 real8 1.0
SmallVal real8 1.0e-14

Buffer byte 20 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit ;Initialize the FPU

; Do 10,000,000 floating point additions:

Chapter 14

Page 812

printff
byte "Adding 10,000,000 FP values together with the “
byte “FPU",cr,lf,0

mov ecx, 10000000
FPLoop: fld Value1

fld SmallVal
fadd
fstp Value1
dec ecx
jnz FPLoop

printff
byte "Result = %20GE\n",cr,lf,0
dword Value1

; Do 10,000,000 floating point additions with the Standard Library fpadd
; routine:

printff
byte cr,lf
byte "Adding 10,000,000 FP values together with the “
byte “StdLib", cr,lf
byte "Note: this may take a few minutes to run, don't “
byte “get too impatient"
byte cr,lf,0

mov ecx, 10000000
SLLoop: lesi slValue1

ldfpa
lesi slSmallVal
ldfpo
fpadd
lesi slValue1
sdfpa
dec ecx
jnz SLLoop

printff
byte "Result = %20GE\n",cr,lf,0
dword slValue1

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; EX14_2.asm
;
; This program runs some tests to determine how well the floating point
; arithmetic in the Standard Library compares with the floating point
; arithmetic on the 80x87. It lets the standard library routines use
; the full 80-bit format since they allow it and the FPU does not.
;
; Of course, you must have an 80x87 FPU (or 80486 or later processor)
; in order to run this code.

Floating Point Arithmetic

Page 813

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

slValue1 real10 1.0
slSmallVal real10 1.0e-14

Value1 real8 1.0
SmallVal real8 1.0e-14

Buffer byte 20 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit
finit ;Initialize the FPU

; Do 10,000,000 floating point additions:

printff
byte "Adding 10,000,000 FP values together with the “
byte “FPU",cr,lf,0

mov ecx, 10000000
FPLoop: fld Value1

fld SmallVal
fadd
fstp Value1
dec ecx
jnz FPLoop

printff
byte "Result = %20GE\n",cr,lf,0
dword Value1

; Do 10,000,000 floating point additions with the Standard Library fpadd
; routine:

printff
byte cr,lf
byte "Adding 10,000,000 FP values together with the “
byte “StdLib", cr,lf
byte "Note: this may take a few minutes to run, don't “
byte “get too impatient"
byte cr,lf,0

mov ecx, 10000000
SLLoop: lesi slValue1

lefpa
lesi slSmallVal
lefpo
fpadd
lesi slValue1
sefpa
dec ecx
jnz SLLoop

printff

Chapter 14

Page 814

byte "Result = %20LE\n",cr,lf,0
dword slValue1

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

14.7 Programming Projects

14.8 Summary

For many applications integer arithmetic has two insurmountable drawbacks – it is
not easy to represent fractional values with integers and integers have a limited dynamic
range. Floating point arithmetic provides an approximation to real arithmetic that over-
comes these two limitations.

Floating point arithmetic, however, is not without its own problems. Floating point
arithmetic suffers from limited precision. As a result, inaccuracies can creep into a calcula-
tion. Therefore, floating point arithmetic does not completely follow normal algebraic
rules. There are five very important rules to keep in mind when using floating point arith-
metic: (1`) The order of evaluation can affect the accuracy of the result; (2) Whenever add-
ing and subtracting numbers, the accuracy of the result may be less than the precision
provided by the floating point format; (3) When performing a chain of calculations involv-
ing addition, subtraction, multiplication, and division, try to perform the multiplication
and division operations first; (4) When multiplying and dividing values, try to multiply
large and small numbers together first and try to divide numbers with the same relative
magnitue first; (5) When comparing two floating point numbers, always keep in mind that
errors can creep into the computations, therefore you should check to see if one value is
within a certain range of the other. For more information, see

• “The Mathematics of Floating Point Arithmetic” on page 771

Early on Intel recognized the need for a hardware floating point unit. They hired three
mathematicians to design highly accurate floating point formats and algorithms for their
80x87 family of FPUs. These formats, with slight modifications, become the IEEE 754 and
IEEE 854 floating point standards. The IEEE standard actually provides for three different
formats: a 32 bit standard precision format, a 64 bit double precision format, and an
extended precision format. Intel implemented the extended precision format using 80
bits9. The 32 bit format uses a 24 bit mantissa (the H.O. bit is an implied one and is not
stored in the 32 bits), an eight bit bias 127 exponent, and a one bit sign. The 64 bit format
provides a 53 bit mantissa (again, the H.O. bit is always one and is not stored in the 64 b it
value), an 11 bit excess 1023 exponent, and a one bit sign. The 80 bit extended precision
format uses a 64 bit exponent, a 15 bit excess 16363 exponent, and a single bit sign. For
more information, see

• “IEEE Floating Point Formats” on page 774

9. The IEEE standard only requires that the extended precision format contain more bits than the double precision
format.

Floating Point Arithmetic

Page 815

Although 80x87 FPUs and CPUs with built-in FPUs (80486 and Pentium) are becom-
ing very common, it is still possible that you may need to execute code that uses floating
point arithmetic on a machine without an FPU. In such cases you will need to supply soft-
ware routines to execute the floating point arithmetic. Fortunately, the UCR Standard
Library provides a set of floating point routines you can call. The Standard Library
includes routines to load and store floating point values, convert between integer and
floating point formats, add, subtract, multiply, and divide floating point values, convert
between ASCII and floating point, and output floating point values. Even if you have an
FPU installed, the Standard Library’s conversion and output routines are quite useful. For
more information, see

• “The UCR Standard Library Floating Point Routines” on page 777

For fast floating point arithmetic, software doesn’t stand a chance against hardware.
The 80x87 FPUs provide fast and convient floating point operations by extended the
80x86’s instruction set to handle floating point arithmetic. In addition to the new instruc-
tions, the 80x87 FPUs also provide eight new data registers, a control register, a status reg-
ister, and several other internal registers. The FPU data registers, unlike the 80x86’s
general purpose registers, are organized as a stack. Although it is possible to manipulate
the registers as though they were a standard register file, most FPU applications use the
stack mechanism when computing floating point results. The FPU control register lets you
initialize the 80x87 FPU in one of several different modes. The control register lets you set
the rounding control, the precision available during computation, and choose which
exceptions can cause an interrupt. The 80x87 status register reports the current state of the
FPU. This register provides bits that determine if the FPU is currently busy, determine if a
previous instruction has generated an exception, determine the physical register number
of the top of the register stack, and provide the FPU condition codes. For more informa-
tion on the 80x87 register set, see

• “The 80x87 Floating Point Coprocessors” on page 781
• “FPU Registers” on page 781
• “The FPU Data Registers” on page 782
• “The FPU Control Register” on page 782
• “The FPU Status Register” on page 785

In addition to the IEEE single, double, and extended preoision data types, the 80x87
FPUs also support various integer and BCD data types. The FPU will automatically con-
vert to and from these data types when loading and storing such values. For more infor-
mation on these data type formats, see

• “FPU Data Types” on page 788

The 80x87 FPUs provide a wide range of floating point operations by augmenting the
80x86’s instruction set. We can classify the FPU instructions into eight categories: data
movement instructions, conversions, arithmetic instructions, comparison instructions,
constant instructions, transcendental instructions, miscellaneous instructions, and integer
instructions. For more information on these instruction types, see

• “The FPU Instruction Set” on page 789
• “FPU Data Movement Instructions” on page 789
• “Conversions” on page 791
• “Arithmetic Instructions” on page 792
• “Comparison Instructions” on page 797
• “Constant Instructions” on page 798
• “Transcendental Instructions” on page 799
• “Miscellaneous instructions” on page 800
• “Integer Operations” on page 803

Although the 80387 and later FPUs provide a rich set of transcendental functions,
there are many trigonometric, inverse trigonometric, exponential, and logarithmic func-
tions missing from the instruction set. However, the missing functions are easy to synthe-
size using algebraic identities. This chapter provides source code for many of these
routines as an example of FPU programming. For more information, see

Chapter 14

Page 816

• “Sample Program: Additional Trigonometric Functions” on page 804

Floating Point Arithmetic

Page 817

14.9 Questions

1) Why don’t the normal rules of algebra apply to floating point arithmetic?

2) Give an example of a sequence of operations whose order of evaluation will produce dif-
ferent results with finite precision arithmetic.

3) Explain why limited precision addition and subtraction operations can cause a loss of pre-
cision during a calculation.

4) Why should you, if at all possible, perform multiplications and divisions first in a calcula-
tion involving multiplication or division as well as addition or subtraction?

5) Explain the difference between a normalized, unnormalized, and denormalized floating
point value.

6) Using the UCR Standard Library, convert the following expression to 80x86 assembly
code (assume all variables are 64 bit double precision values). Be sure to perform any nec-
essary algebraic manipulations to ensure the maximum accuracy. You can assume all vari-
ables fall in the range ±1e-10…±1e+10.

a) Z := X * X + Y * Y b) Z := (X-Y)*Z

c) Z := X*Y - X/Y d) Z := (X+Y)/(X-Y)

e) Z := (X*X)/(Y*Y) f) Z := X*X + Y + 1.0

7) Convert the above statements to 80x87 FPU code.

8) The following problems provide definitions for the hyperbolic trigonometric functions.
Encode each of these using the 80x87 FPU instructions and the exp(x) and ln(x) routines
provided in this chapter.

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

9) Create a log(x,y) function which computes logy x. The algebraic identity for this is

10) Interval arithmetic involves performing a calculation with every result rounded down
and then repeating the computation with each result rounded up. At the end of these two
computations, you know that the true result must lie between the two computed results.
The rounding control bits in the FPU control register let you select round up and round
down modes. Repeat question six applying interval arithmetic and compute the two
bounds for each of those problems (a-f).

xsinh ex e x––
2

------------------= xcosh ex e x–+
2

-------------------=

xtanh xsinh
xcosh

--------------= xcsch 1
xsinh

-------------=

xsech 1
xcosh

--------------= xcoth xcosh
xsinh

--------------=

xasinh ln x x2 1++()= xacosh ln x x2 1–+()=

xatanh
ln

1 x+
1 x–
------------()

2
---------------------= xacsch ln

x 1 x2+±
x

----------------------------()=

xasech ln
x 1 x2–±

x
---------------------------()= xatanh

ln
x 1+
x 1–

---------------()

2
------------------------=

xylog
x2log

y2log
-------------=

Chapter 14

Page 818

11) The mantissa precision control bits in the FPU control register simply control where the
FPU rounds results. Selecting a lower precision does not improve the performance of the
FPU. Therefore, any new software you write should set these two bits to ones to get 64 bits
of precision when performing calculations. Can you provide one reason why you might
want to set the precision to something other than 64 bits?

12) Suppose you have two 64 bit variables, X and Y, that you want to compare to see if they
are equal. As you know, you should not compare them directly to see if they are equal, but
rather see if they are less than some small value apart. Suppose ε, the error constant, is
1e-300. Provide the code to load ax with zero if X=Y and load ax with one if X≠Y.

13) Repeat problem 12, except test for:

a) X ≤ Y b) X < Y

c) X ≥ Y d) X > Y

e) X ≠ Y

14) What instruction can you use to see if the value in st(0) is denormalized?

15) Assuming no stack underflow or overflow, what is the C1 condition code bit usually used
for?

16) Many texts, when describing the FPU chip, suggest that you can use the FPU to perform
integer arithmetic. An argument generally given is that the FPU can support 64 bit inte-
gers whereas the CPU can only support 16 or 32 bit integers. What is wrong with this
argument? Why would you not want to use the FPU to perform integer arithmetic? Why
does the FPU even provide integer instructions?

17) Suppose you have a 64 bit double precision floating point value in memory. Describe how
you could take the absolute value of this variable without using the FPU (i.e., by using
only 80x86 instructions).

18) Explain how to change the sign of the variable in question 17.

19) Why does the TwoToX function (see “Sample Program: Additional Trigonometric Func-
tions” on page 804) have to compute the result using fscale and fyl2x? Why can’t it use fyl2x
along?

20) Explain a possible problem with the following code sequence:

stp mem_64
xor byte ptr mem_64+7, 80h ;Tweak sign bit

Page 819

Strings and Character Sets Chapter 15

A string is a collection of objects stored in contiguous memory locations. Strings are
usually arrays of bytes, words, or (on 80386 and later processors) double words. The 80x86
microprocessor family supports several instructions specifically designed to cope with
strings. This chapter explores some of the uses of these string instructions.

The 8088, 8086, 80186, and 80286 can process two types of strings: byte strings and
word strings. The 80386 and later processors also handle double word strings. They can
move strings, compare strings, search for a specific value within a string, initialize a string
to a fixed value, and do other primitive operations on strings. The 80x86’s string instruc-
tions are also useful for manipulating arrays, tables, and records. You can easily assign or
compare such data structures using the string instructions. Using string instructions may
speed up your array manipulation code considerably.

15.0 Chapter Overview

This chapter presents a review of the operation of the 80x86 string instructions. Then
it discusses how to process character strings using these instructions. Finally, it concludes
by discussing the string instruction available in the UCR Standard Library. The sections
below that have a “•” prefix are essential. Those sections with a “

❏

” discuss advanced
topics that you may want to put off for a while.

• The 80x86 string instructions.
• Character strings.
• Character string functions.
• String functions in the UCR Standard Library.

 ❏

Using the string instructions on other data types.

15.1 The 80x86 String Instructions

All members of the 80x86 family support five different string instructions:

movs

,

cmps,
scas, lods,

 and

stos

1

. They are the string primitives since you can build most other string
operations from these five instructions. How you use these five instructions is the topic of
the next several sections.

15.1.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of memory. For
example, the

movs

instruction moves a sequence of bytes from one memory location to
another. The

cmps

instruction compares two blocks of memory. The

scas

instruction scans
a block of memory for a particular value. These string instructions often require three
operands, a destination block address, a source block address, and (optionally) an element
count. For example, when using the

movs

instruction to copy a string, you need a source
address, a destination address, and a count (the number of string elements to move).

Unlike other instructions which operate on memory, the string instructions are sin-
gle-byte instructions which don’t have any explicit operands. The operands for the string
instructions include

1. The 80186 and later processor support two additional string instructions, INS and OUTS which input strings of
data from an input port or output strings of data to an output port. We will not consider these instructions in this
chapter.

Thi d t t d ith F M k 4 0 2

Chapter 15

Page 820

• the

si

(source index) register,
• the

di

(destination index) register,
• the

cx

(count) register,
• the

ax

register, and
• the direction flag in the FLAGS register.

For example, one variant of the

movs

(move string) instruction copies a string from the
source address specified by

ds:si

to the destination address specified by

es:di

, of length

cx

.
Likewise, the

cmps

instruction compares the string pointed at by

ds:si

, of length

cx

, to the
string pointed at by

es:di

.

Not all instructions have source and destination operands (only

movs

and

cmps

sup-
port them). For example, the

scas

instruction (scan a string) compares the value in the
accumulator to values in memory. Despite their differences, the 80x86’s string instructions
all have one thing in common – using them requires that you deal with two segments, the
data segment and the extra segment.

15.1.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes

The string instructions, by themselves, do not operate on strings of data. The

movs

instruction, for example, will move a single byte, word, or double word. When executed
by itself, the

movs

instruction ignores the value in the

cx

register. The repeat prefixes tell
the 80x86 to do a multi-byte string operation. The syntax for the repeat prefix is:

Field:
Label repeat mnemonic operand ;comment

For MOVS:
rep movs {operands}

For CMPS:
repe cmps {operands}
repz cmps {operands}
repne cmps {operands}
repnz cmps {operands}

For SCAS:
repe scas {operands}
repz scas {operands}
repne scas {operands}
repnz scas {operands}

For STOS:
rep stos {operands}

You don’t normally use the repeat prefixes with the

lods

instruction.

As you can see, the presence of the repeat prefixes introduces a new field in the source
line – the repeat prefix field. This field appears only on source lines containing string
instructions. In your source file:

• the label field should always begin in column one,
• the repeat field should begin at the first tab stop, and
• the mnemonic field should begin at the second tab stop.

When specifying the repeat prefix before a string instruction, the string instruction
repeats

cx

times

2

. Without the repeat prefix, the instruction operates only on a single byte,
word, or double word.

2. Except for the

cmps

instruction which repeats

at most

 the number of times specified in the

cx

register.

Strings and Character Sets

Page 821

You can use repeat prefixes to process entire strings with a single instruction. You can
use the string instructions, without the repeat prefix, as string primitive operations to syn-
thesize more powerful string operations.

The operand field is optional. If present, MASM simply uses it to determine the size of
the string to operate on. If the operand field is the name of a byte variable, the string
instruction operates on bytes. If the operand is a word address, the instruction operates on
words. Likewise for double words. If the operand field is not present, you must append a
“B”, “W”, or “D” to the end of the string instruction to denote the size, e.g.,

movsb

,

movsw

,
or

movsd

.

15.1.3 The Direction Flag

Besides the

si, di, si

, and

ax

registers, one other register controls the 80x86’s string
instructions – the flags register. Specifically, the

direction flag

 in the flags register controls
how the CPU processes strings.

If the direction flag is clear, the CPU increments

si

and

di

after operating upon each
string element. For example, if the direction flag is clear, then executing

movs

will move
the byte, word, or double word at

ds:si

to

es:di

and will increment

si

and

di

by one, two, or
four. When specifying the

rep

prefix before this instruction, the CPU increments

si

and

di

for each element in the string. At completion, the

si

and

di

registers will be pointing at the
first item beyond the string.

 If the direction flag is set, then the 80x86 decrements

si

and

di

after processing each
string element. After a repeated string operation, the

si

and

di

registers will be pointing at
the first byte or word before the strings if the direction flag was set.

The direction flag may be set or cleared using the

cld

(clear direction flag) and

std

(set
direction flag) instructions. When using these instructions inside a procedure, keep in
mind that they modify the machine state. Therefore, you may need to save the direction
flag during the execution of that procedure. The following example exhibits the kinds of
problems you might encounter:

StringStuff:
cld

<do some operations>
call Str2

<do some string operations requiring D=0>

 .
 .
 .

Str2 proc near
std

<Do some string operations>
ret

Str2 endp

This code will not work properly. The calling code assumes that the direction flag is
clear after

Str2

 returns. However, this isn’t true. Therefore, the string operations executed
after the call to

Str2

will not function properly.

There are a couple of ways to handle this problem. The first, and probably the most
obvious, is always to insert the

cld

or

std

instructions immediately before executing a
string instruction. The other alternative is to save and restore the direction flag using the

pushf

and

popf

instructions. Using these two techniques, the code above would look like
this:

Always issuing

cld

or

std

before a string instruction:

StringStuff:
cld

<do some operations>
call Str2
cld

<do some string operations requiring D=0>

Chapter 15

Page 822

 .
 .
 .

Str2 proc near
std

<Do some string operations>
ret

Str2 endp

 Saving and restoring the flags register:

StringStuff:
cld

<do some operations>
call Str2

<do some string operations requiring D=0>

 .
 .
 .

Str2 proc near
pushf
std

<Do some string operations>
popf
ret

Str2 endp

If you use the

pushf

and

popf

instructions to save and restore the flags register, keep in
mind that you’re saving and restoring all the flags. Therefore, such subroutines cannot
return any information in the flags. For example, you will not be able to return an error
condition in the carry flag if you use

pushf

and

popf

.

15.1.4 The MOVS Instruction

The

movs

instruction takes four basic forms.

Movs

moves bytes, words, or double
words,

movsb

moves byte strings,

movsw

moves word strings, and

movsd

moves double
word strings (on 80386 and later processors). These four instructions use the following
syntax:

{REP} MOVSB
{REP} MOVSW
{REP} MOVSD ;Available only on 80386 and later processors
{REP} MOVS Dest, Source

The

movsb

(move string, bytes) instruction fetches the byte at address

ds:si

, stores it at
address

es:di

, and then increments or decrements the

si

and

di

registers by one. If the

rep

prefix is present, the CPU checks

cx

to see if it contains zero. If not, then it moves the byte
from

ds:si

to

es:di

and decrements the

cx

register. This process repeats until

cx

becomes
zero.

The

movsw

(move string, words) instruction fetches the word at address

ds:si

, stores it
at address

es:di

, and then increments or decrements

si

and

di

by two. If there is a rep prefix,
then the CPU repeats this procedure as many times as specified in cx.

The movsd instruction operates in a similar fashion on double words. Incrementing or
decrementing si and di by four for each data movement.

MASM automatically figures out the size of the movs instruction by looking at the size
of the operands specified. If you’ve defined the two operands with the byte (or compara-
ble) directive, then MASM will emit a movsb instruction. If you’ve declared the two labels
via word (or comparable), MASM will generate a movws instruction. If you’ve declared the
two labels with dword, MASM emits a movsd instruction. The assembler will also check the
segments of the two operands to ensure they match the current assumptions (via the
assume directive) about the es and ds registers. You should always use the movsb, movsw,
and movsd forms and forget about the movs form.

Strings and Character Sets

Page 823

Although, in theory, the movs form appears to be an elegant way to handle the move
string instruction, in practice it creates more trouble than it’s worth. Furthermore, this
form of the move string instruction implies that movs has explicit operands, when, in fact,
the si and di registers implicitly specify the operands. For this reason, we’ll always use the
movsb, movsw, or movsd instructions. When used with the rep prefix, the movsb instruction
will move the number of bytes specified in the cx register. The following code segment
copies 384 bytes from String1 to String2:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsb
 .
 .
 .

String1 byte 384 dup (?)
String2 byte 384 dup (?)

This code, of course, assumes that String1 and String2 are in the same segment and
both the ds and es registers point at this segment. If you substitute movws for movsb, then
the code above will move 384 words (768 bytes) rather than 384 bytes:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsw
 .
 .
 .

String1 word 384 dup (?)
String2 word 384 dup (?)

Remember, the cx register contains the element count, not the byte count. When using
the movsw instruction, the CPU moves the number of words specified in the cx register.

If you’ve set the direction flag before executing a movsb/movsw/movsd instruction, the
CPU decrements the si and di registers after moving each string element. This means that
the si and di registers must point at the end of their respective strings before issuing a
movsb, movsw, or movsd instruction. For example,

std
lea si, String1+383
lea di, String2+383
mov cx, 384

rep movsb
 .
 .
 .

String1 byte 384 dup (?)
String2 byte 384 dup (?)

Although there are times when processing a string from tail to head is useful (see the
cmps description in the next section), generally you’ll process strings in the forward direc-
tion since it’s more straightforward to do so. There is one class of string operations where
being able to process strings in both directions is absolutely mandatory: processing strings
when the source and destination blocks overlap. Consider what happens in the following
code:

cld
lea si, String1
lea di, String2
mov cx, 384

rep movsb
 .
 .
 .

String1 byte ?
String2 byte 384 dup (?)

Chapter 15

Page 824

This sequence of instructions treats String1 and String2 as a pair of 384 byte strings.
However, the last 383 bytes in the String1 array overlap the first 383 bytes in the String2
array. Let’s trace the operation of this code byte by byte.

When the CPU executes the movsb instruction, it copies the byte at ds:si (String1) to the
byte pointed at by es:di (String2). Then it increments si and di, decrements cx by one, and
repeats this process. Now the si register points at String1+1 (which is the address of String2)
and the di register points at String2+1. The movsb instruction copies the byte pointed at by
si to the byte pointed at by di. However, this is the byte originally copied from location
String1. So the movsb instruction copies the value originally in location String1 to both loca-
tions String2 and String2+1. Again, the CPU increments si and di, decrements cx, and
repeats this operation. Now the movsb instruction copies the byte from location String1+2
(String2+1) to location String2+2. But once again, this is the value that originally appeared
in location String1. Each repetition of the loop copies the next element in String1 to the next
available location in the String2 array. Pictorially, it looks something like that in
Figure 15.1.

Figure 15.1 Overwriting Data During a Block Move Operation

X A B C D E F G H I J K L

1st move operation:

X X B C D E F G H I J K L

2nd move operation:

X X X C D E F G H I J K L

3rd move operation:

X X X X D E F G H I J K L

4th move operation:

X X X X X X X X X X X X L

nth move operation:

Strings and Character Sets

Page 825

The end result is that X gets replicated throughout the string. The move instruction
copies the source operand into the memory location which will become the source oper-
and for the very next move operation, which causes the replication.

If you really want to move one array into another when they overlap, you should
move each element of the source string to the destination string starting at the end of the
two strings as shown in Figure 15.2.

Setting the direction flag and pointing si and di at the end of the strings will allow you
to (correctly) move one string to another when the two strings overlap and the source
string begins at a lower address than the destination string. If the two strings overlap and
the source string begins at a higher address than the destination string, then clear the
direction flag and point si and di at the beginning of the two strings.

If the two strings do not overlap, then you can use either technique to move the
strings around in memory. Generally, operating with the direction flag clear is the easiest,
so that makes the most sense in this case.

You shouldn’t use the movs instruction to fill an array with a single byte, word, or
double word value. Another string instruction, stos, is much better suited for this purpose.
However, for arrays whose elements are larger than four bytes, you can use the movs
instruction to initialize the entire array to the content of the first element. See the questions
for additional information.

Figure 15.2 Correct Way to Move Data With a Block Move Operation

X A B C D E F G H I J K L

1st move operation:

X A B C D E F G H I J K K

2nd move operation:

X A B C D E F G H I J J K

3rd move operation:

X A B C D E F G H I I J K

4th move operation:

X A A B C D E F G H I J K

nth move operation:

Chapter 15

Page 826

15.1.5 The CMPS Instruction

The cmps instruction compares two strings. The CPU compares the string referenced
by es:di to the string pointed at by ds:si. Cx contains the length of the two strings (when
using the rep prefix). Like the movs instruction, the MASM assembler allows several differ-
ent forms of this instruction:

{REPE} CMPSB
{REPE} CMPSW
{REPE} CMPSD ;Available only on 80386 and later
{REPE} CMPS dest, source
{REPNE} CMPSB
{REPNE} CMPSW
{REPNE} CMPSD ;Available only on 80386 and later
{REPNE} CMPS dest, source

 Like the movs instruction, the operands present in the operand field of the cmps
instruction determine the size of the operands. You specify the actual operand addresses
in the si and di registers.

Without a repeat prefix, the cmps instruction subtracts the value at location es:di from
the value at ds:si and updates the flags. Other than updating the flags, the CPU doesn’t
use the difference produced by this subtraction. After comparing the two locations, cmps
increments or decrements the si and di registers by one, two, or four (for
cmpsb/cmpsw/cmpsd, respectively). Cmps increments the si and di registers if the direction
flag is clear and decrements them otherwise.

Of course, you will not tap the real power of the cmps instruction using it to compare
single bytes or words in memory. This instruction shines when you use it to compare
whole strings. With cmps, you can compare consecutive elements in a string until you find
a match or until consecutive elements do not match.

To compare two strings to see if they are equal or not equal, you must compare corre-
sponding elements in a string until they don’t match. Consider the following strings:

“String1”

“String1”

The only way to determine that these two strings are equal is to compare each charac-
ter in the first string to the corresponding character in the second. After all, the second
string could have been “String2” which definitely is not equal to “String1”. Of course,
once you encounter a character in the destination string which doesn’t equal the corre-
sponding character in the source string, the comparison can stop. You needn’t compare
any other characters in the two strings.

The repe prefix accomplishes this operation. It will compare successive elements in a
string as long as they are equal and cx is greater than zero. We could compare the two
strings above using the following 80x86 assembly language code:

; Assume both strings are in the same segment and ES and DS
; both point at this segment.

cld
lea si, AdrsString1
lea di, AdrsString2
mov cx, 7

repe cmpsb

After the execution of the cmpsb instruction, you can test the flags using the standard
conditional jump instructions. This lets you check for equality, inequality, less than,
greater than, etc.

Character strings are usually compared using lexicographical ordering. In lexicographi-
cal ordering, the least significant element of a string carries the most weight. This is in
direct contrast to standard integer comparisons where the most significant portion of the

Strings and Character Sets

Page 827

number carries the most weight. Furthermore, the length of a string affects the compari-
son only if the two strings are identical up to the length of the shorter string. For example,
“Zebra” is less than “Zebras”, because it is the shorter of the two strings, however,
“Zebra” is greater than “AAAAAAAAAAH!” even though it is shorter. Lexicographical
comparisons compare corresponding elements until encountering a character which
doesn’t match, or until encountering the end of the shorter string. If a pair of correspond-
ing characters do not match, then this algorithm compares the two strings based on that
single character. If the two strings match up to the length of the shorter string, we must
compare their length. The two strings are equal if and only if their lengths are equal and
each corresponding pair of characters in the two strings is identical. Lexicographical
ordering is the standard alphabetical ordering you’ve grown up with.

For character strings, use the cmps instruction in the following manner:

• The direction flag must be cleared before comparing the strings.
• Use the cmpsb instruction to compare the strings on a byte by byte basis.

Even if the strings contain an even number of characters, you cannot use
the cmpsw instruction. It does not compare strings in lexicographical
order.

• The cx register must be loaded with the length of the smaller string.
• Use the repe prefix.
• The ds:si and es:di registers must point at the very first character in the

two strings you want to compare.

After the execution of the cmps instruction, if the two strings were equal, their lengths
must be compared in order to finish the comparison. The following code compares a cou-
ple of character strings:

lea si, source
lea di, dest
mov cx, lengthSource
mov ax, lengthDest
cmp cx, ax
ja NoSwap
xchg ax, cx

NoSwap: repe cmpsb
jne NotEqual
mov ax, lengthSource
cmp ax, lengthDest

NotEqual:

If you’re using bytes to hold the string lengths, you should adjust this code appropriately.

You can also use the cmps instruction to compare multi-word integer values (that is,
extended precision integer values). Because of the amount of setup required for a string
comparison, this isn’t practical for integer values less than three or four words in length,
but for large integer values, it’s an excellent way to compare such values. Unlike character
strings, we cannot compare integer strings using a lexicographical ordering. When com-
paring strings, we compare the characters from the least significant byte to the most sig-
nificant byte. When comparing integers, we must compare the values from the most
significant byte (or word/double word) down to the least significant byte, word or double
word. So, to compare two eight-word (128-bit) integer values, use the following code on
the 80286:

std
lea si, SourceInteger+14
lea di, DestInteger+14
mov cx, 8

repe cmpsw

This code compares the integers from their most significant word down to the least
significant word. The cmpsw instruction finishes when the two values are unequal or upon
decrementing cx to zero (implying that the two values are equal). Once again, the flags
provide the result of the comparison.

Chapter 15

Page 828

The repne prefix will instruct the cmps instruction to compare successive string ele-
ments as long as they do not match. The 80x86 flags are of little use after the execution of
this instruction. Either the cx register is zero (in which case the two strings are totally dif-
ferent), or it contains the number of elements compared in the two strings until a match.
While this form of the cmps instruction isn’t particularly useful for comparing strings, it is
useful for locating the first pair of matching items in a couple of byte or word arrays. In
general, though, you’ll rarely use the repne prefix with cmps.

One last thing to keep in mind with using the cmps instruction – the value in the cx
register determines the number of elements to process, not the number of bytes. There-
fore, when using cmpsw, cx specifies the number of words to compare. This, of course, is
twice the number of bytes to compare.

15.1.6 The SCAS Instruction

The cmps instruction compares two strings against one another. You cannot use it to
search for a particular element within a string. For example, you could not use the cmps
instruction to quickly scan for a zero throughout some other string. You can use the scas
(scan string) instruction for this task.

Unlike the movs and cmps instructions, the scas instruction only requires a destination
string (es:di) rather than both a source and destination string. The source operand is the
value in the al (scasb), ax (scasw), or eax (scasd) register.

The scas instruction, by itself, compares the value in the accumulator (al, ax, or eax)
against the value pointed at by es:di and then increments (or decrements) di by one, two,
or four. The CPU sets the flags according to the result of the comparison. While this might
be useful on occasion, scas is a lot more useful when using the repe and repne prefixes.

When the repe prefix (repeat while equal) is present, scas scans the string searching
for an element which does not match the value in the accumulator. When using the repne
prefix (repeat while not equal), scas scans the string searching for the first string element
which is equal to the value in the accumulator.

You’re probably wondering “why do these prefixes do exactly the opposite of what
they ought to do?” The paragraphs above haven’t quite phrased the operation of the scas
instruction properly. When using the repe prefix with scas, the 80x86 scans through the
string while the value in the accumulator is equal to the string operand. This is equivalent
to searching through the string for the first element which does not match the value in the
accumulator. The scas instruction with repne scans through the string while the accumula-
tor is not equal to the string operand. Of course, this form searches for the first value in the
string which matches the value in the accumulator register. The scas instruction takes the
following forms:

{REPE} SCASB
{REPE} SCASW
{REPE} SCASD ;Available only on 80386 and later processors
{REPE} SCAS dest
{REPNE} SCASB
{REPNE} SCASW
{REPNE} SCASD ;Available only on 80386 and later processors
{REPNE} SCAS dest

Like the cmps and movs instructions, the value in the cx register specifies the number
of elements to process, not bytes, when using a repeat prefix.

15.1.7 The STOS Instruction

The stos instruction stores the value in the accumulator at the location specified by
es:di. After storing the value, the CPU increments or decrements di depending upon the
state of the direction flag. Although the stos instruction has many uses, its primary use is

Strings and Character Sets

Page 829

to initialize arrays and strings to a constant value. For example, if you have a 256-byte
array you want to clear out with zeros, use the following code:

; Presumably, the ES register already points at the segment
; containing DestString

cld
lea di, DestString
mov cx, 128 ;256 bytes is 128 words.
xor ax, ax ;AX := 0

rep stosw

This code writes 128 words rather than 256 bytes because a single stosw operation is
faster than two stosb operations. On an 80386 or later this code could have written 64 dou-
ble words to accomplish the same thing even faster.

The stos instruction takes four forms. They are

{REP} STOSB
{REP} STOSW
{REP} STOSD
{REP} STOS dest

The stosb instruction stores the value in the al register into the specified memory loca-
tion(s), the stosw instruction stores the ax register into the specified memory location(s)
and the stosd instruction stores eax into the specified location(s). The stos instruction is
either an stosb, stosw, or stosd instruction depending upon the size of the specified oper-
and.

Keep in mind that the stos instruction is useful only for initializing a byte, word, or
dword array to a constant value. If you need to initialize an array to different values, you
cannot use the stos instruction. You can use movs in such a situation, see the exercises for
additional details.

15.1.8 The LODS Instruction

The lods instruction is unique among the string instructions. You will never use a
repeat prefix with this instruction. The lods instruction copies the byte or word pointed at
by ds:si into the al, ax, or eax register, after which it increments or decrements the si register
by one, two, or four. Repeating this instruction via the repeat prefix would serve no pur-
pose whatsoever since the accumulator register will be overwritten each time the lods
instruction repeats. At the end of the repeat operation, the accumulator will contain the
last value read from memory.

Instead, use the lods instruction to fetch bytes (lodsb), words (lodsw), or double words
(lodsd) from memory for further processing. By using the stos instruction, you can synthe-
size powerful string operations.

Like the stos instruction, the lods instruction takes four forms:

{REP} LODSB
{REP} LODSW
{REP} LODSD ;Available only on 80386 and later
{REP} LODS dest

As mentioned earlier, you’ll rarely, if ever, use the rep prefixes with these instructions3.
The 80x86 increments or decrements si by one, two, or four depending on the direction
flag and whether you’re using the lodsb, lodsw, or lodsd instruction.

3. They appear here simply because they are allowed. They’re not useful, but they are allowed.

Chapter 15

Page 830

15.1.9 Building Complex String Functions from LODS and STOS

The 80x86 supports only five different string instructions: movs, cmps, scas, lods, and
stos4. These certainly aren’t the only string operations you’ll ever want to use. However,
you can use the lods and stos instructions to easily generate any particular string operation
you like. For example, suppose you wanted a string operation that converts all the upper
case characters in a string to lower case. You could use the following code:

; Presumably, ES and DS have been set up to point at the same
; segment, the one containing the string to convert.

lea si, String2Convert
mov di, si
mov cx, LengthOfString

Convert2Lower: lodsb ;Get next char in str.
cmp al, ‘A’ ;Is it upper case?
jb NotUpper
cmp al, ‘Z’
ja NotUpper
or al, 20h ;Convert to lower case.

NotUpper: stosb ;Store into destination.
loop Convert2Lower

Assuming you’re willing to waste 256 bytes for a table, this conversion operation can
be sped up somewhat using the xlat instruction:

; Presumably, ES and DS have been set up to point at the same
; segment, the one containing the string to be converted.

cld
lea si, String2Convert
mov di, si
mov cx, LengthOfString
lea bx, ConversionTable

Convert2Lower: lodsb ;Get next char in str.
xlat ;Convert as appropriate.
stosb ;Store into destination.
loop Convert2Lower

The conversion table, of course, would contain the index into the table at each location
except at offsets 41h..5Ah. At these locations the conversion table would contain the val-
ues 61h..7Ah (i.e., at indexes ‘A’..’Z’ the table would contain the codes for ‘a’..’z’).

Since the lods and stos instructions use the accumulator as an intermediary, you can
use any accumulator operation to quickly manipulate string elements.

15.1.10 Prefixes and the String Instructions

The string instructions will accept segment prefixes, lock prefixes, and repeat prefixes.
In fact, you can specify all three types of instruction prefixes should you so desire. How-
ever, due to a bug in the earlier 80x86 chips (pre-80386), you should never use more than a
single prefix (repeat, lock, or segment override) on a string instruction unless your code
will only run on later processors; a likely event these days. If you absolutely must use two
or more prefixes and need to run on an earlier processor, make sure you turn off the inter-
rupts while executing the string instruction.

4. Not counting INS and OUTS which we’re ignoring here.

Strings and Character Sets

Page 831

15.2 Character Strings

Since you’ll encounter character strings more often than other types of strings, they
deserve special attention. The following sections describe character strings and various
types of string operations.

15.2.1 Types of Strings

At the most basic level, the 80x86’s string instruction only operate upon arrays of
characters. However, since most string data types contain an array of characters as a com-
ponent, the 80x86’s string instructions are handy for manipulating that portion of the
string.

Probably the biggest difference between a character string and an array of characters
is the length attribute. An array of characters contains a fixed number of characters. Never
any more, never any less. A character string, however, has a dynamic run-time length, that
is, the number of characters contained in the string at some point in the program. Charac-
ter strings, unlike arrays of characters, have the ability to change their size during execu-
tion (within certain limits, of course).

To complicate things even more, there are two generic types of strings: statically allo-
cated strings and dynamically allocated strings. Statically allocated strings are given a
fixed, maximum length at program creation time. The length of the string may vary at
run-time, but only between zero and this maximum length. Most systems allocate and
deallocate dynamically allocated strings in a memory pool when using strings. Such
strings may be any length (up to some reasonable maximum value). Accessing such
strings is less efficient than accessing statically allocated strings. Furthermore, garbage
collection5 may take additional time. Nevertheless, dynamically allocated strings are
much more space efficient than statically allocated strings and, in some instances, access-
ing dynamically allocated strings is faster as well. Most of the examples in this chapter
will use statically allocated strings.

A string with a dynamic length needs some way of keeping track of this length. While
there are several possible ways to represent string lengths, the two most popular are
length-prefixed strings and zero-terminated strings. A length-prefixed string consists of a
single byte or word that contains the length of that string. Immediately following this
length value, are the characters that make up the string. Assuming the use of byte prefix
lengths, you could define the string “HELLO” as follows:

HelloStr byte 5,”HELLO”

Length-prefixed strings are often called Pascal strings since this is the type of string
variable supported by most versions of Pascal6.

Another popular way to specify string lengths is to use zero-terminated strings. A
zero-terminated string consists of a string of characters terminated with a zero byte. These
types of strings are often called C-strings since they are the type used by the C/C++ pro-
gramming language. The UCR Standard Library, since it mimics the C standard library,
also uses zero-terminated strings.

Pascal strings are much better than C/C++ strings for several reasons. First, comput-
ing the length of a Pascal string is trivial. You need only fetch the first byte (or word) of the
string and you’ve got the length of the string. Computing the length of a C/C++ string is
considerably less efficient. You must scan the entire string (e.g., using the scasb instruc-
tion) for a zero byte. If the C/C++ string is long, this can take a long time. Furthermore,
C/C++ strings cannot contain the NULL character. On the other hand, C/C++ strings can
be any length, yet require only a single extra byte of overhead. Pascal strings, however,

5. Reclaiming unused storage.
6. At least those versions of Pascal which support strings.

Chapter 15

Page 832

can be no longer than 255 characters when using only a single length byte. For strings
longer than 255 bytes, you’ll need two bytes to hold the length for a Pascal string. Since
most strings are less than 256 characters in length, this isn’t much of a disadvantage.

An advantage of zero-terminated strings is that they are easy to use in an assembly
language program. This is particularly true of strings that are so long they require multi-
ple source code lines in your assembly language programs. Counting up every character
in a string is so tedious that it’s not even worth considering. However, you can write a
macro which will easily build Pascal strings for you:

PString macro String
local StringLength, StringStart
byte StringLength

StringStart byte String
StringLength = $-StringStart

endm
 .
 .
 .

PString “This string has a length prefix”

As long as the string fits entirely on one source line, you can use this macro to generate
Pascal style strings.

Common string functions like concatenation, length, substring, index, and others are
much easier to write when using length-prefixed strings. So we’ll use Pascal strings unless
otherwise noted. Furthermore, the UCR Standard library provides a large number of
C/C++ string functions, so there is no need to replicate those functions here.

15.2.2 String Assignment

You can easily assign one string to another using the movsb instruction. For example,
if you want to assign the length-prefixed string String1 to String2, use the following:

; Presumably, ES and DS are set up already

lea si, String1
lea di, String2
mov ch, 0 ;Extend len to 16 bits.
mov cl, String1 ;Get string length.
inc cx ;Include length byte.

rep movsb

This code increments cx by one before executing movsb because the length byte contains
the length of the string exclusive of the length byte itself.

Generally, string variables can be initialized to constants by using the PString macro
described earlier. However, if you need to set a string variable to some constant value, you
can write a StrAssign subroutine which assigns the string immediately following the call.
The following procedure does exactly that:

include stdlib.a
includelib stdlib.lib

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

; String assignment procedure

MainPgm proc far
mov ax, seg dseg
mov ds, ax
mov es, ax

lea di, ToString
call StrAssign
byte “This is an example of how the “

Strings and Character Sets

Page 833

byte “StrAssign routine is used”,0
nop
ExitPgm

MainPgm endp

StrAssign proc near
push bp
mov bp, sp
pushf
push ds
push si
push di
push cx
push ax
push di ;Save again for use later.
push es
cld

; Get the address of the source string

mov ax, cs
mov es, ax
mov di, 2[bp] ;Get return address.
mov cx, 0ffffh ;Scan for as long as it takes.
mov al, 0 ;Scan for a zero.

repne scasb ;Compute the length of string.
neg cx ;Convert length to a positive #.
dec cx ;Because we started with -1, not 0.
dec cx ;skip zero terminating byte.

; Now copy the strings

pop es ;Get destination segment.
pop di ;Get destination address.
mov al, cl ;Store length byte.
stosb

; Now copy the source string.

mov ax, cs
mov ds, ax
mov si, 2[bp]

rep movsb

; Update the return address and leave:

inc si ;Skip over zero byte.
mov 2[bp], si

pop ax
pop cx
pop di
pop si
pop ds
popf
pop bp
ret

StrAssign endp

cseg ends

dseg segment para public ‘data’
ToString byte 255 dup (0)
dseg ends

sseg segment para stack ‘stack’
word 256 dup (?)

sseg ends
end MainPgm

Chapter 15

Page 834

 This code uses the scas instruction to determine the length of the string immediately
following the call instruction. Once the code determines the length, it stores this length
into the first byte of the destination string and then copies the text following the call to the
string variable. After copying the string, this code adjusts the return address so that it
points just beyond the zero terminating byte. Then the procedure returns control to the
caller.

Of course, this string assignment procedure isn’t very efficient, but it’s very easy to
use. Setting up es:di is all that you need to do to use this procedure. If you need fast string
assignment, simply use the movs instruction as follows:

; Presumably, DS and ES have already been set up.

lea si, SourceString
lea di, DestString
mov cx, LengthSource

rep movsb
 .
 .
 .

SourceString byte LengthSource-1
byte “This is an example of how the “
byte “StrAssign routine is used”

LengthSource = $-SourceString

DestString byte 256 dup (?)

Using in-line instructions requires considerably more setup (and typing!), but it is
much faster than the StrAssign procedure. If you don’t like the typing, you can always
write a macro to do the string assignment for you.

15.2.3 String Comparison

Comparing two character strings was already beaten to death in the section on the
cmps instruction. Other than providing some concrete examples, there is no reason to con-
sider this subject any further.

Note: all the following examples assume that es and ds are pointing at the proper seg-
ments containing the destination and source strings.

Comparing Str1 to Str2:

lea si, Str1
lea di, Str2

; Get the minimum length of the two strings.

mov al, Str1
mov cl, al
cmp al, Str2
jb CmpStrs
mov cl, Str2

; Compare the two strings.

CmpStrs: mov ch, 0
cld

repe cmpsb
jne StrsNotEqual

; If CMPS thinks they’re equal, compare their lengths
; just to be sure.

cmp al, Str2
StrsNotEqual:

Strings and Character Sets

Page 835

At label StrsNotEqual, the flags will contain all the pertinent information about the
ranking of these two strings. You can use the conditional jump instructions to test the
result of this comparison.

15.3 Character String Functions

Most high level languages, like Pascal, BASIC, “C”, and PL/I, provide several string
functions and procedures (either built into the language or as part of a standard library).
Other than the five string operations provided above, the 80x86 doesn’t support any
string functions. Therefore, if you need a particular string function, you’ll have to write it
yourself. The following sections describe many of the more popular string functions and
how to implement them in assembly language.

15.3.1 Substr

The Substr (substring) function copies a portion of one string to another. In a high level
language, this function usually takes the form:

DestStr := Substr(SrcStr,Index,Length);

where:

• DestStr is the name of the string variable where you want to store the sub-
string,

• SrcStr is the name of the source string (from which the substring is to be
taken),

• Index is the starting character position within the string (1..length(SrcStr)),
and

• Length is the length of the substring you want to copy into DestStr.

The following examples show how Substr works.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,11,7);
write(DestStr);

This prints ‘example’. The index value is eleven, so, the Substr function will begin copying
data starting at the eleventh character in the string. The eleventh character is the ‘e’ in
‘example’. The length of the string is seven.

This invocation copies the seven characters ‘example’ to DestStr.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,1,10);
write(DestStr);

This prints ‘This is an’. Since the index is one, this occurrence of the Substr function starts
copying 10 characters starting with the first character in the string.

SrcStr := ‘This is an example of a string’;
DestStr := Substr(SrcStr,20,11);
write(DestStr);

This prints ‘of a string’. This call to Substr extracts the last eleven characters in the string.

What happens if the index and length values are out of bounds? For example, what
happens if Index is zero or is greater than the length of the string? What happens if Index is
fine, but the sum of Index and Length is greater than the length of the source string? You
can handle these abnormal situations in one of three ways: (1)ignore the possibility of
error; (2)abort the program with a run-time error; (3)process some reasonable number of
characters in response to the request.

Chapter 15

Page 836

The first solution operates under the assumption that the caller never makes a mistake
computing the values for the parameters to the Substr function. It blindly assumes that the
values passed to the Substr function are correct and processes the string based on that
assumption. This can produce some bizarre effects. Consider the following examples,
which use length-prefixed strings:

SourceStr :=’1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ’;
DestStr := Substr(SourceStr,0,5);
Write(‘DestStr’);

prints ‘$1234’. The reason, of course, is that SourceStr is a length-prefixed string. Therefore
the length, 36, appears at offset zero within the string. If Substr uses the illegal index of
zero then the length of the string will be returned as the first character. In this particular
case, the length of the string, 36, just happened to correspond to the ASCII code for the ‘$’
character.

The situation is considerably worse if the value specified for Index is negative or is
greater than the length of the string. In such a case, the Substr function would be returning
a substring containing characters appearing before or after the source string. This is not a
reasonable result.

Despite the problems with ignoring the possibility of error in the Substr function, there
is one big advantage to processing substrings in this manner: the resulting Substr code is
more efficient if it doesn’t have to perform any run-time checking on the data. If you know
that the index and length values are always within an acceptable range, then there is no
need to do this checking within Substr function. If you can guarantee that an error will not
occur, your programs will run (somewhat) faster by eliminating the run-time check.

Since most programs are rarely error-free, you’re taking a big gamble if you assume
that all calls to the Substr routine are passing reasonable values. Therefore, some sort of
run-time check is often necessary to catch errors in your program. An error occurs under
the following conditions:

• The index parameter (Index) is less than one.
• Index is greater than the length of the string.
• The Substr length parameter (Length) is greater than the length of the

string.
• The sum of Index and Length is greater than the length of the string.

An alternative to ignoring any of these errors is to abort with an error message. This is
probably fine during the program development phase, but once your program is in the
hands of users it could be a real disaster. Your customers wouldn’t be very happy if they’d
spent all day entering data into a program and it aborted, causing them to lose the data
they’ve entered. An alternative to aborting when an error occurs is to have the Substr func-
tion return an error condition. Then leave it up to the calling code to determine if an error
has occurred. This technique works well with the third alternative to handling errors: pro-
cessing the substring as best you can.

The third alternative, handling the error as best you can, is probably the best alterna-
tive. Handle the error conditions in the following manner:

• The index parameter (Index) is less than one. There are two ways to han-
dle this error condition. One way is to automatically set the Index parame-
ter to one and return the substring beginning with the first character of
the source string. The other alternative is to return the empty string, a
string of length zero, as the substring. Variations on this theme are also
possible. You might return the substring beginning with the first charac-
ter if the index is zero and an empty string if the index is negative.
Another alternative is to use unsigned numbers. Then you’ve only got to
worry about the case where Index is zero. A negative number, should the
calling code accidentally generate one, would look like a large positive
number.

Strings and Character Sets

Page 837

• The index is greater than the length of the string. If this is the case, then
the Substr function should return an empty string. Intuitively, this is the
proper response in this situation.

• The Substr length parameter (Length) is greater than the length of the
string. -or-

• The sum of Index and Length is greater than the length of the string. Points
three and four are the same problem, the length of the desired substring
extends beyond the end of the source string. In this event, Substr should
return the substring consisting of those characters starting at Index
through the end of the source string.

The following code for the Substr function expects four parameters: the addresses of
the source and destination strings, the starting index, and the length of the desired sub-
string. Substr expects the parameters in the following registers:

ds:si- The address of the source string.

es:di- The address of the destination string.

ch- The starting index.

cl- The length of the substring.

Substr returns the following values:

• The substring, at location es:di.
• Substr clears the carry flag if there were no errors. Substr sets the carry flag

if there was an error.
• Substr preserves all the registers.

If an error occurs, then the calling code must examine the values in si, di and cx to
determine the exact cause of the error (if this is necessary). In the event of an error, the
Substr function returns the following substrings:

• If the Index parameter (ch) is zero, Substr uses one instead.
• The Index and Length parameters are both unsigned byte values, therefore

they are never negative.
• If the Index parameter is greater than the length of the source string, Substr

returns an empty string.
• If the sum of the Index and Length parameters is greater than the length of

the source string, Substr returns only those characters from Index through
the end of the source string. The following code realizes the substring
function.

; Substring function.
;
; HLL form:
;
;procedure substring(var Src:string;
; Index, Length:integer;
; var Dest:string);
;
; Src- Address of a source string.
; Index- Index into the source string.
; Length- Length of the substring to extract.
; Dest- Address of a destination string.
;
; Copies the source string from address [Src+index] of length
; Length to the destination string.
;
; If an error occurs, the carry flag is returned set, otherwise
; clear.
;
; Parameters are passed as follows:
;
; DS:SI- Source string address.
; ES:DI- Destination string address.

Chapter 15

Page 838

; CH- Index into source string.
; CL- Length of source string.
;
; Note: the strings pointed at by the SI and DI registers are
; length-prefixed strings. That is, the first byte of each
; string contains the length of that string.

Substring proc near
push ax
push cx
push di
push si
clc ;Assume no error.
pushf ;Save direction flag status.

; Check the validity of the parameters.

cmp ch, [si] ;Is index beyond the length of
ja ReturnEmpty ; the source string?
mov al, ch ;See if the sum of index and
dec al ; length is beyond the end of the
add al, cl ; string.
jc TooLong ;Error if > 255.
cmp al, [si] ;Beyond the length of the source?
jbe OkaySoFar

; If the substring isn’t completely contained within the source
; string, truncate it:

TooLong: popf
stc ;Return an error flag.
pushf
mov al, [si] ;Get maximum length.
sub al, ch ;Subtract index value.
inc al ;Adjust as appropriate.
mov cl, al ;Save as new length.

OkaySoFar: mov es:[di], cl ;Save destination string length.
inc di
mov al, ch ;Get index into source.
mov ch, 0 ;Zero extend length value into CX.
mov ah, 0 ;Zero extend index into AX.
add si, ax ;Compute address of substring.
cld

rep movsb ;Copy the substring.

popf
SubStrDone: pop si

pop di
pop cx
pop ax
ret

; Return an empty string here:

ReturnEmpty: mov byte ptr es:[di], 0
popf
stc
jmp SubStrDone

SubString endp

15.3.2 Index

The Index string function searches for the first occurrence of one string within another
and returns the offset to that occurrence. Consider the following HLL form:

Strings and Character Sets

Page 839

SourceStr := ‘Hello world’;
TestStr := ‘world’;
I := INDEX(SourceStr, TestStr);

The Index function scans through the source string looking for the first occurrence of
the test string. If found, it returns the index into the source string where the test string
begins. In the example above, the Index function would return seven since the substring
‘world’ starts at the seventh character position in the source string.

The only possible error occurs if Index cannot find the test string in the source string.
In such a situation, most implementations return zero. Our version will do likewise. The
Index function which follows operates in the following fashion:

1) It compares the length of the test string to the length of the source string. If the test
string is longer, Index immediately returns zero since there is no way the test string will be
found in the source string in this situation.

2) The index function operates as follows:

i := 1;
while (i < (length(source)-length(test)) and

 test <> substr(source, i, length(test)) do
i := i+1;

When this loop terminates, if (i < length(source)-length(test)) then it contains the
index into source where test begins. Otherwise test is not a substring of source. Using the
previous example, this loop compares test to source in the following manner:

i=1
test: world No match
source: Hello world

i=2
test: world No match
source: Hello world

i=3
test: world No match
source: Hello world

i=4
test: world No match
source: Hello world

i=5
test: world No match
source: Hello world

i=6
test: world No match
source: Hello world

i=7
test: world Match
source: Hello world

There are (algorithmically) better ways to do this comparison7, however, the algo-
rithm above lends itself to the use of 80x86 string instructions and is very easy to under-
stand. Index’s code follows:

; INDEX- computes the offset of one string within another.
;
; On entry:
;

7. The interested reader should look up the Knuth-Morris-Pratt algorithm in “Data Structure Techniques” by Tho-
mas A. Standish. The Boyer-Moore algorithm is another fast string search routine, although somewhat more com-
plex.

Chapter 15

Page 840

; ES:DI- Points at the test string that INDEX will search for
; in the source string.
; DS:SI- Points at the source string which (presumably)
; contains the string INDEX is searching for.
;
; On exit:
;
; AX- Contains the offset into the source string where the
; test string was found.

INDEX proc near
push si
push di
push bx
push cx
pushf ;Save direction flag value.
cld

mov al, es:[di] ;Get the length of the test string.
cmp al, [si] ;See if it is longer than the length
ja NotThere ; of the source string.

; Compute the index of the last character we need to compare the
; test string against in the source string.

mov al, es:[di] ;Length of test string.
mov cl, al ;Save for later.
mov ch, 0
sub al, [si] ;Length of source string.
mov bl, al ;# of times to repeat loop.
inc di ;Skip over length byte.
xor ax, ax ;Init index to zero.

CmpLoop: inc ax ;Bump index by one.
inc si ;Move on to the next char in source.
push si ;Save string pointers and the
push di ; length of the test string.
push cx

rep cmpsb ;Compare the strings.
pop cx ;Restore string pointers
pop di ; and length.
pop si
je Foundindex ;If we found the substring.
dec bl
jnz CmpLoop ;Try next entry in source string.

; If we fall down here, the test string doesn’t appear inside the
; source string.

NotThere: xor ax, ax ;Return INDEX = 0

; If the substring was found in the loop above, remove the
; garbage left on the stack

FoundIndex: popf
pop cx
pop bx
pop di
pop si
ret

INDEX endp

15.3.3 Repeat

The Repeat string function expects three parameters– the address of a string, a length,
and a character. It constructs a string of the specified length containing “length” copies of

Strings and Character Sets

Page 841

the specified character. For example, Repeat(STR,5,’*’) stores the string ‘*****’ into the STR
string variable. This is a very easy string function to write, thanks to the stosb instruction:

; REPEAT- Constructs a string of length CX where each element
; is initialized to the character passed in AL.
;
; On entry:
;
; ES:DI- Points at the string to be constructed.
; CX- Contains the length of the string.
; AL- Contains the character with which each element of
; the string is to be initialized.

REPEAT proc near
push di
push ax
push cx
pushf ;Save direction flag value.
cld
mov es:[di], cl ;Save string length.
mov ch, 0 ;Just in case.
inc di ;Start string at next location.

rep stosb
popf
pop cx
pop ax
pop di
ret

REPEAT endp

15.3.4 Insert

The Insert string function inserts one string into another. It expects three parameters, a
source string, a destination string, and an index. Insert inserts the source string into the
destination string starting at the offset specified by the index parameter. HLLs usually call
the Insert procedure as follows:

source := ‘ there’;
dest := ‘Hello world’;
INSERT(source,dest,6);

The call to Insert above would change source to contain the string ‘Hello there world’.
It does this by inserting the string ‘ there’ before the sixth character in ‘Hello world’.

The insert procedure using the following algorithm:

Insert(Src,dest,index);

1) Move the characters from location dest+index through the end of the destination
string length (Src) bytes up in memory.

2) Copy the characters from the Src string to location dest+index.

3) Adjust the length of the destination string so that it is the sum of the destination
and source lengths. The following code implements this algorithm:

; INSERT- Inserts one string into another.
;
; On entry:
;
; DS:SI Points at the source string to be inserted
;
; ES:DI Points at the destination string into which the source
; string will be inserted.
;
; DX Contains the offset into the destination string where the

Chapter 15

Page 842

; source string is to be inserted.
;
;
; All registers are preserved.
;
; Error condition-
;
; If the length of the newly created string is greater than 255,
; the insert operation will not be performed and the carry flag
; will be returned set.
;
; If the index is greater than the length of the destination
; string,
; then the source string will be appended to the end of the destin- ; ation
string.

INSERT proc near
push si
push di
push dx
push cx
push bx
push ax
clc ;Assume no error.
pushf
mov dh, 0 ;Just to be safe.

; First, see if the new string will be too long.

mov ch, 0
mov ah, ch
mov bh, ch
mov al, es:[di] ;AX = length of dest string.
mov cl, [si] ;CX = length of source string.
mov bl, al ;BX = length of new string.
add bl, cl
jc TooLong ;Abort if too long.
mov es:[di], bl ;Update length.

; See if the index value is too large:

cmp dl, al
jbe IndexIsOK
mov dl, al

IndexIsOK:

; Now, make room for the string that’s about to be inserted.

push si ;Save for later.
push cx

mov si, di ;Point SI at the end of current
add si, ax ; destination string.
add di, bx ;Point DI at the end of new str.
std

rep movsb ;Open up space for new string.

; Now, copy the source string into the space opened up.

pop cx
pop si
add si, cx ;Point at end of source string.

rep movsb
jmp INSERTDone

TooLong: popf
stc
pushf

INSERTDone: popf

Strings and Character Sets

Page 843

pop ax
pop bx
pop cx
pop dx
pop di
pop si
ret

INSERT endp

15.3.5 Delete

The Delete string removes characters from a string. It expects three parameters – the
address of a string, an index into that string, and the number of characters to remove from
that string. A HLL call to Delete usually takes the form:

 Delete(Str,index,length);

For example,

Str := ‘Hello there world’;
Delete(str,7,6);

This call to Delete will leave str containing ‘Hello world’. The algorithm for the delete
operation is the following:

 1) Subtract the length parameter value from the length of the destination string and
update the length of the destination string with this new value.

2) Copy any characters following the deleted substring over the top of the deleted
substring.

There are a couple of errors that may occur when using the delete procedure. The
index value could be zero or larger than the size of the specified string. In this case, the
Delete procedure shouldn’t do anything to the string. If the sum of the index and length
parameters is greater than the length of the string, then the Delete procedure should delete
all the characters to the end of the string. The following code implements the Delete proce-
dure:

; DELETE - removes some substring from a string.
;
; On entry:
;
; DS:SI Points at the source string.
; DX Index into the string of the start of the substring
; to delete.
; CX Length of the substring to be deleted.
;
; Error conditions-
;
; If DX is greater than the length of the string, then the
; operation is aborted.
;
; If DX+CX is greater than the length of the string, DELETE only
; deletes those characters from DX through the end of the string.

DELETE proc near
push es
push si
push di
push ax
push cx
push dx
pushf ;Save direction flag.
mov ax, ds ;Source and destination strings
mov es, ax ; are the same.
mov ah, 0

Chapter 15

Page 844

mov dh, ah ;Just to be safe.
mov ch, ah

; See if any error conditions exist.

mov al, [si] ;Get the string length
cmp dl, al ;Is the index too big?
ja TooBig
mov al, dl ;Now see if INDEX+LENGTH
add al, cl ;is too large
jc Truncate
cmp al, [si]
jbe LengthIsOK

; If the substring is too big, truncate it to fit.

Truncate: mov cl, [si] ;Compute maximum length
sub cl, dl
inc cl

; Compute the length of the new string.

LengthIsOK: mov al, [si]
sub al, cl
mov [si], al

; Okay, now delete the specified substring.

add si, dx ;Compute address of the substring
mov di, si ; to be deleted, and the address of
add di, cx ; the first character following it.
cld

rep movsb ;Delete the string.

TooBig: popf
pop dx
pop cx
pop ax
pop di
pop si
pop es
ret

DELETE endp

15.3.6 Concatenation

The concatenation operation takes two strings and appends one to the end of the
other. For example, Concat(‘Hello ‘,’world’) produces the string ‘Hello world’. Some high
level languages treat concatenation as a function call, others as a procedure call. Since in
assembly language everything is a procedure call anyway, we’ll adopt the procedural syn-
tax. Our Concat procedure will take the following form:

 Concat(source1,source2,dest);

 This procedure will copy source1 to dest, then it will concatenate source2 to the end of
dest. Concat follows:

; Concat- Copies the string pointed at by SI to the string
; rointed at byDI and then concatenates the string;
; pointed at by BX to the destination string.
;
; On entry-
;
; DS:SI- Points at the first source string
; DS:BX- Points at the second source string
; ES:DI- Points at the destination string.

Strings and Character Sets

Page 845

;
; Error condition-
;
; The sum of the lengths of the two strings is greater than 255.
; In this event, the second string will be truncated so that the
; entire string is less than 256 characters in length.

CONCAT proc near
push si
push di
push cx
push ax
pushf

; Copy the first string to the destination string:

mov al, [si]
mov cl, al
mov ch, 0
mov ah, ch
add al, [bx] ;Compute the sum of the string’s
adc ah, 0 ; lengths.
cmp ax, 256
jb SetNewLength
mov ah, [si] ;Save original string length.
mov al, 255 ;Fix string length at 255.

SetNewLength: mov es:[di], al ;Save new string length.
inc di ;Skip over length bytes.
inc si

rep movsb ;Copy source1 to dest string.

; If the sum of the two strings is too long, the second string
; must be truncated.

mov cl, [bx] ;Get length of second string.
cmp ax, 256
jb LengthsAreOK
mov cl, ah ;Compute truncated length.
neg cl ;CL := 256-Length(Str1).

LengthsAreOK: lea si, 1[bx] ;Point at second string and
; ; skip the string length.

cld
rep movsb ;Perform the concatenation.

popf
pop ax
pop cx
pop di
pop si
ret

CONCAT endp

15.4 String Functions in the UCR Standard Library

The UCR Standard Library for 80x86 Assembly Language Programmers provides a
very rich set of string functions you may use. These routines, for the most part, are quite
similar to the string functions provided in the C Standard Library. As such, these functions
support zero terminated strings rather than the length prefixed strings supported by the
functions in the previous sections.

Because there are so many different UCR StdLib string routines and the sources for all
these routines are in the public domain (and are present on the companion CD-ROM for
this text), the following sections will not discuss the implementation of each routine.
Instead, the following sections will concentrate on how to use these library routines.

Chapter 15

Page 846

The UCR library often provides several variants of the same routine. Generally a suf-
fix of “l”, “m”, or “ml” appears at the end of the name of these variant routines. The “l”
suffix stands for “literal constant”. Routines with the “l” (or “ml”) suffix require two
string operands. The first is generally pointed at by es:di and the second immediate fol-
lows the call in the code stream.

Most StdLib string routines operate on the specified string (or one of the strings if the
function has two operands). The “m” (or “ml”) suffix instructs the string function to allo-
cate storage on the heap (using malloc, hence the “m” suffix) for the new string and store
the modified result there rather than changing the source string(s). These routines always
return a pointer to the newly created string in the es:di registers. In the event of a memory
allocation error (insufficient memory), these routines with the “m” or “ml” suffix return
the carry flag set. They return the carry clear if the operation was successful.

15.4.1 StrBDel, StrBDelm

These two routines delete leading spaces from a string. StrBDel removes any leading
spaces from the string pointed at by es:di. It actually modifies the source string. StrBDelm
makes a copy of the string on the heap with any leading spaces removed. If there are no
leading spaces, then the StrBDel routines return the original string without modification.
Note that these routines only affect leading spaces (those appearing at the beginning of the
string). They do not remove trailing spaces and spaces in the middle of the string. See
Strtrim if you want to remove trailing spaces. Examples:

MyString byte “ Hello there, this is my string”,0
MyStrPtr dword MyString

 .
 .
 .

les di, MyStrPtr
strbdelm ;Creates a new string w/o leading spaces,
jc error ; pointer to string is in ES:DI on return.
puts ;Print the string pointed at by ES:DI.
free ;Deallocate storage allocated by strbdelm.
 .
 .
 .

; Note that “MyString” still contains the leading spaces.
; The following printf call will print the string along with
; those leading spaces. “strbdelm” above did not change MyString.

printf
byte “MyString = ‘%s’\n”,0
dword MyString
 .
 .
 .

les di, MyStrPtr
strbdel

; Now, we really have removed the leading spaces from “MyString”

printf
byte “MyString = ‘%s’\n”,0
dword MyString
 .
 .
 .

Output from this code fragment:

Hello there, this is my string
MyString = ‘ Hello there, this is my string’
MyString = ‘Hello there, this is my string’

Strings and Character Sets

Page 847

15.4.2 Strcat, Strcatl, Strcatm, Strcatml

The strcat(xx) routines perform string concatenation. On entry, es:di points at the first
string, and for strcat/strcatm dx:si points at the second string. For strcatl and strcatlm the sec-
ond string follows the call in the code stream. These routines create a new string by
appending the second string to the end of the first. In the case of strcat and strcatl, the sec-
ond string is directly appended to the end of the first string (es:di) in memory. You must
make sure there is sufficient memory at the end of the first string to hold the appended
characters. Strcatm and strcatml create a new string on the heap (using malloc) holding the
concatenated result. Examples:

String1 byte “Hello “,0
byte 16 dup (0) ;Room for concatenation.

String2 byte “world”,0

; The following macro loads ES:DI with the address of the
; specified operand.

lesi macro operand
mov di, seg operand
mov es, di
mov di, offset operand
endm

; The following macro loads DX:SI with the address of the
; specified operand.

ldxi macro operand
mov dx, seg operand
mov si, offset operand
endm
 .
 .
 .

lesi String1
ldxi String2
strcatm ;Create “Hello world”
jc error ;If insufficient memory.
print
byte “strcatm: “,0
puts ;Print “Hello world”
putcr
free ;Deallocate string storage.
 .
 .
 .

lesi String1 ;Create the string
strcatml ; “Hello there”
jc error ;If insufficient memory.
byte “there”,0
print
byte “strcatml: “,0
puts ;Print “Hello there”
putcr
free
 .
 .
 .

lesi String1
ldxi String2
strcat ;Create “Hello world”
printf
byte “strcat: %s\n”,0
 .
 .
 .

; Note: since strcat above has actually modified String1,
; the following call to strcatl appends “there” to the end
; of the string “Hello world”.

lesi String1

Chapter 15

Page 848

strcatl
byte “there”,0
printf
byte “strcatl: %s\n”,0
 .
 .
 .

The code above produces the following output:

strcatm: Hello world
strcatml: Hello there
strcat: Hello world
strcatl: Hello world there

15.4.3 Strchr

Strchr searches for the first occurrence of a single character within a string. In opera-
tion it is quite similar to the scasb instruction. However, you do not have to specify an
explicit length when using this function as you would for scasb.

On entry, es:di points at the string you want to search through, al contains the value to
search for. On return, the carry flag denotes success (C=1 means the character was not
present in the string, C=0 means the character was present). If the character was found in
the string, cx contains the index into the string where strchr located the character. Note
that the first character of the string is at index zero. So strchr will return zero if al matches
the first character of the string. If the carry flag is set, then the value in cx has no meaning.
Example:

; Note that the following string has a period at location
; “HasPeriod+24”.

HasPeriod byte “This string has a period.”,0
 .
 .
 .

lesi HasPeriod ;See strcat for lesi definition.
mov al, “.” ;Search for a period.
strchr
jnc GotPeriod
print
byte “No period in string”,cr,lf,0
jmp Done

; If we found the period, output the offset into the string:

GotPeriod: print
byte “Found period at offset “,0
mov ax, cx
puti
putcr

Done:

This code fragment produces the output:

Found period at offset 24

15.4.4 Strcmp, Strcmpl, Stricmp, Stricmpl

These routines compare strings using a lexicographical ordering. On entry to strcmp or
stricmp, es:di points at the first string and dx:si points at the second string. Strcmp compares
the first string to the second and returns the result of the comparison in the flags register.
Strcmpl operates in a similar fashion, except the second string follows the call in the code
stream. The stricmp and stricmpl routines differ from their counterparts in that they ignore
case during the comparison. Whereas strcmp would return ‘not equal’ when comparing
“Strcmp” with “strcmp”, the stricmp (and stricmpl) routines would return “equal” since the

Strings and Character Sets

Page 849

only differences are upper vs. lower case. The “i” in stricmp and stricmpl stands for “ignore
case.” Examples:

String1 byte “Hello world”, 0
String2 byte “hello world”, 0
String3 byte “Hello there”, 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
ldxi String2 ;See strcat for ldxi definition.
strcmp
jae IsGtrEql
printf
byte “%s is less than %s\n”,0
dword String1, String2
jmp Tryl

IsGtrEql: printf
byte “%s is greater or equal to %s\n”,0
dword String1, String2

Tryl: lesi String2
strcmpl
byte “hi world!”,0
jne NotEql
printf
byte “Hmmm..., %s is equal to ‘hi world!’\n”,0
dword String2
jmp Tryi

NotEql: printf
byte “%s is not equal to ‘hi world!’\n”,0
dword String2

Tryi: lesi String1
ldxi String2
stricmp
jne BadCmp
printf
byte “Ignoring case, %s equals %s\n”,0
dword String1, String2
jmp Tryil

BadCmp: printf
byte “Wow, stricmp doesn’t work! %s <> %s\n”,0
dword String1, String2

Tryil: lesi String2
stricmpl
byte “hELLO THERE”,0
jne BadCmp2
print
byte “Stricmpl worked”,cr,lf,0
jmp Done

BadCmp2: print
byte “Stricmp did not work”,cr,lf,0

Done:

15.4.5 Strcpy, Strcpyl, Strdup, Strdupl

The strcpy and strdup routines copy one string to another. There is no strcpym or
strcpyml routines. Strdup and strdupl correspond to those operations. The UCR Standard
Library uses the names strdup and strdupl rather than strcpym and strcpyml so it will use the
same names as the C standard library.

Chapter 15

Page 850

Strcpy copies the string pointed at by es:di to the memory locations beginning at the
address in dx:si. There is no error checking; you must ensure that there is sufficient free
space at location dx:si before calling strcpy. Strcpy returns with es:di pointing at the destina-
tion string (that is, the original dx:si value). Strcpyl works in a similar fashion, except the
source string follows the call.

Strdup duplicates the string which es:di points at and returns a pointer to the new
string on the heap. Strdupl works in a similar fashion, except the string follows the call. As
usual, the carry flag is set if there is a memory allocation error when using strdup or strdupl.
Examples:

String1 byte “Copy this string”,0
String2 byte 32 dup (0)
String3 byte 32 dup (0)
StrVar1 dword 0
StrVar2 dword 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
ldxi String2 ;See strcat for ldxi definition.
strcpy

ldxi String3
strcpyl
byte “This string, too!”,0

lesi String1
strdup
jc error ;If insufficient mem.
mov word ptr StrVar1, di ;Save away ptr to
mov word ptr StrVar1+2, es ; string.

strdupl
jc error
byte “Also, this string”,0
mov word ptr StrVar2, di
mov word ptr StrVar2+2, es

printf
byte “strcpy: %s\n”
byte “strcpyl: %s\n”
byte “strdup: %^s\n”
byte “strdupl: %^s\n”,0
dword String2, String3, StrVar1, StrVar2

15.4.6 Strdel, Strdelm

Strdel and strdelm delete characters from a string. Strdel deletes the specified characters
within the string, strdelm creates a new copy of the source string without the specified
characters. On entry, es:di points at the string to manipulate, cx contains the index into the
string where the deletion is to start, and ax contains the number of characters to delete
from the string. On return, es:di points at the new string (which is on the heap if you call
strdelm). For strdelm only, if the carry flag is set on return, there was a memory allocation
error. As with all UCR StdLib string routines, the index values for the string are
zero-based. That is, zero is the index of the first character in the source string. Example:

String1 byte “Hello there, how are you?”,0
 .
 .
 .

lesi String1 ;See strcat for lesi definition.
mov cx, 5 ;Start at position five (“ there”)
mov ax, 6 ;Delete six characters.
strdelm ;Create a new string.
jc error ;If insufficient memory.
print
byte “New string:”,0
puts

Strings and Character Sets

Page 851

putcr

lesi String1
mov ax, 11
mov cx, 13
strdel
printf
byte “Modified string: %s\n”,0
dword String1

This code prints the following:

New string: Hello, how are you?
Modified string: Hello there

15.4.7 Strins, Strinsl, Strinsm, Strinsml

The strins(xx) functions insert one string within another. For all four routines es:di
points at the source string into you want to insert another string. Cx contains the insertion
point (0..length of source string). For strins and strinsm, dx:si points at the string you wish to
insert. For strinsl and strinsml, the string to insert appears as a literal constant in the code
stream. Strins and strinsl insert the second string directly into the string pointed at by es:di.
Strinsm and strinsml make a copy of the source string and insert the second string into that
copy. They return a pointer to the new string in es:di. If there is a memory allocation error
then strinsm/strinsml sets the carry flag on return. For strins and strinsl, the first string must
have sufficient storage allocated to hold the new string. Examples:

InsertInMe byte “Insert >< Here”,0
byte 16 dup (0)

InsertStr byte “insert this”,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

lesi InsertInMe ;See strcat for lesi definition.
ldxi InsertStr ;See strcat for ldxi definition.
mov cx, 8 ;Însert before “<“
strinsm
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi InsertInMe
mov cx, 8
strinsml
byte “insert that”,0
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

lesi InsertInMe
mov cx, 8
strinsl
byte “ “,0 ;Two spaces

lesi InsertInMe
ldxi InsertStr
mov cx, 9 ;In front of first space from above.
strins

printf
byte “First string: %^s\n”
byte “Second string: %^s\n”
byte “Third string: %s\n”,0
dword StrPtr1, StrPtr2, InsertInMe

Note that the strins and strinsl operations above both insert strings into the same destina-
tion string. The output from the above code is

Chapter 15

Page 852

First string: Insert >insert this< here
Second string: Insert >insert that< here
Third string: Insert > insert this < here

15.4.8 Strlen

Strlen computes the length of the string pointed at by es:di. It returns the number of
characters up to, but not including, the zero terminating byte. It returns this length in the
cx register. Example:

GetLen byte “This string is 33 characters long”,0
 .
 .
 .

lesi GetLen ;See strcat for lesi definition.
strlen
print
byte “The string is “,0
mov ax, cx ;Puti needs the length in AX!
puti
print
byte “ characters long”,cr,lf,0

15.4.9 Strlwr, Strlwrm, Strupr, Struprm

Strlwr and Strlwrm convert any upper case characters in a string to lower case. Strupr
and Struprm convert any lower case characters in a string to upper case. These routines do
not affect any other characters present in the string. For all four routines, es:di points at the
source string to convert. Strlwr and strupr modify the characters directly in that string. Strl-
wrm and struprm make a copy of the string to the heap and then convert the characters in
the new string. They also return a pointer to this new string in es:di. As usual for UCR
StdLib routines, strlwrm and struprm return the carry flag set if there is a memory allocation
error. Examples:

String1 byte “This string has lower case.”,0
String2 byte “THIS STRING has Upper Case.”,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
struprm ;Convert lower case to upper case.
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi String2
strlwrm ;Convert upper case to lower case.
jc error
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

lesi String1
strlwr ;Convert to lower case, in place.

lesi String2
strupr ;Convert to upper case, in place.

printf
byte “struprm: %^s\n”
byte “strlwrm: %^s\n”
byte “strlwr: %s\n”
byte “strupr: %s\n”,0
dword StrPtr1, StrPtr2, String1, String2

Strings and Character Sets

Page 853

The above code fragment prints the following:

struprm: THIS STRING HAS LOWER CASE
strlwrm: this string has upper case
strlwr: this string has lower case
strupr: THIS STRING HAS UPPER CASE

15.4.10 Strrev, Strrevm

These two routines reverse the characters in a string. For example, if you pass strrev
the string “ABCDEF” it will convert that string to “FEDCBA”. As you’d expect by now,
the strrev routine reverse the string whose address you pass in es:di; strrevm first makes a
copy of the string on the heap and reverses those characters leaving the original string
unchanged. Of course strrevm will return the carry flag set if there was a memory alloca-
tion error. Example:

Palindrome byte “radar”,0
NotPaldrm byte “x + y - z”,0
StrPtr1 dword 0

 .
 .
 .

lesi Palindrome ;See strcat for lesi definition.
strrevm
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi NotPaldrm
strrev

printf
byte “First string: %^s\n”
byte “Second string: %s\n”,0
dword StrPtr1, NotPaldrm

The above code produces the following output:

First string: radar
Second string: z - y + x

15.4.11 Strset, Strsetm

Strset and strsetm replicate a single character through a string. Their behavior, how-
ever, is not quite the same. In particular, while strsetm is quite similar to the repeat function
(see “Repeat” on page 840), strset is not. Both routines expect a single character value in
the al register. They will replicate this character throughout some string. Strsetm also
requires a count in the cx register. It creates a string on the heap consisting of cx characters
and returns a pointer to this string in es:di (assuming no memory allocation error). Strset,
on the other hand, expects you to pass it the address of an existing string in es:di. It will
replace each character in that string with the character in al. Note that you do not specify a
length when using the strset function, strset uses the length of the existing string. Exam-
ple:

String1 byte “Hello there”,0
 .
 .
 .

lesi String1 ;See strcat for lesi definition.
mov al, ‘*’
strset

mov cx, 8
mov al, ‘#’
strsetm

print

Chapter 15

Page 854

byte “String2: “,0
puts
printf
byte “\nString1: %s\n“,0
dword String1

The above code produces the output:

String2: ########
String1: ***********

15.4.12 Strspan, Strspanl, Strcspan, Strcspanl

These four routines search through a string for a character which is either in some
specified character set (strspan, strspanl) or not a member of some character set (strcspan,
strcspanl). These routines appear in the UCR Standard Library only because of their
appearance in the C standard library. You should rarely use these routines. The UCR Stan-
dard Library includes some other routines for manipulating character sets and perform-
ing character matching operations. Nonetheless, these routines are somewhat useful on
occasion and are worth a mention here.

These routines expect you to pass them the addresses of two strings: a source string
and a character set string. They expect the address of the source string in es:di. Strspan and
strcspan want the address of the character set string in dx:si; the character set string follows
the call with strspanl and strcspanl. On return, cx contains an index into the string, defined
as follows:

strspan, strspanl: Index of first character in source found in the character set.

strcspan, strcspanl: Index of first character in source not found in the character set.

If all the characters are in the set (or are not in the set) then cx contains the index into the
string of the zero terminating byte.

Example:

Source byte “ABCDEFG 0123456”,0
Set1 byte “ABCDEFGHIJKLMNOPQRSTUVWXYZ”,0
Set2 byte “0123456789”,0
Index1 word ?
Index2 word ?
Index3 word ?
Index4 word ?

 .
 .
 .

lesi Source ;See strcat for lesi definition.
ldxi Set1 ;See strcat for ldxi definition.
strspan ;Search for first ALPHA char.
mov Index1, cx ;Index of first alphabetic char.

lesi Source
lesi Set2
strspan ;Search for first numeric char.
mov Index2, cx

lesi Source
strcspanl
byte “ABCDEFGHIJKLMNOPQRSTUVWXYZ”,0
mov Index3, cx

lesi Set2
strcspnl
byte “0123456789”,0
mov Index4, cx

printf
byte “First alpha char in Source is at offset %d\n”
byte “First numeric char is at offset %d\n”

Strings and Character Sets

Page 855

byte “First non-alpha in Source is at offset %d\n”
byte “First non-numeric in Set2 is at offset %d\n”,0
dword Index1, Index2, Index3, Index4

This code outputs the following:

First alpha char in Source is at offset 0
First numeric char is at offset 8
First non-alpha in Source is at offset 7
First non-numeric in Set2 is at offset 10

15.4.13 Strstr, Strstrl

Strstr searches for the first occurrence of one string within another. es:di contains the
address of the string in which you want to search for a second string. dx:si contains the
address of the second string for the strstr routine; for strstrl the search second string imme-
diately follows the call in the code stream.

On return from strstr or strstrl, the carry flag will be set if the second string is not
present in the source string. If the carry flag is clear, then the second string is present in the
source string and cx will contain the (zero-based) index where the second string was
found. Example:

SourceStr byte “Search for ‘this’ in this string”,0
SearchStr byte “this”,0

 .
 .
 .

lesi SourceStr ;See strcat for lesi definition.
ldxi SearchStr ;See strcat for ldxi definition.
strstr
jc NotPresent
print
byte “Found string at offset “,0
mov ax, cx ;Need offset in AX for puti
puti
putcr

lesi SourceStr
strstrl
byte “for”,0
jc NotPresent
print
byte “Found ‘for’ at offset “,0
mov ax, cx
puti
putcr

NotPresent:

The above code prints the following:

Found string at offset 12
Found ‘for’ at offset 7

15.4.14 Strtrim, Strtrimm

These two routines are quite similar to strbdel and strbdelm. Rather than removing
leading spaces, however, they trim off any trailing spaces from a string. Strtrim trims off
any trailing spaces directly on the specified string in memory. Strtrimm first copies the
source string and then trims and space off the copy. Both routines expect you to pass the
address of the source string in es:di. Strtrimm returns a pointer to the new string (if it could
allocate it) in es:di. It also returns the carry set or clear to denote error/no error. Example:

Chapter 15

Page 856

String1 byte “Spaces at the end “,0
String2 byte “ Spaces on both sides “,0
StrPtr1 dword 0
StrPtr2 dword 0

 .
 .
 .

; TrimSpcs trims the spaces off both ends of a string.
; Note that it is a little more efficient to perform the
; strbdel first, then the strtrim. This routine creates
; the new string on the heap and returns a pointer to this
; string in ES:DI.

TrimSpcs proc
strbdelm
jc BadAlloc ;Just return if error.
strtrim
clc

BadAlloc: ret
TrimSpcs endp

 .
 .
 .

lesi String1 ;See strcat for lesi definition.
strtrimm
jc error
mov word ptr StrPtr1, di
mov word ptr StrPtr1+2, es

lesi String2
call TrimSpcs
jc error
mov word ptr StrPtr2, di
mov word ptr StrPtr2+2, es

printf
byte “First string: ‘%s’\n”
byte “Second string: ‘%s’\n”,0
dword StrPtr1, StrPtr2

This code fragment outputs the following:

First string: ‘Spaces at the end’
Second string: ‘Spaces on both sides’

15.4.15 Other String Routines in the UCR Standard Library

In addition to the “strxxx” routines listed in this section, there are many additional
string routines available in the UCR Standard Library. Routines to convert from numeric
types (integer, hex, real, etc.) to a string or vice versa, pattern matching and character set
routines, and many other conversion and string utilities. The routines described in this
chapter are those whose definitions appear in the “strings.a” header file and are specifi-
cally targeted towards generic string manipulation. For more details on the other string
routines, consult the UCR Standard Library reference section in the appendices.

15.5 The Character Set Routines in the UCR Standard Library

The UCR Standard Library provides an extensive collection of character set routines.
These routines let you create sets, clear sets (set them to the empty set), add and remove
one or more items, test for set membership, copy sets, compute the union, intersection, or
difference, and extract items from a set. Although intended to manipulate sets of charac-
ters, you can use the StdLib character set routines to manipulate any set with 256 or fewer
possible items.

Strings and Character Sets

Page 857

The first unusual thing to note about the StdLib’s sets is their storage format. A 256-bit
array would normally consumes 32 consecutive bytes. For performance reasons, the UCR
Standard Library’s set format packs eight separate sets into 272 bytes (256 bytes for the
eight sets plus 16 bytes overhead). To declare set variables in your data segment you
should use the set macro. This macro takes the form:

set SetName1, SetName2, ..., SetName8

SetName1..SetName8 represent the names of up to eight set variables. You may have fewer
than eight names in the operand field, but doing so will waste some bits in the set array.

The CreateSets routine provides another mechanism for creating set variables. Unlike
the set macro, which you would use to create set variables in your data segment, the
CreateSets routine allocates storage for up to eight sets dynamically at run time. It returns
a pointer to the first set variable in es:di. The remaining seven sets follow at locations
es:di+1, es:di+2, ..., es:di+7. A typical program that allocates set variables dynamically
might use the following code:

Set0 dword ?
Set1 dword ?
Set2 dword ?
Set3 dword ?
Set4 dword ?
Set5 dword ?
Set6 dword ?
Set7 dword ?

 .
 .
 .

CreateSets
mov word ptr Set0+2, es
mov word ptr Set1+2, es
mov word ptr Set2+2, es
mov word ptr Set3+2, es
mov word ptr Set4+2, es
mov word ptr Set5+2, es
mov word ptr Set6+2, es
mov word ptr Set7+2, es

mov word ptr Set0, di
inc di
mov word ptr Set1, di
inc di
mov word ptr Set2, di
inc di
mov word ptr Set3, di
inc di
mov word ptr Set4, di
inc di
mov word ptr Set5, di
inc di
mov word ptr Set6, di
inc di
mov word ptr Set7, di
inc di

This code segment creates eight different sets on the heap, all empty, and stores pointers to
them in the appropriate pointer variables.

The SHELL.ASM file provides a commented-out line of code in the data segment that
includes the file STDSETS.A. This include file provides the bit definitions for eight com-
monly used character sets. They are alpha (upper and lower case alphabetics), lower (lower
case alphabetics), upper (upper case alphabetics), digits (“0”..”9”), xdigits (“0”..”9”,
“A”..”F”, and “a”..”f”), alphanum (upper and lower case alphabetics plus the digits),
whitespace (space, tab, carriage return, and line feed), and delimiters (whitespace plus com-
mas, semicolons, less than, greater than, and vertical bar). If you would like to use these
standard character sets in your program, you need to remove the semicolon from the
beginning of the include statement in the SHELL.ASM file.

Chapter 15

Page 858

The UCR Standard Library provides 16 character set routines: CreateSets, EmptySet,
RangeSet, AddStr, AddStrl, RmvStr, RmvStrl, AddChar, RmvChar, Member, CopySet, SetUnion,
SetIntersect, SetDifference, NextItem, and RmvItem. All of these routines except CreateSets
require a pointer to a character set variable in the es:di registers. Specific routines may
require other parameters as well.

The EmptySet routine clears all the bits in a set producing the empty set. This routine
requires the address of the set variable in the es:di. The following example clears the set
pointed at by Set1:

les di, Set1
EmptySet

RangeSet unions in a range of values into the set variable pointed at by es:di. The al
register contains the lower bound of the range of items, ah contains the upper bound.
Note that al must be less than or equal to ah. The following example constructs the set of
all control characters (ASCII codes one through 31, the null character [ASCII code zero] is
not allowed in sets):

les di, CtrlCharSet ;Ptr to ctrl char set.
mov al, 1
mov ah, 31
RangeSet

AddStr and AddStrl add all the characters in a zero terminated string to a character set.
For AddStr, the dx:si register pair points at the zero terminated string. For AddStrl, the zero
terminated string follows the call to AddStrl in the code stream. These routines union each
character of the specified string into the set. The following examples add the digits and
some special characters into the FPDigits set:

Digits byte “0123456789”,0
set FPDigitsSet

FPDigits dword FPDigitsSet
 .
 .
 .

ldxi Digits ;Loads DX:SI with adrs of Digits.
les di, FPDigits
AddStr
 .
 .
 .

les di, FPDigits
AddStrL
byte “Ee.+-”,0

RmvStr and RmvStrl remove characters from a set. You supply the characters in a zero
terminated string. For RmvStr, dx:si points at the string of characters to remove from the
string. For RmvStrl, the zero terminated string follows the call. The following example uses
RmvStrl to remove the special symbols from FPDigits above:

les di, FPDigits
RmvStrl
byte “Ee.+-”,0

The AddChar and RmvChar routines let you add or remove individual characters. As
usual, es:di points at the set; the al register contains the character you wish to add to the set
or remove from the set. The following example adds a space to the set FPDigits and
removes the “,” character (if present):

les di, FPDigits
mov al, ‘ ‘
AddChar
 .
 .
 .

les di, FPDigits
mov al, ‘,’
RmvChar

Strings and Character Sets

Page 859

The Member function checks to see if a character is in a set. On entry, es:di must point
at the set and al must contain the character to check. On exit, the zero flag is set if the char-
acter is a member of the set, the zero flag will be clear if the character is not in the set. The
following example reads characters from the keyboard until the user presses a key that is
not a whitespace character:

SkipWS: get ;Read char from user into AL.
lesi WhiteSpace ;Address of WS set into es:di.
member
je SkipWS

The CopySet, SetUnion, SetIntersect, and SetDifference routines all operate on two sets of
characters. The es:di register points at the destination character set, the dx:si register pair
points at a source character set. CopySet copies the bits from the source set to the destina-
tion set, replacing the original bits in the destination set. SetUnion computes the union of
the two sets and stores the result into the destination set. SetIntersect computes the set
intersection and stores the result into the destination set. Finally, the SetDifference routine
computes DestSet := DestSet - SrcSet.

The NextItem and RmvItem routines let you extract elements from a set. NextItem
returns in al the ASCII code of the first character it finds in a set. RmvItem does the same
thing except it also removes the character from the set. These routines return zero in al if
the set is empty (StdLib sets cannot contain the NULL character). You can use the RmvItem
routine to build a rudimentary iterator for a character set.

The UCR Standard Library’s character set routines are very powerful. With them, you
can easily manipulate character string data, especially when searching for different pat-
terns within a string. We will consider this routines again when we study pattern match-
ing later in this text (see “Pattern Matching” on page 883).

15.6 Using the String Instructions on Other Data Types

The string instructions work with other data types besides character strings. You can
use the string instructions to copy whole arrays from one variable to another, to initialize
large data structures to a single value, or to compare entire data structures for equality or
inequality. Anytime you’re dealing with data structures containing several bytes, you may
be able to use the string instructions.

15.6.1 Multi-precision Integer Strings

The cmps instruction is useful for comparing (very) large integer values. Unlike char-
acter strings, we cannot compare integers with cmps from the L.O. byte through the H.O.
byte. Instead, we must compare them from the H.O. byte down to the L.O. byte. The fol-
lowing code compares two 12-byte integers:

lea di, integer1+10
lea si, integer2+10
mov cx, 6
std

repe cmpsw

After the execution of the cmpsw instruction, the flags will contain the result of the com-
parison.

You can easily assign one long integer string to another using the movs instruction.
Nothing tricky here, just load up the si, di, and cx registers and have at it. You must do
other operations, including arithmetic and logical operations, using the extended preci-
sion methods described in the chapter on arithmetic operations.

Chapter 15

Page 860

15.6.2 Dealing with Whole Arrays and Records

The only operations that apply, in general, to all array and record structures are
assignment and comparison (for equality/inequality only). You can use the movs and
cmps instructions for these operations.

Operations such as scalar addition, transposition, etc., may be easily synthesized
using the lods and stos instructions. The following code shows how you can easily add the
value 20 to each element of the integer array A:

lea si, A
mov di, si
mov cx, SizeOfA
cld

AddLoop: lodsw
add ax, 20
stosw
loop AddLoop

You can implement other operations in a similar fashion.

15.7 Sample Programs

In this section there are three sample programs. The first searches through a file for a
particular string and displays the line numbers of any lines containing that string. This
program demonstrates the use of the strstr function (among other things). The second pro-
gram is a demo program that uses several of the string functions available in the UCR
Standard Library’s string package. The third program demonstrates how to use the 80x86
cmps instruction to compare the data in two files. These programs (find.asm, strdemo.asm,
and fcmp.asm) are available on the companion CD-ROM.

15.7.1 Find.asm

; Find.asm
;
; This program opens a file specified on the command line and searches for
; a string (also specified on the command line).
;
; Program Usage:
;
; find "string" filename

.xlist
include stdlib.a
includelib stdlib.lib
.list

wp textequ <word ptr>

dseg segment para public 'data'

StrPtr dword ?
FileName dword ?
LineCnt dword ?

FVar filevar {}

InputLine byte 1024 dup (?)
dseg ends

Strings and Character Sets

Page 861

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Readln- This procedure reads a line of text from the input
; file and buffers it up in the "InputLine" array.

ReadLn proc
push es
push ax
push di
push bx

lesi FVar ;Read from our file.
mov bx, 0 ;Index into InputLine.

ReadLp: fgetc ;Get next char from file.
jc EndRead ;Quit on EOF

cmp al, cr ;Ignore carriage returns.
je ReadLp
cmp al, lf ;End of line on line feed.
je EndRead

mov InputLine[bx], al
inc bx
jmp ReadLp

; If we hit the end of a line or the end of the file,
; zero-terminate the string.

EndRead: mov InputLine[bx], 0
pop bx
pop di
pop ax
pop es
ret

ReadLn endp

; The following main program extracts the search string and the
; filename from the command line, opens the file, and then searches
; for the string in that file.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

argc
cmp cx, 2
je GoodArgs
print
byte "Usage: find 'string' filename",cr,lf,0
jmp Quit

GoodArgs: mov ax, 1 ;Get the string to search for
argv ; off the command line.
mov wp StrPtr, di
mov wp StrPtr+2, es

mov ax, 2 ;Get the filename from the
argv ; command line.
mov wp Filename, di
mov wp Filename+2, es

; Open the input file for reading

mov ax, 0 ;Open for read.
mov si, wp FileName

Chapter 15

Page 862

mov dx, wp FileName+2
lesi Fvar
fopen
jc BadOpen

; Okay, start searching for the string in the file.

mov wp LineCnt, 0
mov wp LineCnt+2, 0

SearchLp: call ReadLn
jc AtEOF

; Bump the line number up by one. Note that this is 8086 code
; so we have to use extended precision arithmetic to do a 32-bit
; add. LineCnt is a 32-bit variable because some files have more
; that 65,536 lines.

add wp LineCnt, 1
adc wp LineCnt+2, 0

; Search for the user-specified string on the current line.

lesi InputLine
mov dx, wp StrPtr+2
mov si, wp StrPtr
strstr
jc SearchLp;Jump if not found.

; Print an appropriate message if we found the string.

printf
byte "Found '%^s' at line %ld\n",0
dword StrPtr, LineCnt
jmp SearchLp

; Close the file when we're done.

AtEOF: lesi FVar
fclose
jmp Quit

BadOpen: printf
byte "Error attempting to open %^s\n",cr,lf,0
dword FileName

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.7.2 StrDemo.asm

This short demo program just shows off how to use several of the string routines
found in the UCR Standard Library strings package.

; StrDemo.asm- Demonstration of some of the various UCR Standard Library
; string routines.

Strings and Character Sets

Page 863

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

MemAvail word ?
String byte 256 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax

MemInit
mov MemAvail, cx
printf
byte "There are %x paragraphs of memory available."
byte cr,lf,lf,0
dword MemAvail

; Demonstration of StrTrim:

print
byte "Testing strtrim on 'Hello there '",cr,lf,0
strdupl

HelloThere1 byte "Hello there ",0
strtrim
mov al, "'"
putc
puts
putc
putcr
free

;Demonstration of StrTrimm:

print
byte "Testing strtrimm on 'Hello there '",cr,lf,0
lesi HelloThere1
strtrimm
mov al, "'"
putc
puts
putc
putcr
free

; Demonstration of StrBdel

print
byte "Testing strbdel on ' Hello there '",cr,lf,0
strdupl

HelloThere3 byte " Hello there ",0
strbdel
mov al, "'"
putc
puts
putc
putcr
free

Chapter 15

Page 864

; Demonstration of StrBdelm

print
byte "Testing strbdelm on ' Hello there '",cr,lf,0
lesi HelloThere3
strbdelm
mov al, "'"
putc
puts
putc
putcr
free

; Demonstrate StrCpyl:

ldxi string
strcpyl
byte "Copy this string to the 'String' variable",0

printf
byte "STRING = '%s'",cr,lf,0
dword String

; Demonstrate StrCatl:

lesi String
strcatl
byte ". Put at end of 'String'",0

printf
byte "STRING = ",'"%s"',cr,lf,0
dword String

; Demonstrate StrChr:

lesi String
mov al, "'"
strchr

print
byte "StrChr: First occurrence of ", '"', "'"
byte '" found at position ',0
mov ax, cx
puti
putcr

; Demonstrate StrStrl:

lesi String
strstrl
byte "String",0

print
byte 'StrStr: First occurrence of "String" found at ‘
byte ‘position ',0

mov ax, cx
puti
putcr

; Demo of StrSet

lesi String
mov al, '*'
strset

printf
byte "Strset: '%s'",cr,lf,0
dword String

Strings and Character Sets

Page 865

; Demo of strlen

lesi String
strlen

print
byte "String length = ",0
puti
putcr

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk db 256 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.7.3 Fcmp.asm

This is a file comparison program. It demonstrates the use of the 80x86 cmps instruc-
tion (as well as blocked I/O under DOS).

; FCMP.ASM- A file comparison program that demonstrates the use
; of the 80x86 string instructions.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

Name1 dword ? ;Ptr to filename #1
Name2 dword ? ;Ptr to filename #2
Handle1 word ? ;File handle for file #1
Handle2 word ? ;File handle for file #2
LineCnt word 0 ;# of lines in the file.

Buffer1 byte 256 dup (0) ;Block of data from file 1
Buffer2 byte 256 dup (0) ;Block of data from file 2

dseg ends

wp equ <word ptr>

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Error- Prints a DOS error message depending upon the error type.

Error proc near
cmp ax, 2
jne NotFNF
print
byte "File not found",0
jmp ErrorDone

NotFNF: cmp ax, 4
jne NotTMF

Chapter 15

Page 866

print
byte "Too many open files",0
jmp ErrorDone

NotTMF: cmp ax, 5
jne NotAD
print
byte "Access denied",0
jmp ErrorDone

NotAD: cmp ax, 12
jne NotIA
print
byte "Invalid access",0
jmp ErrorDone

NotIA:
ErrorDone: putcr

ret
Error endp

; Okay, here's the main program. It opens two files, compares them, and
; complains if they're different.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax
meminit

; File comparison routine. First, open the two source files.

argc
cmp cx, 2 ;Do we have two filenames?
je GotTwoNames
print
byte "Usage: fcmp file1 file2",cr,lf,0
jmp Quit

GotTwoNames: mov ax, 1 ;Get first file name
argv
mov wp Name1, di
mov wp Name1+2, es

; Open the files by calling DOS.

mov ax, 3d00h ;Open for reading
lds dx, Name1
int 21h
jnc GoodOpen1
printf
byte "Error opening %^s:",0
dword Name1
call Error
jmp Quit

GoodOpen1: mov dx, dseg
mov ds, dx
mov Handle1, ax

mov ax, 2 ;Get second file name
argv
mov wp Name2, di
mov wp Name2+2, es

mov ax, 3d00h ;Open for reading
lds dx, Name2
int 21h
jnc GoodOpen2
printf

Strings and Character Sets

Page 867

byte "Error opening %^s:",0
dword Name2
call Error
jmp Quit

GoodOpen2: mov dx, dseg
mov ds, dx
mov Handle2, ax

; Read the data from the files using blocked I/O
; and compare it.

mov LineCnt, 1
CmpLoop: mov bx, Handle1 ;Read 256 bytes from

mov cx, 256 ; the first file into
lea dx, Buffer1 ; Buffer1.
mov ah, 3fh
int 21h
jc FileError
cmp ax, 256 ;Leave if at EOF.
jne EndOfFile

mov bx, Handle2 ;Read 256 bytes from
mov cx, 256 ; the second file into
lea dx, Buffer2 ; Buffer2
mov ah, 3fh
int 21h
jc FileError
cmp ax, 256 ;If we didn't read 256 bytes,
jne BadLen ; the files are different.

; Okay, we've just read 256 bytes from each file, compare the buffers
; to see if the data is the same in both files.

mov ax, dseg
mov ds, ax
mov es, ax
mov cx, 256
lea di, Buffer1
lea si, Buffer2
cld

repe cmpsb
jne BadCmp
jmp CmpLoop

FileError: print
byte "Error reading files: ",0
call Error
jmp Quit

BadLen: print
byte "File lengths were different",cr,lf,0

BadCmp: print
byte 7,"Files were not equal",cr,lf,0

mov ax, 4c01h ;Exit with error.
int 21h

; If we reach the end of the first file, compare any remaining bytes
; in that first file against the remaining bytes in the second file.

EndOfFile: push ax ;Save final length.
mov bx, Handle2
mov cx, 256
lea dx, Buffer2
mov ah, 3fh

Chapter 15

Page 868

int 21h
jc BadCmp

pop bx ;Retrieve file1's length.
cmp ax, bx ;See if file2 matches it.
jne BadLen

mov cx, ax ;Compare the remaining
mov ax, dseg ; bytes down here.
mov ds, ax
mov es, ax
lea di, Buffer2
lea si, Buffer1

repe cmpsb
jne BadCmp

Quit: mov ax, 4c00h ;Set Exit code to okay.
int 21h

Main endp
cseg ends

; Allocate a reasonable amount of space for the stack (2k).

sseg segment para stack 'stack'
stk byte 256 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

15.8 Laboratory Exercises

These exercises use the Ex15_1.asm, Ex15_2.asm, Ex15_3.asm, and Ex15_4.asm files
found on the companion CD-ROM. In this set of laboratory exercises you will be measur-
ing the performance of the 80x86 movs instructions and the (hopefully) minor perfor-
mance differences between length prefixed string operations and zero terminated string
operations.

15.8.1 MOVS Performance Exercise #1

The movsb, movsw, and movsd instructions operate at different speeds, even when
moving around the same number of bytes. In general, the movsw instruction is twice as
fast as movsb when moving the same number of bytes. Likewise, movsd is about twice as
fast as movsw (and about four times as fast as movsb) when moving the same number of
bytes. Ex15_1.asm is a short program that demonstrates this fact. This program consists of
three sections that copy 2048 bytes from one buffer to another 100,000 times. The three sec-
tions repeat this operation using the movsb, movsw, and movsd instructions. Run this pro-
gram and time each phase. For your lab report: present the timings on your machine. Be
sure to list processor type and clock frequency in your lab report. Discuss why the timings
are different between the three phases of this program. Explain the difficulty with using
the movsd (versus movsw or movsb) instruction in any program on an 80386 or later proces-
sor. Why is it not a general replacement for movsb, for example? How can you get around
this problem?

; EX15_1.asm
;
; This program demonstrates the proper use of the 80x86 string instructions.

.386
option segment:use16

Strings and Character Sets

Page 869

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 2048 dup (0)
Buffer2 byte 2048 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Demo of the movsb, movsw, and movsd instructions

print
byte "The following code moves a block of 2,048 bytes "
byte "around 100,000 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the movsw instruction; "
byte "the third phase does",cr,lf
byte "this using the movsd instruction.",cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc
putcr

mov edx, 100000

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 100000

movswLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 1024

rep movsw
dec edx
jnz movswLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc

Chapter 15

Page 870

putcr

mov edx, 100000

movsdLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 512

rep movsd
dec edx
jnz movsdLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.8.2 MOVS Performance Exercise #2

In this exercise you will once again time the computer moving around blocks of 2,048
bytes. Like Ex15_1.asm in the previous exercise, Ex15_2.asm contains three phases; the
first phase moves data using the movsb instruction; the second phase moves the data
around using the lodsb and stosb instructions; the third phase uses a loop with simple mov
instructions. Run this program and time the three phases. For your lab report: include the
timings and a description of your machine (CPU, clock speed, etc.). Discuss the timings
and explain the results (consult Appendix D as necessary).

; EX15_2.asm
;
; This program compares the performance of the MOVS instruction against
; a manual block move operation. It also compares MOVS against a LODS/STOS
; loop.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 2048 dup (0)
Buffer2 byte 2048 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

Strings and Character Sets

Page 871

; MOVSB version done here:

print
byte "The following code moves a block of 2,048 bytes "
byte "around 100,000 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the lods/stos instructions; "
byte "the third phase does",cr,lf
byte "this using a loop with MOV “
byte “instructions.",cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc
putcr

mov edx, 100000

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 100000

LodsStosLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

lodsstoslp2: lodsb
stosb
loop LodsStosLp2
dec edx
jnz LodsStosLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc
putcr

mov edx, 100000

MovLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 2048

MovLp2: mov al, ds:[si]
mov es:[di], al
inc si
inc di
loop MovLp2
dec edx
jnz MovLp

Chapter 15

Page 872

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.8.3 Memory Performance Exercise

In the previous two exercises, the programs accessed a maximum of 4K of data. Since
most modern on-chip CPU caches are at least this big, most of the activity took place
directly on the CPU (which is very fast). The following exercise is a slight modification
that moves the array data in such a way as to destroy cache performance. Run this pro-
gram and time the results. For your lab report: based on what you learned about the
80x86’s cache mechanism in Chapter Three, explain the performance differences.

; EX15_3.asm
;
; This program compares the performance of the MOVS instruction against
; a manual block move operation. It also compares MOVS against a LODS/STOS
; loop. This version does so in such a way as to wipe out the on-chip CPU
; cache.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

Buffer1 byte 16384 dup (0)
Buffer2 byte 16384 dup (0)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; MOVSB version done here:

print
byte "The following code moves a block of 16,384 bytes "
byte "around 12,500 times.",cr,lf
byte "The first phase does this using the movsb "
byte "instruction; the second",cr,lf
byte "phase does this using the lods/stos instructions; "
byte "the third phase does",cr,lf
byte "this using a loop with MOV instructions."
byte cr,lf,lf,lf
byte "Press any key to begin phase one:",0

getc

Strings and Character Sets

Page 873

putcr

mov edx, 12500

movsbLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

rep movsb
dec edx
jnz movsbLp

print
byte cr,lf
byte "Phase one complete",cr,lf,lf
byte "Press any key to begin phase two:",0

getc
putcr

mov edx, 12500

LodsStosLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

lodsstoslp2: lodsb
stosb
loop LodsStosLp2
dec edx
jnz LodsStosLp

print
byte cr,lf
byte "Phase two complete",cr,lf,lf
byte "Press any key to begin phase three:",0

getc
putcr

mov edx, 12500

MovLp: lea si, Buffer1
lea di, Buffer2
cld
mov cx, 16384

MovLp2: mov al, ds:[si]
mov es:[di], al
inc si
inc di
loop MovLp2
dec edx
jnz MovLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 15

Page 874

15.8.4 The Performance of Length-Prefixed vs. Zero-Terminated Strings

The following program (Ex15_4.asm on the companion CD-ROM) executes two mil-
lion string operations. During the first phase of execution, this code executes a sequence of
length-prefixed string operations 1,000,000 times. During the second phase it does a com-
parable set of operation on zero terminated strings. Measure the execution time of each
phase. For your lab report: report the differences in execution times and comment on the
relative efficiency of length prefixed vs. zero terminated strings. Note that the relative per-
formances of these sequences will vary depending upon the processor you use. Based on
what you learned in Chapter Three and the cycle timings in Appendix D, explain some
possible reasons for relative performance differences between these sequences among dif-
ferent processors.

; EX15_4.asm
;
; This program compares the performance of length prefixed strings versus
; zero terminated strings using some simple examples.
;
; Note: these routines all assume that the strings are in the data segment
; and both ds and es already point into the data segment.

.386
option segment:use16

include stdlib.a
includelib stdlib.lib

dseg segment para public 'data'

LStr1 byte 17,"This is a string."
LResult byte 256 dup (?)

ZStr1 byte "This is a string",0
ZResult byte 256 dup (?)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; LStrCpy: Copies a length prefixed string pointed at by SI to
; the length prefixed string pointed at by DI.

LStrCpy proc
push si
push di
push cx

cld

mov cl, [si] ;Get length of string.
mov ch, 0
inc cx ;Include length byte.

rep movsb

pop cx
pop di
pop si
ret

LStrCpy endp

; LStrCat- Concatenates the string pointed at by SI to the end
; of the string pointed at by DI using length
; prefixed strings.

LStrCat proc

Strings and Character Sets

Page 875

push si
push di
push cx

cld

; Compute the final length of the concatenated string

mov cl, [di] ;Get orig length.
mov ch, [si] ;Get 2nd Length.
add [di], ch ;Compute new length.

; Move SI to the first byte beyond the end of the first string.

mov ch, 0 ;Zero extend orig len.
add di, cx ;Skip past str.
inc di ;Skip past length byte.

; Concatenate the second string (SI) to the end of the first string (DI)

rep movsb ;Copy 2nd to end of orig.

pop cx
pop di
pop si
ret

LStrCat endp

; LStrCmp- String comparison using two length prefixed strings.
; SI points at the first string, DI points at the
; string to compare it against.

LStrCmp proc
push si
push di
push cx

cld

; When comparing the strings, we need to compare the strings
; up to the length of the shorter string. The following code
; computes the minimum length of the two strings.

mov cl, [si] ;Get the minimum of the two lengths
mov ch, [di]
cmp cl, ch
jb HasMin
mov cl, ch

HasMin: mov ch, 0

repe cmpsb ;Compare the two strings.
je CmpLen
pop cx
pop di
pop si
ret

; If the strings are equal through the length of the shorter string,
; we need to compare their lengths

CmpLen: pop cx
pop di
pop si

mov cl, [si]
cmp cl, [di]
ret

LStrCmp endp

; ZStrCpy- Copies the zero terminated string pointed at by SI

Chapter 15

Page 876

; to the zero terminated string pointed at by DI.

ZStrCpy proc
push si
push di
push ax

ZSCLp: mov al, [si]
inc si
mov [di], al
inc di
cmp al, 0
jne ZSCLp

pop ax
pop di
pop si
ret

ZStrCpy endp

; ZStrCat- Concatenates the string pointed at by SI to the end
; of the string pointed at by DI using zero terminated
; strings.

ZStrCat proc
push si
push di
push cx
push ax

cld

; Find the end of the destination string:

mov cx, 0FFFFh
mov al, 0 ;Look for zero byte.

repne scasb

; Copy the source string to the end of the destination string:

ZcatLp: mov al, [si]
inc si
mov [di], al
inc di
cmp al, 0
jne ZCatLp

pop ax
pop cx
pop di
pop si
ret

ZStrCat endp

; ZStrCmp- Compares two zero terminated strings.
; This is actually easier than the length
; prefixed comparison.

ZStrCmp proc
push cx
push si
push di

; Compare the two strings until they are not equal
; or until we encounter a zero byte. They are equal
; if we encounter a zero byte after comparing the
; two characters from the strings.

ZCmpLp: mov al, [si]

Strings and Character Sets

Page 877

inc si
cmp al, [di]
jne ZCmpDone
inc di
cmp al, 0
jne ZCmpLp

ZCmpDone: pop di
pop si
pop cx
ret

ZStrCmp endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "The following code does 1,000,000 string "
byte "operations using",cr,lf
byte "length prefixed strings. Measure the amount "
byte "of time this code",cr,lf
byte "takes to run.",cr,lf,lf
byte "Press any key to begin:",0

getc
putcr

mov edx, 1000000
LStrCpyLp: lea si, LStr1

lea di, LResult
call LStrCpy
call LStrCat
call LStrCat
call LStrCat
call LStrCpy
call LStrCmp
call LStrCat
call LStrCmp

dec edx
jne LStrCpyLp

print
byte "The following code does 1,000,000 string "
byte "operations using",cr,lf
byte "zero terminated strings. Measure the amount "
byte "of time this code",cr,lf
byte "takes to run.",cr,lf,lf
byte "Press any key to begin:",0

getc
putcr

mov edx, 1000000
ZStrCpyLp: lea si, ZStr1

lea di, ZResult
call ZStrCpy
call ZStrCat
call ZStrCat
call ZStrCat
call ZStrCpy
call ZStrCmp
call ZStrCat
call ZStrCmp

dec edx

Chapter 15

Page 878

jne ZStrCpyLp

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

15.9 Programming Projects

1) Write a SubStr function that extracts a substring from a zero terminated string. Pass a
pointer to the string in ds:si, a pointer to the destination string in es:di, the starting position
in the string in ax, and the length of the substring in cx. Follow all the rules given in sec-
tion 15.3.1 concerning degenerate conditions.

2) Write a word iterator (see “Iterators” on page 663) to which you pass a string (by reference,
on the stack). Each each iteration of the corresponding foreach loop should extract a word
from this string, malloc sufficient storage for this string on the heap, copy that word (sub-
string) to the malloc’d location, and return a pointer to the word. Write a main program
that calls the iterator with various strings to test it.

3) Modify the find.asm program (see “Find.asm” on page 860) so that it searches for the
desired string in several files using ambiguous filenames (i.e., wildcard characters). See
“Find First File” on page 729 for details about processing filenames that contain wildcard
characters. You should write a loop that processes all matching filenames and executes the
find.asm core code on each filename that matches the ambiguous filename a user supplies.

4) Write a strncpy routine that behaves like strcpy except it copies a maximum of n characters
(including the zero terminating byte). Pass the source string’s address in es:di, the destina-
tion string’s address in dx:si, and the maximum length in cx.

5) The movsb instruction may not work properly if the source and destination blocks overlap
(see “The MOVS Instruction” on page 822). Write a procedure “bcopy” to which you pass
the address of a source block, the address of a destination block, and a length, that will
properly copy the data even if the source and destination blocks overlap. Do this by
checking to see if the blocks overlap and adjusting the source pointer, destination pointer,
and direction flag if necessary.

6) As you discovered in the lab experiments, the movsd instruction can move a block of data
much faster than movsb or movsw can move that same block. Unfortunately, it can only
move a block that contains an even multiple of four bytes. Write a “fastcopy” routine that
uses the movsd instruction to copy all but the last one to three bytes of a source block to the
destination block and then manually copies the remaining bytes between the blocks. Write
a main program with several boundary test cases to verify correct operation. Compare the
performance of your fastcopy procedure against the use of the movsb instruction.

15.10 Summary

The 80sx86 provides a powerful set of string instructions. However, these instructions
are very primitive, useful mainly for manipulating blocks of bytes. They do not corre-
spond to the string instructions one expects to find in a high level language. You can, how-
ever, use the 80x86 string instructions to synthesize those functions normally associated
with HLLs. This chapter explains how to construct many of the more popular string func-

Strings and Character Sets

Page 879

tions. Of course, it’s foolish to constantly reinvent the wheel, so this chapter also describes
many of the string functions available in the UCR Standard Library.

The 80x86 string instructions provide the basis for many of the string operations
appearing in this chapter. Therefore, this chapter begins with a review and in-depth dis-
cussion of the 80x86 string instructions: the repeat prefixes, and the direction flag. This
chapter discusses the operation of each of the string instructions and describes how you
can use each of them to perform string related tasks. To see how the 80x86 string instruc-
tions operate, check out the following sections:

• “The 80x86 String Instructions” on page 819
• “How the String Instructions Operate” on page 819
• “The REP/REPE/REPZ and REPNZ/REPNE Prefixes” on page 820
• “The Direction Flag” on page 821
• “The MOVS Instruction” on page 822
• “The CMPS Instruction” on page 826
• “The SCAS Instruction” on page 828
• “The STOS Instruction” on page 828
• “The LODS Instruction” on page 829
• “Building Complex String Functions from LODS and STOS” on page 830
• “Prefixes and the String Instructions” on page 830

Although Intel calls them “string instructions” they do not actually work on the
abstract data type we normally think of as a character string. The string instructions sim-
ply manipulate arrays of bytes, words, or double words. It takes a little work to get these
instructions to deal with true character strings. Unfortunately, there isn’t a single defini-
tion of a character string which, no doubt, is the reason there aren’t any instructions spe-
cifically for character strings in the 80x86 instruction set. Two of the more popular
character string types include length prefixed strings and zero terminated strings which
Pascal and C use, respectively. Details on string formats appear in the following sections:

• “Character Strings” on page 831
• “Types of Strings” on page 831

Once you decide on a specific data type for you character strings, the next step is to
implement various functions to process those strings. This chapter provides examples of
several different string functions designed specifically for length prefixed strings. To learn
about these functions and see the code that implements them, look at the following sec-
tions:

• “String Assignment” on page 832
• “String Comparison” on page 834
• “Character String Functions” on page 835
• “Substr” on page 835
• “Index” on page 838
• “Repeat” on page 840
• “Insert” on page 841
• “Delete” on page 843
• “Concatenation” on page 844

The UCR Standard Library provides a very rich set of string functions specifically
designed for zero germinated strings. For a description of many of these routines, read the
following sections:

• “String Functions in the UCR Standard Library” on page 845
• “StrBDel, StrBDelm” on page 846
• “Strcat, Strcatl, Strcatm, Strcatml” on page 847
• “Strchr” on page 848
• “Strcmp, Strcmpl, Stricmp, Stricmpl” on page 848
• “Strcpy, Strcpyl, Strdup, Strdupl” on page 849

Chapter 15

Page 880

• “Strdel, Strdelm” on page 850
• “Strins, Strinsl, Strinsm, Strinsml” on page 851
• “Strlen” on page 852
• “Strlwr, Strlwrm, Strupr, Struprm” on page 852
• “Strrev, Strrevm” on page 853
• “Strset, Strsetm” on page 853
• “Strspan, Strspanl, Strcspan, Strcspanl” on page 854
• “Strstr, Strstrl” on page 855
• “Strtrim, Strtrimm” on page 855
• “Other String Routines in the UCR Standard Library” on page 856

As mentioned earlier, the string instructions are quite useful for many operations
beyond character string manipulation. This chapter closes with some sections describing
other uses for the string instructions. See

• “Using the String Instructions on Other Data Types” on page 859
• “Multi-precision Integer Strings” on page 859
• “Dealing with Whole Arrays and Records” on page 860

The set is another common abstract data type commonly found in programs today. A
set is a data structure which represent membership (or lack thereof) of some group of
objects. If all objects are of the same underlying base type and there is a limited number of
possible objects in the set, then we can use a bit vector (array of booleans) to represent the
set. The bit vector implementation is very efficient for small sets. The UCR Standard
Library provides several routines to manipulate character sets and other sets with a maxi-
mum of 256 members. For more details,

• “The Character Set Routines in the UCR Standard Library” on page 856

Strings and Character Sets

Page 881

15.11 Questions

1) What are the repeat prefixes used for?

2) Which string prefixes are used with the following instructions?

a) MOVS b) CMPS c) STOS d) SCAS

3) Why aren’t the repeat prefixes normally used with the LODS instruction?

4) What happens to the SI, DI, and CX registers when the MOVSB instruction is executed
(without a repeat prefix) and:

a) the direction flag is set. b) the direction flag is clear.

5) Explain how the MOVSB and MOVSW instructions work. Describe how they affect mem-
ory and registers with and without the repeat prefix. Describe what happens when the
direction flag is set and clear.

6) How do you preserve the value of the direction flag across a procedure call?

7) How can you ensure that the direction flag always contains a proper value before a string
instruction without saving it inside a procedure?

 8) What is the difference between the “MOVSB”, “MOVSW”, and “MOVS oprnd1,oprnd2”
instructions?

9) Consider the following Pascal array definition:

a:array [0..31] of record
a,b,c:char;
i,j,k:integer;

 end;

Assuming A[0] has been initialized to some value, explain how you can use the MOVS
instruction to initialize the remaining elements of A to the same value as A[0].

10) Give an example of a MOVS operation which requires the direction flag to be:

a) clear b) set

11) How does the CMPS instruction operate? (what does it do, how does it affect the registers
and flags, etc.)

12) Which segment contains the source string? The destination string?

13) What is the SCAS instruction used for?

14) How would you quickly initialize an array to all zeros?

15) How are the LODS and STOS instructions used to build complex string operations?

16) How would you use the SUBSTR function to extract a substring of length 6 starting at off-
set 3 in the StrVar variable, storing the substring in the NewStr variable?

17) What types of errors can occur when the SUBSTR function is executed?

18) Give an example demonstrating the use of each of the following string functions:

a) INDEX b) REPEAT c) INSERT d) DELETE e) CONCAT

19) Write a short loop which multiplies each element of a single dimensional array by 10. Use
the string instructions to fetch and store each array element.

20) The UCR Standard Library does not provide an STRCPYM routine. What is the routine
which performs this task?

21) Suppose you are writing an “adventure game” into which the player types sentences and
you want to pick out the two words “GO” and “NORTH”, if they are present, in the input
line. What (non-UCR StdLib) string function appearing in this chapter would you use to
search for these words? What UCR Standard Library routine would you use?

22) Explain how to perform an extended precision integer comparison using CMPS

Chapter 15

Page 882

Page 883

Pattern Matching Chapter 16

The last chapter covered character strings and various operations on those strings. A
very typical program reads a sequence of strings from the user and compares the strings
to see if they match. For example, DOS’ COMMAND.COM program reads command lines
from the user and compares the strings the user types to fixed strings like “COPY”,
“DEL”, “RENAME”, and so on. Such commands are easy to

parse

 because the set of
allowable commands is finite and fixed. Sometimes, however, the strings you want to test
for are not fixed; instead, they belong to a (possibly infinite) set of different strings. For
example, if you execute the DOS command “DEL *.BAK”, MS-DOS does not attempt to
delete a file named “*.BAK”. Instead, it deletes all files which match the

generic pattern

“*.BAK”. This, of course, is any file which contains four or more characters and ends with
“.BAK”. In the MS-DOS world, a string containing characters like “*” and “?” are called

wildcards

; wildcard characters simply provide a way to specify different names via pat-
terns. DOS’ wildcard characters are very limited forms of what are known as

regular
expressions

; regular expressions are very limited forms of patterns in general. This chapter
describes how to create patterns that match a variety of character strings and write pattern
matching routines to see if a particular string

matches

 a given pattern.

16.1 An Introduction to Formal Language (Automata) Theory

Pattern matching, despite its low-key coverage, is a very important topic in computer
science. Indeed, pattern matching is the main programming paradigm in several pro-
gramming languages like Prolog, SNOBOL4, and Icon. Several programs you use all the
time employ pattern matching as a major part of their work. MASM, for example, uses
pattern matching to determine if symbols are correctly formed, expressions are proper,
and so on. Compilers for high level languages like Pascal and C also make heavy use of
pattern matching to parse source files to determine if they are syntactically correct. Sur-
prisingly enough, an important statement known as

Church’s Hypothesis

 suggests that any
computable function can be programmed as a pattern matching problem

1

. Of course,
there is no guarantee that the solution would be efficient (they usually are not), but you
could arrive at a correct solution. You probably wouldn’t need to know about Turing
machines (the subject of Church’s hypothesis) if you’re interested in writing, say, an
accounts receivable package. However, there many situations where you may want to
introduce the ability to match some generic patterns; so understanding some of the theory
of pattern matching is important. This area of computer science goes by the stuffy names
of

formal language theory

 and

automata theory

. Courses in these subjects are often less than
popular because they involve a lot of proofs, mathematics, and, well, theory. However, the
concepts behind the proofs are quite simple and very useful. In this chapter we will not
bother trying to prove everything about pattern matching. Instead, we will accept the fact
that this stuff really works and just apply it. Nonetheless, we do have to discuss some of
the results from automata theory, so without further ado…

16.1.1 Machines vs. Languages

You will find references to the term “machine” throughout automata theory literature.
This term does not refer to some particular computer on which a program executes.
Instead, this is usually some function that reads a string of symbols as input and produces
one of two outputs: match or failure. A typical machine (or

automaton

) divides all possible
strings into two sets – those strings that it

accepts

 (or matches) and those string that it
rejects. The

language

 accepted by this machine is the set of all strings that the machine

1. Actually, Church’s Hypothesis claims that any computable function can be computed on a Turing machine.
However, the Turing machine is the ultimate pattern machine computer.

Thi d t t d ith F M k 4 0 2

Chapter 16

Page 884

accepts. Note that this language could be infinite, finite, or the empty set (i.e., the machine
rejects all input strings). Note that an infinite language does not suggest that the machine
accepts all strings. It is quite possible for the machine to accept an infinite number of
strings and reject an even greater number of strings. For example, it would be very easy to
design a function which accepts all strings whose length is an even multiple of three. This
function accepts an infinite number of strings (since there are an infinite number of strings
whose length is a multiple of three) yet it rejects twice as many strings as it accepts. This is
a very easy function to write. Consider the following 80x86 program that accepts all
strings of length three (we’ll assume that the carriage return character terminates a string):

MatchLen3 proc near
getc ;Get character #1.
cmp al, cr ;Zero chars if EOLN.
je Accept
getc ;Get character #2.
cmp al, cr
je Failure
getc ;Get character #3.
cmp al, cr
jne MatchLen3

Failure: mov ax, 0 ;Return zero to denote failure.
ret

Accept: mov ax, 1 ;Return one to denote success.
ret

MatchLen3 endp

By tracing through this code, you should be able to easily convince yourself that it returns
one in

ax

 if it succeeds (reads a string whose length is a multiple of three) and zero other-
wise.

Machines are inherently

recognizers

. The machine itself is the embodiment of a

pattern

.
It recognizes any input string which matches the built-in pattern. Therefore, a codification
of these automatons is the basic job of the programmer who wants tomatch some patterns.

There are many different classes of machines and the languages they recognize. From
simple to complex, the major classifications are

deterministic finite state automata

(which are
equivalent to

nondeterministic finite state automata

),

deterministic push down automata, nonde-
terministic push down automata,

and

Turing machines

. Each successive machine in this list
provides a superset of the capabilities of the machines appearing before it. The only rea-
son we don’t use Turing machines for everything is because they are more complex to pro-
gram than, say, a deterministic finite state automaton. If you can match the pattern you
want using a deterministic finite state automaton, you’ll probably want to code it that way
rather than as a Turing machine.

Each class of machine has a class of languages associated with it. Deterministic and
nondeterministic finite state automata recognize the

regular

languages. Nondeterministic
push down automata recognize the

context free

 languages

2

. Turing machines can recog-
nize all recognizable languages. We will discuss each of these sets of languages, and their
properties, in turn.

16.1.2 Regular Languages

The regular languages are the least complex of the languages described in the previ-
ous section. That does not mean they are less useful; in fact, patterns based on regular
expression are probably more common than any other.

2. Deterministic push down automata recognize only a subset of the context free languages.

Control Structures

Page 885

16.1.2.1 Regular Expressions

The most compact way to specify the strings that belong to a regular language is with
a

regular expression

. We shall define, recursively, a regular expression with the following
rules:

•

∅

 (the empty set) is a regular language and denotes the empty set.
•

ε

 is a regular expression

3

. It denotes the set of languages containing only
the empty string: {

ε

}.
• Any single symbol,

a

, is a regular expression (we will use lower case char-
acters to denote arbitrary symbols). This single symbol matches exactly
one character in the input string, that character must be equal to the sin-
gle symbol in the regular expression. For example, the pattern “m”
matches a single “m” character in the input string.

Note that

∅

 and

ε

 are not the same. The empty set is a regular language that does not
accept

any

 strings, including strings of length zero. If a regular language is denoted by {

ε

},
then it accepts exactly one string, the string of length zero. This latter regular language
accepts something, the former does not.

The three rules above provide our

basis

 for a recursive definition. Now we will define
regular expressions recursively. In the following definitions, assume that

r

,

s

, and

t

 are
any valid regular expressions.

• Concatenation. If

r

 and

s

 are regular expressions, so is

rs

. The regular
expression

rs

 matches any string that begins with a string matched by

r

and ends with a string matched by

s

.
• Alternation/Union. If

r

 and

s

 are regular expressions, so is

r

 |

s

 (read
this as

r

or

s

) This is equivalent to

r

∪

s,

(read as

r

 union

s

). This regular
expression matches any string that

r

 or

s

 matches.
• Intersection. If

r

 and

s

 are regular expressions, so is

r

∩

s

. This is the set
of all strings that both

r

 and

s

 match.
• Kleene Star. If

r

 is a regular expression, so is

r

*. This regular expression
matches zero or more occurrences of

r

. That is, it matches

ε

,

r

,

rr

,

rrr

,

rrrr

,
...

• Difference. If

r

 and

s

 are regular expressions, so is

r-s

. This denotes the
set of strings matched by

r

 that are not also matched by

s.

• Precedence. If

r

 is a regular expression, so is (

r

). This matches any string
matched by

r

 alone. The normal algebraic associative and distributive
laws apply here, so (

r

 |

s

)

 t

 is equivalent to

rt

 |

st

.

These operators following the normal associative and distributive laws and exhibit
the following precedences:

Highest: (

r

)
Kleene Star
Concatentation
Intersection
Difference

Lowest: Alternation/Union

Examples:

(r | s) t = rt | st
rs* = r(s*)
r

∪

 t - s = r

∪

 (t - s)
r

∩

 t - s = (r

∩

 t) - s

Generally, we’ll use parenthesis to avoid any ambiguity

Although this definition is sufficient for an automata theory class, there are some
practical aspects to this definition that leave a little to be desired. For example, to define a

3. The empty string is the string of length zero, containing no symbols.

Chapter 16

Page 886

regular expression that matches a single alphabetic character, you would need to create
something like (

a

 |

b

 |

c

| … |

y

 |

z

). Quite a lot of typing for such a trivial character set.
Therefore, we shall add some notation to make it easier to specify regular expressions.

• Character Sets. Any set of characters surrounded by brackets, e.g., [abc-
defg] is a regular expression and matches a single character from that set.
You can specify ranges of characters using a dash, i.e., “[a-z]” denotes the
set of lower case characters and this regular expression matches a single
lower case character.

• Kleene Plus. If

r

 is a regular expression, so is

r

+. This regular expression
matches one or more occurrences of r. That is, it matches r, rr, rrr, rrrr, …
The precedence of the Kleene Plus is the same as for the Kleene Star. Note
that r+ = rr*.

• Σ represents any single character from the allowable character set. Σ* rep-
resents the set of all possible strings. The regular expression Σ*-r is the
complement of r – that is, the set of all strings that r does not match.

With the notational baggage out of the way, it’s time to discuss how to actually use
regular expressions as pattern matching specifications. The following examples should
give a suitable introduction.

Identifiers: Most programming languages like Pascal or C/C++ specify legal forms
for identifiers using a regular expression. Expressed in English terms, the
specification is something like “An identifier must begin with an alpha-
betic character and is followed by zero or more alphanumeric or under-
score characters.” Using the regular expression (RE) syntax described in
this section, an identifier is

[a-zA-Z][a-zA-Z0-9_]*

Integer Consts: A regular expression for integer constants is relatively easy to design. An
integer constant consists of an optional plus or minus followed by one or
more digits. The RE is

(+ | - | ε) [0-9]+

Note the use of the empty string (ε) to make the plus or minus optional.

Real Consts: Real constants are a bit more complex, but still easy to specify using REs.
Our definition matches that for a real constant appearing in a Pascal pro-
gram – an optional plus or minus, following by one or more digits;
optionally followed by a decimal point and zero or more digits; option-
ally followed by an “e” or an “E” with an optional sign and one or more
digits:

(+ | - | ε) [0-9]+ (“.” [0-9]* | ε) (((e | E) (+ | - | ε) [0-9]+) | ε)

Since this RE is relatively complex, we should dissect it piece by piece.
The first parenthetical term gives us the optional sign. One or more digits
are mandatory before the decimal point, the second term provides this.
The third term allows an optional decimal point followed by zero or more
digits. The last term provides for an optional exponent consisting of “e”
or “E” followed by an optional sign and one or more digits.

Reserved Words: It is very easy to provide a regular expression that matches a set of
reserved words. For example, if you want to create a regular expression
that matches MASM’s reserved words, you could use an RE similar to the
following:

(mov | add | and | … | mul)

Even: The regular expression (ΣΣ)* matches all strings whose length is a multi-
ple of two.

Sentences: The regular expression:

(Σ* “ “*)* run (“ “+ (Σ* “ “+ | ε)) fast (“ “ Σ*)*

Control Structures

Page 887

matches all strings that contain the separate words “run” followed by
“fast” somewhere on the line. This matches strings like “I want to run
very fast” and “run as fast as you can” as well as “run fast.”

While REs are convenient for specifying the pattern you want to recognize, they are
not particularly useful for creating programs (i.e., “machines”) that actually recognize
such patterns. Instead, you should first convert an RE to a nondeterministic finite state
automaton, or NFA. It is very easy to convert an NFA into an 80x86 assembly language pro-
gram; however, such programs are rarely efficient as they might be. If efficiency is a big
concern, you can convert the NFA into a deterministic finite state automaton (DFA) that is
also easy to convert to 80x86 assembly code, but the conversion is usually far more effi-
cient.

16.1.2.2 Nondeterministic Finite State Automata (NFAs)

An NFA is a directed graph with state numbers associated with each node and charac-
ters or character strings associated with each edge of the graph. A distinguished state, the
starting state, determines where the machine begins attempting to match an input string.
With the machine in the starting state, it compares input characters against the characters
or strings on each edge of the graph. If a set of input characters matches one of the edges,
the machine can change states from the node at the start of the edge (the tail) to the state at
the end of the edge (the head).

Certain other states, known as final or accepting states, are usually present as well. If a
machine winds up in a final state after exhausting all the input characters, then that
machine accepts or matches that string. If the machine exhausts the input and winds up in
a state that is not a final state, then that machine rejects the string. Figure 16.1 shows an
example NFA for the floating point RE presented earlier.

By convention, we’ll always assume that the starting state is state zero. We will denote
final states (there may be more than one) by using a double circle for the state (state eight
is the final state above).

An NFA always begins with an input string in the starting state (state zero). On each
edge coming out of a state there is either ε, a single character, or a character string. To help
unclutter the NFA diagrams, we will allow expressions of the form “ xxx | yyy | zzz | …”
where xxx, yyy, and zzz are ε, a single character, or a character string. This corresponds to

Figure 16.1 NFA for Regular Expression (+ | - | e) [0-9]+ (“.” [0-9]* | e) (((e | E) (+ | - | e) [0-9]+) | e)

0-9

0-9

"."

e

e

e | E

+ | - | e

0-9

0-9

+ | - | e

0-9

e

e

0 1 2

3
4

5 6 7

8

Chapter 16

Page 888

multiple edges from one state to the other with a single item on each edge. In the example
above,

is equivalent to

Likewise, we will allow sets of characters, specified by a string of the form x-y, to denote
the expression x | x+1 | x+2 | … | y.

Note that an NFA accepts a string if there is some path from the starting state to an
accepting state that exhausts the input string. There may be multiple paths from the start-
ing state to various final states. Furthermore, there may be some particular path from the
starting state to a non-accepting state that exhausts the input string. This does not neces-
sarily mean the NFA rejects that string; if there is some other path from the starting state
to an accepting state, then the NFA accepts the string. An NFA rejects a string only if there
are no paths from the starting state to an accepting state that exhaust the string.

Passing through an accepting state does not cause the NFA to accept a string. You
must wind up in a final state and exhaust the input string.

To process an input string with an NFA, begin at the starting state. The edges leading
out of the starting state will have a character, a string, or ε associated with them. If you
choose to move from one state to another along an edge with a single character, then
remove that character from the input string and move to the new state along the edge tra-
versed by that character. Likewise, if you choose to move along an edge with a character
string, remove that character string from the input string and switch to the new state. If
there is an edge with the empty string, ε, then you may elect to move to the new state
given by that edge without removing any characters from the input string.

Consider the string “1.25e2” and the NFA in Figure 16.1. From the starting state we
can move to state one using the ε string (there is no leading plus or minus, so ε is our only
option). From state one we can move to state two by matching the “1” in our input string
with the set 0-9; this eats the “1” in our input string leaving “.25e2”. In state two we move
to state three and eat the period from the input string, leaving “25e2”. State three loops on
itself with numeric input characters, so we eat the “2” and “5” characters at the beginning
of our input string and wind up back in state three with a new input string of “e2”. The
next input character is “e”, but there is no edge coming out of state three with an “e” on it;
there is, however, an ε-edge, so we can use that to move to state four. This move does not
change the input string. In state four we can move to state five on an “e” character. This
eats the “e” and leaves us with an input string of “2”. Since this is not a plus or minus
character, we have to move from state five to state six on the ε edge. Movement from state
six to state seven eats the last character in our string. Since the string is empty (and, in par-
ticular, it does not contain any digits), state seven cannot loop back on itself. We are cur-
rently in state seven (which is not a final state) and our input string is exhausted.
However, we can move to state eight (the accepting state) since the transition between
states seven and eight is an ε edge. Since we are in a final state and we’ve exhausted the
input string, This NFA accepts the input string.

16.1.2.3 Converting Regular Expressions to NFAs

If you have a regular expression and you want to build a machine that recognizes
strings in the regular language specified by that expression, you will need to convert the

+ | - | ε
0 1

0 1

+

-

ε

Control Structures

Page 889

RE to and NFA. It turns out to be very easy to convert a regular expression to an NFA. To
do so, just apply the following rules:

• The NFA representing regular language denoted by the regular expres-
sion ∅ (the empty set) is a single, non-accepting state.

• If a regular expression contains an ε, a single character, or a string, create
two states and draw an arc between them with ε, the single character, or
the string as the label. For example, the RE “a” is converted to an NFA as

• Let the symbol denote an NFA which recognizes some reg-

ular language specified by some regular expression r, s, or t. If a regular
expression takes the form rs then the corresponding NFA is

• If a regular expression takes the form r | s, then the corresponding NFA is

• If a regular expression takes the form r* then the corresponding NFA is

All of the other forms of regular expressions are easily synthesized from these, therefore,
converting those other forms of regular expressions to NFAs is a simple two-step process,
convert the RE to one of these forms, and then convert this form to the NFA. For example,
to convert r+ to an NFA, you would first convert r+ to rr*. This produces the NFA:

The following example converts the regular expression for an integer constant to an NFA.
The first step is to create an NFA for the regular expression (+ | - | ε). The complete con-
struction becomes

Although we can obviously optimize this to

a

r s
ε

r

s

ε

εε

ε

r

ε
ε

r ε

r

ε
ε

+

-

ε

ε

ε

ε

ε

ε

ε

+ | - | ε

Chapter 16

Page 890

The next step is to handle the [0-9]+ regular expression; after some minor optimization,
this becomes the NFA

Now we simply concatenate the results to produce:

All we need now are starting and final states. The starting state is always the first state of
the NFA created by the conversion of the leftmost item in the regular expression. The final
state is always the last state of the NFA created by the conversion of the rightmost item in
the regular expression. Therefore, the complete regular expression for integer constants
(after optimizing out the middle edge above, which serves no purpose) is

16.1.2.4 Converting an NFA to Assembly Language

There is only one major problem with converting an NFA to an appropriate matching
function – NFAs are nondeterministic. If you’re in some state and you’ve got some input
character, say “a”, there is no guarantee that the NFA will tell you what to do next. For
example, there is no requirement that edges coming out of a state have unique labels. You
could have two or more edges coming out of a state, all leading to different states on the
single character “a”. If an NFA accepts a string, it only guarantees that there is some path
that leads to an accepting state, there is no guarantee that this path will be easy to find.

The primary technique you will use to resolve the nondeterministic behavior of an
NFA is backtracking. A function that attempts to match a pattern using an NFA begins in
the starting state and tries to match the first character(s) of the input string against the
edges leaving the starting state. If there is only one match, the code must follow that edge.
However, if there are two possible edges to follow, then the code must arbitrarily choose
one of them and remember the others as well as the current point in the input string. Later, if it
turns out the algorithm guessed an incorrect edge to follow, it can return back and try one
of the other alternatives (i.e., it backtracks and tries a different path). If the algorithm
exhausts all alternatives without winding up in a final state (with an empty input string),
then the NFA does not accept the string.

Probably the easiest way to implement backtracking is via procedure calls. Let us
assume that a matching procedure returns the carry flag set if it succeeds (i.e., accepts a

0-9

0-9

0-9

0-9

+ | - | ε ε

0-9

0-9

+ | - | ε
0 1 2

Control Structures

Page 891

string) and returns the carry flag clear if it fails (i.e., rejects a string). If an NFA offers mul-
tiple choices, you could implement that portion of the NFA as follows:

AltRST proc near
push ax ;The purpose of these two instructions
mov ax, di ; is to preserve di in case of failure.
call r
jc Success
mov di, ax ;Restore di (it may be modified by r).
call s
jc Success
mov di, ax ;Restore di (it may be modified by s).
call t

Success: pop ax ;Restore ax.
ret

AltRST endp

If the r matching procedure succeeds, there is no need to try s and t. On the other hand, if r
fails, then we need to try s. Likewise, if r and s both fail, we need to try t. AltRST will fail
only if r, s, and t all fail. This code assumes that es:di points at the input string to match. On
return, es:di points at the next available character in the string after a match or it points at
some arbitrary point if the match fails. This code assumes that r, s, and t all preserve the ax
register, so it preserves a pointer to the current point in the input string in ax in the event r
or s fail.

To handle the individual NFA associated with simple regular expressions (i.e., match-
ing ε or a single character) is not hard at all. Suppose the matching function r matches the
regular expression (+ | - | ε). The complete procedure for r is

r proc near
cmp byte ptr es:[di], ‘+’
je r_matched
cmp byte ptr es:[di], ‘-’
jne r_nomatch

r_matched: inc di
r_nomatch: stc

ret
r endp

Note that there is no explicit test for ε. If ε is one of the alternatives, the function
attempts to match one of the other alternatives first. If none of the other alternatives suc-
ceed, then the matching function will succeed anyway, although it does not consume any
input characters (which is why the above code skips over the inc di instruction if it does
not match “+” or “-”). Therefore, any matching function that has ε as an alternative will
always succeed.

Of course, not all matching functions succeed in every case. Suppose the s matching
function accepts a single decimal digit. the code for s might be the following:

s proc near
cmp byte ptr es:[di], ‘0’
jb s_fails
cmp byte ptr es:[di], ‘9’
ja s_fails
inc di
stc
ret

s_fails: clc
ret

s endp

ε

ε

ε

ε

ε

ε

r

s

t

Chapter 16

Page 892

If an NFA takes the form:

Where x is any arbitrary character or string or ε, the corresponding assembly code for this
procedure would be

ConcatRxS proc near
call r
jnc CRxS_Fail ;If no r, we won’t succeed

; Note, if x=ε then simply delete the following three statements.
; If x is a string rather than a single character, put the the additional
; code to match all the characters in the string.

cmp byte ptr es:[di], ‘x’
jne CRxS_Fail
inc di

call s
jnc CRxS_Fail
stc ;Success!
ret

CRxS_Fail: clc
ret

ConcatRxS endp

If the regular expression is of the form r* and the corresponding NFA is of the form

Then the corresponding 80x86 assembly code can look something like the following:

RStar proc near
call r
jc RStar
stc
ret

RStar endp

Regular expressions based on the Kleene star always succeed since they allow zero or
more occurrences. That is why this code always returns with the carry flag set.

The Kleene Plus operation is only slightly more complex, the corresponding (slightly
optimized) assembly code is

RPlus proc near
call r
jnc RPlus_Fail

RPlusLp: call r
jc RPlusLp
stc
ret

RPlus_Fail: clc
ret

RPlus endp

Note how this routine fails if there isn’t at least one occurrence of r.

A major problem with backtracking is that it is potentially inefficient. It is very easy to
create a regular expression that, when converted to an NFA and assembly code, generates
considerable backtracking on certain input strings. This is further exacerbated by the fact

r s
x

r

ε
ε

Control Structures

Page 893

that matching routines, if written as described above, are generally very short; so short, in
fact, that the procedure calls and returns make up a significant portion of the execution
time. Therefore, pattern matching in this fashion, although easy, can be slower than it has
to be.

This is just a taste of how you would convert REs to NFAs to assembly language. We
will not go into further detail in this chapter; not because this stuff isn’t interesting to
know, but because you will rarely use these techniques in a real program. If you need high
performance pattern matching you would not use nondeterministic techniques like these.
If you want the ease of programming offered by the conversion of an NFA to assembly
language, you still would not use this technique. Instead, the UCR Standard Library pro-
vides very powerful pattern matching facilities (which exceed the capabilities of NFAs), so
you would use those instead; but more on that a little later.

16.1.2.5 Deterministic Finite State Automata (DFAs)

Nondeterministic finite state automata, when converted to actual program code, may
suffer from performance problems because of the backtracking that occurs when match-
ing a string. Deterministic finite state automata solve this problem by comparing different
strings in parallel. Whereas, in the worst case, an NFA may require n comparisons, where
n is the sum of the lengths of all the strings the NFA recognizes, a DFA requires only m
comparisons (worst case), where m is the length of the longest string the DFA recognizes.

For example, suppose you have an NFA that matches the following regular expres-
sion (the set of 80x86 real-mode mnemonics that begin with an “A”):

(AAA | AAD | AAM | AAS | ADC | ADD | AND)

A typical implementation as an NFA might look like the following:

MatchAMnem proc near
strcmpl
byte “AAA”,0
je matched
strcmpl
byte “AAD”,0
je matched
strcmpl
byte “AAM”,0
je matched
strcmpl
byte “AAS”,0
je matched
strcmpl
byte “ADC”,0
je matched
strcmpl
byte “ADD”,0
je matched
strcmpl
byte “AND”,0
je matched
clc
ret

matched: add di, 3
stc
ret

MatchAMnem endp

If you pass this NFA a string that it doesn’t match, e.g., “AAND”, it must perform
seven string comparisons, which works out to about 18 character comparisons (plus all
the overhead of calling strcmpl). In fact, a DFA can determine that it does not match this
character string by comparing only three characters.

Chapter 16

Page 894

A DFA is a special form of an NFA with two restrictions. First, there must be exactly
one edge coming out of each node for each of the possible input characters; this implies
that there must be one edge for each possible input symbol and you may not have two
edges with the same input symbol. Second, you cannot move from one state to another on
the empty string, ε. A DFA is deterministic because at each state the next input symbol
determines the next state you will enter. Since each input symbol has an edge associated
with it, there is never a case where a DFA “jams” because you cannot leave the state on
that input symbol. Similarly, the new state you enter is never ambiguous because there is
only one edge leaving any particular state with the current input symbol on it. Figure 16.2
shows the DFA that handles integer constants described by the regular expression

(+ | - | ε) [0-9]+

Note than an expression of the form “Σ - [0-9]“ means any character except a digit; that is,
the complement of the set [0-9].

State three is a failure state. It is not an accepting state and once the DFA enters a fail-
ure state, it is stuck there (i.e., it will consume all additional characters in the input string
without leaving the failure state). Once you enter a failure state, the DFA has already
rejected the input string. Of course, this is not the only way to reject a string; the DFA
above, for example, rejects the empty string (since that leaves you in state zero) and it
rejects a string containing only a “+” or a “-” character.

DFAs generally contain more states than a comparable NFA. To help keep the size of a
DFA under control, we will allow a few shortcuts that, in no way, affect the operation of a
DFA. First, we will remove the restriction that there be an edge associated with each possi-
ble input symbol leaving every state. Most of the edges leaving a particular state lead to
the failure state. Therefore, our first simplification will be to allow DFAs to drop the edges
that lead to a failure state. If a input symbol is not represented on an outgoing edge from
some state, we will assume that it leads to a failure state. The above DFA with this simpli-
fication appears in Figure 16.2.

Figure 16.2 DFA for Regular Expression (+ | - | ε) [0-9]+

0-9

2

+ | -
0 1

0-9

0-9

Σ - [0-9+-]

Σ - [0-9]

Σ - [0-9]

Σ

3

Figure 16.3 Simplified DFA for Regular Expression (+ | - | ε) [0-9]+

0-9

2

+ | -
0 1

0-9

0-9

Control Structures

Page 895

A second shortcut, that is actually present in the two examples above, is to allow sets
of characters (or the alternation symbol, “|”) to associate several characters with a single
edge. Finally, we will also allow strings attached to an edge. This is a shorthand notation
for a list of states which recognize each successive character, i.e., the following two DFAs
are equivalent:

Returning to the regular expression that recognizes 80x86 real-mode mnemonics
beginning with an “A”, we can construct a DFA that recognizes such strings as shown in
Figure 16.4.

If you trace through this DFA by hand on several accepting and rejecting strings, you will
discover than it requires no more than six character comparisons to determine whether
the DFA should accept or reject an input string.

Although we are not going to discuss the specifics here, it turns out that regular
expressions, NFAs, and DFAs are all equivalent. That is, you can convert anyone of these
to the others. In particular, you can always convert an NFA to a DFA. Although the con-
version isn’t totally trivial, especially if you want an optimized DFA, it is always possible
to do so. Converting between all these forms is beginning to leave the scope of this text. If
you are interested in the details, any text on formal languages or automata theory will fill
you in.

16.1.2.6 Converting a DFA to Assembly Language

It is relatively straightforward to convert a DFA to a sequence of assembly instruc-
tions. For example, the assembly code for the DFA that accepts the A-mnemonics in the
previous section is

DFA_A_Mnem proc near
cmp byte ptr es:[di], ‘A’
jne Fail
cmp byte ptr es:[di+1], ‘A’
je DoAA
cmp byte ptr es:[di+1], ‘D’
je DoAD
cmp byte ptr es:[di+1], ‘N’
je DoAN

abc

a b c

Figure 16.4 DFA that Recognizes AND, AAA, AAD, AAM, AAS, ADD, and ADC

a a

d

n

0 1 3
a | d | m | s

d

c | d

2

4

5

Chapter 16

Page 896

Fail: clc
ret

DoAN: cmp byte ptr es:[di+2], ‘D’
jne Fail

Succeed: add di, 3
stc
ret

DoAD: cmp byte ptr es:[di+2], ‘D’
je Succeed
cmp byte ptr es:[di+2], ‘C’
je Succeed
clc ;Return Failure
ret

DoAA: cmp byte ptr es:[di+2], ‘A’
je Succeed
cmp byte ptr es:[di+2], ‘D’
je Succeed
cmp byte ptr es:[di+2], ‘M’
je Succeed
cmp byte ptr es:[di+2], ‘S’
je Succeed
clc
ret

DFA_A_Mnem endp

Although this scheme works and is considerably more efficient than the coding
scheme for NFAs, writing this code can be tedious, especially when converting a large
DFA to assembly code. There is a technique that makes converting DFAs to assembly code
almost trivial, although it can consume quite a bit of space – to use state machines. A sim-
ple state machine is a two dimensional array. The columns are indexed by the possible
characters in the input string and the rows are indexed by state number (i.e., the states in
the DFA). Each element of the array is a new state number. The algorithm to match a given
string using a state machine is trivial, it is

state := 0;
while (another input character) do begin

ch := next input character ;
state := StateTable [state][ch];

end;
if (state in FinalStates) then accept
else reject;

FinalStates is a set of accepting states. If the current state number is in this set after the
algorithm exhausts the characters in the string, then the state machine accepts the string,
otherwise it rejects the string.

The following state table corresponds to the DFA for the “A” mnemonics appearing in
the previous section:

Control Structures

Page 897

State five is the only accepting state.

There is one major drawback to using this table driven scheme – the table will be quite
large. This is not apparent in the table above because the column labelled “Else” hides
considerable detail. In a true state table, you will need one column for each possible input
character. since there are 256 possible input characters (or at least 128 if you’re willing to
stick to seven bit ASCII), the table above will have 256 columns. With only one byte per
element, this works out to about 2K for this small state machine. Larger state machines
could generate very large tables.

One way to reduce the size of the table at a (very) slight loss in execution speed is to
classify the characters before using them as an index into a state table. By using a single
256-byte lookup table, it is easy to reduce the state machine to the table above. Consider
the 256 byte lookup table that contains:

• A one at positions Base+”a” and Base+”A”,
• A two at locations Base+”c” and Base+”C”,
• A three at locations Base+”d” and Base+”D”,
• A four at locations Base+”m” and Base+”M”,
• A five at locations Base+”n” and Base+”N”,
• A six at locations Base+”s” and Base+”S”, and
• A zero everywhere else.

Now we can modify the above table to produce:

The table above contains an extra column, “7”, that we will not use. The reason for adding
the extra column is to make it easy to index into this two dimensional array (since the
extra column lets us multiply the state number by eight rather than seven).

Assuming Classify is the name of the lookup table, the following 80386 code recog-
nizes the strings specified by this DFA:

Table 62: State Machine for 80x86 “A” Instructions DFA

State A C D M N S Else

0 1 F F F F F F

1 3 F 4 F 2 F F

2 F F 5 F F F F

3 5 F 5 5 F 5 F

4 F 5 5 F F F F

5 F F F F F F F

F F F F F F F F

Table 63: Classified State Machine Table for 80x86 “A” Instructions DFA

State 0 1 2 3 4 5 6 7

0 6 1 6 6 6 6 6 6

1 6 3 6 4 6 2 6 6

2 6 6 6 5 6 6 6 6

3 6 5 6 5 5 6 5 6

4 6 6 5 5 6 6 6 6

5 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6

Chapter 16

Page 898

DFA2_A_Mnem proc
push ebx ;Ptr to Classify.
push eax ;Current character.
push ecx ;Current state.
xor eax, eax ;EAX := 0
mov ebx, eax ;EBX := 0
mov ecx, eax ;ECX (state) := 0
lea bx, Classify

WhileNotEOS: mov al, es:[di] ;Get next input char.
cmp al, 0 ;At end of string?
je AtEOS
xlat ;Classify character.
mov cl, State_Tbl[eax+ecx*8] ;Get new state #.
inc di ;Move on to next char.
jmp WhileNotEOS

AtEOS: cmp cl, 5 ;In accepting state?
stc ;Assume acceptance.
je Accept
clc

Accept: pop ecx
pop eax
pop ebx
ret

DFA2_A_Mnem endp

The nice thing about this DFA (the DFA is the combination of the classification table,
the state table, and the above code) is that it is very easy to modify. To handle any other
state machine (with eight or fewer character classifications) you need only modify the
Classification array, the State_Tbl array, the lea bx, Classify statement and the statements at
label AtEOS that determine if the machine is in a final state. The assembly code does not
get more complex as the DFA grows in size. The State_Tbl array will get larger as you add
more states, but this does not affect the assembly code.

Of course, the assembly code above does assume there are exactly eight columns in the
matrix. It is easy to generalize this code by inserting an appropriate imul instruction to
multiply by the size of the array. For example, had we gone with seven columns rather
than eight, the code above would be

DFA2_A_Mnem proc
push ebx ;Ptr to Classify.
push eax ;Current character.
push ecx ;Current state.
xor eax, eax ;EAX := 0
mov ebx, eax ;EBX := 0
mov ecx, eax ;ECX (state) := 0
lea bx, Classify

WhileNotEOS: mov al, es:[di] ;Get next input char.
cmp al, 0 ;At end of string?
je AtEOS
xlat ;Classify character.
imul cx, 7
movzx ecx, State_Tbl[eax+ecx] ;Get new state #.
inc di ;Move on to next char.
jmp WhileNotEOS

AtEOS: cmp cl, 5 ;In accepting state?
stc ;Assume acceptance.
je Accept
clc

Accept: pop ecx
pop eax
pop ebx
ret

DFA2_A_Mnem endp

Although using a state table in this manner simplifies the assembly coding, it does
suffer from two drawbacks. First, as mentioned earlier, it is slower. This technique has to

Control Structures

Page 899

execute all the statements in the while loop for each character it matches; and those
instructions are not particularly fast ones, either. The second drawback is that you’ve got
to create the state table for the state machine; that process is tedious and error prone.

If you need the absolute highest performance, you can use the state machine tech-
niques described in (see “State Machines and Indirect Jumps” on page 529). The trick here
is to represent each state with a short segment of code and its own one dimensional state
table. Each entry in the table is the target address of the segment of code representing the
next state. The following is an example of our “A Mnemonic” state machine written in this
fashion. The only difference is that the zero byte is classified to value seven (zero marks
the end of the string, we will use this to determine when we encounter the end of the
string). The corresponding state table would be:

The 80x86 code is

DFA3_A_Mnem proc
push ebx
push eax
push ecx
xor eax, eax

lea ebx, Classify
State0: mov al, es:[di]

xlat
inc di
jmp cseg:State0Tbl[eax*2]

State0Tbl word State6, State1, State6, State6
word State6, State6, State6, State6

State1: mov al, es:[di]
xlat
inc di
jmp cseg:State1Tbl[eax*2]

State1Tbl word State6, State3, State6, State4
word State6, State2, State6, State6

State2: mov al, es:[di]
xlat
inc di
jmp cseg:State2Tbl[eax*2]

State2Tbl word State6, State6, State6, State5
word State6, State6, State6, State6

State3: mov al, es:[di]
xlat
inc di
jmp cseg:State3Tbl[eax*2]

Table 64: Another State Machine Table for 80x86 “A” Instructions DFA

State 0 1 2 3 4 5 6 7

0 6 1 6 6 6 6 6 6

1 6 3 6 4 6 2 6 6

2 6 6 6 5 6 6 6 6

3 6 5 6 5 5 6 5 6

4 6 6 5 5 6 6 6 6

5 6 6 6 6 6 6 6 5

6 6 6 6 6 6 6 6 6

Chapter 16

Page 900

State3Tbl word State6, State5, State6, State5
word State5, State6, State5, State6

State4: mov al, es:[di]
xlat
inc di
jmp cseg:State4Tbl[eax*2]

State4Tbl word State6, State6, State5, State5
word State6, State6, State6, State6

State5: mov al, es:[di]
cmp al, 0
jne State6
stc
pop ecx
pop eax
pop ebx
ret

State6: clc
pop ecx
pop eax
pop ebx
ret

There are two important features you should note about this code. First, it only exe-
cutes four instructions per character comparison (fewer, on the average, than the other
techniques). Second, the instant the DFA detects failure it stops processing the input char-
acters. The other table driven DFA techniques blindly process the entire string, even after
it is obvious that the machine is locked in a failure state.

Also note that this code treats the accepting and failure states a little differently than
the generic state table code. This code recognizes the fact that once we’re in state five it
will either succeed (if EOS is the next character) or fail. Likewise, in state six this code
knows better than to try searching any farther.

Of course, this technique is not as easy to modify for different DFAs as a simple state
table version, but it is quite a bit faster. If you’re looking for speed, this is a good way to
code a DFA.

16.1.3 Context Free Languages

Context free languages provide a superset of the regular languages – if you can spec-
ify a class of patterns with a regular expression, you can express the same language using
a context free grammar. In addition, you can specify many languages that are not regular
using context free grammars (CFGs).

Examples of languages that are context free, but not regular, include the set of all
strings representing common arithmetic expressions, legal Pascal or C source files4, and
MASM macros. Context free languages are characterized by balance and nesting. For
example, arithmetic expression have balanced sets of parenthesis. High level language
statements like repeat…until allow nesting and are always balanced (e.g., for every repeat
there is a corresponding until statement later in the source file).

There is only a slight extension to the regular languages to handle context free lan-
guages – function calls. In a regular expression, we only allow the objects we want to
match and the specific RE operators like “|”, “*”, concatenation, and so on. To extend reg-
ular languages to context free languages, we need only add recursive function calls to reg-
ular expressions. Although it would be simple to create a syntax allowing function calls

4. Actually, C and Pascal are not context free languages, but Computer Scientists like to treat them as though they
were.

Control Structures

Page 901

within a regular expression, computer scientists use a different notation altogether for
context free languages – a context free grammar.

A context free grammar contains two types of symbols: terminal symbols and nontermi-
nal symbols. Terminal symbols are the individual characters and strings that the context
free grammar matches plus the empty string, ε. Context free grammars use nonterminal
symbols for function calls and definitions. In our context free grammars we will use italic
characters to denote nonterminal symbols and standard characters to denote terminal
symbols.

A context free grammar consists of a set of function definitions known as productions.
A production takes the following form:

Function_Name → «list of terminal and nonterminal symbols»

The function name to the left hand side of the arrow is called the left hand side of the pro-
duction. The function body, which is the list of terminals and nonterminal symbols, is
called the right hand side of the production. The following is a grammar for simple arith-
metic expressions:

expression → expression + factor

expression → expression - factor

expression → factor

factor → factor * term

factor → factor / term

factor → term

term → IntegerConstant

term → (expression)

IntegerConstant → digit

IntegerConstant → digit IntegerConstant

digit → 0

digit → 1

digit → 2

digit → 3

digit → 4

digit → 5

digit → 6

digit → 7

digit → 8

digit → 9

Note that you may have multiple definitions for the same function. Context-free
grammars behave in a non-deterministic fashion, just like NFAs. When attempting to
match a string using a context free grammar, a string matches if there exists some match-
ing function which matches the current input string. Since it is very common to have mul-
tiple productions with identical left hand sides, we will use the alternation symbol from
the regular expressions to reduce the number of lines in the grammar. The following two
subgrammars are identical:

expression → expression + factor

expression → expression - factor

expression → factor

The above is equivalent to:

expression → expression + factor | expression - factor | factor

The full arithmetic grammar, using this shorthand notation, is

expression → expression + factor | expression - factor | factor

factor → factor * term | factor / term | term

term → IntegerConstant | (expression)

Chapter 16

Page 902

IntegerConstant → digit | digit IntegerConstant

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

One of the nonterminal symbols, usually the first production in the grammar, is the
starting symbol. This is roughly equivalent to the starting state in a finite state automaton.
The starting symbol is the first matching function you call when you want to test some
input string to see if it is a member of a context free language. In the example above,
expression is the starting symbol.

Much like the NFAs and DFAs recognize strings in a regular language specified by a
regular expression, nondeterministic pushdown automata and deterministic pushdown
automata recognize strings belonging to a context free language specified by a context free
grammar. We will not go into the details of these pushdown automata (or PDAs) here, just
be aware of their existence. We can match strings directly with a grammar. For example,
consider the string

7+5*(2+1)
To match this string, we begin by calling the starting symbol function, expression, using the
function expression → expression + factor. The first plus sign suggests that the
expression term must match “7” and the factor term must match “5*(2+1)”. Now we need
to match our input string with the pattern expression + factor. To do this, we call the
expression function once again, this time using the expression → factor production.
This give us the reduction:

expression ⇒ expression + factor ⇒ factor + factor

The ⇒ symbol denotes the application of a nonterminal function call (a reduction).

Next, we call the factor function, using the production factor → term to yield the
reduction:

expression ⇒ expression + factor ⇒ factor + factor ⇒ term + factor

Continuing, we call the term function to produce the reduction:

expression ⇒ expression + factor ⇒ factor + factor ⇒ term + factor ⇒ Inte-
gerConstant + factor

Next, we call the IntegerConstant function to yield:

expression ⇒ expression + factor ⇒ factor + factor ⇒ term + factor ⇒ Inte-
gerConstant + factor ⇒ 7 + factor

At this point, the first two symbols of our generated string match the first two characters
of the input string, so we can remove them from the input and concentrate on the items
that follow. In succession, we call the factor function to produce the reduction 7 + factor
* term and then we call factor, term, and IntegerConstant to yield 7 + 5 * term. In a simi-
lar fashion, we can reduce the term to “(expression)” and reduce expression to “2+1”. The
complete derivation for this string is

Control Structures

Page 903

expression ⇒ expression + factor
⇒ factor + factor

⇒ term + factor

⇒ IntegerConstant + factor

⇒ 7 + factor
⇒ 7 + factor * term

⇒ 7 + term * term

⇒ 7 + IntegerConstant * term
⇒ 7 + 5 * term
⇒ 7 + 5 * (expression)
⇒ 7 + 5 * (expression + factor)
⇒ 7 + 5 * (factor + factor)
⇒ 7 + 5 * (IntegerConstant + factor)
⇒ 7 + 5 * (2 + factor)
⇒ 7 + 5 * (2 + term)
⇒ 7 + 5 * (2 + IntegerConstant)
⇒ 7 + 5 * (2 + 1)

The final reduction completes the derivation of our input string, so the string 7+5*(2+1) is
in the language specified by the context free grammar.

16.1.4 Eliminating Left Recursion and Left Factoring CFGs

In the next section we will discuss how to convert a CFG to an assembly language
program. However, the technique we are going to use to do this conversion will require
that we modify certain grammars before converting them. The arithmetic expression
grammar in the previous section is a good example of such a grammar – one that is left
recursive.

Left recursive grammars pose a problem for us because the way we will typically con-
vert a production to assembly code is to call a function corresponding to a nonterminal
and compare against the terminal symbols. However, we will run into trouble if we
attempt to convert a production like the following using this technique:

expression → expression + factor

Such a conversion would yield some assembly code that looks roughly like the following:

expression proc near
call expression
jnc fail
cmp byte ptr es:[di], ‘+’
jne fail
inc di
call factor
jnc fail
stc
ret

Fail: clc
ret

expression endp

The obvious problem with this code is that it will generate an infinite loop. Upon entering
the expression function this code immediately calls expression recursively, which immedi-
ately calls expression recursively, which immediately calls expression recursively, ... Clearly,
we need to resolve this problem if we are going to write any real code to match this pro-
duction.

The trick to resolving left recursion is to note that if there is a production that suffers
from left recursion, there must be some production with the same left hand side that is not
left recursive5. All we need do is rewrite the left recursive call in terms of the production

Chapter 16

Page 904

that does not have any left recursion. This sound like a difficult task, but it’s actually quite
easy.

To see how to eliminate left recursion, let Xi and Yj represent any set of terminal sym-
bols or nonterminal symbols that do not have a right hand side beginning with the nonter-
minal A. If you have some productions of the form:

A → AX1 | AX2 | … | AXn | Y1 | Y2 | … | Ym

You will be able to translate this to an equivalent grammar without left recursion by
replacing each term of the form A →Yi by A →Yi A and each term of the form A →AXi by
A’ →Xi A’ | ε. For example, consider three of the productions from the arithmetic grammar:

expression → expression + factor

expression → expression - factor

expression → factor

In this example A corresponds to expression, X1 corresponds to “+ factor ”, X2 corresponds
to “- factor ”, and Y1 corresponds to “factor ”. The equivalent grammar without left recur-
sion is

expression → factor E’

E’ → - factor E’

E’ → + factor E’

E’ → ε

The complete arithmetic grammar, with left recursion removed, is

expression → factor E’

E’ → + factor E’ | - factor E’ | ε
factor → term F’

F’ → * term F’ | / term F’ | ε
term → IntegerConstant | (expression)

IntegerConstant → digit | digit IntegerConstant

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Another useful transformation on a grammar is to left factor the grammar. This can
reduce the need for backtracking, improving the performance of your pattern matching
code. Consider the following CFG fragment:

stmt → if expression then stmt endif

stmt → if expression then stmt else stmt endif

These two productions begin with the same set of symbols. Either production will match
all the characters in an if statement up to the point the matching algorithm encounters the
first else or endif. If the matching algorithm processes the first statement up to the point of
the endif terminal symbol and encounters the else terminal symbol instead, it must back-
track all the way to the if symbol and start over. This can be terribly inefficient because of
the recursive call to stmt (imagine a 10,000 line program that has a single if statement
around the entire 10,000 lines, a compiler using this pattern matching technique would
have to recompile the entire program from scratch if it used backtracking in this fashion).
However, by left factoring the grammar before converting it to program code, you can
eliminate the need for backtracking.

To left factor a grammar, you collect all productions that have the same left hand side
and begin with the same symbols on the right hand side. In the two productions above,
the common symbols are “if expression then stmt “. You combine the common strings into a
single production and then append a new nonterminal symbol to the end of this new pro-
duction, e.g.,

5. If this is not the case, the grammar does not match any finite length strings.

Control Structures

Page 905

stmt → if expression then stmt NewNonTerm

Finally, you create a new set of productions using this new nonterminal for each of the
suffixes to the common production:

NewNonTerm → endif | else stmt endif

This eliminates backtracking because the matching algorithm can process the if, the expres-
sion, the then, and the stmt before it has to choose between endif and else.

16.1.5 Converting REs to CFGs

Since the context free languages are a superset of the regular languages, it should
come as no surprise that it is possible to convert regular expressions to context free gram-
mars. Indeed, this is a very easy process involving only a few intuitive rules.

1) If a regular expression simply consists of a sequence of characters, xyz, you can easily
create a production for this regular expression of the form P → xyz. This applies
equally to the empty string, ε.

2) If r and s are two regular expression that you’ve converted to CFG productions R
and S , and you have a regular expression rs that you want to convert to a production,
simply create a new production of the form T → R S.

3) If r and s are two regular expression that you’ve converted to CFG productions R
and S , and you have a regular expression r | s that you want to convert to a produc-
tion, simply create a new production of the form T → R | S.

4) If r is a regular expression that you’ve converted to a production, R, and you want to
create a production for r*, simply use the production RStar → R RStar | ε.

5) If r is a regular expression that you’ve converted to a production, R, and you want to
create a production for r+, simply use the production RPlus → R RPlus | R.

6) For regular expressions there are operations with various precedences. Regular
expressions also allow parenthesis to override the default precedence. This notion of
precedence does not carry over into CFGs. Instead, you must encode the precedence
directly into the grammar. For example, to encode R S* you would probably use pro-
ductions of the form:

T → R SStar
SStar → S SStar | ε

Likewise, to handle a grammar of the form (RS)* you could use productions of the
form:

T → R S T | ε
RS → R S

16.1.6 Converting CFGs to Assembly Language

If you have removed left recursion and you’ve left factored a grammar, it is very easy
to convert such a grammar to an assembly language program that recognizes strings in
the context free language.

The first convention we will adopt is that es:di always points at the start of the string
we want to match. The second convention we will adopt is to create a function for each
nonterminal. This function returns success (carry set) if it matches an associated subpat-
tern, it returns failure (carry clear) otherwise. If it succeeds, it leaves di pointing at the next
character is the staring after the matched pattern; if it fails, it preserves the value in di
across the function call.

To convert a set of productions to their corresponding assembly code, we need to be
able to handle four things: terminal symbols, nonterminal symbols, alternation, and the

Chapter 16

Page 906

empty string. First, we will consider simple functions (nonterminals) which do not have
multiple productions (i.e., alternation).

If a production takes the form T → ε and there are no other productions associated
with T, then this production always succeeds. The corresponding assembly code is simply:

T proc near
stc
ret

T endp

Of course, there is no real need to ever call T and test the returned result since we know it
will always succeed. On the other hand, if T is a stub that you intend to fill in later, you
should call T.

If a production takes the form T → xyz, where xyz is a string of one or more terminal
symbols, then the function returns success if the next several input characters match xyz,
it returns failure otherwise. Remember, if the prefix of the input string matches xyz, then
the matching function must advance di beyond these characters. If the first characters of
the input string does not match xyz, it must preserve di. The following routines demon-
strate two cases, where xyz is a single character and where xyz is a string of characters:

T1 proc near
cmp byte ptr es:[di], ‘x’ ;Single char.
je Success
clc ;Return Failure.
ret

Success: inc di ;Skip matched char.
stc ;Return success.
ret

T1 endp

T2 proc near
call MatchPrefix
byte ‘xyz’,0
ret

T2 endp

MatchPrefix is a routine that matches the prefix of the string pointed at by es:di against the
string following the call in the code stream. It returns the carry set and adjusts di if the
string in the code stream is a prefix of the input string, it returns the carry flag clear and
preserves di if the literal string is not a prefix of the input. The MatchPrefix code follows:

MatchPrefix proc far ;Must be far!
push bp
mov bp, sp
push ax
push ds
push si
push di

lds si, 2[bp] ;Get the return address.
CmpLoop: mov al, ds:[si] ;Get string to match.

cmp al, 0 ;If at end of prefix,
je Success ; we succeed.
cmp al, es:[di] ;See if it matches prefix,
jne Failure ; if not, immediately fail.
inc si
inc di
jmp CmpLoop

Success: add sp, 2 ;Don’t restore di.
inc si ;Skip zero terminating byte.
mov 2[bp], si ;Save as return address.
pop si
pop ds
pop ax

Control Structures

Page 907

pop bp
stc ;Return success.
ret

Failure: inc si ;Need to skip to zero byte.
cmp byte ptr ds:[si], 0
jne Failure
inc si
mov 2[bp], si ;Save as return address.

pop di
pop si
pop ds
pop ax
pop bp
clc ;Return failure.
ret

MatchPrefix endp

If a production takes the form T → R, where R is a nonterminal, then the T function
calls R and returns whatever status R returns, e.g.,

T proc near
call R
ret

T endp

If the right hand side of a production contains a string of terminal and nonterminal
symbols, the corresponding assembly code checks each item in turn. If any check fails,
then the function returns failure. If all items succeed, then the function returns success.
For example, if you have a production of the form T → R abc S you could implement this
in assembly language as

T proc near
push di ;If we fail, must preserve

di.
call R
jnc Failure
call MatchPrefix
byte “abc”,0
jnc Failure
call S
jnc Failure
add sp, 2 ;Don’t preserve di if we

succeed.
stc
ret

Failure: pop di
clc
ret

T endp

Note how this code preserves di if it fails, but does not preserve di if it succeeds.

If you have multiple productions with the same left hand side (i.e., alternation), then
writing an appropriate matching function for the productions is only slightly more com-
plex than the single production case. If you have multiple productions associated with a
single nonterminal on the left hand side, then create a sequence of code to match each of
the individual productions. To combine them into a single matching function, simply
write the function so that it succeeds if any one of these code sequences succeeds. If one of
the productions is of the form T → e, then test the other conditions first. If none of them
could be selected, the function succeeds. For example, consider the productions:

E’ → + factor E’ | - factor E’ | ε

This translates to the following assembly code:

Chapter 16

Page 908

EPrime proc near
push di
cmp byte ptr es:[di], ‘+’
jne TryMinus
inc di
call factor
jnc EP_Failed
call EPrime
jnc EP_Failed

Success: add sp, 2
stc
ret

TryMinus: cmp byte ptr es:[di], ‘-’
jne EP_Failed
inc di
call factor
jnc EP_Failed
call EPrime
jnc EP_Failed
add sp, 2
stc
ret

EP_Failed: pop di
stc ;Succeed because of E’ -> ε
ret

EPrime endp

This routine always succeeds because it has the production E’ → ε. This is why the stc
instruction appears after the EP_Failed label.

To invoke a pattern matching function, simply load es:di with the address of the string
you want to test and call the pattern matching function. On return, the carry flag will con-
tain one if the pattern matches the string up to the point returned in di. If you want to see
if the entire string matches the pattern, simply check to see if es:di is pointing at a zero
byte when you get back from the function call. If you want to see if a string belongs to a
context free language, you should call the function associated with the starting symbol for
the given context free grammar.

The following program implements the arithmetic grammar we’ve been using as
examples throughout the past several sections. The complete implementation is

; ARITH.ASM
;
; A simple recursive descent parser for arithmetic strings.

.xlist
include stdlib.a
includelibstdlib.lib
.list

dseg segment para public ‘data’

; Grammar for simple arithmetic grammar (supports +, -, *, /):
;
; E -> FE’
; E’ -> + F E’ | - F E’ | <empty string>
; F -> TF’
; F’ -> * T F’ | / T F’ | <empty string>
; T -> G | (E)
; G -> H | H G
; H -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;

InputLine byte 128 dup (0)

dseg ends

Control Structures

Page 909

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Matching functions for the grammar.
; These functions return the carry flag set if they match their
; respective item. They return the carry flag clear if they fail.
; If they fail, they preserve di. If they succeed, di points to
; the first character after the match.

; E -> FE’

E proc near
push di
call F ;See if F, then E’, succeeds.
jnc E_Failed
call EPrime
jnc E_Failed
add sp, 2 ;Success, don’t restore di.
stc
ret

E_Failed: pop di ;Failure, must restore di.
clc
ret

E endp

; E’ -> + F E’ | - F E’ | ε

EPrime proc near
push di

; Try + F E’ here

cmp byte ptr es:[di], ‘+’
jne TryMinus
inc di
call F
jnc EP_Failed
call EPrime
jnc EP_Failed

Success: add sp, 2
stc
ret

; Try - F E’ here.

TryMinus: cmp byte ptr es:[di], ‘-’
jne Success
inc di
call F
jnc EP_Failed
call EPrime
jnc EP_Failed
add sp, 2
stc
ret

; If none of the above succeed, return success anyway because we have
; a production of the form E’ -> ε.

EP_Failed: pop di
stc
ret

EPrime endp

Chapter 16

Page 910

; F -> TF’

F proc near
push di
call T
jnc F_Failed
call FPrime
jnc F_Failed
add sp, 2 ;Success, don’t restore di.
stc
ret

F_Failed: pop di
clc
ret

F endp

; F -> * T F’ | / T F’ | ε

FPrime proc near
push di
cmp byte ptr es:[di], ‘*’ ;Start with “*”?
jne TryDiv
inc di ;Skip the “*”.
call T
jnc FP_Failed
call FPrime
jnc FP_Failed

Success: add sp, 2
stc
ret

; Try F -> / T F’ here

TryDiv: cmp byte ptr es:[di], ‘/’ ;Start with “/”?
jne Success ;Succeed anyway.
inc di ;Skip the “/”.
call T
jnc FP_Failed
call FPrime
jnc FP_Failed
add sp, 2
stc
ret

; If the above both fail, return success anyway because we’ve got
; a production of the form F -> ε

FP_Failed: pop di
stc
ret

FPrime endp

; T -> G | (E)

T proc near

; Try T -> G here.

call G
jnc TryParens
ret

; Try T -> (E) here.

Control Structures

Page 911

TryParens: push di ;Preserve if we fail.
cmp byte ptr es:[di], ‘(‘ ;Start with “(“?
jne T_Failed ;Fail if no.
inc di ;Skip “(“ char.
call E
jnc T_Failed
cmp byte ptr es:[di], ‘)’ ;End with “)”?
jne T_Failed ;Fail if no.
inc di ;Skip “)”
add sp, 2 ;Don’t restore di,
stc ; we’ve succeeded.
ret

T_Failed: pop di
clc
ret

T endp

; The following is a free-form translation of
;
; G -> H | H G
; H -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;
; This routine checks to see if there is at least one digit. It fails if there
; isn’t at least one digit; it succeeds and skips over all digits if there are
; one or more digits.

G proc near
cmp byte ptr es:[di], ‘0’ ;Check for at least
jb G_Failed ; one digit.
cmp byte ptr es:[di], ‘9’
ja G_Failed

DigitLoop: inc di ;Skip any remaining
cmp byte ptr es:[di], ‘0’ ; digits found.
jb G_Succeeds
cmp byte ptr es:[di], ‘9’
jbe DigitLoop

G_Succeeds: stc
ret

G_Failed: clc ;Fail if no digits
ret ; at all.

G endp

; This main program tests the matching functions above and demonstrates
; how to call the matching functions.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax

printf
byte “Enter an arithmetic expression: “,0
lesi InputLine
gets
call E
jnc BadExp

; Good so far, but are we at the end of the string?

cmp byte ptr es:[di], 0
jne BadExp

; Okay, it truly is a good expression at this point.

printf

Chapter 16

Page 912

byte “‘%s’ is a valid expression”,cr,lf,0
dword InputLine
jmp Quit

BadExp: printf
byte “‘%s’ is an invalid arithmetic expression”,cr,lf,0
dword InputLine

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

16.1.7 Some Final Comments on CFGs

The techniques presented in this chapter for converting CFGs to assembly code do not
work for all CFGs. They only work for a (large) subset of the CFGs known as LL(1) gram-
mars. The code that these techniques produce is a recursive descent predictive parser6.
Although the set of context free languages recognizable by an LL(1) grammar is a subset
of the context free languages, it is a very large subset and you shouldn’t run into too many
difficulties using this technique.

One important feature of predictive parsers is that they do not require any backtrack-
ing. If you are willing to live with the inefficiencies associated with backtracking, it is easy
to extended a recursive descent parser to handle any CFG. Note that when you use back-
tracking, the predictive adjective goes away, you wind up with a nondeterministic system
rather than a deterministic system (predictive and deterministic are very close in meaning
in this case).

There are other CFG systems as well as LL(1). The so-called operator precedence and
LR(k) CFGs are two examples. For more information about parsing and grammars, con-
sult a good text on formal language theory or compiler construction (see the bibliogra-
phy).

16.1.8 Beyond Context Free Languages

Although most patterns you will probably want to process will be regular or context
free, there may be times when you need to recognize certain types of patterns that are
beyond these two (e.g., context sensitive languages). As it turns out, the finite state autom-
ata are the simplest machines; the pushdown automata (that recognize context free lan-
guages) are the next step up. After pushdown automata, the next step up in power is the
Turing machine. However, Turing machines are equivalent in power to the 80x867, so
matching patterns recognized by Turing machines is no different than writing a normal
program.

The key to writing functions that recognize patterns that are not context free is to
maintain information in variables and use the variables to decide which of several pro-
ductions you want to use at any one given time. This technique introduces context sensitiv-

6. A parser is a function that determines whether a pattern belongs to a language.
7. Actually, they are more powerful, in theory, because they have an infinite amount of memory available.

Control Structures

Page 913

ity. Such techniques are very useful in artificial intelligence programs (like natural
language processing) where ambiguity resolution depends on past knowledge or the cur-
rent context of a pattern matching operation. However, the uses for such types of pattern
matching quickly go beyond the scope of a text on assembly language programming, so
we will let some other text continue this discussion.

16.2 The UCR Standard Library Pattern Matching Routines

The UCR Standard Library provides a very sophisticated set of pattern matching rou-
tines. They are patterned after the pattern matching facilities of SNOBOL4, support CFGs,
and provide fully automatic backtracking, as necessary. Furthermore, by writing only five
assembly language statements, you can match simple or complex patterns.

There is very little assembly language code to worry about when using the Standard
Library’s pattern matching routines because most of the work occurs in the data segment.
To use the pattern matching routines, you first construct a pattern data structure in the
data segment. You then pass the address of this pattern and the string you wish to test to
the Standard Library match routine. The match routine returns failure or success depend-
ing on the state of the comparison. This isn’t quite as easy as it sounds, though; learning
how to construct the pattern data structure is almost like learning a new programming
language. Fortunately, if you’ve followed the discussion on context free languages, learn-
ing this new “language” is a breeze.

The Standard Library pattern data structure takes the following form:

Pattern struct
MatchFunction dword ?
MatchParm dword ?
MatchAlt dword ?
NextPattern dword ?
EndPattern word ?
StartPattern word ?
StrSeg word ?
Pattern ends

The MatchFunction field contains the address of a routine to call to perform some sort
of comparison. The success or failure of this function determines whether the pattern
matches the input string. For example, the UCR Standard Library provides a MatchStr
function that compares the next n characters of the input string against some other char-
acter string.

The MatchParm field contains the address or value of a parameter (if appropriate) for
the MatchFunction routine. For example, if the MatchFunction routine is MatchStr, then the
MatchParm field contains the address of the string to compare the input characters against.
Likewise, the MatchChar routine compares the next input character in the string against the
L.O. byte of the MatchParm field. Some matching functions do not require any parameters,
they will ignore any value you assign to MatchParm field. By convention, most program-
mers store a zero in unused fields of the Pattern structure.

The MatchAlt field contains either zero (NULL) or the address of some other pattern
data structure. If the current pattern matches the input characters, the pattern matching
routines ignore this field. However, if the current pattern fails to match the input string,
then the pattern matching routines will attempt to match the pattern whose address
appears in this field. If this alternate pattern returns success, then the pattern matching
routine returns success to the caller, otherwise it returns failure. If the MatchAlt field con-
tains NULL, then the pattern matching routine immediately fails if the main pattern does
not match.

The Pattern data structure only matches one item. For example, it might match a single
character, a single string, or a character from a set of characters. A real world pattern will
probably contain several small patterns concatenated together, e.g., the pattern for a Pas-
cal identifier consists of a single character from the set of alphabetic characters followed

Chapter 16

Page 914

by one or more characters from the set [a-zA-Z0-9_]. The NextPattern field lets you create a
composite pattern as the concatenation of two individual patterns. For such a composite
pattern to return success, the current pattern must match and then the pattern specified by
the NextPattern field must also match. Note that you can chain as many patterns together
as you please using this field.

The last three fields, EndPattern, StartPattern, and StrSeg are for the internal use of the
pattern matching routine. You should not modify or examine these fields.

Once you create a pattern, it is very easy to test a string to see if it matches that pat-
tern. The calling sequence for the UCR Standard Library match routine is

lesi « Input string to match »
ldxi « Pattern to match string against »
mov cx, 0
match
jc Success

The Standard Library match routine expects a pointer to the input string in the es:di
registers; it expects a pointer to the pattern you want to match in the dx:si register pair. The
cx register should contain the length of the string you want to test. If cx contains zero, the
match routine will test the entire input string. If cx contains a nonzero value, the match
routine will only test the first cx characters in the string. Note that the end of the string
(the zero terminating byte) must not appear in the string before the position specified in
cx. For most applications, loading cx with zero before calling match is the most appropri-
ate operation.

On return from the match routine, the carry flag denotes success or failure. If the carry
flag is set, the pattern matches the string; if the carry flag is clear, the pattern does not
match the string. Unlike the examples given in earlier sections, the match routine does not
modify the di register, even if the match succeeds. Instead, it returns the failure/success
position in the ax register. The is the position of the first character after the match if match
succeeds, it is the position of the first unmatched character if match fails.

16.3 The Standard Library Pattern Matching Functions

The UCR Standard Library provides about 20 built-in pattern matching functions.
These functions are based on the pattern matching facilities provided by the SNOBOL4
programming language, so they are very powerful indeed! You will probably discover
that these routines solve all your pattern matching need, although it is easy to write your
own pattern matching routines (see “Designing Your Own Pattern Matching Routines” on
page 922) if an appropriate one is not available. The following subsections describe each
of these pattern matching routines in detail.

There are two things you should note if you’re using the Standard Library’s
SHELL.ASM file when creating programs that use pattern matching and character sets.
First, there is a line at the very beginning of the SHELL.ASM file that contains the state-
ment “matchfuncs”. This line is currently a comment because it contains a semicolon in
column one. If you are going to be using the pattern matching facilities of the UCR Stan-
dard Library, you need to uncomment this line by deleting the semicolon in column one. If
you are going to be using the character set facilities of the UCR Standard Library (very
common when using the pattern matching facilities), you may want to uncomment the
line containing “include stdsets.a” in the data segment. The “stdsets.a” file includes sev-
eral common character sets, including alphabetics, digits, alphanumerics, whitespace, and
so on.

16.3.1 Spancset

The spancset routine skips over all characters belonging to a character set. This routine
will match zero or more characters in the specified set and, therefore, always succeeds.

Control Structures

Page 915

The MatchParm field of the pattern data structure must point at a UCR Standard Library
character set variable (see “The Character Set Routines in the UCR Standard Library” on
page 856).

Example:

SkipAlphas pattern {spancset, alpha}
 .
 .
 .

lesi StringWAlphas
ldxi SkipAlphas
xor cx, cx
match

16.3.2 Brkcset

Brkcset is the dual to spancset – it matches zero or more characters in the input string
which are not members of a specified character set. Another way of viewing brkcset is that
it will match all characters in the input string up to a character in the specified character
set (or to the end of the string). The matchparm field contains the address of the character
set to match.

Example:

DoDigits pattern {brkcset, digits, 0, DoDigits2}
DoDigits2 pattern {spancset, digits}

 .
 .
 .

lesi StringWDigits
ldxi DoDigits
xor cx, cx
match
jnc NoDigits

The code above matches any string that contains a string of one or more digits somewhere
in the string.

16.3.3 Anycset

Anycset matches a single character in the input string from a set of characters. The
matchparm field contains the address of a character set variable. If the next character in the
input string is a member of this set, anycset set accepts the string and skips over than char-
acter. If the next input character is not a member of that set, anycset returns failure.

Example:

DoID pattern {anycset, alpha, 0, DoID2}
DoID2 pattern {spancset, alphanum}

 .
 .
 .

lesi StringWID
ldxi DoID
xor cx, cx
match
jnc NoID

This code segment checks the string StringWID to see if it begins with an identifier specified
by the regular expression [a-zA-Z][a-zA-Z0-9]*. The first subpattern with anycset makes
sure there is an alphabetic character at the beginning of the string (alpha is the stdsets.a set
variable that has all the alphabetic characters as members). If the string does not begin
with an alphabetic, the DoID pattern fails. The second subpattern, DoID2, skips over any
following alphanumeric characters using the spancset matching function. Note that
spancset always succeeds.

Chapter 16

Page 916

The above code does not simply match a string that is an identifier; it matches strings
that begin with a valid identifier. For example, it would match “ThisIsAnID” as well as
“ThisIsAnID+SoIsThis - 5”. If you only want to match a single identifier and nothing else,
you must explicitly check for the end of string in your pattern. For more details on how to
do this, see “EOS” on page 919.

16.3.4 Notanycset

Notanycset provides the complement to anycset – it matches a single character in the
input string that is not a member of a character set. The matchparm field, as usual, contains
the address of the character set whose members must not appear as the next character in
the input string. If notanycset successfully matches a character (that is, the next input char-
acter is not in the designated character set), the function skips the character and returns
success; otherwise it returns failure.

Example:

DoSpecial pattern {notanycset, digits, 0, DoSpecial2}
DoSpecial2 pattern {spancset, alphanum}

 .
 .
 .

lesi StringWSpecial
ldxi DoSpecial
xor cx, cx
match
jnc NoSpecial

This code is similar to the DoID pattern in the previous example. It matches a string
containing any character except a digit and then matches a string of alphanumeric charac-
ters.

16.3.5 MatchStr

Matchstr compares the next set of input characters against a character string. The
matchparm field contains the address of a zero terminated string to compare against. If
matchstr succeeds, it returns the carry set and skips over the characters it matched; if it
fails, it tries the alternate matching function or returns failure if there is no alternate.

Example:

DoString pattern {matchstr, MyStr}
MyStr byte “Match this!”,0

 .
 .
 .

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

This sample code matches any string that begins with the characters “Match This!”

16.3.6 MatchiStr

Matchistr is like matchstr insofar as it compares the next several characters against a
zero terminated string value. However, matchistr does a case insensitive comparison. Dur-
ing the comparison it converts the characters in the input string to upper case before com-
paring them to the characters that the matchparm field points at. Therefore, the string
pointed at by the matchparm field must contain uppercase wherever alphabetics appear. If the
matchparm string contains any lower case characters, the matchistr function will always fail.

Control Structures

Page 917

Example:

DoString pattern {matchistr, MyStr}
MyStr byte “MATCH THIS!”,0

 .
 .
 .

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

This example is identical to the one in the previous section except it will match the charac-
ters “match this!” using any combination of upper and lower case characters.

16.3.7 MatchToStr

Matchtostr matches all characters in an input string up to and including the characters
specified by the matchparm parameter. This routine succeeds if the specified string appears
somewhere in the input string, it fails if the string does not appear in the input string. This
pattern function is quite useful for locating a substring and ignoring everything that came
before the substring.

Example:

DoString pattern {matchtostr, MyStr}
MyStr byte “Match this!”,0

 .
 .
 .

lesi String
ldxi DoString
xor cx, cx
match
jnc NotMatchThis

Like the previous two examples, this code segment matches the string “Match this!” How-
ever, it does not require that the input string (String) begin with “Match this!” Instead, it
only requires that “Match this!” appear somewhere in the string.

16.3.8 MatchChar

The matchchar function matches a single character. The matchparm field’s L.O. byte
contains the character you want to match. If the next character in the input string is that
character, then this function succeeds, otherwise it fails.

Example:

DoSpace pattern {matchchar, ‘ ‘}
 .
 .
 .

lesi String
ldxi DoSpace
xor cx, cx
match
jnc NoSpace

This code segment matches any string that begins with a space. Keep in mind that the
match routine only checks the prefix of a string. If you wanted to see if the string contained
only a space (rather than a string that begins with a space), you would need to explicitly
check for an end of string after the space. Of course, it would be far more efficient to use
strcmp (see “Strcmp, Strcmpl, Stricmp, Stricmpl” on page 848) rather than match for this
purpose!

Chapter 16

Page 918

Note that unlike matchstr, you encode the character you want to match directly into
the matchparm field. This lets you specify the character you want to test directly in the pat-
tern definition.

16.3.9 MatchToChar

Like matchtostr, matchtochar matches all characters up to and including a character you
specify. This is similar to brkcset except you don’t have to create a character set containing
a single member and brkcset skips up to but not including the specified character(s). Match-
tochar fails if it cannot find the specified character in the input string.

Example:

DoToSpace pattern {matchtochar, ‘ ‘}
 .
 .
 .

lesi String
ldxi DoSpace
xor cx, cx
match
jnc NoSpace

This call to match will fail if there are no spaces left in the input string. If there are, the call
to matchtochar will skip over all characters up to, and including, the first space. This is a
useful pattern for skipping over words in a string.

16.3.10 MatchChars

Matchchars skips zero or more occurrences of a singe character in an input string. It is
similar to spancset except you can specify a single character rather than an entire character
set with a single member. Like matchchar, matchchars expects a single character in the L.O.
byte of the matchparm field. Since this routine matches zero or more occurrences of that
character, it always succeeds.

Example:

Skip2NextWord pattern {matchtochar, ‘ ‘, 0, SkipSpcs}
SkipSpcs pattern {matchchars, ‘ ‘}

 .
 .
 .

lesi String
ldxi Skip2NextWord
xor cx, cx
match
jnc NoWord

The code segment skips to the beginning of the next word in a string. It fails if there are no
additional words in the string (i.e., the string contains no spaces).

16.3.11 MatchToPat

Matchtopat matches all characters in a string up to and including the substring
matched by some other pattern. This is one of the two facilities the UCR Standard Library
pattern matching routines provide to allow the implementation of nonterminal function
calls (also see “SL_Match2” on page 922). This matching function succeeds if it finds a
string matching the specified pattern somewhere on the line. If it succeeds, it skips the
characters through the last character matched by the pattern parameter. As you would
expect, the matchparm field contains the address of the pattern to match.

Example:

Control Structures

Page 919

; Assume there is a pattern “expression” that matches arithmetic
; expressions. The following pattern determines if there is such an
; expression on the line followed by a semicolon.

FindExp pattern {matchtopat, expression, 0, MatchSemi}
MatchSemi pattern {matchchar, ‘;‘}

 .
 .
 .

lesi String
ldxi FindExp
xor cx, cx
match
jnc NoExp

16.3.12 EOS

The EOS pattern matches the end of a string. This pattern, which must obviously
appear at the end of a pattern list if it appears at all, checks for the zero terminating byte.
Since the Standard Library routines only match prefixes, you should stick this pattern at
the end of a list if you want to ensure that a pattern exactly matches a string with no left
over characters at the end. EOS succeeds if it matches the zero terminating byte, it fails
otherwise.

Example:

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EOSPat}
EOSPat pattern {EOS}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc NoNumber

The SkipNumber pattern matches strings that contain only decimal digits (from the start of
the match to the end of the string). Note that EOS requires no parameters, not even a
matchparm parameter.

16.3.13 ARB

ARB matches any number of arbitrary characters. This pattern matching function is
equivalent to Σ*. Note that ARB is a very inefficient routine to use. It works by assuming it
can match all remaining characters in the string and then tries to match the pattern speci-
fied by the nextpattern field8. If the nextpattern item fails, ARB backs up one character and
tries matching nextpattern again. This continues until the pattern specified by nextpattern
succeeds or ARB backs up to its initial starting position. ARB succeeds if the pattern speci-
fied by nextpattern succeeds, it fails if it backs up to its initial starting position.

Given the enormous amount of backtracking that can occur with ARB (especially on
long strings), you should try to avoid using this pattern if at all possible. The matchtostr,
matchtochar, and matchtopat functions accomplish much of what ARB accomplishes, but
they work forward rather than backward in the source string and may be more efficient.
ARB is useful mainly if you’re sure the following pattern appears late in the string you’re
matching or if the string you want to match occurs several times and you want to match
the last occurrence (matchtostr, matchtochar, and matchtopat always match the first occur-
rence they find).

8. Since the match routine only matches prefixes, it does not make sense to apply ARB to the end of a pattern list,
the same pattern would match with or without the final ARB. Therefore, ARB usually has a nextpattern field.

Chapter 16

Page 920

Example:

SkipNumber pattern {ARB,0,0,SkipDigit}
SkipDigit pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc NoNumber

This code example matches the last number that appears on an input line. Note that ARB
does not use the matchparm field, so you should set it to zero by default.

16.3.14 ARBNUM

ARBNUM matches an arbitrary number (zero or more) of patterns that occur in the
input string. If R represents some nonterminal number (pattern matching function), then
ARBNUM(R) is equivalent to the production ARBNUM → R ARBNUM | ε.

The matchparm field contains the address of the pattern that ARBNUM attempts to
match.

Example:

SkipNumbers pattern {ARBNUM, SkipNumber}
SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {matchchars, ‘ ‘, EndString}
EndString pattern {EOS}

 .
 .
 .

lesi String
ldxi SkipNumbers
xor cx, cx
match
jnc IllegalNumbers

This code accepts the input string if it consists of a sequence of zero or more numbers sep-
arated by spaces and terminated with the EOS pattern. Note the use of the matchalt field in
the EndDigits pattern to select EOS rather than a space for the last number in the string.

16.3.15 Skip

Skip matches n arbitrary characters in the input string. The matchparm field is an inte-
ger value containing the number of characters to skip. Although the matchparm field is a
double word, this routine limits the number of characters you can skip to 16 bits (65,535
characters); that is, n is the L.O. word of the matchparm field. This should prove sufficient
for most needs.

Skip succeeds if there are at least n characters left in the input string; it fails if there are
fewer than n characters left in the input string.

Example:

Skip1st6 pattern {skip, 6, 0, SkipNumber}
SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {EOS}

 .
 .
 .

lesi String
ldxi Skip1st6
xor cx, cx

Control Structures

Page 921

match
jnc IllegalItem

This example matches a string containing six arbitrary characters followed by one or more
decimal digits and a zero terminating byte.

16.3.16 Pos

Pos succeeds if the matching functions are currently at the nth character in the string,
where n is the value in the L.O. word of the matchparm field. Pos fails if the matching func-
tions are not currently at position n in the string. Unlike the pattern matching functions
you’ve seen so far, pos does not consume any input characters. Note that the string starts
out at position zero. So when you use the pos function, it succeeds if you’ve matched n
characters at that point.

Example:

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {pos, 4}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

This code matches a string that begins with exactly 4 decimal digits.

16.3.17 RPos

Rpos works quite a bit like the pos function except it succeeds if the current position is
n character positions from the end of the string. Like pos, n is the L.O. 16 bits of the
matchparm field. Also like pos, rpos does not consume any input characters.

Example:

SkipNumber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {rpos, 4}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

This code matches any string that is all decimal digits except for the last four characters of
the string. The string must be at least five characters long for the above pattern match to
succeed.

16.3.18 GotoPos

Gotopos skips over any characters in the string until it reaches character position n in
the string. This function fails if the pattern is already beyond position n in the string. The
L.O. word of the matchparm field contains the value for n.

Example:

SkipNumber pattern {gotopos, 10, 0, MatchNmbr}
MatchNmbr pattern {anycset, digits, 0, SkipDigits}

Chapter 16

Page 922

SkipDigits pattern {spancset, digits, 0, EndDigits}
EndDigits pattern {rpos, 4}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

This example code skips to position 10 in the string and attempts to match a string of dig-
its starting with the 11th character. This pattern succeeds if the there are four characters
remaining in the string after processing all the digits.

16.3.19 RGotoPos

Rgotopos works like gotopos except it goes to the position specified from the end of the
string. Rgotopos fails if the matching routines are already beyond position n from the end
of the string. As with gotopos, the L.O. word of the matchparm field contains the value for n.

Example:

SkipNumber pattern {rgotopos, 10, 0, MatchNmbr}
MatchNmbr pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits}

 .
 .
 .

lesi String
ldxi SkipNumber
xor cx, cx
match
jnc IllegalItem

This example skips to ten characters from the end of the string and then attempts to match
one or digits starting at that point. It fails if there aren’t at least 11 characters in the string
or the last 10 characters don’t begin with a string of one or more digits.

16.3.20 SL_Match2

The sl_match2 routine is nothing more than a recursive call to match. The matchparm
field contains the address of pattern to match. This is quite useful for simulating parenthe-
sis around a pattern in a pattern expression. As far as matching strings are concerned,
pattern1 and pattern2, below, are equivalent:

Pattern2 pattern {sl_match2, Pattern1}
Pattern1 pattern {matchchar, ‘a’}

The only difference between invoking a pattern directly and invoking it with sl_match2 is
that sl_match2 tweaks some internal variables to keep track of matching positions within
the input string. Later, you can extract the character string matched by sl_match2 using the
patgrab routine (see “Extracting Substrings from Matched Patterns” on page 925).

16.4 Designing Your Own Pattern Matching Routines

Although the UCR Standard Library provides a wide variety of matching functions,
there is no way to anticipate the needs of all applications. Therefore, you will probably
discover that the library does not support some particular pattern matching function you
need. Fortunately, it is very easy for you to create your own pattern matching functions to
augment those available in the UCR Standard Library. When you specify a matching func-

Control Structures

Page 923

tion name in the pattern data structure, the match routine calls the specified address using
a far call and passing the following parameters:

es:di- Points at the next character in the input string. You should not look at any charac-
ters before this address. Furthermore, you should never look beyond the end of
the string (see cx below).

ds:si- Contains the four byte parameter found in the matchparm field.

cx- Contains the last position, plus one, in the input string you’re allowed to look at.
Note that your pattern matching routine should not look beyond location es:cx or
the zero terminating byte; whichever comes first in the input string.

On return from the function, ax must contain the offset into the string (di’s value) of
the last character matched plus one, if your matching function is successful. It must also set
the carry flag to denote success. After your pattern matches, the match routine might call
another matching function (the one specified by the next pattern field) and that function
begins matching at location es:ax.

If the pattern match fails, then you must return the original di value in the ax register
and return with the carry flag clear. Note that your matching function must preserve all
other registers.

There is one very important detail you must never forget with writing your own pat-
tern matching routines – ds does not point at your data segment, it contains the H.O. word
of the matchparm parameter. Therefore, if you are going to access global variables in your
data segment you will need to push ds, load it with the address of dseg, and pop ds before
leaving. Several examples throughout this chapter demonstrate how to do this.

There are some obvious omissions from (the current version of) the UCR Standard
Library’s repertoire. For example, there should probably be matchtoistr, matchichar, and
matchtoichar pattern functions. The following example code demonstrates how to add a
matchtoistr (match up to a string, doing a case insensitive comparison) routine.

.xlist

include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

TestString byte “This is the string ‘xyz’ in it”,cr,lf,0

TestPat pattern {matchtoistr,xyz}
xyz byte “XYZ”,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; MatchToiStr- Matches all characters in a string up to, and including, the
; specified parameter string. The parameter string must be
; all upper case characters. This guy matches string using
; a case insensitive comparison.
;
; inputs:
; es:di- Source string
; ds:si- String to match
; cx- Maximum match position
;
; outputs:
; ax- Points at first character beyond the end of the
; matched string if success, contains the initial DI
; value if failure occurs.
; carry- 0 if failure, 1 if success.

Chapter 16

Page 924

MatchToiStr proc far
pushf
push di
push si
cld

; Check to see if we’re already past the point were we’re allowed
; to scan in the input string.

cmp di, cx
jae MTiSFailure

; If the pattern string is the empty string, always match.

cmp byte ptr ds:[si], 0
je MTSsuccess

; The following loop scans through the input string looking for
; the first character in the pattern string.

ScanLoop: push si
lodsb ;Get first char of string

dec di
FindFirst: inc di ;Move on to next (or 1st) char.

cmp di, cx ;If at cx, then we’ve got to
jae CantFind1st; fail.

mov ah, es:[di] ;Get input character.
cmp ah, ‘a’ ;Convert input character to
jb DoCmp ; upper case if it’s a lower
cmp ah, ‘z’ ; case character.
ja DoCmp
and ah, 5fh

DoCmp: cmp al, ah ;Compare input character against
jne FindFirst ; pattern string.

; At this point, we’ve located the first character in the input string
; that matches the first character of the pattern string. See if the
; strings are equal.

push di ;Save restart point.

CmpLoop: cmp di, cx ;See if we’ve gone beyond the
jae StrNotThere; last position allowable.
lodsb ;Get next input character.
cmp al, 0 ;At the end of the parameter
je MTSsuccess2; string? If so, succeed.

inc di
mov ah, es:[di] ;Get the next input character.
cmp ah, ‘a’ ;Convert input character to
jb DoCmp2 ; upper case if it’s a lower
cmp ah, ‘z’ ; case character.
ja DoCmp2
and ah, 5fh

DoCmp2: cmp al, ah ;Compare input character against
je CmpLoop
pop di
pop si
jmp ScanLoop

StrNotThere: add sp, 2 ;Remove di from stack.
CantFind1st: add sp, 2 ;Remove si from stack.
MTiSFailure: pop si

pop di
mov ax, di ;Return failure position in AX.
popf

Control Structures

Page 925

clc ;Return failure.
ret

MTSSuccess2: add sp, 2 ;Remove DI value from stack.
MTSSuccess: add sp, 2 ;Remove SI value from stack.

mov ax, di ;Return next position in AX.
pop si
pop di
popf
stc ;Return success.
ret

MatchToiStr endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi TestString
ldxi TestPat
xor cx, cx
match
jnc NoMatch
print
byte “Matched”,cr,lf,0
jmp Quit

NoMatch: print
byte “Did not match”,cr,lf,0

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

16.5 Extracting Substrings from Matched Patterns

Often, simply determining that a string matches a given pattern is insufficient. You
may want to perform various operations that depend upon the actual information in that
string. However, the pattern matching facilities described thus far do not provide a mech-
anism for testing individual components of the input string. In this section, you will see
how to extract portions of a pattern for further processing.

Perhaps an example may help clarify the need to extract portions of a string. Suppose
you are writing a stock buy/sell program and you want it to process commands described
by the following regular expression:

(buy | sell) [0-9]+ shares of (ibm | apple | hp | dec)

While it is easy to devise a Standard Library pattern that recognizes strings of this form,
calling the match routine would only tell you that you have a legal buy or sell command. It
does not tell you if you are to buy or sell, who to buy or sell, or how many shares to buy or
sell. Of course, you could take the cross product of (buy | sell) with (ibm | apple | hp |
dec) and generate eight different regular expressions that uniquely determine whether
you’re buying or selling and whose stock you’re trading, but you can’t process the integer
values this way (unless you willing to have millions of regular expressions). A better solu-

Chapter 16

Page 926

tion would be to extract substrings from the legal pattern and process these substrings
after you verify that you have a legal buy or sell command. For example, you could
extract buy or sell into one string, the digits into another, and the company name into a
third. After verifying the syntax of the command, you could process the individual strings
you’ve extracted. The UCR Standard Library patgrab routine provides this capability for
you.

You normally call patgrab after calling match and verifying that it matches the input
string. Patgrab expects a single parameter – a pointer to a pattern recently processed by
match. Patgrab creates a string on the heap consisting of the characters matched by the
given pattern and returns a pointer to this string in es:di. Note that patgrab only returns a
string associated with a single pattern data structure, not a chain of pattern data struc-
tures. Consider the following pattern:

PatToGrab pattern {matchstr, str1, 0, Pat2}
Pat2 pattern {matchstr, str2}
str1 byte “Hello”,0
str2 byte “ there”,0

Calling match on PatToGrab will match the string “Hello there”. However, if after calling
match you call patgrab and pass it the address of PatToGrab, patgrab will return a pointer to
the string “Hello”.

Of course, you might want to collect a string that is the concatenation of several
strings matched within your pattern (i.e., a portion of the pattern list). This is where call-
ing the sl_match2 pattern matching function comes in handy. Consider the following pat-
tern:

Numbers pattern {sl_match2, FirstNumber}
FirstNumber pattern {anycset, digits, 0, OtherDigs}
OtherDigs pattern {spancset, digits}

This pattern matches the same strings as

Numbers pattern {anycset, digits, 0, OtherDigs}
OtherDigs pattern {spancset, digits}

So why bother with the extra pattern that calls sl_match2? Well, as it turns out the
sl_match2 matching function lets you create parenthetical patterns. A parenthetical pattern is
a pattern list that the pattern matching routines (especially patgrab) treat as a single pat-
tern. Although the match routine will match the same strings regardless of which version
of Numbers you use, patgrab will produce two entirely different strings depending upon
your choice of the above patterns. If you use the latter version, patgrab will only return the
first digit of the number. If you use the former version (with the call to sl_match2), then pat-
grab returns the entire string matched by sl_match2, and that turns out to be the entire
string of digits.

The following sample program demonstrates how to use parenthetical patterns to
extract the pertinent information from the stock command presented earlier. It uses paren-
thetical patterns for the buy/sell command, the number of shares, and the company
name.

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Variables used to hold the number of shares bought/sold, a pointer to
; a string containing the buy/sell command, and a pointer to a string
; containing the company name.

Count word 0
CmdPtr dword ?
CompPtr dword ?

Control Structures

Page 927

; Some test strings to try out:

Cmd1 byte “Buy 25 shares of apple stock”,0
Cmd2 byte “Sell 50 shares of hp stock”,0
Cmd3 byte “Buy 123 shares of dec stock”,0
Cmd4 byte “Sell 15 shares of ibm stock”,0
BadCmd0 byte “This is not a buy/sell command”,0

; Patterns for the stock buy/sell command:
;
; StkCmd matches buy or sell and creates a parenthetical pattern
; that contains the string “buy” or “sell”.

StkCmd pattern {sl_match2, buyPat, 0, skipspcs1}

buyPat pattern {matchistr,buystr,sellpat}
buystr byte “BUY”,0

sellpat pattern {matchistr,sellstr}
sellstr byte “SELL”,0

; Skip zero or more white space characters after the buy command.

skipspcs1 pattern {spancset, whitespace, 0, CountPat}

; CountPat is a parenthetical pattern that matches one or more
; digits.

CountPat pattern {sl_match2, Numbers, 0, skipspcs2}
Numbers pattern {anycset, digits, 0, RestOfNum}
RestOfNum pattern {spancset, digits}

; The following patterns match “ shares of “ allowing any amount
; of white space between the words.

skipspcs2 pattern {spancset, whitespace, 0, sharesPat}

sharesPat pattern {matchistr, sharesStr, 0, skipspcs3}
sharesStr byte “SHARES”,0

skipspcs3 pattern {spancset, whitespace, 0, ofPat}

ofPat pattern {matchistr, ofStr, 0, skipspcs4}
ofStr byte “OF”,0

skipspcs4 pattern {spancset, whitespace, 0, CompanyPat}

; The following parenthetical pattern matches a company name.
; The patgrab-available string will contain the corporate name.

CompanyPat pattern {sl_match2, ibmpat}

ibmpat pattern {matchistr, ibm, applePat}
ibm byte “IBM”,0

applePat pattern {matchistr, apple, hpPat}
apple byte “APPLE”,0

hpPat pattern {matchistr, hp, decPat}
hp byte “HP”,0

decPat pattern {matchistr, decstr}
decstr byte “DEC”,0

include stdsets.a
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Chapter 16

Page 928

; DoBuySell- This routine processes a stock buy/sell command.
; After matching the command, it grabs the components
; of the command and outputs them as appropriate.
; This routine demonstrates how to use patgrab to
; extract substrings from a pattern string.
;
; On entry, es:di must point at the buy/sell command
; you want to process.

DoBuySell proc near
ldxi StkCmd
xor cx, cx
match
jnc NoMatch

lesi StkCmd
patgrab
mov word ptr CmdPtr, di
mov word ptr CmdPtr+2, es

lesi CountPat
patgrab
atoi ;Convert digits to integer
mov Count, ax
free ;Return storage to heap.

lesi CompanyPat
patgrab
mov word ptr CompPtr, di
mov word ptr CompPtr+2, es

printf
byte “Stock command: %^s\n”
byte “Number of shares: %d\n”
byte “Company to trade: %^s\n\n”,0
dword CmdPtr, Count, CompPtr

les di, CmdPtr
free
les di, CompPtr
free
ret

NoMatch: print
byte “Illegal buy/sell command”,cr,lf,0
ret

DoBuySell endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit

lesi Cmd1
call DoBuySell
lesi Cmd2
call DoBuySell
lesi Cmd3
call DoBuySell
lesi Cmd4
call DoBuySell
lesi BadCmd0
call DoBuySell

Quit: ExitPgm
Main endp

Control Structures

Page 929

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample program output:

Stock command: Buy
Number of shares: 25
Company to trade: apple

Stock command: Sell
Number of shares: 50
Company to trade: hp

Stock command: Buy
Number of shares: 123
Company to trade: dec

Stock command: Sell
Number of shares: 15
Company to trade: ibm

Illegal buy/sell command

16.6 Semantic Rules and Actions

Automata theory is mainly concerned with whether or not a string matches a given
pattern. Like many theoretical sciences, practitioners of automata theory are only con-
cerned if something is possible, the practical applications are not as important. For real
programs, however, we would like to perform certain operations if we match a string or
perform one from a set of operations depending on how we match the string.

A semantic rule or semantic action is an operation you perform based upon the type of
pattern you match. This is, it is the piece of code you execute when you are satisfied with
some pattern matching behavior. For example, the call to patgrab in the previous section is
an example of a semantic action.

Normally, you execute the code associated with a semantic rule after returning from
the call to match. Certainly when processing regular expressions, there is no need to pro-
cess a semantic action in the middle of pattern matching operation. However, this isn’t the
case for a context free grammar. Context free grammars often involve recursion or may
use the same pattern several times when matching a single string (that is, you may refer-
ence the same nonterminal several times while matching the pattern). The pattern match-
ing data structure only maintains pointers (EndPattern, StartPattern, and StrSeg) to the last
substring matched by a given pattern. Therefore, if you reuse a subpattern while matching
a string and you need to execute a semantic rule associated with that subpattern, you will
need to execute that semantic rule in the middle of the pattern matching operation, before
you reference that subpattern again.

It turns out to be very easy to insert semantic rules in the middle of a pattern matching
operation. All you need to do is write a pattern matching function that always succeeds
(i.e., it returns with the carry flag clear). Within the body of your pattern matching routine
you can choose to ignore the string the matching code is testing and perform any other
actions you desire.

Chapter 16

Page 930

Your semantic action routine, on return, must set the carry flag and it must copy the
original contents of di into ax. It must preserve all other registers. Your semantic action
must not call the match routine (call sl_match2 instead). Match does not allow recursion (it
is not reentrant) and calling match within a semantic action routine will mess up the pat-
tern match in progress.

The following example provides several examples of semantic action routines within
a program. This program converts arithmetic expressions in infix (algebraic) form to
reverse polish notation (RPN) form.

; INFIX.ASM
;
; A simple program which demonstrates the pattern matching routines in the
; UCR library. This program accepts an arithmetic expression on the command
; line (no interleaving spaces in the expression is allowed, that is, there
; must be only one command line parameter) and converts it from infix notation
; to postfix (rpn) notation.

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Grammar for simple infix -> postfix translation operation
; (the semantic actions are enclosed in braces}:
;
; E -> FE’
; E’ -> +F {output ‘+’} E’ | -F {output ‘-’} E’ | <empty string>
; F -> TF’
; F -> *T {output ‘*’} F’ | /T {output ‘/’} F’ | <empty string>
; T -> -T {output ‘neg’} | S
; S -> <constant> {output constant} | (E)
;
; UCR Standard Library Pattern which handles the grammar above:

; An expression consists of an “E” item followed by the end of the string:

infix2rpn pattern {sl_Match2,E,,EndOfString}
EndOfString pattern {EOS}

; An “E” item consists of an “F” item optionally followed by “+” or “-”
; and another “E” item:

E pattern {sl_Match2, F,,Eprime}
Eprime pattern {MatchChar, ‘+’, Eprime2, epf}
epf pattern {sl_Match2, F,,epPlus}
epPlus pattern {OutputPlus,,,Eprime} ;Semantic rule

Eprime2 pattern {MatchChar, ‘-’, Succeed, emf}
emf pattern {sl_Match2, F,,epMinus}
epMinus pattern {OutputMinus,,,Eprime} ;Semantic rule

; An “F” item consists of a “T” item optionally followed by “*” or “/”
; followed by another “T” item:

F pattern {sl_Match2, T,,Fprime}
Fprime pattern {MatchChar, ‘*’, Fprime2, fmf}
fmf pattern {sl_Match2, T, 0, pMul}
pMul pattern {OutputMul,,,Fprime} ;Semantic rule

Fprime2 pattern {MatchChar, ‘/’, Succeed, fdf}
fdf pattern {sl_Match2, T, 0, pDiv}
pDiv pattern {OutputDiv, 0, 0,Fprime} ;Semantic rule

Control Structures

Page 931

; T item consists of an “S” item or a “-” followed by another “T” item:

T pattern {MatchChar, ‘-’, S, TT}
TT pattern {sl_Match2, T, 0,tpn}
tpn pattern {OutputNeg} ;Semantic rule

; An “S” item is either a string of one or more digits or “(“ followed by
; and “E” item followed by “)”:

Const pattern {sl_Match2, DoDigits, 0, spd}
spd pattern {OutputDigits} ;Semantic rule

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

S pattern {MatchChar, ‘(‘, Const, IntE}
IntE pattern {sl_Match2, E, 0, CloseParen}
CloseParen pattern {MatchChar, ‘)’}

Succeed pattern {DoSucceed}

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; OutputPlus is a semantic rule which outputs the “+” operator after the
; parser sees a valid addition operator in the infix string.

OutputPlus proc far
print
byte “ +”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputPlus endp

; OutputMinus is a semantic rule which outputs the “-” operator after the
; parser sees a valid subtraction operator in the infix string.

OutputMinus proc far
print
byte “ -”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputMinus endp

; OutputMul is a semantic rule which outputs the “*” operator after the
; parser sees a valid multiplication operator in the infix string.

Chapter 16

Page 932

OutputMul proc far
print
byte “ *”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputMul endp

; OutputDiv is a semantic rule which outputs the “/” operator after the
; parser sees a valid division operator in the infix string.

OutputDiv proc far
print
byte “ /”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputDiv endp

; OutputNeg is a semantic rule which outputs the unary “-” operator after the
; parser sees a valid negation operator in the infix string.

OutputNeg proc far
print
byte “ neg”,0
mov ax, di ;Required by sl_Match
stc
ret

OutputNeg endp

; OutputDigits outputs the numeric value when it encounters a legal integer
; value in the input string.

OutputDigits proc far
push es
push di
mov al, ‘ ‘
putc
lesi const
patgrab
puts
free
stc
pop di
mov ax, di
pop es
ret

OutputDigits endp

; Okay, here’s the main program which fetches the command line parameter
; and parses it.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ; memory to the heap.

print
byte “Enter an arithmetic expression: “,0
getsm
print
byte “Expression in postfix form: “,0

Control Structures

Page 933

ldxi infix2rpn
xor cx, cx
match
jc Succeeded

print
byte “Syntax error”,0

Succeeded: putcr

Quit: ExitPgm
Main endp

cseg ends

; Allocate a reasonable amount of space for the stack (8k).

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

16.7 Constructing Patterns for the MATCH Routine

A major issue we have yet to discuss is how to convert regular expressions and con-
text free grammars into patterns suitable for the UCR Standard Library pattern matching
routines. Most of the examples appearing up to this point have used an ad hoc translation
scheme; now it is time to provide an algorithm to accomplish this.

The following algorithm converts a context free grammar to a UCR Standard Library
pattern data structure. If you want to convert a regular expression to a pattern, first con-
vert the regular expression to a context free grammar (see “Converting REs to CFGs” on
page 905). Of course, it is easy to convert many regular expression forms directly to a pat-
tern, when such conversions are obvious you can bypass the following algorithm; for
example, it should be obvious that you can use spancset to match a regular expression like
[0-9]*.

The first step you must always take is to eliminate left recursion from the grammar.
You will generate an infinite loop (and crash the machine) if you attempt to code a gram-
mar containing left recursion into a pattern data structure. For information on eliminating
left recursion, see “Eliminating Left Recursion and Left Factoring CFGs” on page 903. You
might also want to left factor the grammar while you are eliminating left recursion. The
Standard Library routines fully support backtracking, so left factoring is not strictly neces-
sary, however, the matching routine will execute faster if it does not need to backtrack.

If a grammar production takes the form A → B C where A, B, and C are nonterminal
symbols, you would create the following pattern:

A pattern {sl_match2,B,0,C}

This pattern description for A checks for an occurrence of a B pattern followed by a C
pattern.

Chapter 16

Page 934

If B is a relatively simple production (that is, you can convert it to a single pattern
data structure), you can optimize this to:

A pattern {B’s Matching Function, B’s parameter, 0, C}

The remaining examples will always call sl_match2, just to be consistent. However, as long
as the nonterminals you invoke are simple, you can fold them into A’’s pattern.

If a grammar production takes the form A → B | C where A, B, and C are nontermi-
nal symbols, you would create the following pattern:

A pattern {sl_match2, B, C}

This pattern tries to match B. If it succeeds, A succeeds; if it fails, it tries to match C. At this
point, A’’s success or failure is the success or failure of C.

Handling terminal symbols is the next thing to consider. These are quite easy – all you
need to do is use the appropriate matching function provided by the Standard Library,
e.g., matchstr or matchchar. For example, if you have a production of the form A → abc | y
you would convert this to the following pattern:

A pattern {matchstr,abc,ypat}
abc byte “abc”,0
ypat pattern {matchchar,’y’}

The only remaining detail to consider is the empty string. If you have a production of
the form A → ε then you need to write a pattern matching function that always succeed.
The elegant way to do this is to write a custom pattern matching function. This function is

succeed proc far
mov ax, di ;Required by sl_match
stc ;Always succeed.
ret

succeed endp

Another, sneaky, way to force success is to use matchstr and pass it the empty string to
match, e.g.,

success pattern {matchstr, emptystr}
emptystr byte 0

The empty string always matches the input string, no matter what the input string con-
tains.

If you have a production with several alternatives and ε is one of them, you must pro-
cess ε last. For example, if you have the productions A → abc | y | BC | ε you would
use the following pattern:

A pattern {matchstr,abc, tryY}
abc byte “abc”,0
tryY pattern {matchchar, ‘y’, tryBC}
tryBC pattern {sl_match2, B, DoSuccess, C}
DoSuccess pattern {succeed}

While the technique described above will let you convert any CFG to a pattern that
the Standard Library can process, it certainly does not take advantage of the Standard
Library facilities, nor will it produce particularly efficient patterns. For example, consider
the production:

Digits → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Converting this to a pattern using the techniques described above will yield the pattern:

Digits pattern {matchchar, ‘0’, try1}
try1 pattern {matchchar, ‘1’, try2}
try2 pattern {matchchar, ‘2’, try3}
try3 pattern {matchchar, ‘3’, try4}
try4 pattern {matchchar, ‘4’, try5}
try5 pattern {matchchar, ‘5’, try6}
try6 pattern {matchchar, ‘6’, try7}

Control Structures

Page 935

try7 pattern {matchchar, ‘7’, try8}
try8 pattern {matchchar, ‘8’, try9}
try9 pattern {matchchar, ‘9’}

Obviously this isn’t a very good solution because we can match this same pattern with the
single statement:

Digits pattern {anycset, digits}

If your pattern is easy to specify using a regular expression, you should try to encode
it using the built-in pattern matching functions and fall back on the above algorithm once
you’ve handled the low level patterns as best you can. With experience, you will be able to
choose an appropriate balance between the algorithm in this section and ad hoc methods
you develop on your own.

16.8 Some Sample Pattern Matching Applications

The best way to learn how to convert a pattern matching problem to the respective
pattern matching algorithms is by example. The following sections provide several exam-
ples of some small pattern matching problems and their solutions.

16.8.1 Converting Written Numbers to Integers

One interesting pattern matching problem is to convert written (English) numbers to
their integer equivalents. For example, take the string “one hundred ninety-two” and con-
vert it to the integer 192. Although written numbers represent a pattern quite a bit more
complex than the ones we’ve seen thus far, a little study will show that it is easy to decom-
pose such strings.

The first thing we will need to do is enumerate the English words we will need to pro-
cess written numbers. This includes the following words:

zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven twelve,
thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty,
thirty, forty, fifty sixty, seventy, eighty, ninety, hundred, and thousand.

With this set of words we can build all the values between zero and 65,535 (the values we
can represent in a 16 bit integer.

Next, we’ve got to decide how to put these words together to form all the values
between zero and 65,535. The first thing to note is that zero only occurs by itself, it is never
part of another number. So our first production takes the form:

Number → zero | NonZero

The next thing to note is that certain values may occur in pairs, denoting addition. For
example, eighty-five denotes the sum of eighty plus five. Also note that certain other pairs
denote multiplication. If you have a statement like “two hundred” or “fifteen hundred”
the “hundred” word says multiply the preceding value by 100. The multiplicative words,
“hundred” and “thousand” , are also additive. Any value following these terms is added
in to the total9; e.g., “one hundred five” means 1*100+5. By combining the appropriate
rules, we obtain the following grammar

NonZero → Thousands Maybe100s | Hundreds
Thousands → Under100 thousand

Maybe100s → Hundreds | ε
Hundreds → Under100 hundred After100 | Under100

After100 → Under100 | ε

9. We will ignore special multiplicative forms like “one thousand thousand” (one million) because these forms are
all too large to fit into 16 bits. .

Chapter 16

Page 936

Under100 → Tens Maybe1s| Teens | ones

Maybe1s → Ones | ε
ones → one | two | three | four | five | six | seven | eight | nine
teens → ten | eleven | twelve | thirteen | fourteen | fifteen | sixteen |

seventeen | eighteen | nineteen
tens → twenty | thirty | forty | fifty | sixty | seventy | eighty | ninety

The final step is to add semantic actions to actually convert the strings matched by
this grammar to integer values. The basic idea is to initialize an accumulator value to zero.
Whenever you encounter one of the strings that ones, teens, or tens matches, you add the
corresponding value to the accumulator. If you encounter the hundred or thousand
strings, you multiply the accumulator by the appropriate factor. The complete program to
do the conversion follows:

; Numbers.asm
;
; This program converts written English numbers in the range “zero”
; to “sixty five thousand five hundred thirty five” to the corresponding
; integer value.

.xlist
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

Value word 0 ;Store results here.
HundredsVal word 0
ThousandsVal word 0

Str0 byte “twenty one”,0
Str1 byte “nineteen hundred thirty-five”,0
Str2 byte “thirty three thousand two hundred nineteen”,0
Str3 byte “three”,0
Str4 byte “fourteen”,0
Str5 byte “fifty two”,0
Str6 byte “seven hundred”,0
Str7 byte “two thousand seven”,0
Str8 byte “four thousand ninety six”,0
Str9 byte “five hundred twelve”,0
Str10 byte “twenty three thousand two hundred ninety-five”,0
Str11 byte “seventy-five hundred”,0
Str12 byte “sixty-five thousand”,0
Str13 byte “one thousand”,0

; The following grammar is what we use to process the numbers.
; Semantic actions appear in the braces.
;
; Note: begin by initializing Value, HundredsVal, and ThousandsVal to zero.
;
; N -> separators zero
; | N4
;
; N4 -> do1000s maybe100s
; | do100s
;
; Maybe100s -> do100s
; | <empty string>
;
; do1000s -> Under100 “THOUSAND” separators
; {ThousandsVal := Value*1000}
;
; do100s -> Under100 “HUNDRED”

Control Structures

Page 937

; {HundredsVal := Value*100} After100
; | Under100
;
; After100 -> {Value := 0} Under100
; | {Value := 0} <empty string>
;
; Under100 -> {Value := 0} try20 try1s
; | {Value := 0} doTeens
; | {Value := 0} do1s
;
; try1s -> do1s | <empty string>
;
; try20 -> “TWENTY” {Value := Value + 20}
; | “THIRTY” {Value := Value + 30}
; | ...
; | “NINETY” {Value := Value + 90}
;
; doTeens -> “TEN” {Value := Value + 10}
; | “ELEVEN” {Value := Value + 11}
; | ...
; | “NINETEEN” {Value := Value + 19}
;
; do1s -> “ONE” {Value := Value + 1}
; | “TWO” {Value := Value + 2}
; | ...
; | “NINE” {Value := Value + 9}

separators pattern {anycset, delimiters, 0, delim2}
delim2 pattern {spancset, delimiters}
doSuccess pattern {succeed}
AtLast pattern {sl_match2, separators, AtEOS, AtEOS}
AtEOS pattern {EOS}

N pattern {sl_match2, separators, N2, N2}
N2 pattern {matchistr, zero, N3, AtLast}
zero byte “ZERO”,0

N3 pattern {sl_match2, N4, 0, AtLast}
N4 pattern {sl_match2, do1000s, do100s, Maybe100s}
Maybe100s pattern {sl_match2, do100s, AtLast, AtLast}

do1000s pattern {sl_match2, Under100, 0, do1000s2}
do1000s2 pattern {matchistr, str1000, 0, do1000s3}
do1000s3 pattern {sl_match2, separators, do1000s4, do1000s5}
do1000s4 pattern {EOS, 0, 0, do1000s5}
do1000s5 pattern {Get1000s}
str1000 byte “THOUSAND”,0

do100s pattern {sl_match2, do100s1, Under100, After100}
do100s1 pattern {sl_match2, Under100, 0, do100s2}
do100s2 pattern {matchistr, str100, 0, do100s3}
do100s3 pattern {sl_match2, separators, do100s4, do100s5}
do100s4 pattern {EOS, 0, 0, do100s5}
do100s5 pattern {Get100s}
str100 byte “HUNDRED”,0

After100 pattern {SetVal, 0, 0, After100a}
After100a pattern {sl_match2, Under100, doSuccess}

Under100 pattern {SetVal, 0, 0, Under100a}
Under100a pattern {sl_match2, try20, Under100b, Do1orE}
Under100b pattern {sl_match2, doTeens, do1s}

Do1orE pattern {sl_match2, do1s, doSuccess, 0}

NumPat macro lbl, next, Constant, string

Chapter 16

Page 938

local try, SkipSpcs, val, str, tryEOS
lbl pattern {sl_match2, try, next}
try pattern {matchistr, str, 0, SkipSpcs}
SkipSpcs pattern {sl_match2, separators, tryEOS, val}
tryEOS pattern {EOS, 0, 0, val}
val pattern {AddVal, Constant}
str byte string

byte 0
endm

NumPat doTeens, try11, 10, “TEN”
NumPat try11, try12, 11, “ELEVEN”
NumPat try12, try13, 12, “TWELVE”
NumPat try13, try14, 13, “THIRTEEN”
NumPat try14, try15, 14, “FOURTEEN”
NumPat try15, try16, 15, “FIFTEEN”
NumPat try16, try17, 16, “SIXTEEN”
NumPat try17, try18, 17, “SEVENTEEN”
NumPat try18, try19, 18, “EIGHTEEN”
NumPat try19, 0, 19, “NINETEEN”

NumPat do1s, try2, 1, “ONE”
NumPat try2, try3, 2, “TWO”
NumPat try3, try4, 3, “THREE”
NumPat try4, try5, 4, “FOUR”
NumPat try5, try6, 5, “FIVE”
NumPat try6, try7, 6, “SIX”
NumPat try7, try8, 7, “SEVEN”
NumPat try8, try9, 8, “EIGHT”
NumPat try9, 0, 9, “NINE”

NumPat try20, try30, 20, “TWENTY”
NumPat try30, try40, 30, “THIRTY”
NumPat try40, try50, 40, “FORTY”
NumPat try50, try60, 50, “FIFTY”
NumPat try60, try70, 60, “SIXTY”
NumPat try70, try80, 70, “SEVENTY”
NumPat try80, try90, 80, “EIGHTY”
NumPat try90, 0, 90, “NINETY”

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Semantic actions for our grammar:
;
;
;
; Get1000s- We’ve just processed the value one..nine, grab it from
; the value variable, multiply it by 1000, and store it
; into thousandsval.

Get1000s proc far
push ds
push dx
mov ax, dseg
mov ds, ax

mov ax, 1000
mul Value
mov ThousandsVal, ax
mov Value, 0

pop dx

Control Structures

Page 939

mov ax, di ;Required by sl_match.
pop ds
stc ;Always return success.
ret

Get1000s endp

; Get100s- We’ve just processed the value one..nine, grab it from
; the value variable, multiply it by 100, and store it
; into hundredsval.

Get100s proc far
push ds
push dx
mov ax, dseg
mov ds, ax

mov ax, 100
mul Value
mov HundredsVal, ax
mov Value, 0

pop dx
mov ax, di ;Required by sl_match.
pop ds
stc ;Always return success.
ret

Get100s endp

; SetVal- This routine sets Value to whatever is in si

SetVal proc far
push ds
mov ax, dseg
mov ds, ax
mov Value, si
mov ax, di
pop ds
stc
ret

SetVal endp

; AddVal- This routine sets adds whatever is in si to Value

AddVal proc far
push ds
mov ax, dseg
mov ds, ax
add Value, si
mov ax, di
pop ds
stc
ret

AddVal endp

; Succeed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

Succeed proc far
mov ax, di
stc
ret

Succeed endp

; This subroutine expects a pointer to a string containing the English
; version of an integer number. It converts this to an integer and

Chapter 16

Page 940

; prints the result.

ConvertNumber proc near
mov value, 0
mov HundredsVal, 0
mov ThousandsVal, 0

ldxi N
xor cx, cx
match
jnc NoMatch
mov al, “‘”
putc
puts
print
byte “‘ = “, 0
mov ax, ThousandsVal
add ax, HundredsVal
add ax, Value
putu
putcr
jmp Done

NoMatch: print
byte “Illegal number”,cr,lf,0

Done: ret
ConvertNumber endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ;Init memory manager.

; Union in a “-” to the delimiters set because numbers can have
; dashes in them.

lesi delimiters
mov al, ‘-’
addchar

; Some calls to test the ConvertNumber routine and the conversion process.

lesi Str0
call ConvertNumber
lesi Str1
call ConvertNumber
lesi Str2
call ConvertNumber
lesi Str3
call ConvertNumber
lesi Str4
call ConvertNumber
lesi Str5
call ConvertNumber
lesi Str6
call ConvertNumber
lesi Str7
call ConvertNumber
lesi Str8
call ConvertNumber
lesi Str9
call ConvertNumber
lesi Str10
call ConvertNumber
lesi Str11

Control Structures

Page 941

call ConvertNumber
lesi Str12
call ConvertNumber
lesi Str13
call ConvertNumber

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample output:

‘twenty one’ = 21
‘nineteen hundred thirty-five’ = 1935
‘thirty three thousand two hundred nineteen’ = 33219
‘three’ = 3
‘fourteen’ = 14
‘fifty two’ = 52
‘seven hundred’ = 700
‘two thousand seven’ = 2007
‘four thousand ninety six’ = 4096
‘five hundred twelve’ = 512
‘twenty three thousand two hundred ninety-five’ = 23295
‘seventy-five hundred’ = 7500
‘sixty-five thousand’ = 65000
‘one thousand’ = 1000

16.8.2 Processing Dates

Another useful program that converts English text to numeric form is a date proces-
sor. A date processor takes strings like “Jan 23, 1997” and converts it to three integer val-
ues representing the month, day, and year. Of course, while we’re at it, it’s easy enough to
modify the grammar for date strings to allow the input string to take any of the following
common date formats:

Jan 23, 1997
January 23, 1997
23 Jan, 1997
23 January, 1997
1/23/97
1-23-97
1/23/1997
1-23-1997

In each of these cases the date processing routines should store one into the variable
month, 23 into the variable day, and 1997 into the year variable (we will assume all years
are in the range 1900-1999 if the string supplies only two digits for the year). Of course, we
could also allow dates like “January twenty-third, nineteen hundred and ninety seven” by
using an number processing parser similar to the one presented in the previous section.
However, that is an exercise left to the reader.

The grammar to process dates is

Date → EngMon Integer Integer |
Integer EngMon Integer |

Chapter 16

Page 942

Integer / Integer / Integer |
Integer - Integer - Integer

EngMon → JAN | JANUARY | FEB | FEBRUARY | … | DEC | DECEMBER
Integer → digit Integer | digit
digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We will use some semantic rules to place some restrictions on these strings. For exam-
ple, the grammar above allows integers of any size; however, months must fall in the
range 1-12 and days must fall in the range 1-28, 1-29, 1-30, or 1-31 depending on the year
and month. Years must fall in the range 0-99 or 1900-1999.

Here is the 80x86 code for this grammar:

; datepat.asm
;
; This program converts dates of various formats to a three integer
; component value- month, day, and year.

.xlist

.286
include stdlib.a
includelib stdlib.lib
matchfuncs
.list
.lall

dseg segment para public ‘data’

; The following three variables hold the result of the conversion.

month word 0
day word 0
year word 0

; StrPtr is a double word value that points at the string under test.
; The output routines use this variable. It is declared as two word
; values so it is easier to store es:di into it.

strptr word 0,0

; Value is a generic variable the ConvertInt routine uses

value word 0

; Number of valid days in each month (Feb is handled specially)

DaysInMonth byte 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

; Some sample strings to test the date conversion routines.

Str0 byte “Feb 4, 1956”,0
Str1 byte “July 20, 1960”,0
Str2 byte “Jul 8, 1964”,0
Str3 byte “1/1/97”,0
Str4 byte “1-1-1997”,0
Str5 byte “12-25-74”,0
Str6 byte “3/28/1981”,0
Str7 byte “January 1, 1999”,0
Str8 byte “Feb 29, 1996”,0
Str9 byte “30 June, 1990”,0
Str10 byte “August 7, 1945”,0
Str11 byte “30 September, 1992”,0
Str12 byte “Feb 29, 1990”,0
Str13 byte “29 Feb, 1992”,0

Control Structures

Page 943

; The following grammar is what we use to process the dates
;
; Date -> EngMon Integer Integer
; | Integer EngMon Integer
; | Integer “/” Integer “/” Integer
; | Integer “-” Integer “-” Integer
;
; EngMon-> Jan | January | Feb | February | ... | Dec | December
; Integer-> digit integer | digit
; digit-> 0 | 1 | ... | 9
;
; Some semantic rules this code has to check:
;
; If the year is in the range 0-99, this code has to add 1900 to it.
; If the year is not in the range 0-99 or 1900-1999 then return an error.
; The month must be in the range 1-12, else return an error.
; The day must be between one and 28, 29, 30, or 31. The exact maximum
; day depends on the month.

separators pattern {spancset, delimiters}

; DatePat processes dates of the form “MonInEnglish Day Year”

DatePat pattern {sl_match2, EngMon, DatePat2, DayYear}
DayYear pattern {sl_match2, DayInteger, 0, YearPat}
YearPat pattern {sl_match2, YearInteger}

; DatePat2 processes dates of the form “Day MonInEng Year”

DatePat2 pattern {sl_match2, DayInteger, DatePat3, MonthYear}
MonthYear pattern {sl_match2, EngMon, 0, YearPat}

; DatePat3 processes dates of the form “mm-dd-yy”

DatePat3 pattern {sl_match2, MonInteger, DatePat4, DatePat3a}
DatePat3a pattern {sl_match2, separators, DatePat3b, DatePat3b}
DatePat3b pattern {matchchar, ‘-’, 0, DatePat3c}
DatePat3c pattern {sl_match2, DayInteger, 0, DatePat3d}
DatePat3d pattern {sl_match2, separators, DatePat3e, DatePat3e}
DatePat3e pattern {matchchar, ‘-’, 0, DatePat3f}
DatePat3f pattern {sl_match2, YearInteger}

; DatePat4 processes dates of the form “mm/dd/yy”

DatePat4 pattern {sl_match2, MonInteger, 0, DatePat4a}
DatePat4a pattern {sl_match2, separators, DatePat4b, DatePat4b}
DatePat4b pattern {matchchar, ‘/’, 0, DatePat4c}
DatePat4c pattern {sl_match2, DayInteger, 0, DatePat4d}
DatePat4d pattern {sl_match2, separators, DatePat4e, DatePat4e}
DatePat4e pattern {matchchar, ‘/’, 0, DatePat4f}
DatePat4f pattern {sl_match2, YearInteger}

; DayInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Day variable.

DayInteger pattern {sl_match2, Integer, 0, SetDayPat}
SetDayPat pattern {SetDay}

; MonInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Month variable.

MonInteger pattern {sl_match2, Integer, 0, SetMonPat}
SetMonPat pattern {SetMon}

Chapter 16

Page 944

; YearInteger matches an decimal string, converts it to an integer, and
; stores the result away in the Year variable.

YearInteger pattern {sl_match2, Integer, 0, SetYearPat}
SetYearPat pattern {SetYear}

; Integer skips any leading delimiter characters and then matches a
; decimal string. The Integer0 pattern matches exactly the decimal
; characters; the code does a patgrab on Integer0 when converting
; this string to an integer.

Integer pattern {sl_match2, separators, 0, Integer0}
Integer0 pattern {sl_match2, number, 0, Convert2Int}
number pattern {anycset, digits, 0, number2}
number2 pattern {spancset, digits}
Convert2Int pattern {ConvertInt}

; A macro to make it easy to declare each of the 24 English month
; patterns (24 because we allow the full month name and an
; abbreviation).

MoPat macro name, next, str, str2, value
local SetMo, string, full, short, string2, doMon

name pattern {sl_match2, short, next}
short pattern {matchistr, string2, full, SetMo}
full pattern {matchistr, string, 0, SetMo}

string byte str
byte 0

string2 byte str2
byte 0

SetMo pattern {MonthVal, value}
endm

; EngMon is a chain of patterns that match one of the strings
; JAN, JANUARY, FEB, FEBRUARY, etc. The last parameter to the
; MoPat macro is the month number.

EngMon pattern {sl_match2, separators, jan, jan}
MoPat jan, feb, “JAN”, “JANUARY”, 1
MoPat feb, mar, “FEB”, “FEBRUARY”, 2
MoPat mar, apr, “MAR”, “MARCH”, 3
MoPat apr, may, “APR”, “APRIL”, 4
MoPat may, jun, “MAY”, “MAY”, 5
MoPat jun, jul, “JUN”, “JUNE”, 6
MoPat jul, aug, “JUL”, “JULY”, 7
MoPat aug, sep, “AUG”, “AUGUST”, 8
MoPat sep, oct, “SEP”, “SEPTEMBER”, 9
MoPat oct, nov, “OCT”, “OCTOBER”, 10
MoPat nov, decem, “NOV”, “NOVEMBER”, 11
MoPat decem, 0, “DEC”, “DECEMBER”, 12

; We use the “digits” and “delimiters” sets from the standard library.

include stdsets.a

dseg ends

Control Structures

Page 945

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; ConvertInt- Matches a sequence of digits and converts them to an integer.

ConvertInt proc far
push ds
push es
push di
mov ax, dseg
mov ds, ax

lesi Integer0 ;Integer0 contains the decimal
patgrab ; string we matched, grab that
atou ; string and convert it to an
mov Value, ax ; integer and save the result.
free ;Free mem allocated by patgrab.

pop di
mov ax, di ;Required by sl_match.
pop es
pop ds
stc ;Always succeed.
ret

ConvertInt endp

; SetDay, SetMon, and SetYear simply copy value to the appropriate
; variable.

SetDay proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov day, ax
mov ax, di
pop ds
stc
ret

SetDay endp

SetMon proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov Month, ax
mov ax, di
pop ds
stc
ret

SetMon endp

SetYear proc far
push ds
mov ax, dseg
mov ds, ax
mov ax, value
mov Year, ax
mov ax, di
pop ds
stc
ret

Chapter 16

Page 946

SetYear endp

; MonthVal is a pattern used by the English month patterns.
; This pattern function simply copies the matchparm field to
; the month variable (the matchparm field is passed in si).

MonthVal proc far
push ds
mov ax, dseg
mov ds, ax
mov Month, si
mov ax, di
pop ds
stc
ret

MonthVal endp

; ChkDate- Checks a date to see if it is valid. Returns with the
; carry flag set if it is, clear if not.

ChkDate proc far
push ds
push ax
push bx

mov ax, dseg
mov ds, ax

; If the year is in the range 0-99, add 1900 to it.
; Then check to see if it’s in the range 1900-1999.

cmp Year, 100
ja Notb100
add Year, 1900

Notb100: cmp Year, 2000
jae BadDate
cmp Year, 1900
jb BadDate

; Okay, make sure the month is in the range 1-12

cmp Month, 12
ja BadDate
cmp Month, 1
jb BadDate

; See if the number of days is correct for all months except Feb:

mov bx, Month
mov ax, Day ;Make sure Day <> 0.
test ax, ax
je BadDate
cmp ah, 0 ;Make sure Day < 256.
jne BadDate

cmp bx, 2 ;Handle Feb elsewhere.
je DoFeb
cmp al, DaysInMonth[bx-1] ;Check against max val.
ja BadDate
jmp GoodDate

; Kludge to handle leap years. Note that 1900 is *not* a leap year.

DoFeb: cmp ax, 29 ;Only applies if day is
jb GoodDate ; equal to 29.
ja BadDate ;Error if Day > 29.
mov bx, Year ;1900 is not a leap year

Control Structures

Page 947

cmp bx, 1900 ; so handle that here.
je BadDate
and bx, 11b ;Else, Year mod 4 is a
jne BadDate ; leap year.

GoodDate: pop bx
pop ax
pop ds
stc
ret

BadDate: pop bx
pop ax
pop ds
clc
ret

ChkDate endp

; ConvertDate- ES:DI contains a pointer to a string containing a valid
; date. This routine converts that date to the three
; integer values found in the Month, Day, and Year
; variables. Then it prints them to verify the pattern
; matching routine.

ConvertDate proc near

ldxi DatePat
xor cx, cx
match
jnc NoMatch

mov strptr, di ;Save string pointer for
mov strptr+2, es ; use by printf

call ChkDate ;Validate the date.
jnc NoMatch

printf
byte “%-20^s = Month: %2d Day: %2d Year: %4d\n”,0
dword strptr, Month, Day, Year
jmp Done

NoMatch: printf
byte “Illegal date (‘%^s’)”,cr,lf,0
dword strptr

Done: ret
ConvertDate endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

meminit ;Init memory manager.

; Call ConvertDate to test several different date strings.

lesi Str0
call ConvertDate
lesi Str1
call ConvertDate
lesi Str2
call ConvertDate
lesi Str3
call ConvertDate

Chapter 16

Page 948

lesi Str4
call ConvertDate
lesi Str5
call ConvertDate
lesi Str6
call ConvertDate
lesi Str7
call ConvertDate
lesi Str8
call ConvertDate
lesi Str9
call ConvertDate
lesi Str10
call ConvertDate
lesi Str11
call ConvertDate
lesi Str12
call ConvertDate
lesi Str13
call ConvertDate

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample Output:

Feb 4, 1956 = Month: 2 Day: 4 Year: 1956
July 20, 1960 = Month: 7 Day: 20 Year: 1960
Jul 8, 1964 = Month: 7 Day: 8 Year: 1964
1/1/97 = Month: 1 Day: 1 Year: 1997
1-1-1997 = Month: 1 Day: 1 Year: 1997
12-25-74 = Month: 12 Day: 25 Year: 1974
3/28/1981 = Month: 3 Day: 28 Year: 1981
January 1, 1999 = Month: 1 Day: 1 Year: 1999
Feb 29, 1996 = Month: 2 Day: 29 Year: 1996
30 June, 1990 = Month: 6 Day: 30 Year: 1990
August 7, 1945 = Month: 8 Day: 7 Year: 1945
30 September, 1992 = Month: 9 Day: 30 Year: 1992
Illegal date (‘Feb 29, 1990’)
29 Feb, 1992 = Month: 2 Day: 29 Year: 1992

16.8.3 Evaluating Arithmetic Expressions

Many programs (e.g., spreadsheets, interpreters, compilers, and assemblers) need to
process arithmetic expressions. The following example provides a simple calculator that
operates on floating point numbers. This particular program uses the 80x87 FPU chip,
although it would not be too difficult to modify it so that it uses the floating point routines
in the UCR Standard Library.

; ARITH2.ASM
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines. Note that this

Control Structures

Page 949

; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; Some sample strings containing expressions to try out:

Str1 byte “5+2*(3-1)”,0
Str2 byte “(5+2)*(7-10)”,0
Str3 byte “5”,0
Str4 byte “(6+2)/(5+1)-7e5*2/1.3e2+1.5”,0
Str5 byte “2.5*(2-(3+1)/4+1)”,0
Str6 byte “6+(-5*2)”,0
Str7 byte “6*-1”,0
Str8 byte “1.2e5/2.1e5”,0
Str9 byte “0.9999999999999999+1e-15”,0
str10 byte “2.1-1.1”,0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; E -> FE’ {print result}
; E’ -> +F {fadd} E’ | -F {fsub} E’ | <empty string>
; F -> TF’
; F -> *T {fmul} F’ | /T {fdiv} F’ | <empty string>
; T -> -T {fchs} | S
; S -> <constant> {fld constant} | (E)
;
;
;
; UCR Standard Library Pattern which handles the grammar above:

; An expression consists of an “E” item followed by the end of the string:

Expression pattern {sl_Match2,E,,EndOfString}
EndOfString pattern {EOS}

; An “E” item consists of an “F” item optionally followed by “+” or “-”
; and another “E” item:

E pattern {sl_Match2, F,,Eprime}
Eprime pattern {MatchChar, ‘+’, Eprime2, epf}
epf pattern {sl_Match2, F,,epPlus}
epPlus pattern {DoFadd,,,Eprime}

Eprime2 pattern {MatchChar, ‘-’, Succeed, emf}
emf pattern {sl_Match2, F,,epMinus}
epMinus pattern {DoFsub,,,Eprime}

; An “F” item consists of a “T” item optionally followed by “*” or “/”
; followed by another “T” item:

F pattern {sl_Match2, T,,Fprime}
Fprime pattern {MatchChar, ‘*’, Fprime2, fmf}
fmf pattern {sl_Match2, T, 0, pMul}
pMul pattern {DoFmul,,,Fprime}

Chapter 16

Page 950

Fprime2 pattern {MatchChar, ‘/’, Succeed, fdf}
fdf pattern {sl_Match2, T, 0, pDiv}
pDiv pattern {DoFdiv, 0, 0,Fprime}

; T item consists of an “S” item or a “-” followed by another “T” item:

T pattern {MatchChar, ‘-’, S, TT}
TT pattern {sl_Match2, T, 0,tpn}
tpn pattern {DoFchs}

; An “S” item is either a floating point constant or “(“ followed by
; and “E” item followed by “)”.
;
; The regular expression for a floating point constant is
;
; [0-9]+ (“.” [0-9]* |) (((e|E) (+|-|) [0-9]+) |)
;
; Note: the pattern “Const” matches exactly the characters specified
; by the above regular expression. It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {sl_match2, ConstStr, 0, FLDConst}
ConstStr pattern {sl_match2, DoDigits, 0, Const2}
Const2 pattern {matchchar, ‘.’, Const4, Const3}
Const3 pattern {sl_match2, DoDigits, Const4, Const4}
Const4 pattern {matchchar, ‘e’, const5, const6}
Const5 pattern {matchchar, ‘E’, Succeed, const6}
Const6 pattern {matchchar, ‘+’, const7, const8}
Const7 pattern {matchchar, ‘-’, const8, const8}
Const8 pattern {sl_match2, DoDigits}

FldConst pattern {PushValue}

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

S pattern {MatchChar, ‘(‘, Const, IntE}
IntE pattern {sl_Match2, E, 0, CloseParen}
CloseParen pattern {MatchChar, ‘)’}

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

Control Structures

Page 951

; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; DoFsub - Subtracts the two values on the top of the FPU stack.

DoFsub proc far
fsubp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFsub endp

; DoFmul- Multiplies the two values on the FPU stack.

DoFmul proc far
fmulp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFmul endp

; DoFdiv- Divides the two values on the FPU stack.

DoFDiv proc far
fdivp st(1), st
mov ax, di ;Required by sl_Match
stc
ret

DoFDiv endp

; DoFchs- Negates the value on the top of the FPU stack.

DoFchs proc far
fchs
mov ax, di ;Required by sl_Match
stc
ret

DoFchs endp

; PushValue- We’ve just matched a string that corresponds to a
; floating point constant. Convert it to a floating
; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds

Chapter 16

Page 952

stc
ret

PushValue endp

; DoExp- This routine expects a pointer to a string containing
; an arithmetic expression in ES:DI. It evaluates the
; given expression and prints the result.

DoExp proc near
finit ;Be sure to do this!
fwait

puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte “ is an illegal expression”,cr,lf,0
ret

GoodVal: fstp CurValue
printff
byte “ = %12.6ge\n”,0
dword CurValue
ret

DoExp endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi Str1
call DoExp
lesi Str2
call DoExp
lesi Str3
call DoExp
lesi Str4
call DoExp
lesi Str5
call DoExp
lesi Str6
call DoExp
lesi Str7
call DoExp
lesi Str8
call DoExp
lesi Str9
call DoExp
lesi Str10
call DoExp

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)

Control Structures

Page 953

zzzzzzseg ends
end Main

Sample Output:

5+2*(3-1) = 9.000E+0000
(5+2)*(7-10) = -2.100E+0001
5 = 5.000E+0000
(6+2)/(5+1)-7e5*2/1.3e2+1.5 = -1.077E+0004
2.5*(2-(3+1)/4+1) = 5.000E+0000
6+(-5*2) = -4.000E+0000
6*-1 = -6.000E+0000
1.2e5/2.1e5 = 5.714E-0001
0.9999999999999999+1e-15 = 1.000E+0000
2.1-1.1 = 1.000E+0000

16.8.4 A Tiny Assembler

Although the UCR Standard Library pattern matching routines would probably not
be appropriate for writing a full lexical analyzer or compiler, they are useful for writing
small compilers/assemblers or programs where speed of compilation/assembly is of little
concern. One good example is the simple nonsymbolic assembler appearing in the
SIM88610 simulator for an earlier version of the x86 processors11. This “mini-assembler”
accepts an x86 assembly language statement and immediately assembles it into memory.
This allows SIM886 users to create simple assembly language programs within the
SIM886 monitor/debugger12. Using the Standard Library pattern matching routines
makes it very easy to implement such an assembler.

The grammar for this miniassembler is

Stmt → Grp1 reg “,” operand |
Grp2 reg “,” reg “,” constant |
Grp3 operand |
goto operand |
halt

Grp1 → load | store | add | sub
Grp2 → ifeq | iflt | ifgt
Grp3 → get | put

reg → ax | bx | cx | dx

operand → reg | constant | [bx] | constant [bx]

constant → hexdigit constant | hexdigit

hexdigit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b |
c | d | e | f

There are some minor semantic details that the program handles (such as disallowing
stores into immediate operands). The assembly code for the miniassembler follows:

; ASM.ASM
;

.xlist
include stdlib.a
matchfuncs
includelib stdlib.lib
.list

10. SIM886 is an earlier version of SIMx86. It is also available on the Companion CD-ROM.
11. The current x86 system is written with Borland’s Delphi, using a pattern matching library written for Pascal
that is very similar to the Standard Library’s pattern matching code.
12. See the lab manual for more details on SIM886.

Chapter 16

Page 954

dseg segment para public ‘data’

; Some sample statements to assemble:

Str1 byte “load ax, 0”,0
Str2 byte “load ax, bx”,0
Str3 byte “load ax, ax”,0
Str4 byte “add ax, 15”,0
Str5 byte “sub ax, [bx]”,0
Str6 byte “store bx, [1000]”,0
Str7 byte “load bx, 2000[bx]”,0
Str8 byte “goto 3000”,0
Str9 byte “iflt ax, bx, 100”,0
Str10 byte “halt”,0
Str11 byte “This is illegal”,0
Str12 byte “load ax, store”,0
Str13 byte “store ax, 1000”,0
Str14 byte “ifeq ax, 0, 0”,0

; Variables used by the assembler.

AsmConst word 0
AsmOpcode byte 0
AsmOprnd1 byte 0
AsmOprnd2 byte 0

include stdsets.a ;Bring in the standard char sets.

; Patterns for the assembler:

; Pattern is (
; (load|store|add|sub) reg “,” operand |
; (ifeq|iflt|ifgt) reg1 “,” reg2 “,” const |
; (get|put) operand |
; goto operand |
; halt
;)
;
; With a few semantic additions (e.g., cannot store to a const).

InstrPat pattern {spancset, WhiteSpace,Grp1,Grp1}

Grp1 pattern {sl_Match2,Grp1Strs, Grp2 ,Grp1Oprnds}
Grp1Strs pattern {TryLoad,,Grp1Store}
Grp1Store pattern {TryStore,,Grp1Add}
Grp1Add pattern {TryAdd,,Grp1Sub}
Grp1Sub pattern {TrySub}

; Patterns for the LOAD, STORE, ADD, and SUB instructions.

LoadPat pattern {MatchStr,LoadInstr2}
LoadInstr2 byte “LOAD”,0

StorePat pattern {MatchStr,StoreInstr2}
StoreInstr2 byte “STORE”,0

AddPat pattern {MatchStr,AddInstr2}
AddInstr2 byte “ADD”,0

SubPat pattern {MatchStr,SubInstr2}
SubInstr2 byte “SUB”,0

; Patterns for the group one (LOAD/STORE/ADD/SUB) instruction operands:

Grp1Oprnds pattern {spancset,WhiteSpace,Grp1reg,Grp1reg}
Grp1Reg pattern {MatchReg,AsmOprnd1,,Grp1ws2}
Grp1ws2 pattern {spancset,WhiteSpace,Grp1Comma,Grp1Comma}
Grp1Comma pattern {MatchChar,’,’,0,Grp1ws3}
Grp1ws3 pattern {spancset,WhiteSpace,Grp1Op2,Grp1Op2}

Control Structures

Page 955

Grp1Op2 pattern {MatchGen,,,EndOfLine}
EndOfLine pattern {spancset,WhiteSpace,NullChar,NullChar}
NullChar pattern {EOS}

Grp1Op2Reg pattern {MatchReg,AsmOprnd2}

; Patterns for the group two instructions (IFEQ, IFLT, IFGT):

Grp2 pattern {sl_Match2,Grp2Strs, Grp3 ,Grp2Oprnds}
Grp2Strs pattern {TryIFEQ,,Grp2IFLT}
Grp2IFLT pattern {TryIFLT,,Grp2IFGT}
Grp2IFGT pattern {TryIFGT}

Grp2Oprnds pattern {spancset,WhiteSpace,Grp2reg,Grp2reg}
Grp2Reg pattern {MatchReg,AsmOprnd1,,Grp2ws2}
Grp2ws2 pattern {spancset,WhiteSpace,Grp2Comma,Grp2Comma}
Grp2Comma pattern {MatchChar,’,’,0,Grp2ws3}
Grp2ws3 pattern {spancset,WhiteSpace,Grp2Reg2,Grp2Reg2}
Grp2Reg2 pattern {MatchReg,AsmOprnd2,,Grp2ws4}
Grp2ws4 pattern {spancset,WhiteSpace,Grp2Comma2,Grp2Comma2}
Grp2Comma2 pattern {MatchChar,’,’,0,Grp2ws5}
Grp2ws5 pattern {spancset,WhiteSpace,Grp2Op3,Grp2Op3}
Grp2Op3 pattern {ConstPat,,,EndOfLine}

; Patterns for the IFEQ, IFLT, and IFGT instructions.

IFEQPat pattern {MatchStr,IFEQInstr2}
IFEQInstr2 byte “IFEQ”,0

IFLTPat pattern {MatchStr,IFLTInstr2}
IFLTInstr2 byte “IFLT”,0

IFGTPat pattern {MatchStr,IFGTInstr2}
IFGTInstr2 byte “IFGT”,0

; Grp3 Patterns:

Grp3 pattern {sl_Match2,Grp3Strs, Grp4 ,Grp3Oprnds}
Grp3Strs pattern {TryGet,,Grp3Put}
Grp3Put pattern {TryPut,,Grp3GOTO}
Grp3Goto pattern {TryGOTO}

; Patterns for the GET and PUT instructions.

GetPat pattern {MatchStr,GetInstr2}
GetInstr2 byte “GET”,0

PutPat pattern {MatchStr,PutInstr2}
PutInstr2 byte “PUT”,0

GOTOPat pattern {MatchStr,GOTOInstr2}
GOTOInstr2 byte “GOTO”,0

; Patterns for the group three (PUT/GET/GOTO) instruction operands:

Grp3Oprnds pattern {spancset,WhiteSpace,Grp3Op,Grp3Op}
Grp3Op pattern {MatchGen,,,EndOfLine}

; Patterns for the group four instruction (HALT).

Grp4 pattern {TryHalt,,,EndOfLine}

HaltPat pattern {MatchStr,HaltInstr2}
HaltInstr2 byte “HALT”,0

; Patterns to match the four non-register addressing modes:

BXIndrctPat pattern {MatchStr,BXIndrctStr}
BXIndrctStr byte “[BX]”,0

Chapter 16

Page 956

BXIndexedPat pattern {ConstPat,,,BXIndrctPat}

DirectPat pattern {MatchChar,’[‘,,DP2}
DP2 pattern {ConstPat,,,DP3}
DP3 pattern {MatchChar,’]’}

ImmediatePat pattern {ConstPat}

; Pattern to match a hex constant:

HexConstPat pattern {Spancset, xdigits}

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; The store macro tweaks the DS register and stores into the
; specified variable in DSEG.

store macro Where, What
push ds
push ax
mov ax, seg Where
mov ds, ax
mov Where, What
pop ax
pop ds
endm

; Pattern matching routines for the assembler.
; Each mnemonic has its own corresponding matching function that
; attempts to match the mnemonic. If it does, it initializes the
; AsmOpcode variable with the base opcode of the instruction.

; Compare against the “LOAD” string.

TryLoad proc far
push dx
push si
ldxi LoadPat
match2
jnc NoTLMatch

store AsmOpcode, 0 ;Initialize base opcode.

NoTLMatch: pop si
pop dx
ret

TryLoad endp

; Compare against the “STORE” string.

TryStore proc far
push dx
push si
ldxi StorePat
match2
jnc NoTSMatch
store AsmOpcode, 1 ;Initialize base opcode.

NoTSMatch: pop si
pop dx
ret

TryStore endp

; Compare against the “ADD” string.

TryAdd proc far
push dx

Control Structures

Page 957

push si
ldxi AddPat
match2
jnc NoTAMatch
store AsmOpcode, 2 ;Initialize ADD opcode.

NoTAMatch: pop si
pop dx
ret

TryAdd endp

; Compare against the “SUB” string.

TrySub proc far
push dx
push si
ldxi SubPat
match2
jnc NoTMMatch
store AsmOpcode, 3 ;Initialize SUB opcode.

NoTMMatch: pop si
pop dx
ret

TrySub endp

; Compare against the “IFEQ” string.

TryIFEQ proc far
push dx
push si
ldxi IFEQPat
match2
jnc NoIEMatch
store AsmOpcode, 4 ;Initialize IFEQ opcode.

NoIEMatch: pop si
pop dx
ret

TryIFEQ endp

; Compare against the “IFLT” string.

TryIFLT proc far
push dx
push si
ldxi IFLTPat
match2
jnc NoILMatch
store AsmOpcode, 5 ;Initialize IFLT opcode.

NoILMatch: pop si
pop dx
ret

TryIFLT endp

; Compare against the “IFGT” string.

TryIFGT proc far
push dx
push si
ldxi IFGTPat
match2
jnc NoIGMatch
store AsmOpcode, 6 ;Initialize IFGT opcode.

NoIGMatch: pop si
pop dx
ret

TryIFGT endp

Chapter 16

Page 958

; Compare against the “GET” string.

TryGET proc far
push dx
push si
ldxi GetPat
match2
jnc NoGMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 2 ;GET’s Special opcode.

NoGMatch: pop si
pop dx
ret

TryGET endp

; Compare against the “PUT” string.

TryPut proc far
push dx
push si
ldxi PutPat
match2
jnc NoPMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 3 ;PUT’s Special opcode.

NoPMatch: pop si
pop dx
ret

TryPUT endp

; Compare against the “GOTO” string.

TryGOTO proc far
push dx
push si
ldxi GOTOPat
match2
jnc NoGMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 1 ;PUT’s Special opcode.

NoGMatch: pop si
pop dx
ret

TryGOTO endp

; Compare against the “HALT” string.

TryHalt proc far
push dx
push si
ldxi HaltPat
match2
jnc NoHMatch
store AsmOpcode, 7 ;Initialize Special opcode.
store AsmOprnd1, 0 ;Halt’s special opcode.
store AsmOprnd2, 0

NoHMatch: pop si
pop dx
ret

TryHALT endp

; MatchReg checks to see if we’ve got a valid register value. On entry,
; DS:SI points at the location to store the byte opcode (0, 1, 2, or 3) for
; a reasonable register (AX, BX, CX, or DX); ES:DI points at the string
; containing (hopefully) the register operand, and CX points at the last

Control Structures

Page 959

; location plus one we can check in the string.
;
; On return, Carry=1 for success, 0 for failure. ES:AX must point beyond
; the characters which make up the register if we have a match.

MatchReg proc far

; ES:DI Points at two characters which should be AX/BX/CX/DX. Anything
; else is an error.

cmp byte ptr es:1[di], ‘X’ ;Everyone needs this
jne BadReg
xor ax, ax ;886 “AX” reg code.
cmp byte ptr es:[di], ‘A’ ;AX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘B’ ;BX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘C’ ;CX?
je GoodReg
inc ax
cmp byte ptr es:[di], ‘D’ ;DX?
je GoodReg

BadReg: clc
mov ax, di
ret

GoodReg:
mov ds:[si], al ;Save register opcode.
lea ax, 2[di] ;Skip past register.
cmp ax, cx ;Be sure we didn’t go
ja BadReg ; too far.
stc
ret

MatchReg endp

; MatchGen- Matches a general addressing mode. Stuffs the appropriate
; addressing mode code into AsmOprnd2. If a 16-bit constant
; is required by this addressing mode, this code shoves that
; into the AsmConst variable.

MatchGen proc far
push dx
push si

; Try a register operand.

ldxi Grp1Op2Reg
match2
jc MGDone

; Try “[bx]”.

ldxi BXIndrctPat
match2
jnc TryBXIndexed
store AsmOprnd2, 4
jmp MGDone

; Look for an operand of the form “xxxx[bx]”.

TryBXIndexed:
ldxi BXIndexedPat
match2
jnc TryDirect
store AsmOprnd2, 5
jmp MGDone

; Try a direct address operand “[xxxx]”.

Chapter 16

Page 960

TryDirect:
ldxi DirectPat
match2
jnc TryImmediate
store AsmOprnd2, 6
jmp MGDone

; Look for an immediate operand “xxxx”.

TryImmediate:
ldxi ImmediatePat
match2
jnc MGDone
store AsmOprnd2, 7

MGDone:
pop si
pop dx
ret

MatchGen endp

; ConstPat- Matches a 16-bit hex constant. If it matches, it converts
; the string to an integer and stores it into AsmConst.

ConstPat proc far
push dx
push si
ldxi HexConstPat
match2
jnc CPDone

push ds
push ax
mov ax, seg AsmConst
mov ds, ax
atoh
mov AsmConst, ax
pop ax
pop ds
stc

CPDone: pop si
pop dx
ret

ConstPat endp

; Assemble- This code assembles the instruction that ES:DI points
; at and displays the hex opcode(s) for that instruction.

Assemble proc near

; Print out the instruction we’re about to assemble.

print
byte “Assembling: “,0
strupr
puts
putcr

; Assemble the instruction:

ldxi InstrPat
xor cx, cx
match
jnc SyntaxError

; Quick check for illegal instructions:

cmp AsmOpcode, 7 ;Special/Get instr.

Control Structures

Page 961

jne TryStoreInstr
cmp AsmOprnd1, 2 ;GET opcode
je SeeIfImm
cmp AsmOprnd1, 1 ;Goto opcode
je IsGOTO

TryStoreInstr: cmp AsmOpcode, 1 ;Store Instruction
jne InstrOkay

SeeIfImm: cmp AsmOprnd2, 7 ;Immediate Adrs Mode
jne InstrOkay
print
db “Syntax error: store/get immediate not allowed.”
db “ Try Again”,cr,lf,0
jmp ASMDone

IsGOTO: cmp AsmOprnd2, 7 ;Immediate mode for GOTO
je InstrOkay
print
db “Syntax error: GOTO only allows immediate “
byte “mode.”,cr,lf
db 0
jmp ASMDone

; Merge the opcode and operand fields together in the instruction byte,
; then output the opcode byte.

InstrOkay: mov al, AsmOpcode
shl al, 1
shl al, 1
or al, AsmOprnd1
shl al, 1
shl al, 1
shl al, 1
or al, AsmOprnd2
puth
cmp AsmOpcode, 4 ;IFEQ instruction
jb SimpleInstr
cmp AsmOpcode, 6 ;IFGT instruction
jbe PutConstant

SimpleInstr: cmp AsmOprnd2, 5
jb ASMDone

; If this instruction has a 16 bit operand, output it here.

PutConstant: mov al, ‘ ‘
putc
mov ax, ASMConst
puth
mov al, ‘ ‘
putc
xchg al, ah
puth
jmp ASMDone

SyntaxError: print
db “Syntax error in instruction.”
db cr,lf,0

ASMDone: putcr
ret

Assemble endp

; Main program that tests the assembler.

Main proc
mov ax, seg dseg ;Set up the segment registers
mov ds, ax
mov es, ax

Chapter 16

Page 962

meminit

lesi Str1
call Assemble
lesi Str2
call Assemble
lesi Str3
call Assemble
lesi Str4
call Assemble
lesi Str5
call Assemble
lesi Str6
call Assemble
lesi Str7
call Assemble
lesi Str8
call Assemble
lesi Str9
call Assemble
lesi Str10
call Assemble
lesi Str11
call Assemble
lesi Str12
call Assemble
lesi Str13
call Assemble
lesi Str14
call Assemble

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample Output:

Assembling: LOAD AX, 0
07 00 00
Assembling: LOAD AX, BX
01
Assembling: LOAD AX, AX
00
Assembling: ADD AX, 15
47 15 00
Assembling: SUB AX, [BX]
64
Assembling: STORE BX, [1000]
2E 00 10
Assembling: LOAD BX, 2000[BX]
0D 00 20
Assembling: GOTO 3000
EF 00 30
Assembling: IFLT AX, BX, 100
A1 00 01
Assembling: HALT
E0
Assembling: THIS IS ILLEGAL
Syntax error in instruction.

Control Structures

Page 963

Assembling: LOAD AX, STORE
Syntax error in instruction.

Assembling: STORE AX, 1000
Syntax error: store/get immediate not allowed. Try Again

Assembling: IFEQ AX, 0, 0
Syntax error in instruction.

16.8.5 The “MADVENTURE” Game

Computer games are a perfect example of programs that often use pattern matching.
One class of computer games in general, the adventure game13, is a perfect example of
games that use pattern matching. An adventure style game excepts English-like com-
mands from the user, parses these commands, and acts upon them. In this section we will
develop an adventure game shell. That is, it will be a reasonably functional adventure style
game, capable of accepting and processing user commands. All you need do is supply a
story line and a few additional details to develop a fully functioning adventure class
game.

An adventure game usually consists of some sort of maze through which the player
moves. The program processes commands like go north or go right to move the player
through the maze. Each move can deposit the player in a new room of the game. Gener-
ally, each room or area contains objects the player can interact with. This could be reward
objects such as items of value or it could be an antagonistic object like a monster or enemy
player.

Usually, an adventure game is a puzzle of some sort. The player finds clues and picks
up useful object in one part of the maze to solve problems in other parts of the maze. For
example, a player could pick up a key in one room that opens a chest in another; then the
player could find an object in the chest that is useful elsewhere in the maze. The purpose
of the game is to solve all the interlocking puzzles and maximize one’s score (however
that is done). This text will not dwell upon the subtleties of game design; that is a subject
for a different text. Instead, we’ll look at the tools and data structures required to imple-
ment the game design.

The Madventure game’s use of pattern matching is quite different from the previous
examples appearing in this chapter. In the examples up to this point, the matching rou-
tines specifically checked the validity of an input string; Madventure does not do this.
Instead, it uses the pattern matching routines to simply determine if certain key words
appear on a line input by the user. The program handles the actual parsing (determining if
the command is syntactically correct). To understand how the Madventure game does
this, it would help if we took a look at how to play the Madventure game14.

The Madventure prompts the user to enter a command. Unlike the original adventure
game that required commands like “GO NORTH” (with no other characters other than
spaces as part of the command), Madventure allows you to write whole sentences and
then it attempts to pick out the key words from those sentences. For example, Madventure
accepts the “GO NORTH” command; however, it also accepts commands like “North is
the direction I want to go” and “I want to go in the north direction.” Madventure doesn’t
really care as long as it can find “GO” and “NORTH” somewhere on the command line.
This is a little more flexible that the original Adventure game structure. Of course, this
scheme isn’t infallible, it will treat commands like “I absolutely, positively, do NOT want
to go anywhere near the north direction” as a “GO NORTH” command. Oh well, the user
almost always types just “GO NORTH” anyway.

13. These are called adventure games because the original program of the genre was called “Adventure.”
14. One word of caution, no one is going to claim that Madventure is a great game. If it were, it would be sold, it
wouldn’t appear in this text! So don’t expect too much from the design of the game itself.

Chapter 16

Page 964

A Madventure command usually consists of a noun keyword and a verb keyword.
The Madventure recognizes six verbs and fourteen nouns15. The verbs are

verbs → go | get | drop | inventory | quit | help

The nouns are

nouns → north | south | east | west | lime | beer | card |
sign | program | homework | money | form | coupon

Obviously, Madventure does not allow all combinations of verbs and nouns. Indeed, the
following patterns are the only legal ones:

LegalCmds → go direction | get item | drop item | inventory |
quit | help

direction → north | south | east | west

item → lime | beer | card | sign | program | homework |
money | form | coupon

However, the pattern does not enforce this grammar. It just locates a noun and a verb
on the line and, if found, sets the noun and verb variables to appropriate values to denote
the keywords it finds. By letting the main program handle the parsing, the program is
somewhat more flexible.

There are two main patterns in the Madventure program: NounPat and VerbPat. These
patterns match words (nouns or verbs) using a regular expression like the following:

(ARB* ‘ ‘ | ε) word (‘ ‘ | EOS)

This regular expression matches a word that appears at the beginning of a sentence, at the
end of a sentence, anywhere in the middle of a sentence, or a sentence consisting of a sin-
gle word. Madventure uses a macro (MatchNoun or MatchVerb) to create an expression for
each noun and verb in the above expression.

To get an idea of how Madvent processes words, consider the following VerbPat pat-
tern:

VerbPat pattern {sl_match2, MatchGo}
MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, 0, “HELP”, 6

The MatchVerb macro expects four parameters. The first is an arbitrary pattern name; the
second is a link to the next pattern in the list; the third is the string to match, and the
fourth is a number that the matching routines will store into the verb variable if that string
matches (by default, the verb variable contains zero). It is very easy to add new verbs to
this list. For example, if you wanted to allow “run” and “walk” as synonyms for the “go”
verb, you would just add two patterns to this list:

VerbPat pattern {sl_match2, MatchGo}
MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, MatchRun, “HELP”, 6
MatchVerb MatchRun, MatchWalk, “RUN”, 1
MatchVerb MatchWalk, 0, “WALK”, 1

There are only two things to consider when adding new verbs: first, don’t forget that the
next field of the last verb should contain zero; second, the current version of Madventure

15. However, one beautiful thing about Madventure is that it is very easy to extend and add more nouns and
verbs.

Control Structures

Page 965

only allows up to seven verbs. If you want to add more you will need to make a slight
modification to the main program (more on that, later). Of course, if you only want to cre-
ate synonyms, as we’ve done here, you simply reuse existing verb values so there is no
need to modify the main program.

When you call the match routine and pass it the address of the VerbPat pattern, it scans
through the input string looking for the first verb. If it finds that verb (“GO”) it sets the
verb variable to the corresponding verb value at the end of the pattern. If match cannot find
the first verb, it tries the second. If that fails, it tries the third, and so on. If match cannot
find any of the verbs in the input string, it does not modify the verb variable (which con-
tains zero). If there are two or more of the above verbs on the input line, match will locate
the first verb in the verb list above. This may not be the first verb appearing on the line. For
example, if you say “Let’s get the money and go north” the match routine will match the
“go” verb, not the “get” verb. By the same token, the NounPat pattern would match the
north noun, not the money noun. So this command would be identical to “GO NORTH.”

The MatchNoun is almost identical to the MatchVerb macro; there is, however, one
difference – the MatchNoun macro has an extra parameter which is the name of the data
structure representing the given object (if there is one). Basically, all the nouns (in this ver-
sion of Madventure) except NORTH, SOUTH, EAST, and WEST have some sort of data
structure associated with them.

The maze in Madventure consists of nine rooms defined by the data structure:

Room struct
north word ?
south word ?
west word ?
east word ?
ItemList word MaxWeight dup (?)
Description word ?
Room ends

The north, south, west, and east fields contain near pointers to other rooms. The program
uses the CurRoom variable to keep track of the player’s current position in the maze. When
the player issues a “GO” command of some sort, Madventure copies the appropriate
value from the north, south, west, or east field to the CurRoom variable, effectively changing
the room the user is in. If one of these pointers is NULL, then the user cannot move in that
direction.

The direction pointers are independent of one another. If you issue the command “GO
NORTH” and then issue the command “GO SOUTH” upon arriving in the new room,
there is no guarantee that you will wind up in the original room. The south field of the sec-
ond room may not point at the room that led you there. Indeed, there are several cases in
the Madventure game where this occurs.

The ItemList array contains a list of near pointers to objects that could be in the room.
In the current version of this game, the objects are all the nouns except north, south, east,
and west. The player can carry these objects from room to room (indeed, that is the major
purpose of this game). Up to MaxWeight objects can appear in the room (MaxWeight is an
assembly time constant that is currently four; so there are a maximum of four items in any
one given room). If an entry in the ItemList is non-NULL, then it is a pointer to an Item
object. There may be zero to MaxWeight objects in a room.

The Description field contains a pointer to a zero terminated string that describes the
room. The program prints this string each time through the command loop to keep the
player oriented.

The second major data type in Madventure is the Item structure. This structure takes
the form:

Chapter 16

Page 966

Item struct
Value word ?
Weight word ?
Key word ?
ShortDesc word ?
LongDesc word ?
WinDesc word ?
Item ends

The Value field contains an integer value awarded to the player when the player drops
this object in the appropriate room. This is how the user scores points.

The Weight field usually contains one or two and determines how much this object
“weighs.” The user can only carry around MaxWeight units of weight at any one given
time. Each time the user picks up an object, the weight of that object is added to the user’s
total weight. When the user drops an object, Madventure subtracts the object’s weight
from the total.

The Key field contains a pointer to a room associated with the object. When the user
drops the object in the Key room, the user is awarded the points in the Value field and the
object disappears from the game. If the user drops the object in some other room, the
object stays in that room until the user picks it up again.

The ShortDesc, LongDesc, and WinDesc fields contain pointers to zero terminated
strings. Madventure prints the ShortDesc string in response to an INVENTORY command.
It prints the LongDesc string when describing a room’s contents. It prints the WinDesc
string when the user drops the object in its Key room and the object disappears from the
game.

The Madventure main program is deceptively simple. Most of the logic is hidden in
the pattern matching routines and in the parsing routine. We’ve already discussed the pat-
tern matching code; the only important thing to remember is that it initializes the noun
and verb variables with a value uniquely identifying each noun and verb. The main pro-
gram’s logic uses these two values as an index into a two dimensional table that takes the
following form:

Table 65: Madventure Noun/Verb Table

No Verb GO GET DROP Inven-
tory

Quit Help

No Noun Inven-
tory

Quit Help

North Do
North

South Do South

East Do East

West Do West

Lime Get Item Drop
Item

Beer Get Item Drop
Item

Card Get Item Drop
Item

Sign Get Item Drop
Item

Program Get Item Drop
Item

Control Structures

Page 967

The empty entries in this table correspond to illegal commands. The other entries are
addresses of code within the main program that handles the given command.

To add more nouns (objects) to the game, you need only extend the NounPat pattern
and add additional rows to the table (of course, you may need to add code to handle the
new objects if they are not easily handled by the routines above). To add new verbs you
need only extended the VerbPat pattern and add new columns to this table16.

Other than the goodies mentioned above, the rest of the program utilizes techniques
appearing throughout this and previous chapters. The only real surprising thing about
this program is that you can implement a fairly complex program with so few lines of
code. But such is the advantage of using pattern matching techniques in your assembly
language programs.

; MADVENT.ASM
;
; This is a “shell” of an adventure game that you can use to create
; your own adventure style games.

.xlist

.286
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

dseg segment para public ‘data’

; Equates:

NULL equ 0
MaxWeight equ 4 ;Max weight user can carry at one time.

; The “ROOM” data structure defines a room, or area, where a player can
; go. The NORTH, SOUTH, EAST, and WEST fields contain the address of
; the rooms to the north, south, east, and west of the room. The game
; transfers control to the room whose address appears in these fields
; when the player supplies a GO NORTH, GO SOUTH, etc., command.
;
; The ITEMLIST field contains a list of pointers to objects appearing
; in this room. In this game, the user can pick up and drop these
; objects (if there are any present).
;
; The DESCRIPTION field contains a (near) address of a short description
; of the current room/area.

16. Currently, the Madventure program computes the index into this table (a 14x8) table by shifting to the left
three bits rather than multiplying by eight. You will need to modify this code if you add more columns to the
table.

Home-
work

Get Item Drop
Item

Money Get Item Drop
Item

Form Get Item Drop
Item

Coupon Get Item Drop
Item

Table 65: Madventure Noun/Verb Table

No Verb GO GET DROP Inven-
tory

Quit Help

Chapter 16

Page 968

Room struct
north word ? ;Near pointers to other structures where
south word ? ; we will wind up on the GO NORTH, GO SOUTH,
west word ? ; etc., commands.
east word ?

ItemList word MaxWeight dup (?)

Description word ? ;Description of room.
Room ends

; The ITEM data structure describes the objects that may appear
; within a room (in the ITEMLIST above). The VALUE field contains
; the number of points this object is worth if the user drops it
; off in the proper room (i.e, solves the puzzle). The WEIGHT
; field provides the weight of this object. The user can only
; carry four units of weight at a time. This field is usually
; one, but may be more for larger objects. The KEY field is the
; address of the room where this object must be dropped to solve
; the problem. The SHORTDESC field is a pointer to a string that
; the program prints when the user executes an INVENTORY command.
; LONGDESC is a pointer to a string the program prints when des-
; cribing the contents of a room. The WINDESC field is a pointer
; to a string that the program prints when the user solves the
; appropriate puzzle.

Item struct
Value word ?
Weight word ?
Key word ?
ShortDesc word ?
LongDesc word ?
WinDesc word ?
Item ends

; State variables for the player:

CurRoom word Room1 ;Room the player is in.
ItemsOnHand word MaxWeight dup (?) ;Items the player carries.
CurWeight word 0 ;Weight of items carried.
CurScore word 15 ;Player’s current score.
TotalCounter word 9 ;Items left to place.
Noun word 0 ;Current noun value.
Verb word 0 ;Current verb value.
NounPtr word 0 ;Ptr to current noun item.

; Input buffer for commands

InputLine byte 128 dup (?)
; The following macros generate a pattern which will match a single word
; which appears anywhere on a line. In particular, they match a word
; at the beginning of a line, somewhere in the middle of the line, or
; at the end of a line. This program defines a word as any sequence
; of character surrounded by spaces or the beginning or end of a line.
;
; MatchNoun/Verb matches lines defined by the regular expression:
;
; (ARB* ‘ ‘ | ε) string (‘ ‘ | EOS)

MatchNoun macro Name, next, WordString, ItemVal, ItemPtr
local WS1, WS2, WS3, WS4
local WS5, WS6, WordStr

Name Pattern {sl_match2, WS1, next}
WS1 Pattern {MatchStr, WordStr, WS2, WS5}
WS2 Pattern {arb,0,0,WS3}
WS3 Pattern {Matchchar, ‘ ‘,0, WS4}

Control Structures

Page 969

WS4 Pattern {MatchStr, WordStr, 0, WS5}
WS5 Pattern {SetNoun,ItemVal,0,WS6}
WS6 Pattern {SetPtr, ItemPtr,0,MatchEOS}
WordStr byte WordString

byte 0
endm

MatchVerb macro Name, next, WordString, ItemVal
local WS1, WS2, WS3, WS4
local WS5, WordStr

Name Pattern {sl_match2, WS1, next}
WS1 Pattern {MatchStr, WordStr, WS2, WS5}
WS2 Pattern {arb,0,0,WS3}
WS3 Pattern {Matchchar, ‘ ‘,0, WS4}
WS4 Pattern {MatchStr, WordStr, 0, WS5}
WS5 Pattern {SetVerb,ItemVal,0,MatchEOS}
WordStr byte WordString

byte 0
endm

; Generic patterns which most of the patterns use:

MatchEOS Pattern {EOS,0,MatchSpc}
MatchSpc Pattern {MatchChar,’ ‘}

; Here are the list of nouns allowed in this program.

NounPat pattern {sl_match2, MatchNorth}

MatchNoun MatchNorth, MatchSouth, “NORTH”, 1, 0
MatchNoun MatchSouth, MatchEast, “SOUTH”, 2, 0
MatchNoun MatchEast, MatchWest, “EAST”, 3, 0
MatchNoun MatchWest, MatchLime, “WEST”, 4, 0
MatchNoun MatchLime, MatchBeer, “LIME”, 5, Item3
MatchNoun MatchBeer, MatchCard, “BEER”, 6, Item9
MatchNoun MatchCard, MatchSign, “CARD”, 7, Item2
MatchNoun MatchSign, MatchPgm, “SIGN”, 8, Item1
MatchNoun MatchPgm, MatchHW, “PROGRAM”, 9, Item7
MatchNoun MatchHW, MatchMoney, “HOMEWORK”, 10, Item4
MatchNoun MatchMoney, MatchForm, “MONEY”, 11, Item5
MatchNoun MatchForm, MatchCoupon, “FORM”, 12, Item6
MatchNoun MatchCoupon, 0, “COUPON”, 13, Item8

; Here is the list of allowable verbs.

VerbPat pattern {sl_match2, MatchGo}

MatchVerb MatchGO, MatchGet, “GO”, 1
MatchVerb MatchGet, MatchDrop, “GET”, 2
MatchVerb MatchDrop, MatchInv, “DROP”, 3
MatchVerb MatchInv, MatchQuit, “INVENTORY”, 4
MatchVerb MatchQuit, MatchHelp, “QUIT”, 5
MatchVerb MatchHelp, 0, “HELP”, 6

; Data structures for the “maze”.

Room1 room {Room1, Room5, Room4, Room2,
 {Item1,0,0,0},
 Room1Desc}

Room1Desc byte “at the Commons”,0

Item1 item {10,2,Room3,GS1,GS2,GS3}

Chapter 16

Page 970

GS1 byte “a big sign”,0
GS2 byte “a big sign made of styrofoam with funny “

byte “letters on it.”,0
GS3 byte “The ETA PI Fraternity thanks you for return”

byte “ing their sign, they”,cr,lf
byte “make you an honorary life member, as long as “
byte “you continue to pay”,cr,lf
byte “your $30 monthly dues, that is.”,0

Room2 room {NULL, Room5, Room1, Room3,
 {Item2,0,0,0},
 Room2Desc}

Room2Desc byte ‘at the “C” on the hill above campus’,0

Item2 item {10,1,Room1,LC1,LC2,LC3}
LC1 byte “a lunch card”,0
LC2 byte “a lunch card which someone must have “

byte “accidentally dropped here.”, 0
LC3 byte “You get a big meal at the Commons cafeteria”

byte cr,lf
byte “It would be a good idea to go visit the “
byte “student health center”,cr,lf
byte “at this time.”,0

Room3 room {NULL, Room6, Room2, Room2,
 {Item3,0,0,0},
 Room3Desc}

Room3Desc byte “at ETA PI Frat House”,0

Item3 item {10,2,Room2,BL1,BL2,BL3}
BL1 byte “a bag of lime”,0
BL2 byte “a bag of baseball field lime which someone “

byte “is obviously saving for”,cr,lf
byte “a special occasion.”,0

BL3 byte “You spread the lime out forming a big ‘++’ “
byte “after the ‘C’”,cr,lf
byte “Your friends in Computer Science hold you “
byte “in total awe.”,0

Room4 room {Room1, Room7, Room7, Room5,
 {Item4,0,0,0},
 Room4Desc}

Room4Desc byte “in Dr. John Smith’s Office”,0

Item4 item {10,1,Room7,HW1,HW2,HW3}
HW1 byte “a homework assignment”,0
HW2 byte “a homework assignment which appears to “

byte “to contain assembly language”,0
HW3 byte “The grader notes that your homework “

byte “assignment looks quite”,cr,lf
byte “similar to someone else’s assignment “
byte “in the class and reports you”,cr,lf
byte “to the instructor.”,0

Room5 room {Room1, Room9, Room7, Room2,
 {Item5,0,0,0},
 Room5Desc}

Room5Desc byte “in the computer lab”,0

Item5 item {10,1,Room9,M1,M2,M3}
M1 byte “some money”,0
M2 byte “several dollars in an envelope in the “

byte “trashcan”,0
M3 byte “The waitress thanks you for your “

byte “generous tip and gets you”,cr,lf
byte “another pitcher of beer. “

Control Structures

Page 971

byte “Then she asks for your ID.”,cr,lf
byte “You are at least 21 aren’t you?”,0

Room6 room {Room3, Room9, Room5, NULL,
 {Item6,0,0,0},
 Room6Desc}

Room6Desc byte “at the campus book store”,0

Item6 item {10,1,Room8,AD1,AD2,AD3}
AD1 byte “an add/drop/change form”,0
AD2 byte “an add/drop/change form filled out for “

byte “assembly to get a letter grade”,0
AD3 byte “You got the form in just in time. “

byte “It would have been a shame to”,cr,lf
byte “have had to retake assembly because “
byte “you didn’t realize you needed to “,cr,lf
byte “get a letter grade in the course.”,0

Room7 room {Room1, Room7, Room4, Room8,
 {Item7,0,0,0},
 Room7Desc}

Room7Desc byte “in the assembly lecture”,0

Item7 item {10,1,Room5,AP1,AP2,AP3}
AP1 byte “an assembly language program”,0
AP2 byte “an assembly language program due in “

byte “the assemblylanguage class.”,0
AP3 byte “The sample program the instructor gave “

byte “you provided all the information”,cr,lf
byte “you needed to complete your assignment. “
byte “You finish your work and”,cr,lf
byte “head to the local pub to celebrate.”
byte cr,lf,0

Room8 room {Room5, Room6, Room7, Room9,
 {Item8,0,0,0},
 Room8Desc}

Room8Desc byte “at the Registrar’s office”,0

Item8 item {10,1,Room6,C1,C2,C3}
C1 byte “a coupon”,0
C2 byte “a coupon good for a free text book”,0
C3 byte ‘You get a free copy of “Cliff Notes for ‘

byte ‘The Art of Assembly’,cr,lf
byte ‘Language Programming” Alas, it does not ‘
byte “provide all the”,cr,lf
byte “information you need for the class, so you “
byte “sell it back during”,cr,lf
byte “the book buy-back period.”,0

Room9 room {Room6, Room9, Room8, Room3,
 {Item9,0,0,0},
 Room9Desc}

Room9Desc byte “at The Pub”,0
Item9 item {10,2,Room4,B1,B2,B3}
B1 byte “a pitcher of beer”,0
B2 byte “an ice cold pitcher of imported beer”,0
B3 byte “Dr. Smith thanks you profusely for your “

byte “good taste in brews.”,cr,lf
byte “He then invites you to the pub for a “
byte “round of pool and”,cr,lf
byte “some heavy duty hob-nobbing, “
byte “CS Department style.”,0

Chapter 16

Page 972

dseg ends

cseg segment para public ‘code’
assume ds:dseg

; SetNoun- Copies the value in SI (the matchparm parameter) to the
; NOUN variable.

SetNoun proc far
push ds
mov ax, dseg
mov ds, ax
mov Noun, si
mov ax, di
stc
pop ds
ret

SetNoun endp

; SetVerb- Copies the value in SI (the matchparm parameter) to the
; VERB variable.

SetVerb proc far
push ds
mov ax, dseg
mov ds, ax
mov Verb, si
mov ax, di
stc
pop ds
ret

SetVerb endp

; SetPtr- Copies the value in SI (the matchparm parameter) to the
; NOUNPTR variable.

SetPtr proc far
push ds
mov ax, dseg
mov ds, ax
mov NounPtr, si
mov ax, di
stc
pop ds
ret

SetPtr endp

; CheckPresence-
; BX points at an item. DI points at an item list. This
; routine checks to see if that item is present in the
; item list. Returns Carry set if item was found,
; clear if not found.

CheckPresence proc

; MaxWeight is an assembly-time adjustable constant that determines
; how many objects the user can carry, or can be in a room, at one
; time. The following repeat macro emits “MaxWeight” compare and
; branch sequences to test each item pointed at by DS:DI.

ItemCnt = 0
repeat MaxWeight
cmp bx, [di+ItemCnt]
je GotIt

ItemCnt = ItemCnt+2
endm

Control Structures

Page 973

clc
ret

GotIt: stc
ret

CheckPresence endp

; RemoveItem- BX contains a pointer to an item. DI contains a pointer
; to an item list which contains that item. This routine
; searches the item list and removes that item from the
; list. To remove an item from the list, we need only
; store a zero (NULL) over the top of its pointer entry
; in the list.

RemoveItem proc

; Once again, we use the repeat macro to automatically generate a chain
; of compare, branch, and remove code sequences for each possible item
; in the list.

ItemCnt = 0
repeat MaxWeight
local NotThisOne
cmp bx, [di+ItemCnt]
jne NotThisOne
mov word ptr [di+ItemCnt], NULL
ret

NotThisOne:
ItemCnt = ItemCnt+2

endm

ret
RemoveItem endp

; InsertItem- BX contains a pointer to an item, DI contains a pointer to
; and item list. This routine searches through the list for
; the first empty spot and copies the value in BX to that point.
; It returns the carry set if it succeeds. It returns the
; carry clear if there are no empty spots available.

InsertItem proc

ItemCnt = 0
repeat MaxWeight
local NotThisOne
cmp word ptr [di+ItemCnt], 0
jne NotThisOne
mov [di+ItemCnt], bx
stc
ret

NotThisOne:
ItemCnt = ItemCnt+2

endm

clc
ret

InsertItem endp

; LongDesc- Long description of an item.
; DI points at an item - print the long description of it.

LongDesc proc
push di
test di, di
jz NoDescription
mov di, [di].item.LongDesc
puts
putcr

Chapter 16

Page 974

NoDescription: pop di
ret

LongDesc endp

; ShortDesc- Print the short description of an object.
; DI points at an item (possibly NULL). Print the short description for it.

ShortDesc proc
push di
test di, di
jz NoDescription
mov di, [di].item.ShortDesc
puts
putcr

NoDescription: pop di
ret

ShortDesc endp

; Describe: “CurRoom” points at the current room. Describe it and its
; contents.

Describe proc
push es
push bx
push di
mov di, ds
mov es, di

mov bx, CurRoom
mov di, [bx].room.Description
print
byte “You are currently “,0
puts
putcr
print
byte “Here you find the following:”,cr,lf,0

; For each possible item in the room, print out the long description
; of that item. The repeat macro generates a code sequence for each
; possible item that could be in this room.

ItemCnt = 0
repeat MaxWeight
mov di, [bx].room.ItemList[ItemCnt]
call LongDesc

ItemCnt = ItemCnt+2
endm

pop di
pop bx
pop es
ret

Describe endp

; Here is the main program, that actually plays the game.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte cr,lf,lf,lf,lf,lf
byte “Welcome to “,’”MADVENTURE”’,cr,lf
byte ‘If you need help, type the command “HELP”’

Control Structures

Page 975

byte cr,lf,0

RoomLoop: dec CurScore ;One point for each move.
jnz NotOverYet

; If they made too many moves without dropping anything properly, boot them
; out of the game.

print
byte “WHOA! You lost! You get to join the legions of “
byte “the totally lame”,cr,lf
byte ‘who have failed at “MADVENTURE”’,cr,lf,0
jmp Quit

; Okay, tell ‘em where they are and get a new command from them.

NotOverYet: putcr
call Describe
print
byte cr,lf
byte “Command: “,0
lesi InputLine
gets
strupr ;Ignore case by converting to U.C.

; Okay, process the command. Note that we don’t actually check to see
; if there is a properly formed sentence. Instead, we just look to see
; if any important keywords are on the line. If they are, the pattern
; matching routines load the appropriate values into the noun and verb
; variables (nouns: north=1, south=2, east=3, west=4, lime=5, beer=6,
; card=7, sign=8, program=9, homework=10, money=11, form=12, coupon=13;
; verbs: go=1, get=2, drop=3, inventory=4, quit=5, help=6).
;
; This code uses the noun and verb variables as indexes into a two
; dimensional array whose elements contain the address of the code
; to process the given command. If a given command does not make
; any sense (e.g., “go coupon”) the entry in the table points at the
; bad command code.

mov Noun, 0
mov Verb, 0
mov NounPtr, 0

ldxi VerbPat
xor cx, cx
match

lesi InputLine
ldxi NounPat
xor cx, cx
match

; Okay, index into the command table and jump to the appropriate
; handler. Note that we will cheat and use a 14x8 array. There
; are really only seven verbs, not eight. But using eight makes
; things easier since it is easier to multiply by eight than seven.

mov si, CurRoom;The commands expect this here.

mov bx, Noun
shl bx, 3 ;Multiply by eight.
add bx, Verb
shl bx, 1 ;Multiply by two - word table.
jmp cseg:jmptbl[bx]

; The following table contains the noun x verb cross product.
; The verb values (in each row) are the following:
;
; NONE GO GET DROP INVNTRY QUIT HELP unused
; 0 1 2 3 4 5 6 7

Chapter 16

Page 976

;
; There is one row for each noun (plus row zero, corresponding to no
; noun found on line).

jmptbl word Bad ;No noun, no verb
word Bad ;No noun, GO
word Bad ;No noun, GET
word Bad ;No noun, DROP
word DoInventory ;No noun, INVENTORY
word QuitGame ;No noun, QUIT
word DoHelp ;No noun, HELP
word Bad ;N/A

NorthCmds word Bad, GoNorth, Bad, Bad, Bad, Bad, Bad, Bad
SouthCmds word Bad, GoSouth, Bad, Bad, Bad, Bad, Bad, Bad
EastCmds word Bad, GoEast, Bad, Bad, Bad, Bad, Bad, Bad
WestCmds word Bad, GoWest, Bad, Bad, Bad, Bad, Bad, Bad
LimeCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
BeerCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
CardCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
SignCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
ProgramCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
HomeworkCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
MoneyCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
FormCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad
CouponCmds word Bad, Bad, GetItem, DropItem, Bad, Bad, Bad, Bad

; If the user enters a command we don’t know how to process, print an
; appropriate error message down here.

Bad: printf
byte “I’m sorry, I don’t understand how to ‘%s’\n”,0
dword InputLine
jmp NotOverYet

; Handle the movement commands here.
; Movements are easy, all we’ve got to do is fetch the NORTH, SOUTH,
; EAST, or WEST pointer from the current room’s data structure and
; set the current room to that address. The only catch is that some
; moves are not legal. Such moves have a NULL (zero) in the direction
; field. A quick check for this case handles illegal moves.

GoNorth: mov si, [si].room.North
jmp MoveMe

GoSouth: mov si, [si].room.South
jmp MoveMe

GoEast: mov si, [si].room.East
jmp MoveMe

GoWest: mov si, [si].room.West
MoveMe: test si, si ;See if move allowed.

jnz SetCurRoom
printf
byte “Sorry, you cannot go in this direction.”
byte cr, lf, 0
jmp RoomLoop

SetCurRoom: mov CurRoom, si ;Move to new room.
jmp RoomLoop

; Handle the GetItem command down here. At this time the user
; has entered GET and some noun that the player can pick up.
; First, we will make sure that item is in this room.
; Then we will check to make sure that picking up this object
; won’t overload the player. If these two conditions are met,
; we’ll transfer the object from the room to the player.

Control Structures

Page 977

GetItem: mov bx, NounPtr ;Ptr to item user wants.
mov si, CurRoom
lea di, [si].room.ItemList;Ptr to item list in di.
call CheckPresence;See if in room.
jc GotTheItem
printf
byte “Sorry, that item is not available here.”
byte cr, lf, 0
jmp RoomLoop

; Okay, see if picking up this object will overload the player.

GotTheItem: mov ax, [bx].Item.Weight
add ax, CurWeight
cmp ax, MaxWeight
jbe WeightOkay
printf
byte “Sorry, you are already carrying too many items “
byte “to safely carry\nthat object\n”,0
jmp RoomLoop

; Okay, everything’s cool, transfer the object from the room to the user.

WeightOkay: mov CurWeight, ax;Save new weight.
call RemoveItem ;Remove item from room.
lea di, ItemsOnHand;Ptr to player’s list.
call InsertItem
jmp RoomLoop

; Handle dropped objects down here.

DropItem: lea di, ItemsOnHand;See if the user has
mov bx, NounPtr ; this item on hand.
call CheckPresence
jc CanDropIt1
printf
byte “You are not currently holding that item\n”,0
jmp RoomLoop

; Okay, let’s see if this is the magic room where this item is
; supposed to be dropped. If so, award the user some points for
; properly figuring this out.

CanDropIt1: mov ax, [bx].item.key
cmp ax, CurRoom
jne JustDropIt

; Okay, success! Print the winning message for this object.

mov di, [bx].item.WinDesc
puts
putcr

; Award the user some points.

mov ax, [bx].item.value
add CurScore, ax

; Since the user dropped it, they can carry more things now.

mov ax, [bx].item.Weight
sub CurWeight, ax

; Okay, take this from the user’s list.

lea di, ItemsOnHand
call RemoveItem

; Keep track of how may objects the user has successfully dropped.

Chapter 16

Page 978

; When this counter hits zero, the game is over.

dec TotalCounter
jnz RoomLoop

printf
byte “Well, you’ve found where everything goes “
byte “and your score is %d.\n”
byte “You might want to play again and see if “
byte “you can get a better score.\n”,0
dword CurScore
jmp Quit

; If this isn’t the room where this object belongs, just drop the thing
; off. If this object won’t fit in this room, ignore the drop command.

JustDropIt: mov di, CurRoom
lea di, [di].room.ItemList
call InsertItem
jc DroppedItem
printf
byte “There is insufficient room to leave “
byte “that item here.\n”,0
jmp RoomLoop

; If they can drop it, do so. Don’t forget we’ve just unburdened the
; user so we need to deduct the weight of this object from what the
; user is currently carrying.

DroppedItem: lea di, ItemsOnHand
call RemoveItem
mov ax, [bx].item.Weight
sub CurWeight, ax
jmp RoomLoop

; If the user enters the INVENTORY command, print out the objects on hand

DoInventory: printf
byte “You currently have the following items in your “
byte “possession:”,cr,lf,0
mov di, ItemsOnHand[0]
call ShortDesc
mov di, ItemsOnHand[2]
call ShortDesc
mov di, ItemsOnHand[4]
call ShortDesc
mov di, ItemsOnHand[6]
call ShortDesc
printf
byte “\nCurrent score: %d\n”
byte “Carrying ability: %d/4\n\n”,0
dword CurScore,CurWeight
inc CurScore ;This command is free.
jmp RoomLoop

; If the user requests help, provide it here.

DoHelp: printf
byte “List of commands:”,cr,lf,lf
byte “GO {NORTH, EAST, WEST, SOUTH}”,cr,lf
byte “{GET, DROP} {LIME, BEER, CARD, SIGN, PROGRAM, “
byte “HOMEWORK, MONEY, FORM, COUPON}”,cr,lf
byte “SHOW INVENTORY”,cr,lf
byte “QUIT GAME”,cr,lf
byte “HELP ME”,cr,lf,lf
byte “Each command costs you one point.”,cr,lf
byte “You accumulate points by picking up objects and “
byte “dropping them in their”,cr,lf
byte “ appropriate locations.”,cr,lf

Control Structures

Page 979

byte “If you drop an item in its proper location, it “
byte “disappears from the game.”,cr,lf
byte “The game is over if your score drops to zero or “
byte “you properly place”,cr,lf
byte “ all items.”,cr,lf
byte 0
jmp RoomLoop

; If they quit prematurely, let ‘em know what a wimp they are!

QuitGame: printf
byte “So long, your score is %d and there are “
byte “still %d objects unplaced\n”,0
dword CurScore, TotalCounter

Quit: ExitPgm ;DOS macro to quit program.
Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

16.9 Laboratory Exercises

Programming with the Standard Library Pattern Matching routines doubles the com-
plexity. Not only must you deal with the complexities of 80x86 assembly language, you
must also deal with the complexities of the pattern matching paradigm, a programming
language in its own right. While you can use a program like CodeView to track down
problems in an assembly language program, no such debugger exists for “programs” you
write with the Standard Library’s pattern matching “language.” Although the pattern
matching routines are written in assembly language, attempting to trace through a pattern
using CodeView will not be very enlightening. In this laboratory exercise, you will learn
how to develop some rudimentary tools to help debug pattern matching programs.

16.9.1 Checking for Stack Overflow (Infinite Loops)

One common problem in pattern matching programs is the possibility of an infinite
loop occurring in the pattern. This might occur, for example, if you have a left recursive
production. Unfortunately, tracking down such loops in a pattern is very tedious, even
with the help of a debugger like CodeView. Fortunately, there is a very simple change you
can make to a program that uses patterns that will abort the program an warn you if infi-
nite recursion exists.

Infinite recursion in a pattern occurs when sl_Match2 continuously calls itself without
ever returning. This overflows the stack and causes the program to crash. There is a very
easy change you can make to your programs to check for stack overflow:

• In patterns where you would normally call sl_Match2, call MatchPat instead.

• Include the following statements near the beginning of your program (before any
patterns):

DEBUG = 0 ;Define for debugging.

ifdef DEBUG

Chapter 16

Page 980

MatchPat textequ <MatchSP>
else

MatchPat textequ <sl_Match2>
endif

If you define the DEBUG symbol, your patterns will call the MatchSP pro-
cedure, otherwise they will call the sl_Match2 procedure. During testing,
define the DEBUG symbol.

• Insert the following procedure somewhere in your program:

MatchSP proc far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP endp

This code sandwiches itself between your pattern and the sl_Match2 rou-
tine. It checks the stack pointer (sp) to see if it has dropped below a mini-
mally acceptable point in the stack segment. If not, it continues execution
by jumping to the sl_Match2 routine; otherwise it aborts program execu-
tion with an error message.

• The final change to your program is to modify the stack segment so that it looks
like the following:

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack ") ; below StkOvrfl.
sseg ends

After making these changes, your program will automatically stop with an error mes-
sage if infinite recursion occurs since infinite recursion will most certainly cause a stack
overflow17.

The following code (Ex16_1a.asm on the companion CD-ROM) presents a simple cal-
culator, similar to the calculator in the section “Evaluating Arithmetic Expressions” on
page 948, although this calculator only supports addition. As noted in the comments
appearing in this program, the pattern for the expression parser has a serious flaw – it
uses a left recursive production. This will most certainly cause an infinite loop and a stack
overflow. For your lab report: Run this program with and without the DEBUG symbol
defined (i.e., comment out the definition for one run). Describe what happens.

; EX16_1a.asm
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines. Note that this
; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

17. This code will also abort your program if you use too much stack space without infinite recursion. A problem
in its own right.

Control Structures

Page 981

; If the symbol "DEBUG" is defined, then call the MatchSP routine
; to do stack overflow checking. If "DEBUG" is not defined, just
; call the sl_Match2 routine directly.

DEBUG = 0 ;Define for debugging.

ifdef DEBUG
MatchPat textequ <MatchSP>

else
MatchPat textequ <sl_Match2>

endif

dseg segment para public 'data'

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; A Test String:

TestStr byte "5+2-(3-1)",0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; NOTE: This code has a serious problem. The first production
; is left recursive and will generate an infinite loop.
;
; E -> E+T {print result} | T {print result}
; T -> <constant> {fld constant} | (E)
;
;
; UCR Standard Library Pattern that handles the grammar above:

; An expression consists of an "E" item followed by the end of the string:

Expression pattern {MatchPat,E,,EndOfString}
EndOfString pattern {EOS}

; An "E" item consists of an "E" item optionally followed by "+" or "-"
; and a "T" item (E -> E+T | T):

E pattern {MatchPat, E,T,Eplus}
Eplus pattern {MatchChar, '+', T, epPlus}
epPlus pattern {DoFadd}

; A "T" item is either a floating point constant or "(" followed by
; an "E" item followed by ")".
;
; The regular expression for a floating point constant is
;
; [0-9]+ ("." [0-9]* |) (((e|E) (+|-|) [0-9]+) |)
;
; Note: the pattern "Const" matches exactly the characters specified
; by the above regular expression. It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
ConstStr pattern {MatchPat, DoDigits, 0, Const2}
Const2 pattern {matchchar, '.', Const4, Const3}
Const3 pattern {MatchPat, DoDigits, Const4, Const4}
Const4 pattern {matchchar, 'e', const5, const6}
Const5 pattern {matchchar, 'E', Succeed, const6}
Const6 pattern {matchchar, '+', const7, const8}
Const7 pattern {matchchar, '-', const8, const8}

Chapter 16

Page 982

Const8 pattern {MatchPat, DoDigits}

FldConst pattern {PushValue}

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

T pattern {MatchChar, '(', Const, IntE}
IntE pattern {MatchPat, E, 0, CloseParen}
CloseParen pattern {MatchChar, ')'}

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Debugging feature #1:
; This is a special version of sl_Match2 that checks for
; stack overflow. Stack overflow occurs whenever there
; is an infinite loop (i.e., left recursion) in a pattern.

MatchSP proc far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP endp

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; PushValue- We've just matched a string that corresponds to a
; floating point constant. Convert it to a floating

Control Structures

Page 983

; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds
stc
ret

PushValue endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit ;Be sure to do this!
fwait

lesi TestStr
puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte " is an illegal expression",cr,lf,0
ret

GoodVal: fstp CurValue
printff
byte " = %12.6ge\n",0
dword CurValue

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack "); below StkOvrfl.
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 16

Page 984

16.9.2 Printing Diagnostic Messages from a Pattern

When there is no other debugging method available, you can always use print state-
ments to help track down problems in your patterns. If your program calls pattern match-
ing functions in your own code (like the DoFAdd, DoSucceed, and PushValue procedures in
the code above), you can easily insert print or printf statements in these functions that will
print an appropriate message when they execute. Unfortunately, a problem may develop
in a portion of a pattern that does not call any local pattern matching functions, so insert-
ing print statements within an existing (local) pattern matching function might not help.
To solve this problem, all you need to do is insert a call to a local pattern matching func-
tion in the patterns you suspect have a problem.

Rather than make up a specific local pattern to print an individual message, a better
solution is to write a generic pattern matching function whose whole purpose is to display
a message. The following PatPrint function does exactly this:

; PatPrint- A debugging aid. This "Pattern matching function" prints
; the string that DS:SI points at.

PatPrint proc far
push es
push di
mov di, ds
mov es, di
mov di, si
puts
mov ax, di
pop di
pop es
stc
ret

PatPrint endp

From “Constructing Patterns for the MATCH Routine” on page 933, you will note that
the pattern matching system passes the value of the MatchParm parameter to a pattern
matching function in the ds:si register pair. The PatPrint function prints the string that ds:si
points at (by moving ds:si to es:di and calling puts).

The following code (Ex16_1b.asm on the companion CD-ROM) demonstrates how to
insert calls to PatPrint within your patterns to print out data to help you track down prob-
lems in your patterns. For your lab report: run this program and describe its output in
your report. Describe how this output can help you track down the problem with this pro-
gram. Modify the grammar to match the grammar in the corresponding sample program
(see “Evaluating Arithmetic Expressions” on page 948) while still printing out each pro-
duction that this program processes. Run the result and include the output in your lab
report.

; EX16_1a.asm
;
; A simple floating point calculator that demonstrates the use of the
; UCR Standard Library pattern matching routines. Note that this
; program requires an FPU.

.xlist

.386

.387
option segment:use16
include stdlib.a
includelib stdlib.lib
matchfuncs
.list

; If the symbol "DEBUG" is defined, then call the MatchSP routine
; to do stack overflow checking. If "DEBUG" is not defined, just
; call the sl_Match2 routine directly.

Control Structures

Page 985

DEBUG = 0 ;Define for debugging.

ifdef DEBUG
MatchPat textequ <MatchSP>

else
MatchPat textequ <sl_Match2>

endif

dseg segment para public 'data'

; The following is a temporary used when converting a floating point
; string to a 64 bit real value.

CurValue real8 0.0

; A Test String:

TestStr byte "5+2-(3-1)",0

; Grammar for simple infix -> postfix translation operation:
; Semantic rules appear in braces.
;
; NOTE: This code has a serious problem. The first production
; is left recursive and will generate an infinite loop.
;
; E -> E+T {print result} | T {print result}
; T -> <constant> {fld constant} | (E)
;
; UCR Standard Library Pattern that handles the grammar above:

; An expression consists of an "E" item followed by the end of the string:

Expression pattern {MatchPat,E,,EndOfString}
EndOfString pattern {EOS}

; An "E" item consists of an "E" item optionally followed by "+" or "-"
; and a "T" item (E -> E+T | T):

E pattern {PatPrint,EMsg,,E2}
EMsg byte "E->E+T | T",cr,lf,0

E2 pattern {MatchPat, E,T,Eplus}
Eplus pattern {MatchChar, '+', T, epPlus}
epPlus pattern {DoFadd,,,E3}
E3 pattern {PatPrint,EMsg3}
EMsg3 byte "E->E+T",cr,lf,0

; A "T" item is either a floating point constant or "(" followed by
; an "E" item followed by ")".
;
; The regular expression for a floating point constant is
;
; [0-9]+ ("." [0-9]* |) (((e|E) (+|-|) [0-9]+) |)
;
; Note: the pattern "Const" matches exactly the characters specified
; by the above regular expression. It is the pattern the calc-
; ulator grabs when converting a string to a floating point number.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
ConstStr pattern {MatchPat, DoDigits, 0, Const2}
Const2 pattern {matchchar, '.', Const4, Const3}
Const3 pattern {MatchPat, DoDigits, Const4, Const4}
Const4 pattern {matchchar, 'e', const5, const6}
Const5 pattern {matchchar, 'E', Succeed, const6}
Const6 pattern {matchchar, '+', const7, const8}

Chapter 16

Page 986

Const7 pattern {matchchar, '-', const8, const8}
Const8 pattern {MatchPat, DoDigits}

FldConst pattern {PushValue,,,ConstMsg}
ConstMsg pattern {PatPrint,CMsg}
CMsg byte "T->const",cr,lf,0

; DoDigits handles the regular expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanDigits}
SpanDigits pattern {Spancset, Digits}

; The S production handles constants or an expression in parentheses.

T pattern {PatPrint,TMsg,,T2}
TMsg byte "T->(E) | const",cr,lf,0

T2 pattern {MatchChar, '(', Const, IntE}
IntE pattern {MatchPat, E, 0, CloseParen}
CloseParen pattern {MatchChar, ')',,T3}

T3 pattern {PatPrint,TMsg3}
TMsg3 byte "T->(E)",cr,lf,0

; The Succeed pattern always succeeds.

Succeed pattern {DoSucceed}

; We use digits from the UCR Standard Library cset standard sets.

include stdsets.a

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Debugging feature #1:
; This is a special version of sl_Match2 that checks for
; stack overflow. Stack overflow occurs whenever there
; is an infinite loop (i.e., left recursion) in a pattern.

MatchSP proc far
cmp sp, offset StkOvrfl
jbe AbortPgm
jmp sl_Match2

AbortPgm: print
byte cr,lf,lf
byte "Error: Stack overflow in MatchSP routine.",cr,lf,0
ExitPgm

MatchSP endp

; PatPrint- A debugging aid. This "Pattern matching function" prints
; the string that DS:SI points at.

PatPrint proc far
push es
push di
mov di, ds
mov es, di
mov di, si
puts
mov ax, di
pop di
pop es
stc
ret

PatPrint endp

Control Structures

Page 987

; DoSucceed matches the empty string. In other words, it matches anything
; and always returns success without eating any characters from the input
; string.

DoSucceed proc far
mov ax, di
stc
ret

DoSucceed endp

; DoFadd - Adds the two items on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
mov ax, di ;Required by sl_Match
stc ;Always succeed.
ret

DoFadd endp

; PushValue- We've just matched a string that corresponds to a
; floating point constant. Convert it to a floating
; point value and push that value onto the FPU stack.

PushValue proc far
push ds
push es
pusha
mov ax, dseg
mov ds, ax

lesi Const ;FP val matched by this pat.
patgrab ;Get a copy of the string.
atof ;Convert to real.
free ;Return mem used by patgrab.
lesi CurValue ;Copy floating point accumulator
sdfpa ; to a local variable and then
fld CurValue ; copy that value to the FPU stk.

popa
mov ax, di
pop es
pop ds
stc
ret

PushValue endp

; The main program tests the expression evaluator.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

finit ;Be sure to do this!
fwait

lesi TestStr
puts ;Print the expression

ldxi Expression
xor cx, cx
match
jc GoodVal
printff
byte " is an illegal expression",cr,lf,0
ret

Chapter 16

Page 988

GoodVal:fstp CurValue
printff
byte " = %12.6ge\n",0
dword CurValue

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack 'stack'
word 64 dup (?) ;Buffer for stack overflow

StkOvrfl word ? ;Stack overflow if drops
stk db 1024 dup ("stack ") ; below StkOvrfl.
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

16.10 Programming Projects

1) Modify the program in Section 16.8.3 (Arith2.asm on the companion CD-ROM) so that it
includes some common trigonometric operations (sin, cos, tan, etc.). See the chapter on
floating point arithmetic to see how to compute these functions. The syntax for the func-
tions should be similar to “sin(E)” where “E” represents an arbitrary expression.

2) Modify the (English numeric input problem in Section 16.8.1 to handle negative numbers.
The pattern should allow the use of the prefixes “negative” or “minus” to denote a nega-
tive number.

3) Modify the (English) numeric input problem in Section 16.8.1 to handle four byte
unsigned integers.

4) Write your own “Adventure” game based on the programming techniques found in the
“Madventure” game in Section 16.8.5.

5) Write a “tiny assembler” for the modern version of the x86 processor using the techniques
found in Section 16.8.4.

6) Write a simple “DOS Shell” program that reads a line of text from the user and processes
valid DOS commands found on that line. Handle at least the DEL, RENAME, TYPE, and
COPY commands. See “MS-DOS, PC-BIOS, and File I/O” on page 699 for information
concerning the implementation of these DOS commands.

16.11 Summary

This has certainly been a long chapter. The general topic of pattern matching receives
insufficient attention in most textbooks. In fact, you rarely see more than a dozen or so
pages dedicated to it outside of automata theory texts, compiler texts, or texts covering
pattern matching languages like Icon or SNOBOL4. That is one of the main reasons this
chapter is extensive, to help cover the paucity of information available elsewhere. How-
ever, there is another reason for the length of this chapter and, especially, the number of
lines of code appearing in this chapter – to demonstrate how easy it is to develop certain
classes of programs using pattern matching techniques. Could you imagine having to
write a program like Madventure using standard C or Pascal programming techniques?
The resulting program would probably be longer than the assembly version appearing in
this chapter! If you are not impressed with the power of pattern matching, you should
probably reread this chapter. It is very surprising how few programmers truly understand
the theory of pattern matching; especially considering how many program use, or could
benefit from, pattern matching techniques.

Control Structures

Page 989

This chapter begins by discussing the theory behind pattern matching. It discusses
simple patterns, known as regular languages, and describes how to design nondeterministic
and deterministic finite state automata – the functions that match patterns described by regu-
lar expressions. This chapter also describes how to convert NFAs and DFAs into assembly
language programs. For the details, see

• “An Introduction to Formal Language (Automata) Theory” on page 883
• “Machines vs. Languages” on page 883
• “Regular Languages” on page 884
• “Regular Expressions” on page 885
• “Nondeterministic Finite State Automata (NFAs)” on page 887
• “Converting Regular Expressions to NFAs” on page 888
• “Converting an NFA to Assembly Language” on page 890
• “Deterministic Finite State Automata (DFAs)” on page 893
• “Converting a DFA to Assembly Language” on page 895

Although the regular languages are probably the most commonly processed patterns
in modern pattern matching programs, they are also only a small subset of the possible
types of patterns you can process in a program. The context free languages include all the
regular languages as a subset and introduce many types of patterns that are not regular.
To represent a context free language, we often use a context free grammar. A CFG contains a
set of expressions known as productions. This set of productions, a set of nonterminal sym-
bols, a set of terminal symbols, and a special nonterminal, the starting symbol, provide the
basis for converting powerful patterns into a programming language.

In this chapter, we’ve covered a special set of the context free grammars known as
LL(1) grammars. To properly encode a CFG as an assembly language program, you must
first convert the grammar to an LL(1) grammar. This encoding yields a recursive descent
predictive parser. Two primary steps required before converting a grammar to a program
that recognizes strings in the context free language is to eliminate left recursion from the
grammar and left factor the grammar. After these two steps, it is relatively easy to convert
a CFG to an assembly language program.

For more information on CFGs, see

• “Context Free Languages” on page 900
• “Eliminating Left Recursion and Left Factoring CFGs” on page 903
• “Converting CFGs to Assembly Language” on page 905
• “Some Final Comments on CFGs” on page 912

Sometimes it is easier to deal with regular expressions rather than context free gram-
mars. Since CFGs are more powerful than regular expressions, this text generally adopts
grammars whereever possible However, regular expressions are generally easier to work
with (for simple patterns), especially in the early stages of development. Sooner or later,
though, you may need to convert a regular expression to a CFG so you can combine it
with other components of the grammar. This is very easy to do and there is a simple algo-
rithm to convert REs to CFGs. For more details, see

• “Converting REs to CFGs” on page 905

Although converting CFGs to assembly language is a straightforward process, it is
very tedious. The UCR Standard Library includes a set of pattern matching routines that
completely eliminate this tedium and provide many additional capabilities as well (such
as automatic backtracking, allowing you to encode grammars that are not LL(1)). The pat-
tern matching package in the Standard Library is probably the most novel and powerful
set of routines available therein. You should definitely investigate the use of these rou-
tines, they can save you considerable time. For more information, see

• “The UCR Standard Library Pattern Matching Routines” on page 913
• “The Standard Library Pattern Matching Functions” on page 914

One neat feature the Standard Library provides is your ability to write customized
pattern matching functions. In addition to letting you provide pattern matching facilities

Chapter 16

Page 990

missing from the library, these pattern matching functions let you add semantic rules to
your grammars. For all the details, see

• “Designing Your Own Pattern Matching Routines” on page 922
• “Extracting Substrings from Matched Patterns” on page 925
• “Semantic Rules and Actions” on page 929

Although the UCR Standard Library provides a powerful set of pattern matching rou-
tines, its richness may be its primary drawback. Those who encounter the Standard
Library’s pattern matching routines for the first time may be overwhelmed, especially
when attempting to reconcile the material in the section on context free grammars with
the Standard Library patterns. Fortunately, there is a straightforward, if inefficient, way to
translate CFGs into Standard Library patterns. This technique is outlined in

• “Constructing Patterns for the MATCH Routine” on page 933

Although pattern matching is a very powerful paradigm that most programmers
should familiarize themselves with, most people have a hard time seeing the applications
when they first encounter pattern matching. Therefore, this chapter concludes with some
very complete programs that demonstrate pattern matching in action. These examples
appear in the section:

• “Some Sample Pattern Matching Applications” on page 935

Control Structures

Page 991

16.12 Questions

1) Assume that you have two inputs that are either zero or one. Create a DFA to implement the following
logic functions (assume that arriving in a final state is equivalent to being true, if you wind up in a
non-accepting state you return false)

a) OR b) XOR c) NAND d) NOR

e) Equals (XNOR) f) AND

2) If r, s, and t are regular expressions, what strings with the following regular expressions match?

a) r* b) r s c) r+ d) r | s

3) Provide a regular expression for integers that allow commas every three digits as per U.S. syntax (e.g., for
every three digits from the right of the number there must be exactly one comma). Do not allow misplaced
commas.

4) Pascal real constants must have at least one digit before the decimal point. Provide a regular expression for
FORTRAN real constants that does not have this restriction.

5) In many language systems (e.g., FORTRAN and C) there are two types of floating point numbers, single
precision and double precision. Provide a regular expression for real numbers that allows the input of
floating point numbers using any of the characters [dDeE] as the exponent symbol (d/D stands for double
precision).

6) Provide an NFA that recognizes the mnemonics for the 886 instruction set.

7) Convert the NFA above into assembly language. Do not use the Standard Library pattern matching rou-
tines.

8) Repeat question (7) using the Standard Library pattern matching routines.

9) Create a DFA for Pascal identifiers.

10) Convert the above DFA to assembly code using straight assembly statements.

11) Convert the above DFA to assembly code using a state table with input classification. Describe the data in
your classification table.

12) Eliminate left recursion from the following grammar:

Stmt → if expression then Stmt endif
| if expression then Stmt else Stmt endif
| Stmt ; Stmt
| ε

13) Left factor the grammar you produce in problem 12.

14) Convert the result from question (13) into assembly language without using the Standard Library pattern
matching routines.

15) Convert the result from question (13) in assembly language using the Standard Library pattern matching
routines.

0
1 3

1
5

Example, A<B

A Input B Input

Chapter 16

Page 992

16) Convert the regular expression obtained in question (3) to a set of productions for a context free grammar.

17) Why is the ARB matching function inefficient? Describe how the pattern (ARB “hello” ARB) would match
the string “hello there”.

18) Spancset matches zero or more occurrences of some characters in a character set. Write a pattern match-
ing function, callable as the first field of the pattern data type, that matches one or more occurrences of
some character (feel free to look at the sources for spancset).

19) Write the matchichar pattern matching function that matches an individual character regardless of case
(feel free to look at the sources for matchchar).

20) Explain how to use a pattern matching function to implement a semantic rule.

21) How would you extract a substring from a matched pattern?

22) What are parenthetical patterns? How to you create them?

Page 995

Interrupts, Traps, and Exceptions Chapter 17

The concept of an interrupt is something that has expanded in scope over the years.
The 80x86 family has only added to the confusion surrounding interrupts by introducing
the

int

 (software interrupt) instruction. Indeed, different manufacturers have used terms
like

exceptions, faults, aborts, traps,

and

interrupts

 to describe the phenomena this chapter
discusses. Unfortunately, there is no clear consensus as to the exact meaning of these
terms. Different authors adopt different terms to their own use. While it is tempting to
avoid the use of such misused terms altogether, for the purpose of discussion it would be
nice to have a set of well defined terms we can use in this chapter. Therefore, we will pick
three of the terms above, interrupts, traps, and exceptions, and define them. This chapter
attempts to use the most common meanings for these terms, but don’t be surprised to find
other texts using them in different contexts.

On the 80x86, there are three types of events commonly known as interrupts:

traps

,

exceptions,

 and

interrupts

 (hardware interrupts). This chapter will describe each of these
forms and discuss their support on the 80x86 CPUs and PC compatible machines.

Although the terms trap and exception are often used synonymously, we will use the
term

trap

 to denote a programmer initiated and expected transfer of control to a special
handler routine. In many respects, a trap is nothing more than a specialized subroutine
call. Many texts refer to traps as

software interrupts

. The 80x86

int

 instruction is the main
vehicle for executing a trap. Note that traps are usually

unconditional

; that is, when you
execute an

int

 instruction, control

always

 transfers to the procedure associated with the
trap. Since traps execute via an explicit instruction, it is easy to determine exactly which
instructions in a program will invoke a

trap handling

 routine.

An exception is an automatically generated trap (coerced rather than requested) that
occurs in response to some exceptional condition. Generally, there isn’t a specific instruc-
tion associated with an exception

1

, instead, an exception occurs in response to some
degenerate behavior of normal 80x86 program execution. Examples of conditions that
may

raise

 (cause) an exception include executing a division instruction with a zero divi-
sor, executing an illegal opcode, and a memory protection fault. Whenever such a condi-
tion occurs, the CPU immediately suspends execution of the current instruction and
transfers control to an

exception handler

 routine. This routine can decide how to handle the
exceptional condition; it can attempt to rectify the problem or abort the program and print
an appropriate error message. Although you do not generally execute a specific instruc-
tion to cause an exception, as with the software interrupts (traps), execution of some
instruction is what causes an exception. For example, you only get a division error when
executing a division instruction somewhere in a program.

Hardware interrupts

, the third category that we will refer to simply as

interrupts

, are
program control interruption based on an external hardware event (external to the CPU).
These interrupts generally have nothing at all to do with the instructions currently execut-
ing; instead, some event, such as pressing a key on the keyboard or a time out on a timer
chip, informs the CPU that a device needs some attention. The CPU interrupts the cur-
rently executing program, services the device, and then returns control back to the pro-
gram.

An

interrupt service routine

 is a procedure written specifically to handle a trap, excep-
tion, or interrupt. Although different phenomenon cause traps, exceptions, and interrupts,
the structure of an interrupt service routine, or

ISR

, is approximately the same for each of
these.

1. Although we will classify the

into

 instruction in this category. This is an exception to this rule.

Thi d t t d ith F M k 4 0 2

Chapter 17

Page 996

17.1 80x86 Interrupt Structure and Interrupt Service Routines (ISRs)

Despite the different causes of traps, exceptions, and interrupts, they share a common
format for their handling routines. Of course, these interrupt service routines will perform
different activities depending on the source of the invocation, but it is quite possible to
write a single interrupt handling routine that processes traps, exceptions, and hardware
interrupts. This is rarely done, but the structure of the 80x86 interrupt system allows this.
This section will describe the 80x86’s interrupt structure and how to write basic interrupt
service routines for the 80x86 real mode interrupts.

The 80x86 chips allow up to 256

vectored

 interrupts. This means that you can have up
to 256 different sources for an interrupt and the 80x86 will directly call the service routine
for that interrupt without any software processing. This is in contrast to

nonvectored

 inter-
rupts that transfer control directly to a single interrupt service routine, regardless of the
interrupt source.

The 80x86 provides a 256 entry

interrupt vector table

 beginning at address 0:0 in mem-
ory. This is a 1K table containing 256 4-byte entries. Each entry in this table contains a seg-
mented address that points at the interrupt service routine in memory. Generally, we will
refer to interrupts by their index into this table, so interrupt zero’s address (vector) is at
memory location 0:0, interrupt one’s vector is at address 0:4, interrupt two’s vector is at
address 0:8, etc.

When an interrupt occurs, regardless of source, the 80x86 does the following:

1) The CPU pushes the flags register onto the stack.

2) The CPU pushes a far return address (segment:offset) onto the stack, segment
value first.

3) The CPU determines the cause of the interrupt (i.e., the interrupt number) and
fetches the four byte interrupt vector from address 0:vector*4.

4) The CPU transfers control to the routine specified by the interrupt vector table
entry.

After the completion of these steps, the interrupt service routine takes control. When the
interrupt service routine wants to return control, it must execute an

iret

 (interrupt return)
instruction. The interrupt return pops the far return address and the flags off the stack.
Note that executing a far return is insufficient since that would leave the flags on the stack.

There is one minor difference between how the 80x86 processes hardware interrupts
and other types of interrupts – upon entry into the hardware interrupt service routine, the
80x86 disables further hardware interrupts by clearing the interrupt flag. Traps and excep-
tions do not do this. If you want to disallow further hardware interrupts within a trap or
exception handler, you must explicitly clear the interrupt flag with a

cli

 instruction. Con-
versely, if you want to allow interrupts within a hardware interrupt service routine, you
must explicitly turn them back on with an

sti

 instruction. Note that the 80x86’s interrupt
disable flag only affects hardware interrupts. Clearing the interrupt flag will not prevent
the execution of a trap or exception.

ISRs are written like almost any other assembly language procedure except that they
return with an

iret

 instruction rather than

ret

. Although the distance of the ISR procedure
(near vs. far) is usually of no significance, you should make all ISRs

far

 procedures. This
will make programming easier if you decide to call an ISR directly rather than using the
normal interrupt handling mechanism.

Exceptions and hardware interrupts ISRs have a very special restriction: they must

preserve the state of the CPU

. In particular, these ISRs must preserve all registers they mod-
ify. Consider the following extremely simple ISR:

SimpleISR proc far
mov ax, 0
iret

SimpleISR endp

The 80x86 Instruction Set

Page 997

This ISR obviously does

not

 preserve the machine state; it explicitly disturbs the value in

ax

 and then returns from the interrupt. Suppose you were executing the following code
segment when a hardware interrupt transferred control to the above ISR:

mov ax, 5
add ax, 2

; Suppose the interrupt occurs here.

puti

 .
 .
 .

The interrupt service routine would set the

ax

 register to zero and your program would
print zero rather than the value five. Worse yet, hardware interrupts are generally

asyn-
chronous

, meaning they can occur at any time and rarely do they occur at the same spot in
a program. Therefore, the code sequence above would print seven most of the time; once
in a great while it might print zero or two (it will print two if the interrupt occurs between
the

mov ax, 5

and

add ax, 2

 instructions). Bugs in hardware interrupt service routines are
very difficult to find, because such bugs often affect the execution of unrelated code.

The solution to this problem, of course, is to make sure you preserve all registers you
use in the interrupt service routine for hardware interrupts and exceptions. Since trap
calls are explicit, the rules for preserving the state of the machine in such programs is
identical to that for procedures.

Writing an ISR is only the first step to implementing an interrupt handler. You must
also initialize the interrupt vector table entry with the address of your ISR. There are two
common ways to accomplish this – store the address directly in the interrupt vector table
or call DOS and let DOS do the job for you.

Storing the address yourself is an easy task. All you need to do is load a segment reg-
ister with zero (since the interrupt vector table is in segment zero) and store the four byte
address at the appropriate offset within that segment. The following code sequence initial-
izes the entry for interrupt 255 with the address of the SimpleISR routine presented ear-
lier:

mov ax, 0
mov es, ax
pushf
cli
mov word ptr es:[0ffh*4], offset SimpleISR
mov word ptr es:[0ffh*4 + 2], seg SimpleISR
popf

Note how this code turns off the interrupts while changing the interrupt vector table. This
is important if you are patching a hardware interrupt vector because it wouldn’t do for the
interrupt to occur between the last two

mov

 instructions above; at that point the interrupt
vector is in an inconsistent state and invoking the interrupt at that point would transfer
control to the offset of SimpleISR and the segment of the previous interrupt 0FFh handler.
This, of course, would be a disaster. The instructions that turn off the interrupts while
patching the vector are unnecessary if you are patching in the address of a trap or excep-
tion handler

2

.

Perhaps a better way to initialize an interrupt vector is to use DOS’

Set Interrupt Vector

call. Calling DOS (see “MS-DOS, PC-BIOS, and File I/O” on page 699) with

ah

 equal to
25h provides this function. This call expects an interrupt number in the

al

 register and the
address of the interrupt service routine in

ds:dx

. The call to MS-DOS that would accom-
plish the same thing as the code above is

2. Strictly speaking, this code sequence does not require the pushf, cli, and popf instructions because interrupt 255
does not correspond to any hardware interrupt on a typical PC machine. However, it is important to provide this
example so you’re aware of the problem.

Chapter 17

Page 998

mov ax, 25ffh ;AH=25h, AL=0FFh.
mov dx, seg SimpleISR ;Load DS:DX with
mov ds, dx ; address of ISR
lea dx, SimpleISR
int 21h ;Call DOS
mov ax, dseg ;Restore DS so it
mov ds, ax ; points back at DSEG.

Although this code sequence is a little more complex than poking the data directly into the
interrupt vector table, it is safer. Many programs monitor changes made to the interrupt
vector table through DOS. If you call DOS to change an interrupt vector table entry, those
programs will become aware of your changes. If you circumvent DOS, those programs
may not find out that you’ve patched in your own interrupt and could malfunction.

Generally, it is a very bad idea to patch the interrupt vector table and not restore the
original entry after your program terminates. Well behaved programs always save the
previous value of an interrupt vector table entry and restore this value before termination.
The following code sequences demonstrate how to do this. First, by patching the table
directly:

mov ax, 0
mov es, ax

; Save the current entry in the dword variable IntVectSave:

mov ax, es:[IntNumber*4]
mov word ptr IntVectSave, ax
mov ax, es:[IntNumber*4 + 2]
mov word ptr IntVectSave+2, ax

; Patch the interrupt vector table with the address of our ISR

pushf ;Required if this is a hw interrupt.
cli ; “ “ “ “ “ “ “

mov word ptr es:[IntNumber*4], offset OurISR
mov word ptr es:[IntNumber*4+2], seg OurISR

popf ;Required if this is a hw interrupt.

; Okay, do whatever it is that this program is supposed to do:

 .
 .
 .

; Restore the interrupt vector entries before quitting:

mov ax, 0
mov es, ax

pushf ;Required if this is a hw interrupt.
cli ; “ “ “ “ “ “

mov ax, word ptr IntVectSave
mov es:[IntNumber*4], ax
mov ax, word ptr IntVectSave+2
mov es:[IntNumber*4 + 2], ax

popf ;Required if this is a hw interrupt.

 .
 .
 .

If you would prefer to call DOS to save and restore the interrupt vector table entries, you
can obtain the address of an existing interrupt table entry using the DOS

Get Interrupt
Vector

 call. This call, with

ah

=35h, expects the interrupt number in

al

; it returns the exist-
ing vector for that interrupt in the

es:bx

 registers. Sample code that preserves the interrupt
vector using DOS is

The 80x86 Instruction Set

Page 999

; Save the current entry in the dword variable IntVectSave:

mov ax, 3500h + IntNumber ;AH=35h, AL=Int #.
int 21h
mov word ptr IntVectSave, bx
mov word ptr IntVectSave+2, es

; Patch the interrupt vector table with the address of our ISR

mov dx, seg OurISR
mov ds, dx
lea dx, OurISR
mov ax, 2500h + IntNumber ;AH=25, AL=Int #.
int 21h

; Okay, do whatever it is that this program is supposed to do:

 .
 .
 .

; Restore the interrupt vector entries before quitting:

lds bx, IntVectSave
mov ax, 2500h+IntNumber ;AH=25, AL=Int #.
int 21h

 .
 .
 .

17.2 Traps

A trap is a software-invoked interrupt. To execute a trap, you use the 80x86

int

 (soft-
ware interrupt) instruction

3

. There are only two primary differences between a trap and
an arbitrary far procedure call: the instruction you use to call the routine (

int

 vs.

call

) and
the fact that a trap pushes the flags on the stack so you must use the

iret

 instruction to
return from it. Otherwise, there really is no difference between a trap handler’s code and
the body of a typical far procedure.

The main purpose of a trap is to provide a fixed subroutine that various programs can
call without having to actually know the run-time address. MS-DOS is the perfect exam-
ple. The

int 21h

 instruction is an example of a trap invocation. Your programs do not have
to know the actual memory address of DOS’ entry point to call DOS. Instead, DOS patches
the interrupt 21h vector when it loads into memory. When you execute

int 21h

, the 80x86
automatically transfers control to DOS’ entry point, whereever in memory that happens to
be.

There is a long lists of support routines that use the trap mechanism to link applica-
tion programs to themselves. DOS, BIOS, the mouse drivers, and Netware

 are a few
examples. Generally, you would use a trap to call a

resident program

 function. Resident
programs (see “Resident Programs” on page 1025) load themselves into memory and
remain resident once they terminate. By patching an interrupt vector to point at a subrou-
tine within the resident code, other programs that run after the resident program termi-
nates can call the resident subroutines by executing the appropriate

int

 instruction.

Most resident programs do

not

 use a separate interrupt vector entry for each function
they provide. Instead, they usually patch a

single

 interrupt vector and transfer control to
an appropriate routine using a

function number

 that the caller passes in a register. By con-
vention, most resident programs expect the function number in the

ah

 register. A typical
trap handler would execute a case statement on the value in the ah register and transfer
control to the appropriate handler function.

3. You can also simulate an int instruction by pushing the flags and executing a far call to the trap handler. We will
consider this mechanism later on.

Chapter 17

Page 1000

Since trap handlers are virtually identical to far procedures in terms of use, we will
not discuss traps in any more detail here. However, the text chapter will explore this sub-
ject in greater depth when it discusses resident programs.

17.3 Exceptions

Exceptions occur (are

raised

) when an abnormal condition occurs during execution.
There are fewer than eight possible exceptions on machines running in real mode. Pro-
tected mode execution provides many others, but we will not consider those here, we will
only consider those exceptions interesting to those working in real mode

4

.

Although exception handlers are user defined, the 80x86 hardware defines the excep-
tions that can occur. The 80x86 also assigns a fixed interrupt number to each of the excep-
tions. The following sections describe each of these exceptions in detail.

In general, an exception handler should preserve all registers. However, there are sev-
eral special cases where you may want to tweak a register value before returning. For
example, if you get a bounds violation, you may want to modify the value in the register
specified by the

bound

 instruction before returning. Nevertheless, you should not arbi-
trarily modify registers in an exception handling routine unless you intend to immedi-
ately abort the execution of your program.

17.3.1 Divide Error Exception (INT 0)

This exception occurs whenever you attempt to divide a value by zero or the quotient
does not fit in the destination register when using the

div

 or

idiv

 instructions. Note that the
FPU’s fdiv and fdivr instructions do

not

 raise this exception.

MS-DOS provides a generic divide exception handler that prints a message like
“divide error” and returns control to MS-DOS. If you want to handle division errors your-
self, you must write your own exception handler and patch the address of this routine into
location 0:0.

On 8086, 8088, 80186, and 80188 processors, the return address on the stack points at
the next instruction after the divide instruction. On the 80286 and later processors, the
return address points at the beginning of the divide instruction (include any prefix bytes
that appear). When a divide exception occurs, the 80x86 registers are unmodified; that is,
they contain the values they held when the 80x86 first executed the

div

 or

idiv

 instruction.

When a divide exception occurs, there are three reasonable things you can attempt:
abort the program (the easy way out), jump to a section of code that attempts to continue
program execution in view of the error (e.g., as the user to reenter a value), or attempt to
figure out why the error occurred, correct it, and reexecute the division instruction. Few
people choose this last alternative because it is so difficult.

17.3.2 Single Step (Trace) Exception (INT 1)

The single step exception occurs after every instruction if the

trace

 bit in the flags reg-
ister is equal to one. Debuggers and other programs will often set this flag so they can
trace the execution of a program.

When this exception occurs, the return address on the stack is the address of the

next

instruction to execute. The trap handler can decode this opcode and decide how to pro-
ceed. Most debuggers use the trace exception to check for

watchpoints

 and other events
that change dynamically during program execution. Debuggers that use the trace excep-

4. For more details on exceptions in protected mode, see the bibliography.

The 80x86 Instruction Set

Page 1001

tion for single stepping often

disassemble

 the next instruction using the return address on
the stack as a pointer to that instruction’s opcode bytes.

Generally, a single step exception handler should preserve

all

 80x86 registers and
other state information. However, you will see an interesting use of the trace exception
later in this text where we will purposely modify register values to make one instruction
behave like another (see “The PC Keyboard” on page 1153).

Interrupt one is also shared by the debugging exceptions capabilities of 80386 and
later processors. These processors provide on-chip support via

debugging registers

. If some
condition occurs that matches a value in one of the debugging registers, the 80386 and
later CPUs will generate a debugging exception that uses interrupt vector one.

17.3.3 Breakpoint Exception (INT 3)

The breakpoint exception is actually a trap, not an exception. It occurs when the CPU
executes an

int 3

 instruction. However, we will consider it an exception since programmers
rarely put

int 3

 instructions directly into their programs. Instead, a debugger like Code-
view often manages the placement and removal of

int 3

instructions.

When the 80x86 calls a breakpoint exception handling routine, the return address on
the stack is the address of the next instruction after the breakpoint opcode. Note, however,
that there are actually

two

int

 instructions that transfer control through this vector. Gener-
ally, though, it is the one-byte

int 3

 instruction whose opcode is 0cch; otherwise it is the
two byte equivalent: 0cdh, 03h.

17.3.4 Overflow Exception (INT 4/INTO)

The overflow exception, like

int 3

, is technically a trap. The CPU only raises this excep-
tion when you execute an

into

 instruction and the overflow flag is set. If the overflow flag
is clear, the

into

 instruction is effectively a

nop

, if

 the overflow flag is set, into behaves like an
int 4 instruction. Programmers can insert an into instruction after an integer computation to
check for an arithmetic overflow. Using into is equivalent to the following code sequence:

« Some integer arithmetic code »
jno GoodCode
int 4

GoodCode:

One big advantage to the into instruction is that it does not flush the pipeline or prefetch
queue if the overflow flag is not set. Therefore, using the into instruction is a good tech-
nique if you provide a single overflow handler (that is, you don’t have some special code
for each sequence where an overflow could occur).

The return address on the stack is the address of the next instruction after into. Gener-
ally, an overflow handler does not return to that address. Instead, it will usually abort the
program or pop the return address and flags off the stack and attempt the computation in
a different way.

17.3.5 Bounds Exception (INT 5/BOUND)

Like into, the bound instruction (see “The INT, INTO, BOUND, and IRET Instructions”
on page 292) will cause a conditional exception. If the specified register is outside the
specified bounds, the bound instruction is equivalent to an int 5 instruction; if the register is
within the specified bounds, the bound instruction is effectively a nop.

The return address that bound pushes is the address of the bound instruction itself, not
the instruction following bound. If you return from the exception without modifying the

Chapter 17

Page 1002

value in the register (or adjusting the bounds), you will generate an infinite loop because
the code will reexecute the bound instruction and repeat this process over and over again.

One sneaky trick with the bound instruction is to generate a global minimum and max-
imum for an array of signed integers. The following code demonstrates how you can do
this:

; This program demonstrates how to compute the minimum and maximum values
; for an array of signed integers using the bound instruction

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

; The following two values contain the bounds for the BOUND instruction.

LowerBound word ?
UpperBound word ?

; Save the INT 5 address here:

OldInt5 dword ?

; Here is the array we want to compute the minimum and maximum for:

Array word 1, 2, -5, 345, -26, 23, 200, 35, -100, 20, 45
word 62, -30, -1, 21, 85, 400, -265, 3, 74, 24, -2
word 1024, -7, 1000, 100, -1000, 29, 78, -87, 60

ArraySize = ($-Array)/2

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Our interrupt 5 ISR. It compares the value in AX with the upper and
; lower bounds and stores AX in one of them (we know AX is out of range
; by virtue of the fact that we are in this ISR).
;
; Note: in this particular case, we know that DS points at dseg, so this
; ISR will get cheap and not bother reloading it.
;
; Warning: This code does not handle the conflict between bound/int5 and
; the print screen key. Pressing prtsc while executing this code may
; produce incorrect results (see the text).

BoundISR proc near
cmp ax, LowerBound
jl NewLower

; Must be an upper bound violation.

mov UpperBound, ax
iret

NewLower: mov LowerBound, ax
iret

BoundISR endp

Main proc
mov ax, dseg
mov ds, ax
meminit

The 80x86 Instruction Set

Page 1003

; Begin by patching in the address of our ISR into int 5’s vector.

mov ax, 0
mov es, ax
mov ax, es:[5*4]
mov word ptr OldInt5, ax
mov ax, es:[5*4 + 2]
mov word ptr OldInt5+2, ax

mov word ptr es:[5*4], offset BoundISR
mov es:[5*4 + 2], cs

; Okay, process the array elements. Begin by initializing the upper
; and lower bounds values with the first element of the array.

mov ax, Array
mov LowerBound, ax
mov UpperBound, ax

; Now process each element of the array:

mov bx, 2 ;Start with second element.
mov cx, ArraySize

GetMinMax: mov ax, Array[bx]
bound ax, LowerBound
add bx, 2 ;Move on to next element.
loop GetMinMax ;Repeat for each element.

printf
byte “The minimum value is %d\n”
byte “The maximum value is %d\n”,0
dword LowerBound, UpperBound

; Okay, restore the interrupt vector:

mov ax, 0
mov es, ax
mov ax, word ptr OldInt5
mov es:[5*4], ax
mov ax, word ptr OldInt5+2
mov es:[5*4+2], ax

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

If the array is large and the values appearing in the array are relatively random, this
code demonstrates a fast way to determine the minimum and maximum values in the
array. The alternative, comparing each element against the upper and lower bounds and
storing the value if outside the range, is generally a slower approach. True, if the bound
instruction causes a trap, this is much slower than the compare and store method. How-
ever, it a large array with random values, the bounds violation will rarely occur. Most of
the time the bound instruction will execute in 7-13 clock cycles and it will not flush the
pipeline or the prefetch queue5.

Chapter 17

Page 1004

Warning: IBM, in their infinite wisdom, decided to use int 5 as the print screen opera-
tion. The default int 5 handler will dump the current contents of the screen to the printer.
This has two implications for those who would like to use the bound instruction in their
programs. First, if you do not install your own int 5 handler and you execute a bound
instruction that generates a bound exception, you will cause the machine to print the con-
tents of the screen. Second, if you press the PrtSc key with your int 5 handler installed,
BIOS will invoke your handler. The former case is a programming error, but this latter
case means you have to make your bounds exception handler a little smarter. It should
look at the byte pointed at by the return address. If this is an int 5 instruction opcode
(0cdh), then you need to call the original int 5 handler, or simply return from interrupt (do
you want them pressing the PrtSc key at that point?). If it is not an int 5 opcode, then this
exception was probably raised by the bound instruction. Note that when executing a bound
instruction the return address may not be pointing directly at a bound opcode (0c2h). It
may be pointing at a prefix byte to the bound instruction (e.g., segment, addressing mode,
or size override). Therefore, it is best to check for the int 5 opcode.

17.3.6 Invalid Opcode Exception (INT 6)

The 80286 and later processors raise this exception if you attempt to execute an
opcode that does not correspond to a legal 80x86 instruction. These processors also raise
this exception if you attempt to execute a bound, lds, les, lidt, or other instruction that
requires a memory operand but you specify a register operand in the mod/rm field of the
mod/reg/rm byte.

The return address on the stack points at the illegal opcode. By examining this
opcode, you can extend the instruction set of the 80x86. For example, you could run 80486
code on an 80386 processor by providing subroutines that mimic the extra 80486 instruc-
tions (like bswap, cmpxchg, etc.).

17.3.7 Coprocessor Not Available (INT 7)

The 80286 and later processors raise this exception if you attempt to execute an FPU
(or other coprocessor) instruction without having the coprocessor installed. You can use
this exception to simulate the coprocessor in software.

On entry to the exception handler, the return address points at the coprocessor opcode
that generated the exception.

17.4 Hardware Interrupts

Hardware interrupts are the form most engineers (as opposed to PC programmers)
associate with the term interrupt. We will adopt this same strategy henceforth and will use
the non-modified term “interrupt” to mean a hardware interrupt.

On the PC, interrupts come from many different sources. The primary sources of
interrupts, however, are the PCs timer chip, keyboard, serial ports, parallel ports, disk
drives, CMOS real-time clock, mouse, sound cards, and other peripheral devices. These
devices connect to an Intel 8259A programmable interrupt controller (PIC) that prioritizes
the interrupts and interfaces with the 80x86 CPU. The 8259A chip adds considerable com-
plexity to the software that processes interrupts, so it makes perfect sense to discuss the
PIC first, before trying to describe how the interrupt service routines have to deal with it.
Afterwards, this section will briefly describe each device and the conditions under which

5. Note that on the 80486 and later processors, the bound instruction may actually be slower than the correspond-
ing straight line code.

The 80x86 Instruction Set

Page 1005

it interrupts the CPU. This text will fully describe many of these devices in later chapters,
so this chapter will not go into a lot of detail except when discussing the timer interrupt.

17.4.1 The 8259A Programmable Interrupt Controller (PIC)

The 8259A (82596 or PIC, hereafter) programmable interrupt controller chip accepts
interrupts from up to eight different devices. If any one of the devices requests service, the
8259 will toggle an interrupt output line (connected to the CPU) and pass a programmable
interrupt vector to the CPU. You can cascade the device to support up to 64 devices by
connecting nine 8259s together: eight of the devices with eight inputs each whose outputs
become the eight inputs of the ninth device. A typical PC uses two of these devices to pro-
vide 15 interrupt inputs (seven on the master PIC with the eight input coming from the
slave PIC to process its eight inputs)7. The sections following this one will describe the
devices connected to each of those inputs, for now we will concentrate on what the 8259
does with those inputs. Nevertheless, for the sake of discussion, the following table lists
the interrupt sources on the PC:

The 8259 PIC is a very complex chip to program. Fortunately, all of the hard stuff has
already been done for you by the BIOS when the system boots. We will not discuss how to
initialize the 8259 in this text because that information is only useful to those writing oper-
ating systems like Linux, Windows, or OS/2. If you want your interrupt service routines
to run correctly under DOS or any other OS, you must not reinitialize the PIC.

The PICs interface to the system through four I/O locations: ports 20h/0A0h and
21h/0A1h. The first address in each pair is the address of the master PIC (IRQ 0-7), the

6. The original 8259 was designed for Intel’s 8080 system. The 8259A provided support for the 80x86 and some
other features. Since almost no one uses 8259 chips anymore, this text will use the generic term 8259.
7. The original IBM PC and PC/XT machines only supported eight interrupts via one 8259 chip. IBM, and virtu-
ally all clone manufacturers, added the second PIC in PC/AT and later designs.

Table 66: 8259 Programmable Interrupt Controller Inputs

Input on
8259

80x86
INT

Device

IRQ 0 8 Timer chip

IRQ 1 9 Keyboard

IRQ 2 0Ah Cascade for controller 2 (IRQ 8-15)

IRQ 3 0Bh Serial port 2

IRQ 4 0Ch Serial port 1

IRQ 5 0Dh Parallel port 2 in AT, reserved in PS/2 systems

IRQ 6 0Eh Diskette drive

IRQ 7 0Fh Parallel port 1

IRQ 8/0 70h Real-time clock

IRQ 9/1 71h CGA vertical retrace (and other IRQ 2 devices)

IRQ 10/2 72h Reserved

IRQ 11/3 73h Reserved

IRQ 12/4 74h Reserved in AT, auxiliary device on PS/2 systems

IRQ 13/5 75h FPU interrupt

IRQ 14/6 76h Hard disk controller

IRQ 15/7 77h Reserved

Chapter 17

Page 1006

second address in each pair corresponds to the slave PIC (IRQ 8-15). Port 20h/0A0h is a
read/write location to which you write PIC commands and read PIC status, we will refer
to this as the command register or the status register. The command register is write only, the
status register is read only. They just happen to share the same I/O location. The
read/write lines on the PIC determine which register the CPU accesses. Port 21h/0A1h is
a read/write location that contains the interrupt mask register, we will refer to this as the
mask register. Choose the appropriate address depending upon which interrupt controller
you want to use.

The interrupt mask register is an eight bit register that lets you individually enable
and disable interrupts from devices on the system. This is similar to the actions of the cli
and sti instructions, but on a device by device basis. Writing a zero to the corresponding
bit enables that device’s interrupts. Writing a one disables interrupts from the affected
device. Note that this is non-intuitive. Figure 17.1 provides the layout of the interrupt
mask register.

When changing bits in the mask register, it is important that you not simply load al
with a value and output it directly to the mask register port. Instead, you should read the
mask register and then logically or in or and out the bits you want to change; finally, you
can write the output back to the mask register. The following code sequence enables
COM1: interrupts without affecting any others:

in al, 21h ;Read existing bits.
and al, 0efh ;Turn on IRQ 4 (COM1).
out 21h, al ;Write result back to PIC.

The command register provides lots of options, but there are only three commands
you would want to execute on this chip that are compatible with the BIOS’ initialization of
the 8259: sending an end of interrupt command and sending one of two read status regis-
ter commands.

One a specific interrupt occurs, the 8259 masks all further interrupts from that device
until is receives an end of interrupt signal from the interrupt service routine. On PCs run-
ning DOS, you accomplish this by writing the value 20h to the command register. The fol-
lowing code does this:

mov al, 20h
out 20h, al ;Port 0A0h if IRQ 8-15.

Figure 17.1 8259 Interrupt Mask Register

Contoller Adrs

21h 0A1h

IRQ 0 / IRQ 8

IRQ 1 / IRQ 9

IRQ 2 / IRQ 10

IRQ 3 / IRQ 11

IRQ 4 / IRQ 12

IRQ 5 / IRQ 13

IRQ 6 / IRQ 14

IRQ 7 / IRQ 15

Interrupt Mask Register
7 6 5 4 3 2 1 0

To disable a specific device's interrupt, write a one to the mask register
To enable a specific device's interrupt, write a zero to the mask register

The 80x86 Instruction Set

Page 1007

You must send exactly one end of interrupt command to the PIC for each interrupt you
service. If you do not send the end of interrupt command, the PIC will not honor any
more interrupts from that device; if you send two or more end of interrupt commands,
there is the possibility that you will accidentally acknowledge a new interrupt that may be
pending and you will lose that interrupt.

For some interrupt service routines you write, your ISR will not be the only ISR that
an interrupt invokes. For example, the PC’s BIOS provides an ISR for the timer interrupt
that maintains the time of day. If you patch into the timer interrupt, you will need to call
the PC BIOS’ timer ISR so the system can properly maintain the time of day and handle
other timing related chores (see “Chaining Interrupt Service Routines” on page 1010).
However, the BIOS’ timer ISR outputs the end of interrupt command. Therefore, you
should not output the end of interrupt command yourself, otherwise the BIOS will output
a second end of interrupt command and you may lose an interrupt in the process.

The other two commands you can send the 8259 let you select whether to read the
in-service register (ISR) or the interrupt request register (IRR). The in-service register con-
tains set bits for each active ISR (because the 8259 allows prioritized interrupts, it is quite
possible that one ISR has been interrupted by a higher priority ISR). The interrupt request
register contains set bits in corresponding positions for interrupts that have not yet been
serviced (probably because they are a lower priority interrupt than the interrupt currently
being serviced by the system). To read the in-service register, you would execute the fol-
lowing statements:

; Read the in-service register in PIC #1 (at I/O address 20h)

mov al, 0bh
out 20h, al
in al, 20h

To read the interrupt request register, you would use the following code:

; Read the interrupt request register in PIC #1 (at I/O address 20h)

mov al, 0ah
out 20h, al
in al, 20h

Writing any other values to the command port may cause your system to malfunction.

17.4.2 The Timer Interrupt (INT 8)

The PC’s motherboard contains an 8254 compatible timer chip. This chip contains
three timer channels, one of which generates interrupts every 55 msec (approximately).
This is about once every 1/18.2 seconds. You will often hear this interrupt referred to as the
“eighteenth second clock.” We will simply call it the timer interrupt.

The timer interrupt vector is probably the most commonly patched interrupt in the
system. It turns out there are two timer interrupt vectors in the system. Int 8 is the hard-
ware vector associated with the timer interrupt (since it comes in on IRQ 0 on the PIC).
Generally, you should not patch this interrupt if you want to write a timer ISR. Instead,
you should patch the second timer interrupt, interrupt 1ch. The BIOS’ timer interrupt han-
dler (int 8) executes an int 1ch instruction before it returns. This gives a user patched rou-
tine access to the timer interrupt. Unless you are willing to duplicate the BIOS and DOS
timer code, you should never completely replace the existing timer ISR with one of your
own, you should always ensure that the BIOS and DOS ISRs execute in addition to your
ISR. Patching into the int 1ch vector is the easiest way to do this.

Even replacing the int 1ch vector with a pointer to your ISR is very dangerous. The
timer interrupt service routine is the one most commonly patched by various resident pro-
grams (see “Resident Programs” on page 1025). By simply writing the address of your ISR
into the timer interrupt vector, you may disable such resident programs and cause your

Chapter 17

Page 1008

system to malfunction. To solve this problem, you need to create an interrupt chain. For
more details, see the section “Chaining Interrupt Service Routines” on page 1010.

By default the timer interrupt is always enabled on the interrupt controller chip.
Indeed, disabling this interrupt may cause your system to crash or otherwise malfunction.
At the very least, you system will not maintain the correct time if you disable the timer
interrupt.

17.4.3 The Keyboard Interrupt (INT 9)

The keyboard microcontroller on the PC’s motherboard generates two interrupts on
each keystroke – one when you press a key and one when you release it. This is on IRQ 1
on the master PIC. The BIOS responds to this interrupt by reading the keyboard’s scan
code, converting this to an ASCII character, and storing the scan and ASCII codes away in
the system type ahead buffer.

By default, this interrupt is always enabled. If you disable this interrupt, the system
will not be able to respond to any keystrokes, including ctrl-alt-del. Therefore, your pro-
grams should always reenable this interrupt if they ever disable it.

For more information on the keyboard interrupt, see “The PC Keyboard” on
page 1153.

17.4.4 The Serial Port Interrupts (INT 0Bh and INT 0Ch)

The PC uses two interrupts, IRQ 3 and IRQ 4, to support interrupt driven serial com-
munications. The 8250 (or compatible) serial communications controller chip (SCC) gener-
ates an interrupt in one of four situations: a character arriving over the serial line, the SCC
finishes the transmission of a character and is requesting another, an error occurs, or a sta-
tus change occurs. The SCC activates the same interrupt line (IRQ 3 or 4) for all four inter-
rupt sources. The interrupt service routine is responsible for determining the exact nature
of the interrupt by interrogating the SCC.

By default, the system disables IRQ 3 and IRQ 4. If you install a serial ISR, you will
need to clear the interrupt mask bit in the 8259 PIC before it will respond to interrupts
from the SCC. Furthermore, the SCC design includes its own interrupt mask. You will
need to enable the interrupt masks on the SCC chip as well. For more information on the
SCC, see “The PC Serial Ports” on page 1223.

17.4.5 The Parallel Port Interrupts (INT 0Dh and INT 0Fh)

The parallel port interrupts are an enigma. IBM designed the original system to allow
two parallel port interrupts and then promptly designed a printer interface card that
didn’t support the use of interrupts. As a result, almost no DOS based software today uses
the parallel port interrupts (IRQ 5 and IRQ 7). Indeed, on the PS/2 systems IBM reserved
IRQ5 which they formerly used for LPT2:.

However, these interrupts have not gone to waste. Many devices which IBM’s engi-
neers couldn’t even conceive when designing the first PC have made good use of these
interrupts. Examples include SCSI cards and sound cards. Many devices today include
“interrupt jumpers” that let you select IRQ 5 or IRQ 7 when installing the device.

Since IRQ 5 and IRQ 7 find such little use as parallel port interrupts, we will effec-
tively ignore the “parallel port interrupts” in this text.

The 80x86 Instruction Set

Page 1009

17.4.6 The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h)

The floppy and hard disk drives generate interrupts at the completion of a disk opera-
tion. This is a very useful feature for multitasking systems like OS/2, Linux, or Windows.
While the disk is reading or writing data, the CPU can go execute instructions for another
process. When the disk finishes the read or write operation, it interrupts the CPU so it can
resume the original task.

While managing the disk drives would be an interesting topic to cover in this text, this
book is already long enough. Therefore, this text will avoid discussing the disk drive
interrupts (IRQ 6 and IRQ 14) in the interest of saving some space. There are many texts
that cover low level disk I/O in assembly language, see the bibliography for details.

By default, the floppy and hard disk interrupts are always enabled. You should not
change this status if you intend to use the disk drives on your system.

17.4.7 The Real-Time Clock Interrupt (INT 70h)

PC/AT and later machines included a CMOS real-time clock. This device is capable of
generating timer interrupts in multiples of 976 µsec (let’s call it 1 msec). By default, the
real-time clock interrupt is disabled. You should only enable this interrupt if you have an
int 70h ISR installed.

17.4.8 The FPU Interrupt (INT 75h)

The 80x87 FPU generates an interrupt whenever a floating point exception occurs. On
CPUs with built-in FPUs (80486DX and better) there is a bit in one of the control register
you can set to simulate a vectored interrupt. BIOS generally initializes such bits for com-
patibility with existing systems.

By default, BIOS disables the FPU interrupt. Most programs that use the FPU explic-
itly test the FPU’s status register to determine if an error occurs. If you want to allow FPU
interrupts, you must enable the interrupts on the 8259 and on the 80x87 FPU.

17.4.9 Nonmaskable Interrupts (INT 2)

The 80x86 chips actually provide two interrupt input pins. The first is the maskable
interrupt. This is the pin to which the 8259 PIC connects. This interrupt is maskable
because you can enable or disable it with the cli and sti instructions. The nonmaskable inter-
rupt, as its name implies, cannot be disabled under software control. Generally, PCs use
this interrupt to signal a memory parity error, although certain systems use this interrupt
for other purposes as well. Many older PC systems connect the FPU to this interrupt.

This interrupt cannot be masked, so it is always enabled by default.

17.4.10 Other Interrupts

As mentioned in the section on the 8259 PIC, there are several interrupts reserved by
IBM. Many systems use the reserved interrupts for the mouse or for other purposes. Since
such interrupts are inherently system dependent, we will not describe them here.

Chapter 17

Page 1010

17.5 Chaining Interrupt Service Routines

Interrupt service routines come in two basic varieties – those that need exclusive
access to an interrupt vector and those that must share an interrupt vector with several
other ISRs. Those in the first category include error handling ISRs (e.g., divide error or
overflow) and certain device drivers. The serial port is a good example of a device that
rarely has more than one ISR associated with it at any one given time8. The timer,
real-time clock, and keyboard ISRs generally fall into the latter category. It is not at all
uncommon to find several ISRs in memory sharing each of these interrupts.

Sharing an interrupt vector is rather easy. All an ISR needs to do to share an interrupt
vector is to save the old interrupt vector when installing the ISR (something you need to
do anyway, so you can restore the interrupt vector when your code terminates) and then
call the original ISR before or after you do your own ISR processing. If you’ve saved away
the address of the original ISR in the dseg double word variable OldIntVect, you can call the
original ISR with the following code:

; Presumably, DS points at DSEG at this point.

pushf ;Simulate an INT instruction by pushing
call OldIntVect ; the flags and making a far call.

Since OldIntVect is a dword variable, this code generates a far call to the routine whose seg-
mented address appears in the OldIntVect variable. This code does not jump to the location
of the OldIntVect variable.

Many interrupt service routines do not modify the ds register to point at a local data
segment. In fact, some simple ISRs do not change any of the segment registers. In such
cases it is common to put any necessary variables (especially the old segment value)
directly in the code segment. If you do this, your code could jump directly to the original
ISR rather than calling it. To do so, you would just use the code:

MyISR proc near
 .
 .
 .

jmp cs:OldIntVect
MyISR endp

OldIntVect dword ?

This code sequence passes along your ISR’s flags and return address as the flag and return
address values to the original ISR. This is fine, when the original ISR executes the iret
instruction, it will return directly to the interrupted code (assuming it doesn’t pass control
to some other ISR in the chain).

The OldIntVect variable must be in the code segment if you use this technique to trans-
fer control to the original ISR. After all, when you executing the jmp instruction above, you
must have already restored the state of the CPU, including the ds register. Therefore, you
have no idea what segment ds is pointing at, and it probably isn’t pointing at your local
data segment. Indeed, the only segment register whose value is known to you is cs, so you
must keep the vector address in your code segment.

The following simple program demonstrates interrupt chaining. This short program
patches into the int 1ch vector. The ISR counts off seconds and notifies the main program
as each second passes. The main program prints a short message every second. When 10
seconds have expired, this program removes the ISR from the interrupt chain and termi-
nates.

; TIMER.ASM
; This program demonstrates how to patch into the int 1Ch timer interrupt
; vector and create an interrupt chain.

8. There is no reason this has to be this way, it’s just that most people rarely run two programs at the same time
which must both be accessing the serial port.

The 80x86 Instruction Set

Page 1011

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

; The TIMERISR will update the following two variables.
; It will update the MSEC variable every 55 ms.
; It will update the TIMER variable every second.

MSEC word 0
TIMER word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; The OldInt1C variable must be in the code segment because of the
; way TimerISR transfers control to the next ISR in the int 1Ch chain.

OldInt1C dword ?

; The timer interrupt service routine.
; This guy increment MSEC variable by 55 on every interrupt.
; Since this interrupt gets called every 55 msec (approx) the
; MSEC variable contains the current number of milliseconds.
; When this value exceeds 1000 (one second), the ISR subtracts
; 1000 from the MSEC variable and increments TIMER by one.

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

mov ax, MSEC
add ax, 55 ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC
inc Timer ;A second just passed.
sub ax, 1000 ;Adjust MSEC value.

SetMSEC: mov MSEC, ax
pop ax
pop ds
jmp cseg:OldInt1C ;Transfer to original ISR.

TimerISR endp

Main proc
mov ax, dseg
mov ds, ax
meminit

; Begin by patching in the address of our ISR into int 1ch’s vector.
; Note that we must turn off the interrupts while actually patching
; the interrupt vector and we must ensure that interrupts are turned
; back on afterwards; hence the cli and sti instructions. These are
; required because a timer interrupt could come along between the two
; instructions that write to the int 1Ch interrupt vector. This would
; be a big mess.

mov ax, 0
mov es, ax
mov ax, es:[1ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1ch*4 + 2]

Chapter 17

Page 1012

mov word ptr OldInt1C+2, ax

cli
mov word ptr es:[1Ch*4], offset TimerISR
mov es:[1Ch*4 + 2], cs
sti

; Okay, the ISR updates the TIMER variable every second.
; Continuously print this value until ten seconds have
; elapsed. Then quit.

mov Timer, 0
TimerLoop: printf

byte “Timer = %d\n”,0
dword Timer
cmp Timer, 10
jbe TimerLoop

; Okay, restore the interrupt vector. We need the interrupts off
; here for the same reason as above.

mov ax, 0
mov es, ax
cli
mov ax, word ptr OldInt1C
mov es:[1Ch*4], ax
mov ax, word ptr OldInt1C+2
mov es:[1Ch*4+2], ax
sti

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

17.6 Reentrancy Problems

A minor problem develops with developing ISRs, what happens if you enable inter-
rupts while in an ISR and a second interrupt from the same device comes along? This
would interrupt the ISR and then reenter the ISR from the beginning. Many applications
do not behave properly under these conditions. An application that can properly handle
this situation is said to be reentrant. Code segments that do not operate properly when
reentered are nonreentrant.

Consider the TIMER.ASM program in the previous section. This is an example of a
nonreentrant program. Suppose that while executing the ISR, it is interrupted at the fol-
lowing point:

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

mov ax, MSEC
add ax, 55 ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC

The 80x86 Instruction Set

Page 1013

; <<<<< Suppose the interrupt occurs at this point >>>>>

inc Timer ;A second just passed.
sub ax, 1000 ;Adjust MSEC value.

SetMSEC: mov MSEC, ax
pop ax
pop ds
jmp cseg:OldInt1C ;Transfer to original ISR.

TimerISR endp

Suppose that, on the first invocation of the interrupt, MSEC contains 950 and Timer
contains three. If a second interrupt occurs and the specified point above, ax will contain
1005. So the interrupt suspends the ISR and reenters it from the beginning. Note that
TimerISR is nice enough to preserve the ax register containing the value 1005. When the
second invocation of TimerISR executes, it finds that MSEC still contains 950 because the
first invocation has yet to update MSEC. Therefore, it adds 55 to this value, determines
that it exceeds 1000, increments Timer (it becomes four) and then stores five into MSEC.
Then it returns (by jumping to the next ISR in the int 1ch chain). Eventually, control returns
the first invocation of the TimerISR routine. At this time (less than 55 msec after updating
Timer by the second invocation) the TimerISR code increments the Timer variable again and
updates MSEC to five. The problem with this sequence is that it has incremented the Timer
variable twice in less than 55 msec.

Now you might argue that hardware interrupts always clear the interrupt disable flag
so it would not be possible for this interrupt to be reentered. Furthermore, you might
argue that this routine is so short, it would never take more than 55 msec to get to the
noted point in the code above. However, you are forgetting something: some other timer
ISR could be in the system that calls your code after it is done. That code could take 55
msec and just happen to turn the interrupts back on, making it perfectly possible that your
code could be reentered.

The code between the mov ax, MSEC and mov MSEC, ax instructions above is called a
critical region or critical section. A program must not be reentered while it is executing in a
critical region. Note that having critical regions does not mean that a program is not reen-
trant. Most programs, even those that are reentrant, have various critical regions. The key
is to prevent an interrupt that could cause a critical region to be reentered while in that
critical region. The easiest way to prevent such an occurrence is to turn off the interrupts
while executing code in a critical section. We can easily modify the TimerISR to do this
with the following code:

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

; Beginning of critical section, turn off interrupts.

pushf ;Preserve current I flag state.
cli ;Make sure interrupts are off.

mov ax, MSEC
add ax, 55 ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC

inc Timer ;A second just passed.
sub ax, 1000 ;Adjust MSEC value.

SetMSEC: mov MSEC, ax

; End of critical region, restore the I flag to its former glory.

popf

Chapter 17

Page 1014

pop ax
pop ds
jmp cseg:OldInt1C;Transfer to original ISR.

TimerISR endp

We will return to the problem of reentrancy and critical regions in the next two chap-
ters of this text.

17.7 The Efficiency of an Interrupt Driven System

Interrupts introduce a considerable amount of complexity to a software system (see
“Debugging ISRs” on page 1020). One might ask if using interrupts is really worth the
trouble. The answer of course, is yes. Why else would people use interrupts if they were
proven not to be worthwhile? However, interrupts are like many other nifty things in
computer science – they have their place; if you attempt to use interrupts in an inappro-
priate fashion they will only make things worse for you.

The following sections explore the efficiency aspects of using interrupts. As you will
soon discover, an interrupt driven system is usually superior despite the complexity.
However, this is not always the case. For many systems, alternative methods provide bet-
ter performance.

17.7.1 Interrupt Driven I/O vs. Polling

The whole purpose of an interrupt driven system is to allow the CPU to continue pro-
cessing instructions while some I/O activity occurs. This is in direct contrast to a polling
system where the CPU continually tests an I/O device to see if the I/O operation is com-
plete. In an interrupt driven system, the CPU goes about its business and the I/O device
interrupts it when it needs servicing. This is generally much more efficient than wasting
CPU cycles polling a device while it is not ready.

The serial port is a perfect example of a device that works extremely well with inter-
rupt driven I/O. You can start a communication program that begins downloading a file
over a modem. Each time a character arrives, it generates an interrupt and the communi-
cation program starts up, buffers the character, and then returns from the interrupt. In the
meantime, another program (like a word processor) can be running with almost no perfor-
mance degradation since it takes so little time to process the serial port interrupts.

Contrast the above scenario with one where the serial communication program con-
tinually polls the serial communication chip to see if a character has arrived. In this case
the CPU spends all of its time looking for an input character even though one rarely (in
CPU terms) arrives. Therefore, no CPU cycles are left over to do other processing like run-
ning your word processor.

Suppose interrupts were not available and you wanted to allow background down-
loads while using your word processing program. Your word processing program would
have to test the input data on the serial port once every few milliseconds to keep from los-
ing any data. Can you imagine how difficult such a word processor would be to write? An
interrupt system is the clear choice in this case.

If downloading data while word processing seems far fetched, consider a more simple
case – the PC’s keyboard. Whenever a keypress interrupt occurs, the keyboard ISR reads
the key pressed and saves it in the system type ahead buffer for the moment when the
application wants to read the keyboard data. Can you imagine how difficult it would be to
write applications if you had to constantly poll the keyboard port yourself to keep from
losing characters? Even in the middle of a long calculation? Once again, interrupts pro-
vide an easy solution.

The 80x86 Instruction Set

Page 1015

17.7.2 Interrupt Service Time

Of course, the serial communication system just described is an example of a best case
scenario. The communication program takes so little time to do its job that most of the time
is left over for the word processing program. However, were to you run a different inter-
rupt driven I/O system, for example, copying files from one disk to another, the interrupt
service routine would have a noticeable impact on the performance of the word process-
ing system.

Two factors control an ISR’s impact on a computer system: the frequency of interrupts
and the interrupt service time. The frequency is how many times per second (or other time
measurement) a particular interrupt occurs. The interrupt service time is how long the ISR
takes to service the interrupt.

The nature of the frequency varies according to source of the interrupt. For example,
the timer chip generates evenly spaced interrupts about 18 times per second, likewise, a
serial port receiving at 9600bps generates better than 100 interrupts per second. On the
other hand, the keyboard rarely generates more than about 20 interrupts per second and
they are not very regular.

The interrupt service time is obviously dependent upon the number of instructions
the ISR must execute. The interrupt service time is also dependent upon the particular
CPU and clock frequency. The same ISR executing identical instructions on two CPUs will
run in less time on a faster machine.

The amount of time an interrupt service routine takes to handle an interrupt, multi-
plied by the frequency of the interrupt, determines the impact the interrupt will have on
system performance. Remember, every CPU cycle spent in an ISR is one less cycle avail-
able for your application programs. Consider the timer interrupt. Suppose the timer ISR
takes 100 µsec to complete its tasks. This means that the timer interrupt consumes 1.8
msec out of every second, or about 0.18% of the total computer time. Using a faster CPU
will reduce this percentage (by reducing the time spent in the ISR); using a slower CPU
will increase the percentage. Nevertheless, you can see that a short ISR such as this one
will not have a significant effect on overall system performance.

One hundred microseconds is fast for a typical timer ISR, especially when your sys-
tem has several timer ISRs chained together. However, even if the timer ISR took ten times
as long to execute, it would only rob the system of less than 2% of the available CPU
cycles. Even if it took 100 times longer (10 msec), there would only be an 18% performance
degradation; most people would barely notice such a degradation9.

Of course, one cannot allow the ISR to take as much time as it wants. Since the timer
interrupt occurs every 55 msec, the maximum time the ISR can use is just under 55msec. If
the ISR requires more time than there is between interrupts, the system will eventually
lose an interrupt. Furthermore, the system will spend all its time servicing the interrupt
rather than accomplishing anything else.

For many systems, having an ISR that consumes as much as 10% of the overall CPU
cycles will not prove to a problem. However, before you go off and start designing slow
interrupt service routines, you should remember that your ISR is probably not the only
ISR in the system. While your ISR is consuming 25% of the CPU cycles, there may be
another ISR that is doing the same thing; and another, and another, and… Furthermore,
there may be some ISRs that require fast servicing. For example, a serial port ISR may
need to read a character from the serial communications chip each millisecond or so. If
your timer ISR requires 4 msec to execute and does so with the interrupts turned off, the
serial port ISR will miss some characters.

Ultimately, of course, you would like to write ISRs so they are as fast as possible so
they have as little impact on system performance as they can. This is one of the main rea-

9. As a general rule, people begin to notice a real difference in performance between 25 and 50%. It isn’t instantly
obvious until about 50% (i.e., running at one-half the speed).

Chapter 17

Page 1016

sons most ISRs for DOS are still written in assembly language. Unless you are designing
an embedded system, one in which the PC runs only your application, you need to realize
that your ISRs must coexist with other ISRs and applications; you do not want the perfor-
mance of your ISR to adversely affect the performance of other code in the system.

17.7.3 Interrupt Latency

Interrupt latency is the time between the point a device signals that it needs service
and the point where the ISR provides the needed service. This is not instantaneous! At the
very least, the 8259 PIC needs to signal the CPU, the CPU needs to interrupt the current
program, push the flags and return address, obtain the ISR address, and transfer control to
the ISR. The ISR may need to push various registers, set up certain variables, check device
status to determine the source of the interrupt, and so on. Furthermore, there may be other
ISRs chained into the interrupt vector before you and they execute to completion before
transferring control to your ISR that actually services the device. Eventually, the ISR actu-
ally does whatever it is that the device needs done. In the best case on the fastest micro-
processors with simple ISRs, the latency could be under a microsecond. On slower
systems, with several ISRs in a chain, the latency could be as bad as several milliseconds.

For some devices, the interrupt latency is more important than the actual interrupt
service time. For example, an input device may only interrupt the CPU once every 10 sec-
onds. However, that device may be incapable of holding the data on its input port for
more than a millisecond. In theory, any interrupt service time less than 10 seconds is fine;
but the CPU must read the data within one millisecond of its arrival or the system will
lose the data.

Low interrupt latency (that is, responding quickly) is very important in many applica-
tions. Indeed, in some applications the latency requirements are so strict that you have to
use a very fast CPU or you have to abandon interrupts altogether and go back to polling.
What a minute! Isn’t polling less efficient than an interrupt driven system? How will poll-
ing improve things?

An interrupt driven I/O system improves system performance by allowing the CPU
to work on other tasks in between I/O operations. In principle, servicing interrupts takes
very little CPU time compared the arrival of interrupts to the system. By using interrupt
driven I/O, you can use all those other CPU cycles for some other purpose. However, sup-
pose the I/O device is producing service requests at such a rate that there are no free CPU
cycles. Interrupt driven I/O will provide few benefits in this case.

For example, suppose we have an eight bit I/O device connected to two I/O ports.
Suppose bit zero of port 310h contains a one if data is available and a zero otherwise. If
data is available, the CPU must read the eight bits at port 311h. Reading port 311h clears
bit zero of port 310h until the next byte arrives. If you wanted to read 8192 bytes from this
port, you could do this with the following short segment of code:

mov cx, 8192
mov dx, 310h
lea bx, Array ;Point bx at storage buffer

DataAvailLp: in al, dx ;Read status port.
shr al, 1 ;Test bit zero.
jnc DataAvailLp ;Wait until data is

available.
inc dx ;Point at data port.
in al, dx ;Read data.
mov [bx], al ;Store data into buffer.
inc bx ;Move on to next array

element.
dec dx ;Point back at status port.
loop DataAvailLp ;Repeat 8192 times.
 .
 .
 .

The 80x86 Instruction Set

Page 1017

This code uses a classical polling loop (DataAvailLp) to wait for each available charac-
ter. Since there are only three instructions in the polling loop, this loop can probably exe-
cute in just under a microsecond10. So it might take as much as one microsecond to
determine that data is available, in which case the code falls through and by the second
instruction in the sequence we’ve read the data from the device. Let’s be generous and say
that takes another microsecond. Suppose, instead, we use a interrupt service routine. A
well-written ISR combined with a good system hardware design will probably have laten-
cies measured in microseconds.

To measure the best case latency we could hope to achieve would require some sort of
hardware timer than begins counting once an interrupt event occurs. Upon entry into our
interrupt service routine we could read this counter to determine how much time has
passed between the interrupt and its service. Fortunately, just such a device exists on the
PC – the 8254 timer chip that provides the source of the 55 msec interrupt.

The 8254 timer chip actually contains three separate timers: timer #0, timer #1, and
timer #2. The first timer (timer #0) provides the clock interrupt, so it will be the focus of
our discussion. The timer contains a 16 bit register that the 8254 decrements at regular
intervals (1,193,180 times per second). Once the timer hits zero, it generates an interrupt
on the 8259 IRQ 0 line and then wraps around to 0FFFFh and continues counting down
from that point. Since the counter automatically resets to 0FFFFh after generating each
interrupt, this means that the 8254 timer generates interrupts every 65,536/1,193,180 sec-
onds, or once every 54.9254932198 msec, which is 18.2064819336 times per second. We’ll
just call these once every 55 msec or 18 (or 18.2) times per second, respectively. Another
way to view this is that the 8254 decrements the counter once every 838 nanoseconds (or
0.838 µsec).

The following short assembly language program measures interrupt latency by patch-
ing into the int 8 vector. Whenever the timer chip counts down to zero, it generates an
interrupt that directly calls this program’s ISR. The ISR quickly reads the timer chip’s
counter register, negates the value (so 0FFFFh becomes one, 0FFFEh becomes two, etc.),
and then adds it to a running total. The ISR also increments a counter so that it can keep
track of the number of times it has added a counter value to the total. Then the ISR jumps
to the original int 8 handler. The main program, in the mean time, simply computes and
displays the current average read from the counter. When the user presses any key, this
program terminates.

; This program measures the latency of an INT 08 ISR.
; It works by reading the timer chip immediately upon entering
; the INT 08 ISR By averaging this value for some number of
; executions, we can determine the average latency for this
; code.

.xlist

.386
option segment:use16
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

; All the variables are in the code segment in order to reduce ISR
; latency (we don’t have to push and set up DS, saving a few instructions
; at the beginning of the ISR).

OldInt8 dword ?
SumLatency dword 0

10. On a fast CPU (.e.g, 100 MHz Pentium), you might expect this loop to execute in much less time than one
microsecond. However, the in instruction is probably going to be quite slow because of the wait states associated
with external I/O devices.

Chapter 17

Page 1018

Executions dword 0
Average dword 0

; This program reads the 8254 timer chip. This chip counts from
; 0FFFFh down to zero and then generates an interrupt. It wraps
; around from 0 to 0FFFFh and continues counting down once it
; generates the interrupt.
;
; 8254 Timer Chip port addresses:

Timer0_8254 equ 40h
Cntrl_8254 equ 43h

; The following ISR reads the 8254 timer chip, negates the result
; (because the timer counts backwards), adds the result to the
; SumLatency variable, and then increments the Executions variable
; that counts the number of times we execute this code. In the
; mean time, the main program is busy computing and displaying the
; average latency time for this ISR.
;
; To read the 16 bit 8254 counter value, this code needs to
; write a zero to the 8254 control port and then read the
; timer port twice (reads the L.O. then H.O. bytes). There
; needs to be a short delay between reading the two bytes
; from the same port address.

TimerISR proc near
push ax
mov eax, 0 ;Ch 0, latch & read data.
out Cntrl_8254, al ;Output to 8253 cmd register.
in al, Timer0_8254 ;Read latch #0 (LSB) & ignore.
mov ah, al
jmp SettleDelay ;Settling delay for 8254 chip.

SettleDelay: in al, Timer0_8254 ;Read latch #0 (MSB)
xchg ah, al
neg ax ;Fix, ‘cause timer counts down.
add cseg:SumLatency, eax
inc cseg:Executions
pop ax
jmp cseg:OldInt8

TimerISR endp

Main proc
meminit

; Begin by patching in the address of our ISR into int 8’s vector.
; Note that we must turn off the interrupts while actually patching
; the interrupt vector and we must ensure that interrupts are turned
; back on afterwards; hence the cli and sti instructions. These are
; required because a timer interrupt could come along between the two
; instructions that write to the int 8 interrupt vector. Since the
; interrupt vector is in an inconsistent state at that point, this
; could cause the system to crash.

mov ax, 0
mov es, ax
mov ax, es:[8*4]
mov word ptr OldInt8, ax
mov ax, es:[8*4 + 2]
mov word ptr OldInt8+2, ax

cli
mov word ptr es:[8*4], offset TimerISR
mov es:[8*4 + 2], cs
sti

; First, wait for the first call to the ISR above. Since we will be dividing

The 80x86 Instruction Set

Page 1019

; by the value in the Executions variable, we need to make sure that it is
; greater than zero before we do anything.

Wait4Non0: cmp cseg:Executions, 0
je Wait4Non0

; Okay, start displaying the good values until the user presses a key at
; the keyboard to stop everything:

DisplayLp: mov eax, SumLatency
cdq ;Extends eax->edx.
div Executions
mov Average, eax
printf
byte “Count: %ld, average: %ld\n”,0
dword Executions, Average

mov ah, 1 ;Test for keystroke.
int 16h
je DisplayLp
mov ah, 0 ;Read that keystroke.
int 16h

; Okay, restore the interrupt vector. We need the interrupts off
; here for the same reason as above.

mov ax, 0
mov es, ax
cli
mov ax, word ptr OldInt8
mov es:[8*4], ax
mov ax, word ptr OldInt8+2
mov es:[8*4+2], ax
sti

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

On a 66 MHz 80486 DX/2 processor, the above code reports an average value of 44 after it
has run for about 10,000 iterations. This works out to about 37 µsec between the device
signalling the interrupt and the ISR being able to process it11. The latency of polled I/O would
probably be an order of magnitude less than this!

Generally, if you have some high speed application like audio or video recording or
playback, you probably cannot afford the latencies associated with interrupt I/O. On the
other hand, such applications demand such high performance out of the system, that you
probably wouldn’t have any CPU cycles left over to do other processing while waiting for
I/O.

11. Patching into the int 1Ch interrupt vector produces latencies in the 137 µsec range.

Chapter 17

Page 1020

Another issue with respect to ISR latency is latency consistency. That is, is there the
same amount of latency from interrupt to interrupt? Some ISRs can tolerate considerable
latency as long as it is consistent (that is, the latency is roughly the same from interrupt to
interrupt). For example, suppose you want to patch into the timer interrupt so you can
read an input port every 55 msec and store this data away. Later, when processing the
data, your code might work under the assumption that the data readings are 55 msec (or
54.9…) apart. This might not be true if there are other ISRs in the timer interrupt chain
before your ISR. For example, there may be an ISR that counts off 18 interrupts and then
executes some code sequence that requires 10 msec. This means that 16 out of every 18
interrupts your data collection routine would collect data at 55 msec intervals right on the
nose. But when that 18th interrupt occurs, the other timer ISR will delay 10 msec before
passing control to your routine. This means that your 17th reading will be 65 msec since
the last reading. Don’t forget, the timer chip is still counting down during all of this, that
means there are now only 45 msec to the next interrupt. Therefore, your 18th reading
would occur 45 msec after the 17th. Hardly a consistent pattern. If your ISR needs a consis-
tent latencies, you should try to install your ISR as early in the interrupt chain as possible.

17.7.4 Prioritized Interrupts

Suppose you have the interrupts turned off for a brief spell (perhaps you are process-
ing some interrupt) and two interrupt requests come in while the interrupts are off. What
happens when you turn the interrupts back on? Which interrupt will the CPU first ser-
vice? The obvious answer would be “whichever interrupt occurred first.” However, sup-
pose the both occurred at exactly the same time (or, at least, within a short enough time
frame that we cannot determine which occurred first), or maybe, as is really the case, the
8259 PIC cannot keep track of which interrupt occurred first? Furthermore, what if one
interrupt is more important that another? Suppose for example, that one interrupt tells
that the user has just pressed a key on the keyboard and a second interrupt tells you that
your nuclear reactor is about to melt down if you don’t do something in the next 100 µsec.
Would you want to process the keystroke first, even if its interrupt came in first? Probably
not. Instead, you would want to prioritizes the interrupts on the basis of their importance;
the nuclear reactor interrupt is probably a little more important than the keystroke inter-
rupt, you should probably handle it first.

The 8259 PIC provides several priority schemes, but the PC BIOS initializes the 8259
to use fixed priority. When using fixed priorities, the device on IRQ 0 (the timer) has the
highest priority and the device on IRQ 7 has the lowest priority. Therefore, the 8259 in the
PC (running DOS) always resolves conflicts in this manner. If you were going to hook that
nuclear reactor up to your PC, you’d probably want to use the nonmaskable interrupt since
it has a higher priority than anything provided by the 8259 (and you can’t mask it with a
CLI instruction).

17.8 Debugging ISRs

Although writing ISRs can simplify the design of many types of programs, ISRs are
almost always very difficult to debug. There are two main reasons ISRs are more difficult
than standard applications to debug. First, as mentioned earlier, errant ISRs can modify
values the main program uses (or, worse yet, that some other program in memory is
using) and it is difficult to pin down the source of the error. Second, most debuggers have
fits when you attempt to set breakpoints within an ISR.

If your code includes some ISRs and the program seems to be misbehaving and you
cannot immediately see the reason, you should immediately suspect interference by the
ISR. Many programmers have forgotten about ISRs appearing in their code and have
spent weeks attempting to locate a bug in their non-ISR code, only to discover the prob-
lem was with the ISR. Always suspect the ISR first. Generally, ISRs are short and you can

The 80x86 Instruction Set

Page 1021

quickly eliminate the ISR as the cause of your problem before trying to track the bug
down elsewhere.

Debuggers often have problems because they are not reentrant or they call BIOS or
DOS (that are not reentrant) so if you set a breakpoint in an ISR that has interrupted BIOS
or DOS and the debugger calls BIOS or DOS, the system may crash because of the reen-
trancy problems. Fortunately, most modern debuggers have a remote debugging mode
that lets you connect a terminal or another PC to a serial port and execute the debug com-
mands on that second display and keyboard. Since the debugger talks directly to the serial
chip, it avoids calling BIOS or DOS and avoids the reentrancy problems. Of course, this
doesn’t help much if you’re writing a serial ISR, but it works fine with most other pro-
grams.

A big problem when debugging interrupt service routines is that the system crashes
immediately after you patch the interrupt vector. If you do not have a remote debugging
facility, the best approach to debug this code is to strip the ISR to its bare essentials. This
might be the code that simply passes control on to the next ISR in the interrupt chain (if
applicable). Then add one section of code at a time back to your ISR until the ISR fails.

Of course, the best debugging strategy is to write code that doesn’t have any bugs.
While this is not a practical solution, one thing you can do is attempt to do as little as pos-
sible in the ISR. Simply read or write the device’s data and buffer any inputs for the main
program to handle later. The smaller your ISR is, the less complex it is, the higher the
probability is that it will not contain any bugs.

Debugging ISRs, unfortunately, is not easy and it is not something you can learn right
out of a book. It takes lots of experience and you will need to make a lot of mistakes. There
is unfortunately, but there is no substitute for experience when debugging ISRs.

17.9 Summary

This chapter discusses three phenomena occurring in PC systems: interrupts (hard-
ware), traps, and exceptions. An interrupt is an asynchronous procedure call the CPU gen-
erates in response to an external hardware signal. A trap is a programmer-supplied call to
a routine and is a special form of a procedure call. An exception occurs when a program
executes and instruction that generates some sort of error. For additional details, see

• “Interrupts, Traps, and Exceptions” on page 995.

When an interrupt, trap, or exception occurs, the 80x86 CPU pushes the flags and
transfers control to an interrupt service routine (ISR). The 80x86 supports an interrupt vector
table that provides segmented addresses for up to 256 different interrupts. When writing
your own ISR, you need to store the address of you ISR in an appropriate location in the
interrupt vector table to activate that ISR. Well-behaved programs also save the original
interrupt vector value so they can restore it when they terminate. For the details, see

• “80x86 Interrupt Structure and Interrupt Service Routines (ISRs)” on
page 996

A trap, or software interrupt, is nothing more than the execution of an 80x86 “int n”
instruction. Such an instruction transfers control to the ISR whose vector appears in the
nth entry in the interrupt vector table. Generally, you would use a trap to call a routine in a
resident program appearing somewhere in memory (like DOS or BIOS). For more infor-
mation, see

• “Traps” on page 999

An exception occurs whenever the CPU executes an instruction and that instruction is
illegal or the execution of that instruction generates some sort of error (like division by
zero). The 80x86 provides several built-in exceptions, although this text only deals with
the exceptions available in real mode. For the details, see

• “Exceptions” on page 1000

Chapter 17

Page 1022

• “Divide Error Exception (INT 0)” on page 1000
• “Single Step (Trace) Exception (INT 1)” on page 1000
• “Breakpoint Exception (INT 3)” on page 1001
• “Overflow Exception (INT 4/INTO)” on page 1001
• “Bounds Exception (INT 5/BOUND)” on page 1001
• “Invalid Opcode Exception (INT 6)” on page 1004
• “Coprocessor Not Available (INT 7)” on page 1004

The PC provides hardware support for up to 15 vectored interrupts using a pair of
8259A programmable interrupt controller chips (PICs). Devices that normally generate
hardware interrupts include a timer, the keyboard, serial ports, parallel ports, disk drives,
sound cards, the real time clock, and the FPU. The 80x86 lets you enable and disable all
maskable interrupts with the cli and sti instructions. The PIC also lets you individually
mask the devices that can interrupt the system. However, the 80x86 provides a special
nonmaskable interrupt that has a higher priority than the other hardware interrupts and
cannot be disabled by a program. For more details on these hardware interrupts, see

• “Hardware Interrupts” on page 1004
• “The 8259A Programmable Interrupt Controller (PIC)” on page 1005
• “The Timer Interrupt (INT 8)” on page 1007
• “The Keyboard Interrupt (INT 9)” on page 1008
• “The Serial Port Interrupts (INT 0Bh and INT 0Ch)” on page 1008
• “The Parallel Port Interrupts (INT 0Dh and INT 0Fh)” on page 1008
• “The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h)” on

page 1009
• “The Real-Time Clock Interrupt (INT 70h)” on page 1009
• “The FPU Interrupt (INT 75h)” on page 1009
• “Nonmaskable Interrupts (INT 2)” on page 1009
• “Other Interrupts” on page 1009

Interrupt service routines that you write may need to coexist with other ISRs in mem-
ory. In particular, you may not be able to simply replace an interrupt vector with the
address of your ISR and let your ISR take over from there. Often, you will need to create
an interrupt chain and call the previous ISR in the interrupt chain once you are done pro-
cessing the interrupt. To see why you create interrupt chains, and to learn how to create
them, see

• “Chaining Interrupt Service Routines” on page 1010

With interrupts comes the possibility of reentrancy. that is, the possibility that a routine
might be interrupt and called again before the first call finished execution. This chapter
introduces the concept of reentrancy and gives some examples that demonstrate problems
with nonreentrant code. For details, see

• “Reentrancy Problems” on page 1012

The whole purpose of an interrupt driven system is to improve the efficiency of that
system. Therefore, it should come as no surprise that ISRs should be as efficient as possi-
ble. This chapter discusses why interrupt driven I/O systems can be more efficient and
contrasts interrupt driven I/O with polled I/O. However, interrupts can cause problems if
the corresponding ISR is too slow. Therefore, programmers who write ISRs need to be
aware of such parameters as interrupt service time, frequency of interrupts, and interrupt
latency. To learn about these concepts, see

• “The Efficiency of an Interrupt Driven System” on page 1014
• “Interrupt Driven I/O vs. Polling” on page 1014
• “Interrupt Service Time” on page 1015
• “Interrupt Latency” on page 1016

If multiple interrupts occur simultaneously, the CPU must decide which interrupt to
handle first. The 8259 PIC and the PC use a prioritized interrupt scheme assigning the
highest priority to the timer and work down from there. The 80x86 always processes the
interrupt with the highest priority first. For more details, see

The 80x86 Instruction Set

Page 1023

• “Prioritized Interrupts” on page 1020

Chapter 17

Page 1024

Page 1025

Resident Programs Chapter 18

Most MS-DOS applications are

transient

. They load into memory, execute, terminate, and DOS uses
the memory allocated to the application for the next program the user executes. Resident programs follow
these same rules, except for the last. A resident program, upon termination, does not return all memory
back to DOS. Instead, a portion of the program remains

resident

, ready to be reactivated by some other
program at a future time.

Resident programs, also known as

terminate and stay resident programs

 or

TSRs

, provide a tiny
amount of

multitasking

 to an otherwise single tasking operating system. Until Microsoft Windows
became popular, resident programs were the most popular way to allow multiple applications to coexist
in memory at one time. Although Windows has diminished the need for TSRs for background processing,
TSRs are still valuable for writing

device drivers

,

antiviral tools

, and

program patches.

 This chapter will dis-
cuss the issues you must deal with when writing resident programs.

18.1 DOS Memory Usage and TSRs

When you first boot DOS, the memory layout will look something like the following:

DOS maintains a

free memory pointer

 that points the the beginning of the block of free memory.
When the user runs an application program, DOS loads this application starting at the address the free
memory pointer contains. Since DOS generally runs only a single application at a time, all the memory
from the free memory pointer to the end of RAM (0BFFFFh) is available for the application’s use:

When the program terminates normally via DOS function 4Ch (the Standard Library

exitpgm

 macro),
MS-DOS reclaims the memory in use by the application and resets the free memory pointer to just above
DOS in low memory.

High Memory Area (HMA) and Upper Memory Blocks (UMB)

Video, ROM, and Adapter memory space
0BFFFFh (640K)

Interrupt vectors, BIOS variables, DOS variables, and
lower memory portion of DOS.

Memory available for application use

Free Memory Pointer

DOS Memory Map (no active application)

00000h

0FFFFFh

0BFFFFh (640K)
Free Memory Pointer

DOS Memory Map (w/active application)

00000h

0FFFFFh

Memory in use by application

Thi d t t d ith F M k 4 0 2

Chapter 18

Page 1026

MS-DOS provides a second termination call which is identical to the terminate call with one excep-
tion, it does not reset the free memory pointer to reclaim all the memory in use by the application. Instead,
this

terminate and stay resident

 call frees all but a specified block of memory. The TSR call (

ah

=31h)
requires two parameters, a process termination code in the

al

 register (usually zero) and

dx

 must contain
the size of the memory block to protect, in paragraphs. When DOS executes this code, it adjusts the free
memory pointer so that it points at a location dx*16 bytes above the program’s PSP (see “MS-DOS,
PC-BIOS, and File I/O” on page 699). This leaves memory looking like this:

When the user executes a new application, DOS loads it into memory at the new free memory pointer
address, protecting the resident program in memory:

When this new application terminates, DOS reclaims its memory and readjusts the free memory pointer to
its location before running the application – just above the resident program. By using this free memory
pointer scheme, DOS can protect the memory in use by the resident program

1

.

The trick to using the terminate and stay resident call is to figure out how many paragraphs should
remain resident. Most TSRs contain two sections of code: a

resident

 portion and a

transient

 portion. The
transient portion is the data, main program, and support routines that execute when you run the program
from the command line. This code will probably never execute again. Therefore, you should not leave it in
memory when your program terminates. After all, every byte consumed by the TSR program is one less
byte available to other application programs.

The resident portion of the program is the code that remains in memory and provides whatever func-
tions are necessary of the TSR. Since the PSP is usually right before the first byte of program code, to effec-
tively use the DOS TSR call, your program must be organized as follows:

1. Of course, DOS could never protect the resident program from an errant application. If the application decides to write zeros all over memory,
the resident program, DOS, and many other memory areas will be destroyed.

0BFFFFh (640K)

Free Memory Pointer

DOS Memory Map (w/resident application)

00000h

0FFFFFh

Memory in use by resident application

0BFFFFh (640K)
Free Memory Pointer

DOS Memory Map (w/resident and normal application)

00000h

0FFFFFh

Memory in use by resident application

Memory in use by normal application

Resident Programs

Page 1027

To use TSRs effectively, you need to organize your code and data so that the resident portions of your
program loads into lower memory addresses and the transient portions load into the higher memory
addresses. MASM and the Microsoft Linker both provide facilities that let you control the loading order of
segments within your code (see “MASM: Directives & Pseudo-Opcodes” on page 355). The simple solu-
tion, however, is to put all your resident code and data in a single segment and make sure that this seg-
ment appears

first

 in every source module of your program. In particular, if you are using the UCR
Standard Library SHELL.ASM file, you must make sure that you define your resident segments

before

 the
include directives for the standard library files. Otherwise MS-DOS will load all the standard library rou-
tines

before

 your resident segment and that would waste considerable memory. Note that you only need
to define your resident segment first, you do not have to place all the resident code and data before the
includes. The following will work just fine:

ResidentSeg segment para public ‘resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

ResidentSeg segment para public ‘resident’
assume cs:ResidentSeg, ds:ResidentSeg

PSP word ? ;This var must be here!

; Put resident code and data here

ResidentSeg ends

dseg segment para public ‘data’

; Put transient data here

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Put Transient code here.

cseg ends
etc.

The purpose of the

EndResident

 segment will become clear in a moment. For more information on
DOS memory ordering, see Chapter Six.

Memory Organization for a Resident Program

Low addresses

High addresses

PSP

Resident code and data

Transient code

SSEG, ZZZZZZSEG, etc.

Chapter 18

Page 1028

Now the only problem is to figure out the size of the resident code, in paragraphs. With your code
structured in the manner shown above, determining the size of the resident program is quite easy, just use
the following statements to terminate the transient portion of your code (in cseg):

mov ax, ResidentSeg ;Need access to ResidentSeg
mov es, ax
mov ah, 62h ;DOS

Get PSP

 call.
int 21h
mov es:PSP, bx ;Save PSP value in PSP variable.

; The following code computes the sixe of the resident portion of the code.
; The EndResident segment is the first segment in memory after resident code.
; The program’s PSP value is the segment address of the start of the resident
; block. By computing EndResident-PSP we compute the size of the resident
; portion in paragraphs.

mov dx, EndResident ;Get EndResident segment address.
sub dx, bx ;Subtract PSP.

; Okay, execute the TSR call, preserving only the resident code.

mov ax, 3100h ;AH=31h (TSR), AL=0 (return code).
int 21h

Executing the code above returns control to MS-DOS, preserving your resident code in memory.

There is one final memory management detail to consider before moving on to other topics related to
resident programs – accessing data within an resident program. Procedures within a resident program
become active in response to a direct call from some other program or a hardware interrupt (see the next
section). Upon entry, the resident routine

may

 specify that certain registers contain various parameters,
but one thing you cannot expect is for the calling code to properly set up the segment registers for you.
Indeed, the only segment register that will contain a meaningful value (to the resident code) is the code
segment register. Since many resident functions will want to access local data, this means that those func-
tions may need to set up

ds

 or some other segment register(s) upon initial entry. For example, suppose
you have a function, count, that simply counts the number of times some other code calls it once it has
gone resident. One would thing that the body of this function would contain a single instruction:

inc counter

. Unfortunately, such an instruction would increment the variable at

counter

’s offset in the
current data segment (that is, the segment pointed at by the

ds

 register). It is unlikely that

ds

 would be
pointing at the data segment associated with the count procedure. Therefore, you would be incrementing
some word in a different segment (probably the caller’s data segment). This would produce disastrous
results.

There are two solutions to this problem. The first is to put all variables in the code segment (a very
common practice in resident sections of code) and use a

cs:

 segment override prefix on all your variables.
For example, to increment the

counter

 variable you could use the instruction

inc cs:counter

. This
technique works fine if there are only a few variable references in your procedures. However, it suffers
from a few serious drawbacks. First, the segment override prefix makes your instructions larger and
slower; this is a serious problem if you access many different variables throughout your resident code. Sec-
ond, it is easy to forget to place the segment override prefix on a variable, thereby causing the TSR func-
tion to wipe out memory in the caller’s data segment. Another solution to the segment problem is to
change the value in the

ds

 register upon entry to a resident procedure and restore it upon exit. The fol-
lowing code demonstrates how to do this:

push ds ;Preserve original DS value.
push cs ;Copy CS’s value to DS.
pop ds
inc Counter ;Bump the variable’s value.
pop ds ;Restore original DS value.

Of course, using the cs: segment override prefix is a much more reasonable solution here. However, had
the code been extensive and had accessed many local variables, loading ds with cs (assuming you put
your variables in the resident segment) would be more efficient.

Resident Programs

Page 1029

18.2 Active vs. Passive TSRs

Microsoft identifies two types of TSR routines: active and passive. A passive TSR is one that activates
in response to an explicit call from an executing application program. An active TSR is one that responds
to a hardware interrupt or one that a hardware interrupt calls.

TSRs are almost always interrupt service routines (see “80x86 Interrupt Structure and Interrupt Service
Routines (ISRs)” on page 996). Active TSRs are typically hardware interrupt service routines and passive
TSRs are generally trap handlers (see “Traps” on page 999). Although, in theory, it is possible for a TSR to
determine the address of a routine in a passive TSR and call that routine directly, the 80x86 trap mecha-
nism is the perfect device for calling such routines, so most TSRs use it.

Passive TSRs generally provide a callable library of routines or extend some DOS or BIOS call. For
example, you might want to reroute all characters an application sends to the printer to a file. By patching
into the int 17h vector (see “The PC Parallel Ports” on page 1199) you can intercept all characters destined
for the printer

2

. Or you could add additional functionality to a BIOS routine by chaining into its interrupt
vector. For example, you could add new function calls to the int 10h BIOS video services routine (see
“MS-DOS, PC-BIOS, and File I/O” on page 699) by looking for a special value in ah and passing all other
int 10h calls on through to the original handler. Another use of a passive TSR is to provide a brand new set
of services through a new interrupt vector that the BIOS does not already provide. The mouse services,
provided by the mouse.com driver, is a good example of such a TSR.

Active TSRs generally serve one of two functions. They either service a hardware interrupt directly, or
they piggyback off the hardware interrupt so they can activate themselves on a periodic basis without an
explicit call from an application.

Pop-up

 programs are a good example of active TSRs. A pop-up program
chains itself into the PC’s keyboard interrupt (int 9). Pressing a key activates such a program. The program
can read the PC’s keyboard port (see “The PC Keyboard” on page 1153) to see if the user is pressing a spe-
cial key sequence. Should this keysequence appear, the application can save a portion of the screen mem-
ory and “pop-up” on the screen, perform some user-requested function, and then restore the screen when
done. Borland’s Sidekick

 program is an example of an extremely popular TSR program, though many
others exist.

Not all active TSRs are pop-ups, though. Certain viruses are good examples of active TSRs. They
patch into various interrupt vectors that activate them automatically so they can go about their dastardly
deeds. Fortunately, some anti-viral programs are also good examples of active TSRs, they patch into those
same interrupt vectors and detect the activities of a virus and attempt to limit the damage the virus may
cause.

Note that a TSR may contain both active and passive components. That is, there may be certain rou-
tines that a hardware interrupt invokes and others that an application calls explicitly. However, if any rou-
tine in a resident program is active, we’ll claim that the entire TSR is active.

The following program is a short example of a TSR that provides both active and passive routines.
This program patches into the int 9 (keyboard interrupt) and int 16h (keyboard trap) interrupt vectors.
Every time the system generates a keyboard interrupt, the active routine (int 9) increments a counter. Since
the keyboard usually generates two keyboard interrupts per keystroke, dividing this value by two pro-
duces the approximate number of keys typed since starting the TSR

3

. A passive routine, tied into the
int 16h vector, returns the number of keystrokes to the calling program. The following code provides two
programs, the TSR and a short application to display the number of keystrokes since the TSR started run-
ning.

; This is an example of an active TSR that counts keyboard interrupts
; once activated.

; The resident segment definitions must come before everything else.

2. Assuming the application uses DOS or BIOS to print the characters and does not talk directly to the printer port itself.
3. It is not an exact count because some keys generate more than two keyboard interrupts.

Chapter 18

Page 1030

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; The following variable counts the number of keyboard interrupts

KeyIntCnt word 0

; These two variables contain the original INT 9 and INT 16h
; interrupt vector values:

OldInt9 dword ?
OldInt16 dword ?

; MyInt9- The system calls this routine every time a keyboard
; interrupt occus. This routine increments the
; KeyIntCnt variable and then passes control on to the
; original Int9 handler.

MyInt9 proc far
inc ResidentSeg:KeyIntCnt
jmp ResidentSeg:OldInt9

MyInt9 endp

; MyInt16- This is the passive component of this TSR. An
; application explicitly calls this routine with an
; INT 16h instruction. If AH contains 0FFh, this
; routine returns the number of keyboard interrupts
; in the AX register. If AH contains any other value,
; this routine passes control to the original INT 16h
; (keyboard trap) handler.

MyInt16 proc far
cmp ah, 0FFh
je ReturnCnt
jmp ResidentSeg:OldInt16;Call original handler.

; If AH=0FFh, return the keyboard interrupt count

ReturnCnt: mov ax, ResidentSeg:KeyIntCnt
iret

MyInt16 endp

ResidentSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

Resident Programs

Page 1031

mov ax, 0
mov es, ax

print
byte “Keyboard interrupt counter TSR program”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 and INT 16 interrupt vectors. Note that the
; statements above have made ResidentSeg the current data segment,
; so we can store the old INT 9 and INT 16 values directly into
; the OldInt9 and OldInt16 variables.

cli ;Turn off interrupts!
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], seg ResidentSeg

mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Here’s the application that calls MyInt16 to print the number of keystrokes:

; This is the companion program to the keycnt TSR.
; This program calls the “MyInt16” routine in the TSR to
; determine the number of keyboard interrupts. It displays
; the approximate number of keystrokes (keyboard ints/2)
; and quits.

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

Main proc
meminit

print

Chapter 18

Page 1032

byte “Approximate number of keys pressed: “,0
mov ah, 0FFh
int 16h
shr ax, 1 ;Must divide by two.
putu
putcr
ExitPgm

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

18.3 Reentrancy

One big problem with active TSRs is that their invocation is asynchronous. They can activate at the
touch of a keystroke, timer interrupt, or via an incoming character on the serial port, just to name a few.
Since they activate on a hardware interrupt, the PC could have been executing just about any code when
the interrupt came along. This isn’t a problem unless the TSR itself decides to call some foreign code, such
as DOS, a BIOS routine, or some other TSR. For example, the main application may be making a DOS call
when a timer interrupt activates a TSR, interrupting the call to DOS while the CPU is still executing code
inside DOS. If the TSR attempts to make a call to DOS at this point, then this will

reenter

 DOS. Of course,
DOS is not reentrant, so this creates all kinds of problems (usually, it hangs the system). When writing
active TSRs that call other routines besides those provided directly in the TSR, you must be aware of possi-
ble reentrancy problems.

Note that passive TSRs never suffer from this problem. Indeed, any TSR routine you call passively will
execute in the caller’s environment. Unless some other hardware ISR or active TSR makes the call to your
routine, you do not need to worry about reentrancy with passive routines. However, reentrancy is an issue
for active TSR routines and passive routines that active TSRs call.

18.3.1 Reentrancy Problems with DOS

DOS is probably the biggest sore point to TSR developers. DOS is not reentrant yet DOS contains
many services a TSR might use. Realizing this, Microsoft has added some support to DOS to allow TSRs to
see if DOS is currently active. After all, reentrancy is only a problem if you call DOS while it is already
active. If it isn’t already active, you can certainly call it from a TSR with no ill effects.

MS-DOS provides a special one-byte flag (InDOS) that contains a zero if DOS is currently active and a
non-zero value if DOS is already processing an application request. By testing the InDOS flag your TSR
can determine if it can safely make a DOS call. If this flag is zero, you can always make the DOS call. If this
flag contains one, you may not be able to make the DOS call. MS-DOS provides a function call,

Get InDOS
Flag Address

, that returns the address of the InDOS flag. To use this function, load

ah

 with 34h and call
DOS. DOS will return the address of the InDOS flag in

es:bx

. If you save this address, your resident pro-
grams will be able to test the InDOS flag to see if DOS is active.

Actually, there are two flags you should test, the InDOS flag and the

critical error flag

 (criterr). Both
of these flags should contain zero before you call DOS from a TSR. In DOS version 3.1 and later, the criti-
cal error flag appears in the byte just before the InDOS flag.

Resident Programs

Page 1033

So what should you do if these flags aren’t both zero? It’s easy enough to say “hey, come back and do
this stuff later when MS-DOS returns back to the user program.” But how do you do this? For example, if a
keyboard interrupt activates your TSR and you pass control on to the real keyboard handler because DOS
is busy, you can’t expect your TSR to be magically restarted later on when DOS is no longer active.

The trick is to patch your TSR into the timer interrupt as well as the keyboard interrupt. When the key-
stroke interrupt wakes your TSR and you discover that DOS is busy, the keyboard ISR can simply set a flag
to tell itself to try again later; then it passes control to the original keyboard handler. In the meantime, a
timer ISR you’ve written is constantly checking this flag you’ve created. If the flag is clear, it simply passes
control on to the original timer interrupt handler, if the flag is set, then the code checks the InDOS and
CritErr flags. If these guys say that DOS is busy, the timer ISR passes control on to the original timer han-
dler. Shortly after DOS finishes whatever it was doing, a timer interrupt will come along and detect that
DOS is no longer active. Now your ISR can take over and make any necessary calls to DOS that it wants.
Of course, once your timer code determines that DOS is not busy, it should clear the “I want service” flag
so that future timer interrupts don’t inadvertently restart the TSR.

There is only one problem with this approach. There are certain DOS calls that can take an indefinite
amount of time to execute. For example, if you call DOS to read a key from the keyboard (or call the Stan-
dard Library’s

getc

 routine that calls DOS to read a key), it could be

hours

,

days

, or even longer before
somebody actually bothers to press a key. Inside DOS there is a loop that waits until the user actually
presses a key. And until the user presses some key, the InDOS flag is going to remain non-zero. If you’ve
written a timer-based TSR that is buffering data every few seconds and needs to write the results to disk
every now and then, you will overflow your buffer with new data if you wait for the user, who just went to
lunch, to press a key in DOS’ command.com program.

Luckily, MS-DOS provides a solution to this problem as well – the idle interrupt. While MS-DOS is in
an indefinite loop wait for an I/O device, it continually executes an

 int 28h i

nstruction. By patching into
the int 28h vector, your TSR can determine when DOS is sitting in such a loop. When DOS executes the
int 28h instruction, it is safe to make any DOS call whose function number (the value in

ah

) is greater than
0Ch.

So if DOS is busy when your TSR wants to make a DOS call, you must use either a timer interrupt or
the idle interrupt (int 28h) to activate the portion of your TSR that must make DOS calls. One final thing to
keep in mind is that

whenever you test or modify any of the above mentioned flags, you are in a critical
section

. Make sure the interrupts are off. If not, your TSR make activate two copies of itself or you may
wind up entering DOS at the same time some other TSR enters DOS.

An example of a TSR using these techniques will appear a little later, but there are some additional
reentrancy problems we need to discuss first.

18.3.2 Reentrancy Problems with BIOS

DOS isn’t the only non-reentrant code a TSR might want to call. The PC’s BIOS routines also fall into
this category. Unfortunately, BIOS doesn’t provide an “InBIOS” flag or a multiplex interrupt. You will have
to supply such functionality yourself.

The key to preventing reentering a BIOS routine you want to call is to use a

wrapper

. A wrapper is a
short ISR that patches into an existing BIOS interrupt specifically to manipulate an InUse flag. For exam-
ple, suppose you need to make an int 10h (video services) call from within your TSR. You could use the
following code to provide an “Int10InUse” flag that your TSR could test:

MyInt10 proc far
inc cs:Int10InUse
pushf
call cs:OldInt10
dec cs:Int10InUse
iret

MyInt10 endp

Chapter 18

Page 1034

Assuming you’ve initialized the Int10InUse variable to zero, the in use flag will contain zero when it is
safe to execute an int 10h instruction in your TSR, it will contain a non-zero value when the interrupt 10h
handler is busy. You can use this flag like the InDOS flag to defer the execution of your TSR code.

Like DOS, there are certain BIOS routines that may take an indefinite amount of time to complete.
Reading a key from the keyboard buffer, reading or writing characters on the serial port, or printing char-
acters to the printer are some examples. While, in some cases, it is possible to create a wrapper that lets
your TSR activate itself while a BIOS routine is executing one of these polling loops, there is probably no
benefit to doing so. For example, if an application program is waiting for the printer to take a character
before it sends another to printer, having your TSR preempt this and attempt to send a character to the
printer won’t accomplish much (other than scramble the data sent to the print). Therefore, BIOS wrappers
generally don’t worry about

indefinite postponement

in a BIOS routine.

5, 8, 9, D, E, 10, 13, 16, 17, 21, 28

If you run into problems with your TSR code and certain application programs, you may want to
place wrappers around the following interrupts to see if this solves your problem: int 5, int 8, int 9, int B,
int C, int D, int E, int 10, int 13, int 14, int 16, or int 17. These are common culprits when TSR problems
develop.

18.3.3 Reentrancy Problems with Other Code

Reentrancy problems occur in other code you might call as well. For example, consider the UCR Stan-
dard Library. The UCR Standard Library is not reentrant. This usually isn’t much of a problem for a couple
of reasons. First, most TSRs do

not

 call Standard Library subroutines. Instead, they provide results that
normal applications can use; those applications use the Standard Library routines to manipulate such
results. A second reason is that were you to include some Standard Library routines in a TSR, the applica-
tion would have a

separate

 copy of the library routines. The TSR might execute an strcmp instruction
while the application is in the middle of an strcmp routine,

but these are not the same routines!

 The TSR is
not reentering the application’s code, it is executing a separate routine.

However, many of the Standard Library functions make DOS or BIOS calls. Such calls do not check to
see if DOS or BIOS is already active. Therefore, calling many Standard Library routines from within a TSR
may cause you to reenter DOS or BIOS.

One situation does exist where a TSR could reenter a Standard Library routine. Suppose your TSR has
both passive and active components. If the main application makes a call to a passive routine in your TSR
and that routine call a Standard Library routine, there is the possibility that a system interrupt could inter-
rupt the Standard Library routine and the active portion of the TSR reenter that same code. Although such
a situation would be extremely rare, you should be aware of this possibility.

Of course, the best solution is to avoid using the Standard Library within your TSRs. If for no other
reason, the Standard Library routines are quite large and TSRs should be as small as possible.

18.4 The Multiplex Interrupt (INT 2Fh)

When installing a passive TSR, or an active TSR with passive components, you will need to choose
some interrupt vector to patch so other programs can communicate with your passive routines. You could
pick an interrupt vector almost at random, say int 84h, but this could lead to some compatibility problems.
What happens if someone else is already using that interrupt vector? Sometimes, the choice of interrupt
vector is clear. For example, if your passive TSR is extended the int 16h keyboard services, it makes sense
to patch in to the int 16h vector and add additional functions above and beyond those already provided by
the BIOS. On the other hand, if you are creating a driver for some brand new device for the PC, you prob-
ably would not want to piggyback the support functions for this device on some other interrupt. Yet arbi-
trarily picking an unused interrupt vector is risky; how many other programs out there decided to do the

Resident Programs

Page 1035

same thing? Fortunately, MS-DOS provides a solution: the multiplex interrupt. Int 2Fh provides a general
mechanism for installing, testing the presence of, and communicating with a TSR.

To use the multiplex interrupt, an application places an identification value in

ah

 and a function
number in

al

 and then executes an

int 2Fh

 instruction. Each TSR in the int 2Fh chain compares the
value in

ah

 against its own unique identifier value. If the values match, the TSR process the command
specified by the value in the

al

 register. If the identification values do not match, the TSR passes control to
the next int 2Fh handler in the chain.

Of course, this only reduces the problem somewhat, it doesn’t eliminate it. Sure, we don’t have to
guess an interrupt vector number at random, but we still have to choose a random identification number.
After all, it seems reasonable that we must choose this number before designing the TSR and any applica-
tions that call it, after all, how will the applications know what value to load into

ah

 if we dynamically
assign this value when the TSR goes resident?

Well, there is a little trick we can play to dynamically assign TSR identifiers

and

 let any interested
applications determine the TSR’s ID. By convention, function zero is the “Are you there?” call. An applica-
tion should always execute this function to determine if the TSR is actually present in memory before mak-
ing any service requests. Normally, function zero returns a zero in al if the TSR is

not

 present, it returns
0FFh if it is present. However, when this function returns 0FFh it only tells you that

some

 TSR has
responded to your query; it does not guarantee that the TSR you are interested in is actually present in
memory. However, by extending the convention somewhat, it is very easy to verify the presence of the
desired TSR. Suppose the function zero call also returns a pointer to a unique identification string in the

es:di

registers. Then the code testing for the presence of a specific TSR could test this string when the
int 2Fh call detects the presence of a TSR. the following code segment demonstrates how a TSR could
determine if a TSR identified as “Randy’s INT 10h Extension” is present in memory; this code will also
determine the unique identification code for that TSR, for future reference:

; Scan through all the possible TSR IDs. If one is installed, see if
; it’s the TSR we’re interested in.

mov cx, 0FFh ;This will be the ID number.
IDLoop: mov ah, cl ;ID -> AH.

push cx ;Preserve CX across call
mov al, 0 ;Test presence function code.
int 2Fh ;Call multiplex interrupt.
pop cx ;Restore CX.
cmp al, 0 ;Installed TSR?
je TryNext ;Returns zero if none there.
strcmpl ;See if it’s the one we want.
byte “Randy’s INT “
byte “10h Extension”,0
je Success ;Branch off if it is ours.

TryNext: loop IDLoop ;Otherwise, try the next one.
jmp NotInstalled ;Failure if we get to this point.

Success: mov FuncID, cl ;Save function result.
 .
 .
 .

If this code succeeds, the variable FuncId contains the identification value for resident TSR. If it fails, the
application program probably needs to abort, or otherwise ensure that it never calls the missing TSR.

The code above lets an application easily detect the presence of and determine the ID number for a
specific TSR. The next question is “How do we pick the ID number for the TSR in the first place?” The next
section will address that issue, as well as how the TSR must respond to the multiplex interrupt.

18.5 Installing a TSR

Although we’ve already discussed how to make a program go resident (see “DOS Memory Usage and
TSRs” on page 1025), there are a few aspects to installing a TSR that we need to address. First, what hap-

Chapter 18

Page 1036

pens if a user installs a TSR and then tries to install it a second time without first removing the one that is
already resident? Second, how can we assign a TSR identification number that won’t conflict with a TSR
that is already installed? This section will address these issues.

The first problem to address is an attempt to reinstall a TSR program. Although one could imagine a
type of TSR that allows multiple copies of itself in memory at one time, such TSRs are few and far in-be-
tween. In most cases, having multiple copies of a TSR in memory will, at best, waste memory and, at
worst, crash the system. Therefore, unless you are specifically written a TSR that allows multiple copies of
itself in memory at one time, you should check to see if the TSR is installed before actually installing it.
This code is identical to the code an application would use to see if the TSR is installed, the only difference
is that the TSR should print a nasty message and refuse to go TSR if it finds a copy of itself already installed
in memory. The following code does this:

mov cx, 0FFh
SearchLoop: mov ah, cl

push cx
mov al, 0
int 2Fh
pop cx
cmp al, 0
je TryNext
strcmpl
byte “Randy’s INT “
byte “10h Extension”,0
je AlreadyThere

TryNext: loop SearchLoop
jmp NotInstalled

AlreadyThere: print
byte “A copy of this TSR already exists in memory”,cr,lf
byte “Aborting installation process.”,cr,lf,0
ExitPgm
 .
 .
 .

In the previous section, you saw how to write some code that would allow an application to deter-
mine the TSR ID of a specific resident program. Now we need to look at how to dynamically choose an
identification number for the TSR, one that does not conflict with any other TSRs. This is yet another mod-
ification to the scanning loop. In fact, we can modify the code above to do this for us. All we need to do is
save away some ID value that does not does not have an installed TSR. We need only add a few lines to
the above code to accomplish this:

mov FuncID, 0 ;Initialize FuncID to zero.
mov cx, 0FFh

SearchLoop: mov ah, cl
push cx
mov al, 0
int 2Fh
pop cx
cmp al, 0
je TryNext
strcmpl
byte “Randy’s INT “
byte “10h Extension”,0
je AlreadyThere
loop SearchLoop
jmp NotInstalled

; Note: presumably DS points at the resident data segment that contains
; the FuncID variable. Otherwise you must modify the following to
; point some segment register at the segment containing FuncID and
; use the appropriate segment override on FuncID.

TryNext: mov FuncID, cl ;Save possible function ID if this
loop SearchLoop ; identifier is not in use.
jmp NotInstalled

AlreadyThere: print

Resident Programs

Page 1037

byte “A copy of this TSR already exists in memory”,cr,lf
byte “Aborting installation process.”,cr,lf,0
ExitPgm

NotInstalled: cmp FuncID, 0 ;If there are no available IDs, this
jne GoodID ; will still contain zero.
print
byte “There are too many TSRs already installed.”,cr,lf
byte “Sorry, aborting installation process.”,cr,lf,0
ExitPgm

GoodID:

If this code gets to label “

GoodID

” then a previous copy of the TSR is not present in memory and the

FuncID

 variable contains an unused function identifier.

Of course, when you install your TSR in this manner, you must not forget to patch your interrupt 2Fh
handler into the int 2Fh chain. Also, you have to write an interrupt 2Fh handler to process int 2Fh calls.
The following is a very simple multiplex interrupt handler for the code we’ve been developing:

FuncID byte 0 ;Should be in resident segment.
OldInt2F dword ? ; Ditto.

MyInt2F proc far
cmp ah, cs:FuncID ;Is this call for us?
je ItsUs
jmp cs:OldInt2F ;Chain to previous guy, if not.

; Now decode the function value in AL:

ItsUs: cmp al, 0 ;Verify presence call?
jne TryOtherFunc
mov al, 0FFh ;Return “present” value in AL.
lesi IDString ;Return pointer to string in es:di.
iret ;Return to caller.

IDString byte ““Randy’s INT “
byte “10h Extension”,0

; Down here, handle other multiplex requests.
; This code doesn’t offer any, but here’s where they would go.
; Just test the value in AL to determine which function to execute.

TryOtherFunc:
 .
 .
 .
iret

MyInt2F endp

18.6 Removing a TSR

Removing a TSR is quite a bit more difficult that installing one. There are three things the removal
code must do in order to properly remove a TSR from memory: first, it needs to stop any pending activities
(e.g., the TSR may have some flags set to start some activity at a future time); second it needs to restore all
interrupt vectors to their former values; third, it needs to return all reserved memory back to DOS so other
applications can make use of it. The primary difficulty with these three activities is that it is not always pos-
sible to properly restore the interrupt vectors.

If your TSR removal code simply restores the old interrupt vector values, you may create a really big
problem. What happens if the user runs some other TSRs after running yours and they patch into the same
interrupt vectors as your TSR? This would produce interrupt chains that look something like the following:

Interrupt Vector TSR #1 TSR #1 Your TSR Original TSR

Chapter 18

Page 1038

If you restore the interrupt vector with your original value, you will create the following:

This effectively disables the TSRs that chain into your code. Worse yet, this only disables the interrupts that
those TSRs have in common with your TSR. the other interrupts those TSRs patch into are still active. Who
knows how those interrupts will behave under such circumstances?

One solution is to simply print an error message informing the user that they cannot remove this TSR
until they remove all TSRs installed prior to this one. This is a common problem with TSRs and most DOS
users who install and remove TSRs should be comfortable with the fact that they must remove TSRs in the
reverse order that they install them.

It would be tempting to suggest a new convention that TSRs should obey; perhaps if the function
number is 0FFh, a TSR should store the value in

 es:bx

away in the interrupt vector specified in

cl

. This
would allow a TSR that would like to remove itself to pass the address of its original interrupt handler to
the previous TSR in the chain. There are only three problems with this approach: first, almost no TSRs in
existence currently support this feature, so it would be of little value; second, some TSRs might use func-
tion 0FFh for something else, calling them with this value,

even if you knew their ID number

, could create
a problem; finally, just because you’ve removed the TSR from the interrupt chain doesn’t mean you can
(truly) free up the memory the TSR uses. DOS’ memory management scheme (the free pointer business)
works like a stack. If there are other TSRs installed above yours in memory, most applications wouldn’t be
able to use the memory freed up by removing your TSR anyway.

Therefore, we’ll also adopt the strategy of simply informing the user that they cannot remove a TSR if
there are others installed in shared interrupt chains. Of course, that does bring up a good question, how
can we determine if there are other TSRs chained in to our interrupts? Well, this isn’t so hard. We know
that the 80x86’s interrupt vectors should still be pointing at our routines if we’re the last TSR run. So all
we’ve got to do is compare the patched interrupt vectors against the addresses of our interrupt service rou-
tines. If they

all

 match, then we can safely remove our TSR from memory. If only one of them does not
match, then we cannot remove the TSR from memory. The following code sequence tests to see if it is
okay to detach a TSR containing ISRs for int 2fH and int 9:

; OkayToRmv- This routine returns the carry flag set if it is okay to
; remove the current TSR from memory. It checks the interrupt
; vectors for int 2F and int 9 to make sure they
; are still pointing at our local routines.
; This code assumes DS is pointing at the resident code’s
; data segment.

OkayToRmv proc near
push es
mov ax, 0 ;Point ES at interrupt vector
mov es, ax ; table.
mov ax, word ptr OldInt2F
cmp ax, es:[2fh*4]
jne CantRemove
mov ax, word ptr OldInt2F+2
cmp ax, es:[2Fh*4 + 2]
jne CantRemove

mov ax, word ptr OldInt9
cmp ax, es:[9*4]
jne CantRemove
mov ax, word ptr OldInt9+2
cmp ax, es:[9*4 + 2]
jne CantRemove

; We can safely remove this TSR from memory.

stc
pop es
ret

Interrupt Vector TSR #1 TSR #1 Original TSR?

Resident Programs

Page 1039

‘ Someone else is in the way, we cannot remove this TSR.

CantRemove: clc
pop es
ret

OkayToRmv endp

Before the TSR attempts to remove itself, it should call a routine like this one to see if removal is possible.

Of course, the fact that no other TSR has chained into the same interrupts does

not

guarantee that
there are not TSRs above yours in memory. However, removing the TSR in that case will not crash the sys-
tem. True, you may not be able to reclaim the memory the TSR is using (at least until you remove the other
TSRs), but at least the removal will not create complications.

To remove the TSR from memory requires two DOS calls, one to free the memory in use by the TSR
and one to free the memory in use by the environment area assigned to the TSR. To do this, you need to
make the DOS deallocation call (see “MS-DOS, PC-BIOS, and File I/O” on page 699). This call requires that
you pass the segment address of the block to release in the

es

 register. For the TSR program itself, you
need to pass the address of the TSR’s PSP. This is one of the reasons a TSR needs to save its PSP when it
first installs itself. The other free call you must make frees the space associated with the TSR’s

environment
block

. The address of this block is at offset 2Ch in the PSP. So we should probably free it first. The follow-
ing calls handle the job of free the memory associated with a TSR:

; Presumably, the PSP variable was initialized with the address of this
; program’s PSP before the terminate and stay resident call.

mov es, PSP
mov es, es:[2Ch] ;Get address of environment block.
mov ah, 49h ;DOS deallocate block call.
int 21h

mov es, PSP ;Now free the program’s memory
mov ah, 49h ; space.
int 21h

Some poorly-written TSRs provide no facilities to allow you to remove them from memory. If some-
one wants remove such a TSR, they will have to reboot the PC. Obviously, this is a poor design. Any TSR
you design for anything other than a quick test should be capable of removing itself from memory. The
multiplex interrupt with function number one is often used for this purpose. To remove a TSR from mem-
ory, some application program passes the TSR ID and a function number of one to the TSR. If the TSR can
remove itself from memory, it does so and returns a value denoting success. If the TSR cannot remove
itself from memory, it returns some sort of error condition.

Generally, the removal program is the TSR itself with a special parameter that tells it to remove the
TSR currently loaded into memory. A little later this chapter presents an example of a TSR that works pre-
cisely in this fashion (see “A Keyboard Monitor TSR” on page 1041).

18.7 Other DOS Related Issues

In addition to reentrancy problems with DOS, there are a few other issues your TSRs must deal with if
they are going to make DOS calls. Although your calls might not cause DOS to reenter itself, it is quite pos-
sible for your TSR’s DOS calls to disturb data structures in use by an executing application. These data
structures include the application’s stack, PSP, disk transfer area (DTA), and the DOS extended error infor-
mation record.

When an active or passive TSR gains control of the CPU, it is operating in the environment of the main
(foreground) application. For example, the TSR’s return address and any values it saves on the stack are
pushed onto the application’s stack. If the TSR does not use much stack space, this is fine, it need not
switch stacks. However, if the TSR consumes considerable amounts of stack space because of recursive

Chapter 18

Page 1040

calls or the allocation of local variables, the TSR should save the application’s ss and sp values and switch
to a local stack. Before returning, of course, the TSR should switch back to the foreground application’s
stack.

Likewise, if the TSR execute’s DOS’ get psp address call, DOS returns the address of the foreground
application’s PSP, not the TSR’s PSP4. The PSP contains several important address that DOS uses in the
event of an error. For example, the PSP contains the address of the termination handler, ctrl-break handler,
and critical error handler. If you do not switch the PSP from the foreground application to the TSR’s and
one of the exceptions occurs (e.g., someone hits control-break or a disk error occurs), the handler associ-
ated with the application may take over. Therefore, when making DOS calls that can result in one of these
conditions, you need to switch PSPs. Likewise, when your TSR returns control to the foreground applica-
tion, it must restore the PSP value. MS-DOS provides two functions that get and set the current PSP
address. The DOS Set PSP call (ah=51h) sets the current program’s PSP address to the value in the bx reg-
ister. The DOS Get PSP call (ah=50h) returns the current program’s PSP address in the bx register. Assum-
ing the transient portion of your TSR has saved it’s PSP address in the variable PSP, you switch between
the TSR’s PSP and the foreground application’s PSP as follows:

; Assume we’ve just entered the TSR code, determined that it’s okay to
; call DOS, and we’ve switch DS so that it points at our local variables.

mov ah, 51h ;Get application’s PSP address
int 21h
mov AppPSP, bx ;Save application’s PSP locally.
mov bx, PSP ;Change system PSP to TSR’s PSP.
mov ah, 50h ;Set PSP call
int 21h
 .
 . ;TSR code
 .
mov bx, AppPSP ;Restore system PSP address to
mov ah, 50h ; point at application’s PSP.
int 21h

« clean up and return from TSR »

Another global data structure that DOS uses is the disk transfer area. This buffer area was used exten-
sively for disk I/O in DOS version 1.0. Since then, the main use for the DTA has been the find first file and
find next file functions (see “MS-DOS, PC-BIOS, and File I/O” on page 699). Obviously, if the application
is in the middle of using data in the DTA and your TSR makes a DOS call that changes the data in the DTA,
you will affect the operation of the foreground process. MS-DOS provides two calls that let you get and set
the address of the DTA. The Get DTA Address call, with ah=2Fh, returns the address of the DTA in the
es:bx registers. The Set DTA call (ah=1Ah) sets the DTA to the value found in the ds:dx register pair.
With these two calls you can save and restore the DTA as we did for the PSP address above. The DTA is
usually at offset 80h in the PSP, the following code preserve’s the foreground application’s DTA and sets
the current DTA to the TSR’s at offset PSP:80.

; This code makes the same assumptions as the previous example.

mov ah, 2Fh ;Get application DTA
int 21h
mov word ptr AppDTA, bx
mov word ptr AppDTA+2, es

push ds
mov ds, PSP ;DTA is in PSP
mov dx, 80h ; at offset 80h
mov ah, 1ah ;Set DTA call.
int 21h
pop ds
 .
 . ;TSR code.
 .

4. This is another reason the transient portion of the TSR must save the PSP address in a resident variable for the TSR.

Resident Programs

Page 1041

push ds
mov dx, word ptr AppDTA
mov ds, word ptr AppDTA+2
mov ax, 1ah ;Set DTA call.
int 21h

The last issue a TSR must deal with is the extended error information in DOS. If a TSR interrupts a pro-
gram immediately after DOS returns to that program, there may be some error information the foreground
application needs to check in the DOS extended error information. If the TSR makes any DOS calls, DOS
may replace this information with the status of the TSR DOS call. When control returns to the foreground
application, it may read the extended error status and get the information generated by the TSR DOS call,
not the application’s DOS call. DOS provides two asymmetrical calls, Get Extended Error and Set
Extended Error that read and write these values, respectively. The call to Get Extended Error returns the
error status in the ax, bx, cx, dx, si, di, es, and ds registers. You need to save the registers in a data struc-
ture that takes the following form:

ExtError struct
eeAX word ?
eeBX word ?
eeCX word ?
eeDX word ?
eeSI word ?
eeDI word ?
eeDS word ?
eeES word ?

word 3 dup (0) ;Reserved.
ExtError ends

The Set Extended Error call requires that you pass an address to this structure in the ds:si register pair
(which is why these two calls are asymmetrical). To preserve the extended error information, you would
use code similar to the following:

; Save assumptions as the above routines here. Also, assume the error
; data structure is named ERR and is in the same segment as this code.

push ds ;Save ptr to our DS.
mov ah, 59h ;Get extended error call
mov bx, 0 ;Required by this call
int 21h

mov cs:ERR.eeDS, ds
pop ds ;Retrieve ptr to our data.
mov ERR.eeAX, ax
mov ERR.eeBX, bx
mov ERR.eeCX, cx
mov ERR.eeDX, dx
mov ERR.eeSI, si
mov ERR.eeDI, di
mov ERR.eeES, es
 .
 . ;TSR code goes here.
 .
mov si, offset ERR ;DS already points at correct seg.
mov ax, 5D0Ah ;5D0Ah is Set Extended Error code.
int 21h

« clean up and quit »

18.8 A Keyboard Monitor TSR

The following program extends the keystroke counter program presented a little earlier in this chap-
ter. This particular program monitors keystrokes and each minute writes out data to a file listing the date,
time, and approximate number of keystrokes in the last minute.

Chapter 18

Page 1042

This program can help you discover how much time you spend typing versus thinking at a display
screen5.

; This is an example of an active TSR that counts keyboard interrupts
; once activated. Every minute it writes the number of keyboard
; interrupts that occurred in the previous minute to an output file.
; This continues until the user removes the program from memory.
;
;
; Usage:
; KEYEVAL filename - Begins logging keystroke data to
; this file.
;
; KEYEVAL REMOVE - Removes the resident program from
; memory.
;
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When doing disk I/O from the interrupts, it checks to make
; sure DOS isn’t busy and it preserves application globals (PSP, DTA,
; and extended error info). When removing itself from memory, it
; makes sure there are no other interrupts chained into any of its
; interrupts before doing the remove.
;
; The resident segment definitions must come before everything else.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; Int 2Fh ID number for this TSR:

MyTSRID byte 0

; The following variable counts the number of keyboard interrupts

KeyIntCnt word 0

; Counter counts off the number of milliseconds that pass, SecCounter
; counts off the number of seconds (up to 60).

Counter word 0
SecCounter word 0

; FileHandle is the handle for the log file:

FileHandle word 0

; NeedIO determines if we have a pending I/O opearation.

NeedIO word 0

; PSP is the psp address for this program.

PSP word 0

5. This program is intended for your personal enjoyment only, it is not intended to be used for unethical purposes such as monitoring employees for
evaluation purposes.

Resident Programs

Page 1043

; Variables to tell us if DOS, INT 13h, or INT 16h are busy:

InInt13 byte 0
InInt16 byte 0
InDOSFlag dword ?

; These variables contain the original values in the interrupt vectors
; we’ve patched.

OldInt9 dword ?
OldInt13 dword ?
OldInt16 dword ?
OldInt1C dword ?
OldInt28 dword ?
OldInt2F dword ?

; DOS data structures:

ExtErr struct
eeAX word ?
eeBX word ?
eeCX word ?
eeDX word ?
eeSI word ?
eeDI word ?
eeDS word ?
eeES word ?

word 3 dup (0)
ExtErr ends

XErr ExtErr {} ;Extended Error Status.
AppPSP word ? ;Application PSP value.
AppDTA dword ? ;Application DTA address.

; The following data is the output record. After storing this data
; to these variables, the TSR writes this data to disk.

month byte 0
day byte 0
year word 0
hour byte 0
minute byte 0
second byte 0
Keystrokes word 0
RecSize = $-month

; MyInt9- The system calls this routine every time a keyboard
; interrupt occus. This routine increments the
; KeyIntCnt variable and then passes control on to the
; original Int9 handler.

MyInt9 proc far
inc ResidentSeg:KeyIntCnt
jmp ResidentSeg:OldInt9

MyInt9 endp

; MyInt1C- Timer interrupt. This guy counts off 60 seconds and then
; attempts to write a record to the output file. Of course,
; this call has to jump through all sorts of hoops to keep
; from reentering DOS and other problematic code.

Chapter 18

Page 1044

MyInt1C proc far
assume ds:ResidentSeg

push ds
push es
pusha ;Save all the registers.
mov ax, ResidentSeg
mov ds, ax

pushf
call OldInt1C

; First things first, let’s bump our interrupt counter so we can count
; off a minute. Since we’re getting interrupted about every 54.92549
; milliseconds, let’s shoot for a little more accuracy than 18 times
; per second so the timings don’t drift too much.

add Counter, 549 ;54.9 msec per int 1C.
cmp Counter, 10000 ;1 second.
jb NotSecYet
sub Counter, 10000
inc SecCounter

NotSecYet:

; If NEEDIO is not zero, then there is an I/O operation in progress.
; Do not disturb the output values if this is the case.

cli ;This is a critical region.
cmp NeedIO, 0
jne SkipSetNIO

; Okay, no I/O in progress, see if a minute has passed since the last
; time we logged the keystrokes to the file. If so, it’s time to start
; another I/O operation.

cmp SecCounter, 60 ;One minute passed yet?
jb Int1CDone
mov NeedIO, 1 ;Flag need for I/O.
mov ax, KeyIntCnt ;Copy this to the output
shr ax, 1 ; buffer after computing
mov KeyStrokes, ax ; # of keystrokes.
mov KeyIntCnt, 0 ;Reset for next minute.
mov SecCounter, 0

SkipSetNIO: cmp NeedIO, 1 ;Is the I/O already in
jne Int1CDone ; progress? Or done?

call ChkDOSStatus ;See if DOS/BIOS are free.
jnc Int1CDone ;Branch if busy.

call DoIO ;Do I/O if DOS is free.

Int1CDone: popa ;Restore registers and quit.
pop es
pop ds
iret

MyInt1C endp
assume ds:nothing

; MyInt28- Idle interrupt. If DOS is in a busy-wait loop waiting for
; I/O to complete, it executes an int 28h instruction each
; time through the loop. We can ignore the InDOS and CritErr
; flags at that time, and do the I/O if the other interrupts
; are free.

MyInt28 proc far
assume ds:ResidentSeg

push ds
push es
pusha ;Save all the registers.

Resident Programs

Page 1045

mov ax, ResidentSeg
mov ds, ax

pushf ;Call the next INT 28h
call OldInt28 ; ISR in the chain.

cmp NeedIO, 1 ;Do we have a pending I/O?
jne Int28Done

mov al, InInt13 ;See if BIOS is busy.
or al, InInt16
jne Int28Done

call DoIO ;Go do I/O if BIOS is free.

Int28Done: popa
pop es
pop ds
iret

MyInt28 endp
assume ds:nothing

; MyInt16- This is just a wrapper for the INT 16h (keyboard trap)
; handler.

MyInt16 proc far
inc ResidentSeg:InInt16

; Call original handler:

pushf
call ResidentSeg:OldInt16

; For INT 16h we need to return the flags that come from the previous call.

pushf
dec ResidentSeg:InInt16
popf
retf 2 ;Fake IRET to keep flags.

MyInt16 endp

; MyInt13- This is just a wrapper for the INT 13h (disk I/O trap)
; handler.

MyInt13 proc far
inc ResidentSeg:InInt13
pushf
call ResidentSeg:OldInt13
pushf
dec ResidentSeg:InInt13
popf
retf 2 ;Fake iret to keep flags.

MyInt13 endp

; ChkDOSStatus- Returns with the carry clear if DOS or a BIOS routine
; is busy and we can’t interrupt them.

ChkDOSStatus proc near
assume ds:ResidentSeg
les bx, InDOSFlag
mov al, es:[bx] ;Get InDOS flag.
or al, es:[bx-1] ;OR with CritErr flag.
or al, InInt16 ;OR with our wrapper
or al, InInt13 ; values.
je Okay2Call
clc
ret

Okay2Call: clc
ret

ChkDOSStatus endp

Chapter 18

Page 1046

assume ds:nothing

; PreserveDOS-Gets a copy’s of DOS’ current PSP, DTA, and extended
; error information and saves this stuff. Then it sets
; the PSP to our local PSP and the DTA to PSP:80h.

PreserveDOS proc near
assume ds:ResidentSeg

mov ah, 51h ;Get app’s PSP.
int 21h
mov AppPSP, bx ;Save for later

mov ah, 2Fh ;Get app’s DTA.
int 21h
mov word ptr AppDTA, bx
mov word ptr AppDTA+2, es

push ds
mov ah, 59h ;Get extended err info.
xor bx, bx
int 21h

mov cs:XErr.eeDS, ds
pop ds
mov XErr.eeAX, ax
mov XErr.eeBX, bx
mov XErr.eeCX, cx
mov XErr.eeDX, dx
mov XErr.eeSI, si
mov XErr.eeDI, di
mov XErr.eeES, es

; Okay, point DOS’s pointers at us:

mov bx, PSP
mov ah, 50h ;Set PSP.
int 21h

push ds ;Set the DTA to
mov ds, PSP ; address PSP:80h
mov dx, 80h
mov ah, 1Ah ;Set DTA call.
int 21h
pop ds

ret
PreserveDOS endp

assume ds:nothing

; RestoreDOS- Restores DOS’ important global data values back to the
; application’s values.

RestoreDOS proc near
assume ds:ResidentSeg

mov bx, AppPSP
mov ah, 50h ;Set PSP
int 21h

push ds
lds dx, AppDTA
mov ah, 1Ah ;Set DTA
int 21h
pop ds
push ds

mov si, offset XErr ;Saved extended error stuff.
mov ax, 5D0Ah ;Restore XErr call.
int 21h
pop ds

Resident Programs

Page 1047

ret
RestoreDOS endp

assume ds:nothing

; DoIO- This routine processes each of the I/O operations
; required to write data to the file.

DoIO proc near
assume ds:ResidentSeg

mov NeedIO, 0FFh ;A busy flag for us.

; The following Get Date DOS call may take a while, so turn the
; interrupts back on (we’re clear of the critical section once we
; write 0FFh to NeedIO).

sti
call PreserveDOS ;Save DOS data.

mov ah, 2Ah ;Get Date DOS call
int 21h
mov month, dh
mov day, dl
mov year, cx

mov ah, 2Ch ;Get Time DOS call
int 21h
mov hour, ch
mov minute, cl
mov second, dh

mov ah, 40h ;DOS Write call
mov bx, FileHandle ;Write data to this file.
mov cx, RecSize ;This many bytes.
mov dx, offset month ;Starting at this address.
int 21h ;Ignore return errors (!).
mov ah, 68h ;DOS Commit call
mov bx, FileHandle ;Write data to this file.
int 21h ;Ignore return errors (!).

mov NeedIO, 0 ;Ready to start over.
call RestoreDOS

PhasesDone: ret
DoIO endp

assume ds:nothing

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):
;
; 00- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID ;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify vs. remove call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv

Chapter 18

Page 1048

mov al, 0ffh ;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Keypress Logger TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne IllegalOp

call TstRmvable ;See if we can remove this guy.
je CanRemove ;Branch if we can.
mov ax, 1 ;Return failure for now.
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

CanRemove: push ds
push es
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt9
mov es:[9*4], ax
mov ax, word ptr OldInt9+2
mov es:[9*4 + 2], ax

mov ax, word ptr OldInt13
mov es:[13h*4], ax
mov ax, word ptr OldInt13+2
mov es:[13h*4 + 2], ax

mov ax, word ptr OldInt16
mov es:[16h*4], ax
mov ax, word ptr OldInt16+2
mov es:[16h*4 + 2], ax

mov ax, word ptr OldInt1C
mov es:[1Ch*4], ax
mov ax, word ptr OldInt1C+2
mov es:[1Ch*4 + 2], ax

mov ax, word ptr OldInt28
mov es:[28h*4], ax
mov ax, word ptr OldInt28+2
mov es:[28h*4 + 2], ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, with that out of the way, let’s close the file.
; Note: INT 2F shouldn’t have to deal with DOS busy because it’s
; a passive TSR call.

mov ah, 3Eh ;Close file command
mov bx, FileHandle
int 21h

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h

Resident Programs

Page 1049

mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop es
pop ds
mov ax, 0 ;Return Success.
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

; TstRmvable- Checks to see if we can remove this TSR from memory.
; Returns the zero flag set if we can remove it, clear
; otherwise.

TstRmvable proc near
cli
push ds
mov ax, 0
mov ds, ax

cmp word ptr ds:[9*4], offset MyInt9
jne TRDone
cmp word ptr ds:[9*4 + 2], seg MyInt9
jne TRDone

cmp word ptr ds:[13h*4], offset MyInt13
jne TRDone
cmp word ptr ds:[13h*4 + 2], seg MyInt13
jne TRDone

cmp word ptr ds:[16h*4], offset MyInt16
jne TRDone
cmp word ptr ds:[16h*4 + 2], seg MyInt16
jne TRDone

cmp word ptr ds:[1Ch*4], offset MyInt1C
jne TRDone
cmp word ptr ds:[1Ch*4 + 2], seg MyInt1C
jne TRDone

cmp word ptr ds:[28h*4], offset MyInt28
jne TRDone
cmp word ptr ds:[28h*4 + 2], seg MyInt28
jne TRDone

cmp word ptr ds:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr ds:[2Fh*4 + 2], seg MyInt2F

TRDone: pop ds
sti
ret

TstRmvable endp
ResidentSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

Chapter 18

Page 1050

; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Keypress Logger TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es
push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line

Resident Programs

Page 1051

; parameters. We must have either a valid filename or the
; command “remove”. If remove appears on the command line, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.
; If remove is not on the command line, we’d better have a filename and
; there had better not be a copy already loaded into memory.

argc
cmp cx, 1 ;Must have exactly 1 parm.
je GoodParmCnt
print
byte “Usage:”,cr,lf
byte “ KeyEval filename”,cr,lf
byte “or KeyEval REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

GoodParmCnt: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne TstPresent

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print
byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm

Chapter 18

Page 1052

; Things look cool so far, check the filename and open the file.

GetFileName: mov MyTSRID, cl
printf
byte “Keypress logger TSR program”,cr,lf
byte “TSR ID = %d”,cr,lf
byte “Processing file:”,0
dword MyTSRID

puts
putcr

mov ah, 3Ch ;Create file command.
mov cx, 0 ;Normal file.
push ds
push es ;Point ds:dx at name
pop ds
mov dx, di
int 21h ;Open the file
jnc GoodOpen
print
byte “DOS error #”,0
puti
print
byte “ opening file.”,cr,lf,0
ExitPgm

GoodOpen: pop ds
mov FileHandle, ax ;Save file handle.

InstallInts: print
byte “Installing interrupts...”,0

; Patch into the INT 9, 13h, 16h, 1Ch, 28h, and 2Fh interrupt vectors.
; Note that the statements above have made ResidentSeg the current data
; segment, so we can store the old values directly into
; the OldIntxx variables.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], seg ResidentSeg

mov ax, es:[13h*4]
mov word ptr OldInt13, ax
mov ax, es:[13h*4 + 2]
mov word ptr OldInt13+2, ax
mov es:[13h*4], offset MyInt13
mov es:[13h*4+2], seg ResidentSeg

mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], seg ResidentSeg

mov ax, es:[1Ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1Ch*4 + 2]
mov word ptr OldInt1C+2, ax
mov es:[1Ch*4], offset MyInt1C
mov es:[1Ch*4+2], seg ResidentSeg

mov ax, es:[28h*4]
mov word ptr OldInt28, ax
mov ax, es:[28h*4 + 2]

Resident Programs

Page 1053

mov word ptr OldInt28+2, ax
mov es:[28h*4], offset MyInt28
mov es:[28h*4+2], seg ResidentSeg

mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The following is a short little application that reads the data file produced by the above program and pro-
duces a simple report of the date, time, and keystrokes:

; This program reads the file created by the KEYEVAL.EXE TSR program.
; It displays the log containing dates, times, and number of keystrokes.

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

FileHandle word ?

month byte 0
day byte 0
year word 0
hour byte 0
minute byte 0
second byte 0
KeyStrokes word 0
RecSize = $-month

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Chapter 18

Page 1054

; SeeIfPresent- Checks to see if our TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
pusha
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Keypress Logger TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: popa
pop ds
pop es
ret

SeeIfPresent endp

Main proc
meminit

mov ax, dseg
mov ds, ax

argc
cmp cx, 1 ;Must have exactly 1 parm.
je GoodParmCnt
print
byte “Usage:”,cr,lf
byte “ KEYRPT filename”,cr,lf,0
ExitPgm

GoodParmCnt: mov ax, 1
argv

print
byte “Keypress logger report program”,cr,lf
byte “Processing file:”,0
puts
putcr

mov ah, 3Dh ;Open file command.
mov al, 0 ;Open for reading.
push ds
push es ;Point ds:dx at name
pop ds
mov dx, di
int 21h ;Open the file
jnc GoodOpen
print
byte “DOS error #”,0
puti
print
byte “ opening file.”,cr,lf,0
ExitPgm

Resident Programs

Page 1055

GoodOpen: pop ds
mov FileHandle, ax ;Save file handle.

; Okay, read the data and display it:

ReadLoop: mov ah, 3Fh ;Read file command
mov bx, FileHandle
mov cx, RecSize ;Number of bytes.
mov dx, offset month ;Place to put data.
int 21h
jc ReadError
test ax, ax ;EOF?
je Quit

mov cx, year
mov dl, day
mov dh, month
dtoam
puts
free
print
byte “, “,0

mov ch, hour
mov cl, minute
mov dh, second
mov dl, 0
ttoam
puts
free
printf
byte “, keystrokes = %d\n”,0
dword KeyStrokes
jmp ReadLoop

ReadError: print
byte “Error reading file”,cr,lf,0

Quit: mov bx, FileHandle
mov ah, 3Eh ;Close file
int 21h
ExitPgm

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

18.9 Semiresident Programs

A semiresident program is one that temporarily loads itself into memory, executes another program
(a child process), and then removes itself from memory after the child process terminates. Semiresident
programs behave like resident programs while the child executes, but they do not stay in memory once
the child terminates.

The main use for semiresident programs is to extend an existing application or patch an application6

(the child process). The nice thing about a semiresident program patch is that it does not have to modify

6. Patching a program means to replace certain opcode bytes in the object file. Programmers apply patches to correct bugs or extend a product
whose sources are not available.

Chapter 18

Page 1056

the application’s “.EXE” file directly on the disk. If for some reason the patch fails, you haven’t destroyed
the ‘.EXE” file, you’ve only wiped out the object code in memory.

A semiresident application, like a TSR, has a transient and a resident part. The resident part remains in
memory while the child process executes. The transient part initializes the program and then transfers con-
trol to the resident part that loads the child application over the resident portion. The transient code
patches the interrupt vectors and does all the things a TSR does except it doesn’t issue the TSR command.
Instead, the resident program loads the application into memory and transfers control to that program.
When the application returns control to the resident program, it exits to DOS using the standard ExitPgm
call (ah=4Ch).

While the application is running, the resident code behaves like any other TSR. Unless the child pro-
cess is aware of the semiresident program, or the semiresident program patches interrupt vectors the
application normally uses, the semiresident program will probably be an active resident program, patch-
ing into one or more of the hardware interrupts. Of course, all the rules that apply to active TSRs also
apply to active semiresident programs.

The following is a very generic example of s semiresident program. This program, “RUN.ASM”, runs
the application whose name and command line parameters appear as command line parameters to run. In
other words:

c:> run pgm.exe parm1 parm2 etc.

is equivalent to

pgm parm1 parm2 etc.

Note that you must supply the “.EXE” or “.COM” extension to the program’s filename. This code begins by
extracting the program’s filename and command line parameters from run’s command line. Run builds an
exec structure (see “MS-DOS, PC-BIOS, and File I/O” on page 699) and then calls DOS to execute the pro-
gram. On return, run fixes up the stack and returns to DOS.

; RUN.ASM - The barebones semiresident program.
;
; Usage:
; RUN <program.exe> <program’s command line>
; or RUN <program.com> <program’s command line>
;
; RUN executes the specified program with the supplied command line parameters.
; At first, this may seem like a stupid program. After all, why not just run
; the program directly from DOS and skip the RUN altogether? Actually, there
; is a good reason for RUN-- It lets you (by modifying the RUN source file)
; set up some environment prior to running the program and clean up that
; environment after the program terminates (“environment” in this sense does
; not necessarily refer to the MS-DOS ENVIRONMENT area).
;
; For example, I have used this program to switch the mode of a TSR prior to
; executing an EXE file and then I restored the operating mode of that TSR
; after the program terminated.
;
; In general, you should create a new version of RUN.EXE (and, presumbably,
; give it a unique name) for each application you want to use this program
; with.
;
;
;--
;
;
; Put these segment definitions 1st because we want the Standard Library
; routines to load last in memory, so they wind up in the transient portion.

CSEG segment para public ‘CODE’
CSEG ends
SSEG segment para stack ‘stack’
SSEG ends
ZZZZZZSEG segment para public ‘zzzzzzseg’
ZZZZZZSEG ends

Resident Programs

Page 1057

; Includes for UCR Standard Library macros.

include consts.a
include stdin.a
include stdout.a
include misc.a
include memory.a
include strings.a

includelib stdlib.lib

CSEG segment para public ‘CODE’
assume cs:cseg, ds:cseg

; Variables used by this program.

; MS-DOS EXEC structure.

ExecStruct dw 0 ;Use parent’s Environment blk.
dd CmdLine ;For the cmd ln parms.
dd DfltFCB
dd DfltFCB

DfltFCB db 3,” “,0,0,0,0,0
CmdLine db 0, 0dh, 126 dup (“ “) ;Cmd line for program.
PgmName dd ? ;Points at pgm name.

Main proc
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

MemInit ;Start the memory mgr.

; If you want to do something before the execution of the command-line
; specified program, here is a good place to do it:

; -------------------------------------

; Now let’s fetch the program name, etc., from the command line and execute
; it.

argc ;See how many cmd ln parms
or cx, cx ; we have.
jz Quit ;Just quit if no parameters.

mov ax, 1 ;Get the first parm (pgm name)
argv
mov word ptr PgmName, di;Save ptr to name
mov word ptr PgmName+2, es

; Okay, for each word on the command line after the filename, copy
; that word to CmdLine buffer and separate each word with a space,
; just like COMMAND.COM does with command line parameters it processes.

lea si, CmdLine+1 ;Index into cmdline.
ParmLoop: dec cx

jz ExecutePgm

inc ax ;Point at next parm.
argv ;Get the next parm.

Chapter 18

Page 1058

push ax
mov byte ptr [si], ‘ ‘ ;1st item and separator on ln.
inc CmdLine
inc si

CpyLp: mov al, es:[di]
cmp al, 0
je StrDone
inc CmdLine ;Increment byte cnt
mov ds:[si], al
inc si
inc di
jmp CpyLp

StrDone: mov byte ptr ds:[si], cr ;In case this is the end.
pop ax ;Get current parm #
jmp ParmLoop

; Okay, we’ve built the MS-DOS execute structure and the necessary
; command line, now let’s see about running the program.
; The first step is to free up all the memory that this program
; isn’t using. That would be everything from zzzzzzseg on.

ExecutePgm: mov ah, 62h ;Get our PSP value
int 21h
mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Warning! No Standard Library calls after this point. We’ve just
; released the memory that they’re sitting in. So the program load
; we’re about to do will wipe out the Standard Library code.

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

; When we get back, we can’t count on *anything* being correct. First, fix
; the stack pointer and then we can finish up anything else that needs to
; be done.

mov ax, sseg
mov ss, ax
mov sp, offset EndStk
mov ax, seg cseg
mov ds, ax

; Okay, if you have any great deeds to do after the program, this is a
; good place to put such stuff.

; -------------------------------------

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

endstk dw ?
sseg ends

; Set aside some room for the heap.

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)

Resident Programs

Page 1059

zzzzzzseg ends

end Main

Since RUN.ASM is rather simple perhaps a more complex example is in order. The following is a fully
functional patch for the Lucasart’s game XWING. The motivation for this patch can about because of the
annoyance of having to look up a password everytime you play the game. This little patch searches for the
code that calls the password routine and stores NOPs over that code in memory.

The operation of this code is a little different than that of RUN.ASM. The RUN program sends an exe-
cute command to DOS that runs the desired program. All system changes RUN needs to make must be
made before or after the application executes. XWPATCH operates a little differently. It loads the
XWING.EXE program into memory and searches for some specific code (the call to the password routine).
Once it finds this code, it stores NOP instructions over the top of the call.

Unfortunately, life isn’t quite that simple. When XWING.EXE loads, the password code isn’t yet
present in memory. XWING loads that code as an overlay later on. So the XWPATCH program finds some-
thing that XWING.EXE does load into memory right away – the joystick code. XWPATCH patches the joy-
stick code so that any call to the joystick routine (when detecting or calibrating the joystick) produces a
call to XWPATCH’s code that searches for the password code. Once XWPATCH locates and NOPs out the
call to the password routine, it restores the code in the joystick routine. From that point forward,
XWPATCH is simply taking up memory space; XWING will never call it again until XWING terminates.

; XWPATCH.ASM
;
; Usage:
; XWPATCH - must be in same directory as XWING.EXE
;
; This program executes the XWING.EXE program and patches it to avoid
; having to enter the password every time you run it.
;
; This program is intended for educational purposes only.
; It is a demonstration of how to write a semiresident program.
; It is not intended as a device to allow the piracy of commercial software.
; Such use is illegal and is punishable by law.
;
; This software is offered without warranty or any expectation of
; correctness. Due to the dynamic nature of software design, programs
; that patch other programs may not work with slight changes in the
; patched program (XWING.EXE). USE THIS CODE AT YOUR OWN RISK.
;
;--

byp textequ <byte ptr>
wp textequ <word ptr>

; Put these segment definitions here so the UCR Standard Library will
; load after zzzzzzseg (in the transient section).

cseg segment para public ‘CODE’
cseg ends

sseg segment para stack ‘STACK’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

.286
include stdlib.a
includelib stdlib.lib

CSEG segment para public ‘CODE’

Chapter 18

Page 1060

assume cs:cseg, ds:nothing

; CountJSCalls-Number of times xwing calls the Joystick code before
; we patch out the password call.

CountJSCalls dw 250

; PSP- Program Segment Prefix. Needed to free up memory before running
; the real application program.

PSP dw 0

; Program Loading data structures (for DOS).

ExecStruct dw 0 ;Use parent’s Environment blk.
dd CmdLine ;For the cmd ln parms.
dd DfltFCB
dd DfltFCB

LoadSSSP dd ?
LoadCSIP dd ?
PgmName dd Pgm

DfltFCB db 3,” “,0,0,0,0,0
CmdLine db 2, “ “, 0dh, 16 dup (“ “);Cmd line for program
Pgm db “XWING.EXE”,0

;**
; XWPATCH begins here. This is the memory resident part. Only put code
; which which has to be present at run-time or needs to be resident after
; freeing up memory.
;**

Main proc
mov cs:PSP, ds
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

mov ax, zzzzzzseg
mov es, ax
mov cx, 1024/16
meminit2

; Now, free up memory from ZZZZZZSEG on to make room for XWING.
; Note: Absolutely no calls to UCR Standard Library routines from
; this point forward! (ExitPgm is okay, it’s just a macro which calls DOS.)
; Note that after the execution of this code, none of the code & data
; from zzzzzzseg on is valid.

mov bx, zzzzzzseg
sub bx, PSP
inc bx
mov es, PSP
mov ah, 4ah
int 21h
jnc GoodRealloc

; Okay, I lied. Here’s a StdLib call, but it’s okay because we failed
; to load the application over the top of the standard library code.
; But from this point on, absolutely no more calls!

print
byte “Memory allocation error.”
byte cr,lf,0
jmp Quit

GoodRealloc:

; Now load the XWING program into memory:

Resident Programs

Page 1061

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b01h ;Load, do not exec, pgm
int 21h
jc Quit ;If error loading file.

; Unfortunately, the password code gets loaded dynamically later on.
; So it’s not anywhere in memory where we can search for it. But we
; do know that the joystick code is in memory, so we’ll search for
; that code. Once we find it, we’ll patch it so it calls our SearchPW
; routine. Note that you must use a joystick (and have one installed)
; for this patch to work properly.

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset JoyStickCode
mov cx, JoyLength
call FindCode
jc Quit ;If didn’t find joystick code.

; Patch the XWING joystick code here

mov byp ds:[si], 09ah;Far call
mov wp ds:[si+1], offset SearchPW
mov wp ds:[si+3], cs

; Okay, start the XWING.EXE program running

mov ah, 62h ;Get PSP
int 21h
mov ds, bx
mov es, bx
mov wp ds:[10], offset Quit
mov wp ds:[12], cs
mov ss, wp cseg:LoadSSSP+2
mov sp, wp cseg:LoadSSSP
jmp dword ptr cseg:LoadCSIP

Quit: ExitPgm
Main endp

; SearchPW gets call from XWING when it attempts to calibrate the joystick.
; We’ll let XWING call the joystick several hundred times before we
; actually search for the password code. The reason we do this is because
; XWING calls the joystick code early on to test for the presence of a
; joystick. Once we get into the calibration code, however, it calls
; the joystick code repetitively, so a few hundred calls doesn’t take
; very long to expire. Once we’re in the calibration code, the password
; code has been loaded into memory, so we can search for it then.

SearchPW proc far
cmp cs:CountJSCalls, 0
je DoSearch
dec cs:CountJSCalls
sti ;Code we stole from xwing for
neg bx ; the patch.
neg di
ret

; Okay, search for the password code.

DoSearch: push bp
mov bp, sp
push ds

Chapter 18

Page 1062

push es
pusha

; Search for the password code in memory:

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset PasswordCode
mov cx, PWLength
call FindCode
jc NotThere ;If didn’t find pw code.

; Patch the XWING password code here. Just store NOPs over the five
; bytes of the far call to the password routine.

mov byp ds:[si+11], 090h ;NOP out a far call
mov byp ds:[si+12], 090h
mov byp ds:[si+13], 090h
mov byp ds:[si+14], 090h
mov byp ds:[si+15], 090h

; Adjust the return address and restore the patched joystick code so
; that it doesn’t bother jumping to us anymore.

NotThere: sub word ptr [bp+2], 5 ;Back up return address.
les bx, [bp+2] ;Fetch return address.

; Store the original joystick code over the call we patched to this
; routine.

mov ax, word ptr JoyStickCode
mov es:[bx], ax
mov ax, word ptr JoyStickCode+2
mov es:[bx+2], ax
mov al, byte ptr JoyStickCode+4
mov es:[bx+4], al

popa
pop es
pop ds
pop bp
ret

SearchPW endp

;**
;
; FindCode: On entry, ES:DI points at some code in *this* program which
; appears in the XWING game. DS:SI points at a block of memory
; in the XWING game. FindCode searches through memory to find the
; suspect piece of code and returns DS:SI pointing at the start of
; that code. This code assumes that it *will* find the code!
; It returns the carry clear if it finds it, set if it doesn’t.

FindCode proc near
push ax
push bx
push dx

DoCmp: mov dx, 1000h ;Search in 4K blocks.
CmpLoop: push di ;Save ptr to compare code.

push si ;Save ptr to start of string.
push cx ;Save count.

repe cmpsb
pop cx
pop si
pop di
je FoundCode
inc si
dec dx

Resident Programs

Page 1063

jne CmpLoop
sub si, 1000h
mov ax, ds
inc ah
mov ds, ax
cmp ax, 9000h ;Stop at address 9000:0
jb DoCmp ; and fail if not found.

pop dx
pop bx
pop ax
stc
ret

FoundCode: pop dx
pop bx
pop ax
clc
ret

FindCode endp

;**
;
; Call to password code that appears in the XWING game. This is actually
; data that we’re going to search for in the XWING object code.

PasswordCode proc near
call $+47h
mov [bp-4], ax
mov [bp-2], dx
push dx
push ax
byte 9ah, 04h, 00

PasswordCode endp
EndPW:

PWLength = EndPW-PasswordCode

; The following is the joystick code we’re going to search for.

JoyStickCode proc near
sti
neg bx
neg di
pop bp
pop dx
pop cx
ret
mov bp, bx
in al, dx
mov bl, al
not al
and al, ah
jnz $+11h
in al, dx

JoyStickCode endp
EndJSC:

JoyLength = EndJSC-JoyStickCode
cseg ends

sseg segment para stack ‘STACK’
dw 256 dup (0)

endstk dw ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 1024 dup (0)
zzzzzzseg ends

end Main

Chapter 18

Page 1064

18.10 Summary

Resident programs provide a small amount of multitasking to DOS’ single tasking world. DOS pro-
vides support for resident programs through a rudimentary memory management system. When an appli-
cation issues the terminate and stay resident call, DOS adjusts its memory pointers so the memory space
reserved by the TSR code is protected from future program loading operations. For more information on
how this process works, see

• “DOS Memory Usage and TSRs” on page 1025

TSRs come in two basic forms: active and passive. Passive TSRs are not self-activating. A foreground
application must call a routine in a passive TSR to activate it. Generally, an application interfaces to a pas-
sive TSR using the 80x86 trap mechanism (software interrupts). Active TSRs, on the other hand, do not rely
on the foreground application for activation. Instead, they attach themselves to a hardware interrupt that
activates them independently of the foreground process. For more information, see

• “Active vs. Passive TSRs” on page 1029

The nature of an active TSR introduces many compatibility problems. The primary problem is that an
active TSR might want to call a DOS or BIOS routine after having just interrupted either of these systems.
This creates problems because DOS and BIOS are not reentrant. Fortunately, MS-DOS provides some
hooks that give active TSRs the ability to schedule DOS calls with DOS is inactive. Although the BIOS rou-
tines do not provide this same facility, it is easy to add a wrapper around a BIOS call to let you schedule
calls appropriately. One additional problem with DOS is that an active TSR might disturb some global vari-
able in use by the foreground process. Fortunately, DOS lets the TSR save and restore these values, pre-
venting some nasty compatibility problems. For details, see

• “Reentrancy” on page 1032
• “Reentrancy Problems with DOS” on page 1032
• “Reentrancy Problems with BIOS” on page 1033
• “Reentrancy Problems with Other Code” on page 1034
• “Other DOS Related Issues” on page 1039

MS-DOS provides a special interrupt to coordinate communication between TSRs and other applica-
tions. The multiplex interrupt lets you easily check for the presence of a TSR in memory, remove a TSR
from memory, or pass various information between the TSR and an active application. For more informa-
tion, see

• “The Multiplex Interrupt (INT 2Fh)” on page 1034

Well written TSRs follow stringent rules. In particular, a good TSR follows certain conventions during
installation and always provide the user with a safe removal mechanism that frees all memory in use by the
TSR. In those rare cases where a TSR cannot remove itself, it always reports an appropriate error and
instructs the user how to solve the problem. For more information on load and removing TSRs, see

• “Installing a TSR” on page 1035
• “Removing a TSR” on page 1037
• “A Keyboard Monitor TSR” on page 1041

A semiresident routine is one that is resident during the execution of some specific program. It auto-
matically unloads itself when that application terminates. Semiresident applications find application as
program patchers and “time-release TSRs.” For more information on semiresident programs, see

• “Semiresident Programs” on page 1055

Page 1065

Processes, Coroutines, and Concurrency Chapter 19

When most people speak of multitasking, they usually mean the ability to run several different appli-
cation programs concurrently on one machine. Given the structure of the original 80x86 chips and
MS-DOS’ software design, this is very difficult to achieve when running DOS. Look at how long it’s taken
Microsoft to get Windows to multitask as well as it does.

Given the problems large companies like Microsoft have had trying to get multitasking to work, you
might thing that it is a very difficult thing to manage. However, this isn’t true. Microsoft has problems try-
ing to make different applications

that are unaware of one another

 work harmoniously together. Quite
frankly, they have not succeeded in getting existing DOS applications to multitask well. Instead, they’ve
been working on developers to write new programs that work well under Windows.

Multitasking is not trivial, but it is not that difficult when you write an application with multitasking
specifically in mind. You can even write programs that multitask under DOS if you only take a few precau-
tions. In this chapter, we will discuss the concept of a DOS

process

, a

coroutine

, and a general

process

.

19.1 DOS Processes

Although MS-DOS is a single tasking operating system, this does not mean there can only be one pro-
gram at a time in memory. Indeed, the whole purpose of the previous chapter was to describe how to get
two or more programs operating in memory at one time. However, even if we ignore TSRs for the time
being, you can still load several programs into memory at one time under DOS. The only catch is, DOS
only provides the ability for them to run one at a time in a very specific fashion. Unless the processes are

cooperating

, their execution profile follows a very strict pattern.

19.1.1 Child Processes in DOS

When a DOS application is running, it can load and executing some other program using the DOS
EXEC function (see “MS-DOS, PC-BIOS, and File I/O” on page 699). Under normal circumstances, when
an application (the parent) runs a second program (the child), the child process executes to completion
and then returns to the parent. This is very much like a procedure call, except it is a little more difficult to
pass parameters between the two.

MS-DOS provides several functions you can use to load and execute program code, terminate pro-
cesses, and obtain the exit status for a process. The following table lists many of these operations.

Table 67: DOS Character Oriented Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

4Bh

al

- 0

ds:dx

- pointer to program name.

es:bx

- pointer to LOADEXEC structure.

ax

- error code if
carry set.

Load and execute program

4Bh

al

- 1

ds:dx

- pointer to program name.

es:bx

- pointer to LOAD structure.

ax

- error code if
carry set.

Load program

4Bh

al

- 3

ds:dx

- pointer to program name.

es:bx

- pointer to OVERLAY structure.

ax

- error code if
carry set.

Load overlay

Thi d t t d ith F M k 4 0 2

Chapter 19

Page 1066

19.1.1.1 Load and Execute

The “load and execute” call requires two parameters. The first, in ds:dx, is a pointer to a zero termi-
nated string containing the pathname of the program to execute. This must be a “.COM” or “.EXE” file and
the string must contain the program name’s extension. The second parameter, in

es:bx

, is a pointer to a
LOADEXEC data structure. This data structure takes the following form:

LOADEXEC struct
EnvPtr word ? ;Pointer to environment area
CmdLinePtr dword ? ;Pointer to command line
FCB1 dword ? ;Pointer to default FCB1
FCB2 dword ? ;Pointer to default FCB2
LOADEXEC ends

Envptr

 is the segment address of the DOS

environment

 block created for the new application. If
this field contains a zero, DOS creates a copy of the current process’ environment block for the child pro-
cess. If the program you are running does not access the environment block, you can save several hun-
dred bytes to a few kilobytes by pointing the environment pointer field to a string of four zeros.

The

CmdLinePtr

 field contains the address of the command line to supply to the program. DOS
will copy this command line to offset 80h in the new PSP it creates for the child process. A valid command
line consists of a byte containing a character count, a least one space, any character belonging to the com-
mand line, and a terminating carriage return character (0Dh). The first byte should contain the length of
the ASCII characters in the command line, not including the carriage return. If this byte contains zero, then
the second byte of the command line should be the carriage return, not a space. Example:

MyCmdLine byte 12, “ file1 file2”,cr

The

FCB1

 and

FCB2

 fields need to point at the two default

file control blocks

 for this program.
FCBs became obsolete with DOS 2.0, but Microsoft has kept FCBs around for compatibility anyway. For
most programs you can point both of these fields at the following string of bytes:

DfltFCB byte 3,” “,0,0,0,0,0

The load and execute call will fail if there is insufficient memory to load the child process. When you
create an “.EXE” file using MASM, it creates an executable file that grabs all available memory, by default.
Therefore, there will be

no

 memory available for the child process and DOS will always return an error.
Therefore, you must readjust the memory allocation for the parent process before attempting to run the
child process. The section “Semiresident Programs” on page 1055 describes how to do this.

There are other possible errors as well. For example, DOS might not be able to locate the program
name you specify with the zero terminated string. Or, perhaps, there are too many open files and DOS
doesn’t have a free buffer available for the file I/O. If an error occurs, DOS returns with the carry flag set
and an appropriate error code in the

ax

 register. The following example program executes the
“COMMAND.COM” program, allowing a user to execute DOS commands from inside your application.
When the user types “exit” at the DOS command line, DOS returns control to your program.

; RUNDOS.ASM -Demonstrates how to invoke a copy of the COMMAND.COM
; DOS command line interpreter from your programs.

include stdlib.a

4Ch

al

- process return code Terminate execution

4Dh

al

- return value

ah

- termination
method.

Get child process return value

Table 67: DOS Character Oriented Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

Processes, Coroutines, and Concurrency

Page 1067

includelib stdlib.lib

dseg segment para public ‘data’

; MS-DOS EXEC structure.

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 0, 0dh ;Cmd line for program.
PgmName dword filename ;Points at pgm name.

filename byte “c:\command.com”,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;Get ptr to vars segment
mov ds, ax

MemInit ;Start the memory mgr.

; Okay, we’ve built the MS-DOS execute structure and the necessary
; command line, now let’s see about running the program.
; The first step is to free up all the memory that this program
; isn’t using. That would be everything from zzzzzzseg on.
;
; Note: unlike some previous examples in other chapters, it is okay
; to call Standard Library routines in this program after freeing
; up memory. The difference here is that the Standard Library
; routines are loaded early in memory and we haven’t free up the
; storage they are sitting in.

mov ah, 62h ;Get our PSP value
int 21h
mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Tell the user what is going on:

print
byte cr,lf
byte “RUNDOS- Executing a copy of command.com”,cr,lf
byte “Type ‘EXIT’ to return control to RUN.ASM”,cr,lf
byte 0

; Warning! No Standard Library calls after this point. We’ve just
; released the memory that they’re sitting in. So the program load
; we’re about to do will wipe out the Standard Library code.

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

; In MS-DOS 6.0 the following code isn’t required. But in various older
; versions of MS-DOS, the stack is messed up at this point. Just to be
; safe, let’s reset the stack pointer to a decent place in memory.
;
; Note that this code preserves the carry flag and the value in the
; AX register so we can test for a DOS error condition when we are done

Chapter 19

Page 1068

; fixing the stack.

mov bx, sseg
mov ss, ax
mov sp, offset EndStk
mov bx, seg dseg
mov ds, bx

; Test for a DOS error:

jnc GoodCommand
print
byte “DOS error #”,0
puti
print
byte “ while attempting to run COMMAND.COM”,cr,lf
byte 0
jmp Quit

; Print a welcome back message.

GoodCommand: print
byte “Welcome back to RUNDOS. Hope you had fun.”,cr,lf
byte “Now returning to MS-DOS’ version of COMMAND.COM.”
byte cr,lf,lf,0

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)
zzzzzzseg ends

end Main

19.1.1.2 Load Program

The load and execute function gives the parent process very little control over the child process.
Unless the child communicates with the parent process via a trap or interrupt, DOS suspends the parent
process until the child terminates. In many cases the parent program may want to load the application
code and then execute some additional operations before the child process takes over. Semiresident pro-
grams, appearing in the previous chapter, provide a good example. The DOS “load program” function
provides this capability; it will load a program from the disk and return control back to the parent process.
The parent process can do whatever it feels is appropriate before passing control to the child process.

The load program call requires parameters that are very similar to the load and execute call. Indeed,
the only difference is the use of the LOAD structure rather than the LOADEXEC structure, and even these
structures are very similar to one another. The LOAD data structure includes two extra fields not present in
the LOADEXE structure:

LOAD struct
EnvPtr word ? ;Pointer to environment area.
CmdLinePtr dword ? ;Pointer to command line.
FCB1 dword ? ;Pointer to default FCB1.
FCB2 dword ? ;Pointer to default FCB2.
SSSP dword ? ;SS:SP value for child process.
CSIP dword ? ;Initial program starting point.
LOAD ends

The LOAD command is useful for many purposes. Of course, this function provides the primary vehi-
cle for creating semiresident programs; however, it is also quite useful for providing extra error recovery,

Processes, Coroutines, and Concurrency

Page 1069

redirecting application I/O, and loading several executable processes into memory for concurrent execu-
tion.

After you load a program using the DOS load command, you can obtain the PSP address for that pro-
gram by issuing the DOS get PSP address call (see “MS-DOS, PC-BIOS, and File I/O” on page 699). This
would allow the parent process to modify any values appearing in the child process’ PSP prior to its execu-
tion. DOS stores the termination address for a procedure in the PSP. This termination address normally
appears in the double word at offset 10h in the PSP.

If you do not change this location, the program will
return to the first instruction beyond the int 21h instruction for the load function.

 Therefore, before actu-
ally transferring control to the user application, you should change this termination address.

19.1.1.3 Loading Overlays

Many programs contain blocks of code that are independent of one other; that is, while routines in
one block of code execute, the program will not call routines in the other independent blocks of code. For
example, a modern game may contain some initialization code, a “staging area” where the user chooses
certain options, an “action area” where the user plays the game, and a “debriefing area” that goes over the
player’s actions. When running in a 640K MS-DOS machine, all this code may not fit into available memory
at the same time. To overcome this memory limitation, most large programs use

overlays

. An overlay is a
portion of the program code that shares memory for its code with other code modules. The DOS load
overlay function provides support for large programs that need to use overlays.

Like the load and load/execute functions, the load overlay expects a pointer to the code file’s path-
name in the

ds:dx

 register pair and the address of a data structure in the

es:bx

 register pair. This overlay
data structure has the following format:

overlay struct
StartSeg word ?
RelocFactor word 0
overlay ends

The

StartSeg

 field contains the segment address where you want DOS to load the program. The

RelocFactor

 field contains a relocation factor. This value should be zero unless you want the starting
offset of the segment to be something other than zero.

19.1.1.4 Terminating a Process

The process termination function is nothing new to you by now, you’ve used this function over and
over again already if you written any assembly language programs and run them under DOS (the Standard
Library

ExitPgm

 macro executes this command). In this section we’ll look at exactly what the terminate
process function call does.

First of all, the terminate process function gives you the ability to pass a single byte

termination code

back to the parent process. Whatever value you pass in al to the terminate call becomes the return, or ter-
mination code. The parent process can test this value using the Get Child Process Return Value call (see
the next section). You can also test this return value in a DOS batch file using the “if errorlevel” statement.

The terminate process command does the following:

• Flushes file buffers and closes files.
• Restores the termination address (int 22h) from offset 0Ah in the PSP (this is the return

address of the process).
• Restores the address of the Break handler (int 23h) from offset 0Eh in the PSP (see

“Exception Handling in DOS: The Break Handler” on page 1070)
• Restores the address of the critical error handler (int 24h) from offset 12h in the PSP

(see “Exception Handling in DOS: The Critical Error Handler” on page 1071).

Chapter 19

Page 1070

• Deallocates any memory held by the process.

Unless you

really

 know what you’re doing, you should not change the values at offsets 0Ah, 0Eh, or
12h in the PSP. By doing so you could produce an inconsistent system when your program terminates.

19.1.1.5 Obtaining the Child Process Return Code

A parent process can obtain the return code from a child process by making the DOS Get Child Pro-
cess Return Code function call. This call returns the value in the

al

 register at the point of termination plus
information that tells you how the child process terminated.

This call (

ah

=4Dh) returns the termination code in the al register. It also returns the cause of termina-
tion in the ah register. The

ah

 register will contain one of the following values:

The termination code appearing in

al

 is valid only for normal and TSR terminations.

Note that you can only call this routine

once

after a child process terminates. MS-DOS returns mean-
ingless values in AX after the first such call. Likewise, if you use this function without running a child pro-
cess, the results you obtain will be meaningless. DOS does not return if you do this.

19.1.2 Exception Handling in DOS: The Break Handler

Whenever the users presses a ctrl-C or ctrl-Break key MS-DOS may trap such a key sequence and exe-
cute an

int 23h

 instruction

1

. MS-DOS provides a default break handler routine that terminates the pro-
gram. However, a well-written program generally replaces the default break handler with one of its own
so it can capture ctrl-C or ctrl-break key sequences and shut the program down in an orderly fashion.

When DOS terminates a program due to a break interrupt, it flushes file buffers, closes all open files,
releases memory belonging to the application, all the normal stuff it does on program termination. How-
ever, it does

not

 restore any interrupt vectors (other than interrupt 23h and interrupt 24h). If your code
has replaced any interrupt vectors, especially hardware interrupt vectors, then those vectors will still be
pointing at your program’s interrupt service routines after DOS terminates your program. This will proba-
bly crash the system when DOS loads a new program over the top of your code. Therefore, you should
write a break handler so your application can shut itself down in an orderly fashion if the user presses
ctrl-C or ctrl-break.

The easiest, and perhaps most universal, break handler consists of a single instruction –

iret

. If you
point the interrupt 23h vector at an

iret

 instruction, MS-DOS will simply ignore any ctrl-C or ctrl-break
keys you press. This is very useful for turning off the break handling during critical sections of code that
you do not want the user to interrupt.

1. MS-DOS always executes an int 23h instruction if it is processing a function code in the range 1-0Ch. For other DOS functions, MS-DOS only exe-
cutes int 23h if the Break flag is set

Table 68: Termination Cause

Value in AH Reason for Termination

0 Normal termination (int 21h, ah=4Ch)

1 Terminated by ctrl-C

2 Terminated by critical error

3 TSR termination (int 21h, ah=31h)

Processes, Coroutines, and Concurrency

Page 1071

On the other hand, simply turning off ctrl-C and ctrl-break handling throughout your entire program
is not satisfactory either. If for some reason the user wants to abort your program, pressing ctrl-break or
ctrl-C is what they will probably try to do this. If your program disallows this, the user may resort to some-
thing more drastic like ctrl-alt-delete to reset the machine. This will certainly mess up any open files and
may cause other problems as well (of course, you don’t have to worry about restoring any interrupt vec-
tors!).

To patch in your own break handler is easy – just store the address of your break handler routine into
the interrupt vector 23h. You don’t even have to save the old value, DOS does this for you automatically (it
stores the original vector at offset 0Eh in the PSP). Then, when the users presses a ctrl-C or ctrl-break key,
MS-DOS transfers control to your break handler.

Perhaps the best response for a break handler is to set some flag to tell the application and break
occurred, and then leave it up to the application to test this flag a reasonable points to determine if it
should shut down. Of course, this does require that you test this flag at various points throughout your
application, increasing the complexity of your code. Another alternative is to save the original int 23h vec-
tor and transfer control to DOS’ break handler after you handle important operations yourself. You can
also write a specialized break handler to return a DOS termination code that the parent process can read.

Of course, there is no reason you cannot change the interrupt 23h vector at various points throughout
your program to handle changing requirements. At various points you can disable the break interrupt
entirely, restore interrupt vectors at others, or prompt the user at still other points.

19.1.3 Exception Handling in DOS: The Critical Error Handler

DOS invokes the critical error handler by executing an int 24h instruction whenever some sort of I/O
error occurs. The default handler prints the familiar message:

I/O Device Specific Error Message

Abort, Retry, Ignore, Fail?

If the user presses an “A”, this code immediately returns to DOS’ COMMAND.COM program;

it doesn’t
even close any open files

. If the user presses an “R” to retry, MS-DOS will retry the I/O operation, though
this usually results in another call to the critical error handler. The “I” option tells MS-DOS to ignore the
error and return to the calling program as though nothing had happened. An “F” response instructs
MS-DOS to return an error code to the calling program and let it handle the problem.

Of the above options, having the user press “A” is the most dangerous. This causes an immediate
return to DOS and your code does not get the chance to clean up anything. For example, if you’ve patched
some interrupt vectors, your program will not get the opportunity to restore them if the user selects the
abort option. This may crash the system when MS-DOS loads the next program over the top of your inter-
rupt service routine(s) in memory.

To intercept DOS critical errors, you will need to patch the interrupt 24h vector to point at your own
interrupt service routine. Upon entry into your interrupt 24h service routine, the stack will contain the fol-
lowing data:

Chapter 19

Page 1072

MS-DOS passes important information in several of the registers to your critical error handler. By
inspecting these values you can determine the cause of the critical error and the device on which it
occurred. The high order bit of the

ah

 register determines if the error occurred on a block structured
device (typically a disk or tape) or a character device. The other bits in ah have the following meaning:

Table 69: Device Error Bits in AH

Bit(s) Description

0 0=Read operation.
1=Write operation.

1-2 Indicates affected disk area.
00- MS-DOS area.
01- File allocation table (FAT).
10- Root directory.
11- Files area.

3 0- Fail response not allowed.
1- Fail response is okay.

4 0- Retry response not allowed.
1- Retry response is okay.

5 0- Ignore response is not allowed.
1- Ignore response is okay.

6 Undefined

7 0- Character device error.
1- Block structured device error.

Flags
CS
IP
ES
DS
BP
DI
SI
DX
CX
BX
AX
Flags
CS
IP

Original INT 24h return address

Registers DOS pushes for your INT 24h handler

INT 24h return address (back to DOS) for your handler

Stack Contents Upon Entry to a Critical Error Handler

Processes, Coroutines, and Concurrency

Page 1073

In addition to the bits in ah, for block structured devices the

al

 register contains the drive number where
the error occurred (0=A, 1=B, 2=C, etc.). The value in the

al

 register is undefined for character devices.

The lower half of the

di

 register contains additional information about the block device error (the
upper byte of

di

 is undefined, you will need to mask out those bits before attempting to test this data).

Upon entry to your critical error handler, interrupts are turned off. Because this error occurs as a
result of some MS-DOS call, MS-DOS is already entered and you will not be able to make any calls other
than functions 1-0Ch and 59h (get extended error information).

Your critical error handler must preserve all registers except

al

. The handler must return to DOS with
an

iret

 instruction and

al

 must contain one of the following codes:

The following code provides a trivial example of a critical error handler. The main program attempts
to send a character to the printer. If you do not connect a printer, or turn off the printer before running this
program, it will generate the critical error.

; Sample INT 24h critical error handler.
;
; This code demonstrates a sample critical error handler.
; It patches into INT 24h and displays an appropriate error
; message and asks the user if they want to retry, abort, ignore,
; or fail (just like DOS).

Table 70: Block Structured Device Error Codes (in L.O. byte of DI)

Error Code Description

0 Write protection error.

1 Unknown drive.

2 Drive not ready.

3 Invalid command.

4 Data error (CRC error).

5 Length of request structure is incorrect.

6 Seek error on device.

7 Disk is not formatted for MS-DOS.

8 Sector not found.

9 Printer out of paper.

0Ah Write error.

0Bh Read error.

0Ch General failure.

0Fh Disk was changed at inappropriate time.

Table 71: Critical Error Handler Return Codes

Code Meaning

0 Ignore device error.

1 Retry I/O operation again.

2 Terminate process (abort).

3 Fail current system call.

Chapter 19

Page 1074

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

Value word 0
ErrCode word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. Note that this routine
; is even worse than DOS’, but it demonstrates how to write
; such a routine. Note that we cannot call any Standard Library
; I/O routines in the critical error handler because they do not
; use DOS calls 1-0Ch, which are the only allowable DOS calls at
; this point.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

Processes, Coroutines, and Concurrency

Page 1075

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs

mov ah, 5
mov dl, ‘a’
int 21h
rcl Value, 1
and Value, 1
mov ErrCode, ax
printf
byte cr,lf,lf
byte “Print char returned with error status %d and “
byte “error code %d\n”,0
dword Value, ErrCode

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

; Allocate a reasonable amount of space for the stack (8k).
; Note: if you use the pattern matching package you should set up a
; somewhat larger stack.

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg must be the last segment that gets loaded into memory!
; This is where the heap begins.

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.1.4 Exception Handling in DOS: Traps

In addition to the break and critical error exceptions, there are the 80x86 exceptions that can happen
during the execution of your programs. Examples include the divide error exception, bounds exception,
and illegal opcode exception. A well-written application will always handle all possible exceptions.

DOS does not provide direct support for these exceptions, other than a possible default handler. In
particular, DOS does not restore such vectors when the program terminates; this is something the applica-
tion, break handler, and critical error handler must take care of. For more information on these exceptions,
see “Exceptions” on page 1000.

19.1.5 Redirection of I/O for Child Processes

When a child process begins execution, it inherits all open files from the parent process (with the
exception of certain files opened with networking file functions). In particular, this includes the default

Chapter 19

Page 1076

files opened for the DOS

standard input, standard output, standard error, auxiliary,

and

 printer

devices. DOS assigns the file handle values zero through four, respectively, to these devices. If a parent
process closes one of these file handles and then reassigns the handle with a Force Duplicate File Handle
call.

Note that the DOS EXEC call does not process the I/O redirection operators (“<“, and “>”, and “|”). If
you want to redirect the standard I/O of a child process, you must do this before loading and executing
the child process. To redirect one of the five standard I/O devices, you should do the following steps:

1) Duplicate the file handle you want to redirect (e.g., to redirect the standard output, duplicate file
handle one).

2) Close the affected file (e.g., file handle one for standard output).

3) Open a file using the standard DOS Create or CreateNew calls.

4) Use the Force Duplicate File Handle call to copy the new file handle to file handle one.

5) Run the child process.

6) On return from the child, close the file.

7) Copy the file handle you duplicated in step one back to the standard output file handle using the
Force Duplicate Handle function.

This technique looks like it would be perfect for redirecting printer or serial port I/O. Unfortunately,
many programs bypass DOS when sending data to the printer and use the BIOS call or, worse yet, go
directly to the hardware. Almost no software bothers with DOS’ serial port support – it truly is that bad.
However, most programs

do

 call DOS to input or output characters on the standard input, output, and
error devices. The following code demonstrates how to redirect the output of a child process to a file.

; REDIRECT.ASM -Demonstrates how to redirect I/O for a child process.
; This particular program invokes COMMAND.COM to execute
; a DIR command, when is sent to the specified output file.

include stdlib.a
includelib stdlib.lib

dseg segment para public ‘data’

OrigOutHandle word ? ;Holds copy of STDOUT handle.
FileHandle word ? ;File I/O handle.
FileName byte “dirctry.txt”,0 ;Filename for output data.

; MS-DOS EXEC structure.

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 7, “ /c DIR”, 0dh ;Do a directory command.
PgmName dword PgmNameStr ;Points at pgm name.
PgmNameStr byte “c:\command.com”,0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg ;Get ptr to vars segment
mov ds, ax
MemInit ;Start the memory mgr.

; Free up some memory for COMMAND.COM:

mov ah, 62h ;Get our PSP value
int 21h

Processes, Coroutines, and Concurrency

Page 1077

mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Save original output file handle.

mov bx, 1 ;Std out is file handle 1.
mov ah, 45h ;Duplicate the file handle.
int 21h
mov OrigOutHandle, ax;Save duplicate handle.

; Open the output file:

mov ah, 3ch ;Create file.
mov cx, 0 ;Normal attributes.
lea dx, FileName
int 21h
mov FileHandle, ax ;Save opened file handle.

; Force the standard output to send its output to this file.
; Do this by forcing the file’s handle onto file handle #1 (stdout).

mov ah, 46h ;Force dup file handle
mov cx, 1 ;Existing handle to change.
mov bx, FileHandle ;New file handle to use.
int 21h

; Print the first line to the file:

print
byte “Redirected directory listing:”,cr,lf,0

; Okay, execute the DOS DIR command (that is, execute COMMAND.COM with
; the command line parameter “/c DIR”).

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

mov bx, sseg ;Reset the stack on return.
mov ss, ax
mov sp, offset EndStk
mov bx, seg dseg
mov ds, bx

; Okay, close the output file and switch standard output back to the
; console.

mov ah, 3eh ;Close output file.
mov bx, FileHandle
int 21h

mov ah, 46h ;Force duplicate handle
mov cx, 1 ;StdOut
mov bx, OrigOutHandle ;Restore previous handle.
int 21h

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

endstk dw ?
sseg ends

Chapter 19

Page 1078

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)
zzzzzzseg ends

end Main

19.2 Shared Memory

The only problem with running different DOS programs as part of a single application is

interprocess
communication.

 That is, how do all these programs talk to one other? When a typical DOS application
runs, DOS loads in all code and data segments; there is no provision, other than reading data from a file or
the process termination code, for one process to pass information to another. Although file I/O will work,
it is cumbersome and slow. The ideal solution would be for one process to leave a copy of various vari-
ables that other processes can share. Your programs can easily do this using

shared memory

.

Most modern multitasking operating systems provide for shared memory – memory that appears in
the address space of two or more processes. Furthermore, such shared memory is often

persistent

, mean-
ing it continues to hold values after its creator process terminates. This allows other processes to start later
and use the values left behind by the shared variables’ creator.

Unfortunately, MS-DOS is not a modern multitasking operating system and it does not support shared
memory. However, we can easily write a resident program that provides this capability missing from DOS.
The following sections describe how to create two types of shared memory regions – static and dynamic.

19.2.1 Static Shared Memory

A TSR to implement static shared memory is trivial. It is a passive TSR that provides three functions –
verify presence, remove, and return segment pointer. The transient portion simply allocates a 64K data
segment and then terminates. Other processes can obtain the address of the 64K shared memory block by
making the “return segment pointer” call. These processes can place all their shared data into the segment
belonging to the TSR. When one process quits, the shared segment remains in memory as part of the TSR.
When a second process runs and links with the shared segment, the variables from the shared segment are
still intact, so the new process can access those values. When all processes are done sharing data, the user
can remove the shared memory TSR with the remove function.

As mentioned above, there is almost nothing to the shared memory TSR. The following code imple-
ments it:

; SHARDMEM.ASM
;
; This TSR sets aside a 64K shared memory region for other processes to use.
;
; Usage:
;
; SHARDMEM - Loads resident portion and activates
; shared memory capabilities.
;
; SHARDMEM REMOVE - Removes shared memory TSR from memory.
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When removing itself from memory, it makes sure there are
; no other interrupts chained into INT 2Fh before doing the remove.
;
;
;
; The following segments must appear in this order and before the
; Standard Library includes.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

SharedMemory segment para public ‘Shared’

Processes, Coroutines, and Concurrency

Page 1079

SharedMemory ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; Int 2Fh ID number for this TSR:

MyTSRID byte 0
byte 0 ;Padding so we can print it.

; PSP is the psp address for this program.

PSP word 0

OldInt2F dword ?

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):
;
; 00h- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01h- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.
;
; 10h- Return Seg Adrs. Returns the segment address of the
; shared segment in ES.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID ;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify, remove, or
; return segment call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv
mov al, 0ffh ;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Static Shared Memory TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne TryRetSeg

; See if we can remove this TSR:

push es
mov ax, 0
mov es, ax
cmp word ptr es:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr es:[2Fh*4 + 2], seg MyInt2F

Chapter 19

Page 1080

je CanRemove;Branch if we can.
TRDone: mov ax, 1 ;Return failure for now.

pop es
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

CanRemove: push ds
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h

mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop ds
pop es
mov ax, 0 ;Return Success.
iret

; See if they want us to return the segment address of our shared segment
; here.

TryRetSeg: cmp al, 10h ;Return Segment Opcode
jne IllegalOp
mov ax, SharedMemory
mov es, ax
mov ax, 0 ;Return success
clc
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

ResidentSeg ends

; Here’s the segment that will actually hold the shared data.

SharedMemory segment para public ‘Shared’
db 0FFFFh dup (?)

SharedMemory ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

Processes, Coroutines, and Concurrency

Page 1081

; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es
push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line

Chapter 19

Page 1082

; parameters. If there is one, and it is the word “REMOVE”, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.

argc
cmp cx, 1 ;Must have 0 or 1 parms.
jb TstPresent
je DoRemove

Usage: print
byte “Usage:”,cr,lf
byte “ shardmem”,cr,lf
byte “or shardmem REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

DoRemove: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne Usage

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print
byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm

; Things look cool so far, so install the interrupts

Processes, Coroutines, and Concurrency

Page 1083

GetFileName: mov MyTSRID, cl
print
byte “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to zero out the shared
; memory segment and then terminate and stay resident.

printf
byte “Installed, TSR ID #%d.”,cr,lf,0
dword MyTSRID

mov ax, SharedMemory ;Zero out the shared
mov es, ax ; memory segment.
mov cx, 32768 ;32K words = 64K bytes.
xor ax, ax ;Store all zeros,
mov di, ax ; starting at offset zero.

rep stosw

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

This program simply carves out a chunk of memory (the 64K in the SharedMemory segment) and
returns a pointer to it in es whenever a program executes the appropriate int 2Fh call (ah= TSR ID and
al=10h). The only catch is how do we declared shared variables in the applications that use shared mem-
ory? Well, that’s fairly easy if we play a sneaky trick on MASM, the Linker, DOS, and the 80x86.

When DOS loads your program into memory, it generally loads the segments in the same order they
first appear in your source files. The UCR Standard Library, for example, takes advantage of this by insist-
ing that you include a segment named zzzzzzseg at the end of all your assembly language source files.
The UCR Standard Library memory management routines build the heap starting at zzzzzzseg, it must be
the last segment (containing valid data) because the memory management routines may overwrite any-
thing following zzzzzzseg.

For our shared memory segment, we would like to create a segment something like the following:

SharedMemory segment para public ‘Shared’

« define all shared variables here»

SharedMemory ends

Chapter 19

Page 1084

Applications that share data would define all shared variables in this shared segment. There are, however,
five problems. First, how do we tell the assembler/linker/DOS/80x86 that this is a shared segment, rather
than having a separate segment for each program? Well, this problem is easy to solve; we don’t bother tell-
ing MASM, the linker, or DOS anything. The way we make the different applications all share the same
segment in memory is to invoke the shared memory TSR in the code above with function code 10h. This
returns the address of the TSR’s SharedMemory segment in the es register. In our assembly language pro-
grams we fool MASM into thinking es points at its local shared memory segment when, in fact, es points
at the global segment.

The second problem is minor, but annoying nonetheless. When you create a segment, MASM, the
linker, and DOS set aside storage for that segment. If you declare a large number of variables in a shared
segment, this can waste memory since the program will actually use the memory space in the global
shared segment. One easy way to reclaim the storage that MASM reserves for this segment is to define the
shared segment after zzzzzzseg in your shared memory applications. By doing so, the Standard Library
will absorb any memory reserved for the (dummy) shared memory segment into the heap, since all mem-
ory after zzzzzzseg belongs to the heap (when you use the standard meminit call).

The third problem is slightly more difficult to deal with. Since you will not be use the local segment,
you cannot initialize any variables in the shared memory segment by placing values in the operand field of
byte, word, dword, etc., directives. Doing so will only initialize the local memory in the heap, the system
will not copy this data to the global shared segment. Generally, this isn’t a problem because processes
won’t normally initialize shared memory as they load. Instead, there will probably be a single application
you run first that initializes the shared memory area for the rest of the processes that using the global
shared segment.

The fourth problem is that you cannot initialize any variables with the address of an object in shared
memory. For example, if the variable shared_K is in the shared memory segment, you could not use a
statement like the following:

printf
byte “Value of shared_K is %d\n”,0
dword shared_K

The problem with this code is that MASM initializes the double word after the string above with the
address of the shared_K variable in the local copy of the shared data segment. This will not print out the
copy in the global shared data segment.

The last problem is anything but minor. All programs that use the global shared memory segment
must define their variables at identical offsets within the shared segment. Given the way MASM assigns
offsets to variables within a segment, if you are one byte off in the declaration of any of your variables,
your program will be accessing its variables at different addresses than other processes sharing the global
shared segment. This will scramble memory and produce a disaster. The only reasonable way to declare
variables for shared memory programs is to create an include file with all the shared variable declarations
for all concerned programs. Then include this single file into all the programs that share the variables. Now
you can add, remove, or modify variables without having to worry about maintaining the shared variable
declarations in the other files.

The following two sample programs demonstrate the use of shared memory. The first application
reads a string from the user and stuffs it into shared memory. The second application reads that string from
shared memory and displays it on the screen.

First, here is the include file containing the single shared variable declaration used by both applica-
tions:

; shmvars.asm
;
; This file contains the shared memory variable declarations used by
; all applications that refer to shared memory.

InputLine byte 128 dup (?)

Processes, Coroutines, and Concurrency

Page 1085

Here is the first application that reads an input string from the user and shoves it into shared memory:

; SHMAPP1.ASM
;
; This is a shared memory application that uses the static shared memory
; TSR (SHARDMEM.ASM). This program inputs a string from the user and
; passes that string to SHMAPP2.ASM through the shared memory area.
;
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #1”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHARDMEM) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0

Chapter 19

Page 1086

ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 10h ;Get shared segment address.
int 2Fh

; Get the input line from the user:

print
byte “Enter a string: “,0

lea di, InputLine ;ES already points at proper seg.
gets

print
byte “Entered ‘”,0
puts
print
byte “‘ into shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

; The shared memory segment must appear after “zzzzzzseg”.
; Note that this isn’t the physical storage for the data in the
; shared segment. It’s really just a place holder so we can declare
; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the memory associated with this segment for the
; heap. To access data in the shared segment, this application calls
; the shared memory TSR to obtain the true segment address of the
; shared memory segment. It can then access variables in the shared
; memory segment (where ever it happens to be) off the ES register.
;
; Note that all the variable declarations go into an include file.
; All applications that refer to the shared memory segment include
; this file in the SharedMemory segment. This ensures that all
; shared segments have the exact same variable layout.

SharedMemory segment para public ‘Shared’

include shmvars.asm

SharedMemory ends
end Main

The second application is very similar, here it is

; SHMAPP2.ASM
;
; This is a shared memory application that uses the static shared memory
; TSR (SHARDMEM.ASM). This program assumes the user has already run the
; SHMAPP1 program to insert a string into shared memory. This program
; simply prints that string from shared memory.
;

Processes, Coroutines, and Concurrency

Page 1087

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Static Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #2”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHARDMEM) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 10h ;Get shared segment address.
int 2Fh

; Print the string input in SHMAPP1:

Chapter 19

Page 1088

print
byte “String from SHMAPP1 is ‘”,0

lea di, InputLine ;ES already points at proper seg.
puts

print
byte “‘ from shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

; The shared memory segment must appear after “zzzzzzseg”.
; Note that this isn’t the physical storage for the data in the
; shared segment. It’s really just a place holder so we can declare
; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the memory associated with this segment for the
; heap. To access data in the shared segment, this application calls
; the shared memory TSR to obtain the true segment address of the
; shared memory segment. It can then access variables in the shared
; memory segment (where ever it happens to be) off the ES register.
;
; Note that all the variable declarations go into an include file.
; All applications that refer to the shared memory segment include
; this file in the SharedMemory segment. This ensures that all
; shared segments have the exact same variable layout.

SharedMemory segment para public ‘Shared’

include shmvars.asm

SharedMemory ends
end Main

19.2.2 Dynamic Shared Memory

Although the static shared memory the previous section describes is very useful, it does suffer from a
few limitations. First of all, any program that uses the global shared segment must be aware of the location
of every other program that uses the shared segment. This effectively means that the use of the shared seg-
ment is limited to a single set of cooperating processes at any one given time. You cannot have two inde-
pendent sets of programs using the shared memory at the same time. Another limitation with the static
system is that you must know the size of all variables when you write your program, you cannot create
dynamic data structures whose size varies at run time. It would be nice, for example, to have calls like
shmalloc and shmfree that let you dynamically allocate and free memory in a shared region. Fortunately, it
is very easy to overcome these limitations by creating a dynamic shared memory manager.

A reasonable shared memory manager will have four functions: initialize, shmalloc, shmattach, and
shmfree. The initialization call reclaims all shared memory in use. The shmalloc call lets a process allocate
a new block of shared memory. Only one process in a group of cooperating processes makes this call.
Once shmalloc allocates a block of memory, the other processes use the shmattach call to obtain the
address of the shared memory block. The following code implements a dynamic shared memory manager.
The code is similar to that appearing in the Standard Library except this code allows a maximum of 64K
storage on the heap.

Processes, Coroutines, and Concurrency

Page 1089

; SHMALLOC.ASM
;
; This TSR sets up a dynamic shared memory system.
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When removing itself from memory, it makes sure there are
; no other interrupts chained into INT 2Fh before doing the remove.
;
;
;
; The following segments must appear in this order and before the
; Standard Library includes.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

SharedMemory segment para public ‘Shared’
SharedMemory ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

NULL equ 0

; Data structure for an allocated data region.
;
; Key- user supplied ID to associate this region with a particular set
; of processes.
;
; Next- Points at the next allocated block.
; Prev- Points at the previous allocated block.
; Size- Size (in bytes) of allocated block, not including header structure.

Region struct
key word ?
next word ?
prev word ?
blksize word ?
Region ends

Startmem equ Region ptr [0]

AllocatedList word 0 ;Points at chain of alloc’d blocks.
FreeList word 0 ;Points at chain of free blocks.

; Int 2Fh ID number for this TSR:

MyTSRID byte 0
byte 0 ;Padding so we can print it.

; PSP is the psp address for this program.

PSP word 0

OldInt2F dword ?

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):

Chapter 19

Page 1090

;
; 00h- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01h- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.
;
; 11h- shmalloc CX contains the size of the block
; to allocate.
; DX contains the key for this block.
; Returns a pointer to block in ES:DI
; and size of allocated block in CX.
; Returns an error code in AX. Zero
; is no error, one is “key already
; exists,” two is “insufficient
; memory for request.”
;
; 12h- shmfree DX contains the key for this block.
; This call frees the specified block
; from memory.
;
; 13h- shminit Initializes the shared memory system
; freeing all blocks currently in
; use.
;
; 14h- shmattach DX contains the key for a block.
; Search for that block and return
; its address in ES:DI. AX contains
; zero if successful, three if it
; cannot locate a block with the
; specified key.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify, remove, or
; return segment call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv
mov al, 0ffh;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Dynamic Shared Memory TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne Tryshmalloc

; See if we can remove this TSR:

push es
mov ax, 0
mov es, ax
cmp word ptr es:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr es:[2Fh*4 + 2], seg MyInt2F
je CanRemove ;Branch if we can.

TRDone: mov ax, 1 ;Return failure for now.
pop es
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

Processes, Coroutines, and Concurrency

Page 1091

CanRemove: push ds
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h

mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop ds
pop es
mov ax, 0 ;Return Success.
iret

; Stick BadKey here so that it is close to its associated branch (from below).
;
; If come here, we’ve discovered an allocated block with the
; specified key. Return an error code (AX=1) and the size of that
; allocated block (in CX).

BadKey: mov cx, [bx].Region.BlkSize
mov ax, 1 ;Already allocated error.
pop bx
pop ds
iret

; See if this is a shmalloc call.
; If so, on entry -
; DX contains the key.
; CX contains the number of bytes to allocate.
;
; On exit:
;
; ES:DI points at the allocated block (if successful).
; CX contains the actual size of the allocated block (>=CX on entry).
; AX contains error code, 0 if no error.

Tryshmalloc: cmp al, 11h ;shmalloc function code.
jne Tryshmfree

; First, search through the allocated list to see if a block with the
; current key number already exists. DX contains the requested key.

assume ds:SharedMemory
assume bx:ptr Region
assume di:ptr Region

push ds
push bx
mov bx, SharedMemory
mov ds, bx

Chapter 19

Page 1092

mov bx, ResidentSeg:AllocatedList
test bx, bx ;Anything on this list?
je SrchFreeList

SearchLoop: cmp dx, [bx].Key ;Key exist already?
je BadKey
mov bx, [bx].Next ;Get next region.
test bx, bx ;NULL?, if not, try another
jne SearchLoop ; entry in the list.

; If an allocated block with the specified key does not already exist,
; then try to allocate one from the free memory list.

SrchFreeList: mov bx, ResidentSeg:FreeList
test bx, bx ;Empty free list?
je OutaMemory

FirstFitLp: cmp cx, [bx].BlkSize ;Is this block big enough?
jbe GotBlock
mov bx, [bx].Next ;If not, on to the next one.
test bx, bx ;Anything on this list?
jne FirstFitLp

; If we drop down here, we were unable to find a block that was large
; enough to satisfy the request. Return an appropriate error

OutaMemory: mov cx, 0 ;Nothing available.
mov ax, 2 ;Insufficient memory error.
pop bx
pop ds
iret

; If we find a large enough block, we’ve got to carve the new block
; out of it and return the rest of the storage to the free list. If the
; free block is at least 32 bytes larger than the requested size, we will
; do this. If the free block is less than 32 bytes larger, we will simply
; give this free block to the requesting process. The reason for the
; 32 bytes is simple: We need eight bytes for the new block’s header
; (the free block already has one) and it doesn’t make sense to fragment
; blocks to sizes below 24 bytes. That would only increase processing time
; when processes free up blocks by requiring more work coalescing blocks.

GotBlock: mov ax, [bx].BlkSize ;Compute difference in size.
sub ax, cx
cmp ax, 32 ;At least 32 bytes left?
jbe GrabWholeBlk ;If not, take this block.

; Okay, the free block is larger than the requested size by more than 32
; bytes. Carve the new block from the end of the free block (that way
; we do not have to change the free block’s pointers, only the size.

mov di, bx
add di, [bx].BlkSize ;Scoot to end, minus 8
sub di, cx ;Point at new block.

sub [bx].BlkSize, cx ;Remove alloc’d block and
sub [bx].BlkSize, 8 ; room for header.

mov [di].BlkSize, cx ;Save size of block.
mov [di].Key, dx ;Save key.

; Link the new block into the list of allocated blocks.

mov bx, ResidentSeg:AllocatedList
mov [di].Next, bx
mov [di].Prev, NULL ;NULL previous pointer.
test bx, bx ;See if it was an empty list.
je NoPrev
mov [bx].Prev, di ;Set prev ptr for old guy.

NoPrev: mov ResidentSeg:AllocatedList, di
RmvDone: add di, 8 ;Point at actual data area.

mov ax, ds ;Return ptr in es:di.
mov es, ax

Processes, Coroutines, and Concurrency

Page 1093

mov ax, 0 ;Return success.
pop bx
pop ds
iret

; If the current free block is larger than the request, but not by more
; that 32 bytes, just give the whole block to the user.

GrabWholeBlk: mov di, bx
mov cx, [bx].BlkSize ;Return actual size.
cmp [bx].Prev, NULL ;First guy in list?
je Rmv1st
cmp [bx].Next, NULL ;Last guy in list?
je RmvLast

; Okay, this record is sandwiched between two other in the free list.
; Cut it out from among the two.

mov ax, [bx].Next ;Save the ptr to the next
mov bx, [bx].Prev ; item in the prev item’s
mov [bx].Next, ax ; next field.

mov ax, bx ;Save the ptr to the prev
mov bx, [di].Next ; item in the next item’s
mov [bx].Prev, bx ; prev field.
jmp RmvDone

; The block we want to remove is at the beginning of the free list.
; It could also be the only item on the free list!

Rmv1st: mov ax, [bx].Next
mov FreeList, ax ;Remove from free list.
jmp RmvDone

; If the block we want to remove is at the end of the list, handle that
; down here.

RmvLast: mov bx, [bx].Prev
mov [bx].Next, NULL
jmp RmvDone

assume ds:nothing, bx:nothing, di:nothing

; This code handles the SHMFREE function.
; On entry, DX contains the key for the block to free. We need to
; search through the allocated block list and find the block with that
; key. If we do not find such a block, this code returns without doing
; anything. If we find the block, we need to add its memory to the
; free pool. However, we cannot simply insert this block on the front
; of the free list (as we did for the allocated blocks). It might
; turn out that this block we’re freeing is adjacent to one or two
; other free blocks. This code has to coalesce such blocks into
; a single free block.

Tryshmfree: cmp al, 12h
jne Tryshminit

; First, search the allocated block list to see if we can find the
; block to remove. If we don’t find it in the list anywhere, just return.

assume ds:SharedMemory
assume bx:ptr Region
assume di:ptr Region

push ds
push di
push bx

Chapter 19

Page 1094

mov bx, SharedMemory
mov ds, bx
mov bx, ResidentSeg:AllocatedList

test bx, bx ;Empty allocated list?
je FreeDone

SrchList: cmp dx, [bx].Key ;Search for key in DX.
je FoundIt
mov bx, [bx].Next
test bx, bx ;At end of list?
jne SrchList

FreeDone: pop bx
pop di ;Nothing allocated, just
pop ds ; return to caller.
iret

; Okay, we found the block the user wants to delete. Remove it from
; the allocated list. There are three cases to consider:
; (1) it is at the front of the allocated list, (2) it is at the end of
; the allocated list, and (3) it is in the middle of the allocated list.

FoundIt: cmp [bx].Prev, NULL ;1st item in list?
je Free1st
cmp [bx].Next, NULL ;Last item in list?
je FreeLast

; Okay, we’re removing an allocated item from the middle of the allocated
; list.

mov di, [bx].Next ;[next].prev := [cur].prev
mov ax, [bx].Prev
mov [di].Prev, ax
xchg ax, di
mov [di].Next, ax ;[prev].next := [cur].next
jmp AddFree

; Handle the case where we are removing the first item from the allocation
; list. It is possible that this is the only item on the list (i.e., it
; is the first and last item), but this code handles that case without any
; problems.

Free1st: mov ax, [bx].Next
mov ResidentSeg:AllocatedList, ax
jmp AddFree

; If we’re removing the last guy in the chain, simply set the next field
; of the previous node in the list to NULL.

FreeLast: mov di, [bx].Prev
mov [di].Next, NULL

; Okay, now we’ve got to put the freed block onto the free block list.
; The free block list is sorted according to address. We have to search
; for the first free block whose address is greater than the block we’ve
; just freed and insert the new free block before that one. If the two
; blocks are adjacent, then we’ve got to merge them into a single free
; block. Also, if the block before is adjacent, we must merge it as
; well. This will coalesce all free blocks on the free list so there
; are as few free blocks as possible and those blocks are as large as
; possible.

AddFree: mov ax, ResidentSeg:FreeList
test ax, ax ;Empty list?
jne SrchPosn

; If the list is empty, stick this guy on as the only entry.

mov ResidentSeg:FreeList, bx
mov [bx].Next, NULL
mov [bx].Prev, NULL
jmp FreeDone

Processes, Coroutines, and Concurrency

Page 1095

; If the free list is not empty, search for the position of this block
; in the free list:

SrchPosn: mov di, ax
cmp bx, di
jb FoundPosn
mov ax, [di].Next
test ax, ax ;At end of list?
jne SrchPosn

; If we fall down here, the free block belongs at the end of the list.
; See if we need to merge the new block with the old one.

mov ax, di
add ax, [di].BlkSize ;Compute address of 1st byte
add ax, 8 ; after this block.
cmp ax, bx
je MergeLast

; Okay, just add the free block to the end of the list.

mov [di].Next, bx
mov [bx].Prev, di
mov [bx].Next, NULL
jmp FreeDone

; Merge the freed block with the block DI points at.

MergeLast: mov ax, [di].BlkSize
add ax, [bx].BlkSize
add ax, 8
mov [di].BlkSize, ax
jmp FreeDone

; If we found a free block before which we are supposed to insert
; the current free block, drop down here and handle it.

FoundPosn: mov ax, bx ;Compute the address of the
add ax, [bx].BlkSize ; next block in memory.
add ax, 8
cmp ax, di ;Equal to this block?
jne DontMerge

; The next free block is adjacent to the one we’re freeing, so just
; merge the two.

mov ax, [di].BlkSize ;Merge the sizes together.
add ax, 8
add [bx].BlkSize, ax
mov ax, [di].Next ;Tweak the links.
mov [bx].Next, ax
mov ax, [di].Prev
mov [bx].Prev, ax
jmp TryMergeB4

; If the blocks are not adjacent, just link them together here.

DontMerge: mov ax, [di].Prev
mov [di].Prev, bx
mov [bx].Prev, ax
mov [bx].Next, di

; Now, see if we can merge the current free block with the previous free blk.

TryMergeB4: mov di, [bx].Prev
mov ax, di
add ax, [di].BlkSize
add ax, 8
cmp ax, bx
je CanMerge
pop bx
pop di ;Nothing allocated, just
pop ds ; return to caller.
iret

Chapter 19

Page 1096

; If we can merge the previous and current free blocks, do that here:

CanMerge: mov ax, [bx].Next
mov [di].Next, ax
mov ax, [bx].BlkSize
add ax, 8
add [di].BlkSize, ax
pop bx
pop di
pop ds
iret

assume ds:nothing
assume bx:nothing
assume di:nothing

; Here’s where we handle the shared memory initializatin (SHMINIT) function.
; All we got to do is create a single block on the free list (which is all
; available memory), empty out the allocated list, and then zero out all
; shared memory.

Tryshminit: cmp al, 13h
jne TryShmAttach

; Reset the memory allocation area to contain a single, free, block of
; memory whose size is 0FFF8h (need to reserve eight bytes for the block’s
; data structure).

push es
push di
push cx

mov ax, SharedMemory ;Zero out the shared
mov es, ax ; memory segment.
mov cx, 32768
xor ax, ax
mov di, ax

rep stosw

; Note: the commented out lines below are unnecessary since the code above
; has already zeroed out the entire shared memory segment.
; Note: we cannot put the first record at offset zero because offset zero
; is the special value for the NULL pointer. We’ll use 4 instead.

mov di, 4
; mov es:[di].Region.Key, 0 ;Key is arbitrary.
; mov es:[di].Region.Next, 0 ;No other entries.
; mov es:[di].Region.Prev, 0 ; Ditto.

mov es:[di].Region.BlkSize, 0FFF8h ;Rest of segment.
mov ResidentSeg:FreeList, di

pop cx
pop di
pop es
mov ax, 0 ;Return no error.
iret

; Handle the SHMATTACH function here. On entry, DX contains a key number.
; Search for an allocated block with that key number and return a pointer
; to that block (if found) in ES:DI. Return an error code (AX=3) if we
; cannot find the block.

TryShmAttach: cmp al, 14h ;Attach opcode.
jne IllegalOp
mov ax, SharedMemory
mov es, ax

mov di, ResidentSeg:AllocatedList
FindOurs: cmp dx, es:[di].Region.Key

je FoundOurs
mov di, es:[di].Region.Next

Processes, Coroutines, and Concurrency

Page 1097

test di, di
jne FoundOurs
mov ax, 3 ;Can’t find the key.
iret

FoundOurs: add di, 8 ;Point at actual data.
mov ax, 0 ;No error.
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

ResidentSeg ends

; Here’s the segment that will actually hold the shared data.

SharedMemory segment para public ‘Shared’
db 0FFFFh dup (?)

SharedMemory ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es

Chapter 19

Page 1098

push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line
; parameters. If there is one, and it is the word “REMOVE”, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.

argc
cmp cx, 1 ;Must have 0 or 1 parms.
jb TstPresent
je DoRemove

Usage: print
byte “Usage:”,cr,lf
byte “ shmalloc”,cr,lf
byte “or shmalloc REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

DoRemove: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne Usage

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print

Processes, Coroutines, and Concurrency

Page 1099

byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm

; Things look cool so far, so install the interrupts

GetFileName: mov MyTSRID, cl
print
byte “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to initialize the shared
; memory segment and then terminate and stay resident.

printf
byte “Installed, TSR ID #%d.”,cr,lf,0
dword MyTSRID

mov ah, MyTSRID ;Initialization call.
mov al, 13h
int 2Fh

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends

Chapter 19

Page 1100

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

We can modify the two applications from the previous section to try out this code:

; SHMAPP3.ASM
;
; This is a shared memory application that uses the dynamic shared memory
; TSR (SHMALLOC.ASM). This program inputs a string from the user and
; passes that string to SHMAPP4.ASM through the shared memory area.
;
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

Processes, Coroutines, and Concurrency

Page 1101

print
byte “Shared memory application #3”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHMALLOC) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; Get the input line from the user:

ItsThere: mov ShmID, cl
print
byte “Enter a string: “,0

lea di, InputLine ;ES already points at proper seg.
getsm

; The string is in our heap space. Let’s move it over to the shared
; memory segment.

strlen
inc cx ;Add one for zero byte.
push es
push di

mov dx, 1234h ;Our “key” value.
mov ah, ShmID
mov al, 11h ;Shmalloc call.
int 2Fh

mov si, di ;Save as dest ptr.
mov dx, es

pop di ;Retrive source address.
pop es
strcpy ;Copy from local to shared.

print
byte “Entered ‘”,0
puts
print
byte “‘ into shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

; SHMAPP4.ASM
;
; This is a shared memory application that uses the dynamic shared memory
; TSR (SHMALLOC.ASM). This program assumes the user has already run the
; SHMAPP3 program to insert a string into shared memory. This program

Chapter 19

Page 1102

; simply prints that string from shared memory.
;

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’
ShmID byte 0
dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg, es:SharedMemory

; SeeIfPresent-Checks to see if the shared memory TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not. This routine also returns the TSR ID in CL.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Dynamic Shared Memory TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; The main program for application #1 links with the shared memory
; TSR and then reads a string from the user (storing the string into
; shared memory) and then terminates.

Main proc
assume cs:cseg, ds:dseg, es:SharedMemory
mov ax, dseg
mov ds, ax
meminit

print
byte “Shared memory application #4”,cr,lf,0

; See if the shared memory TSR is around:

call SeeIfPresent
je ItsThere
print
byte “Shared Memory TSR (SHMALLOC) is not loaded.”,cr,lf
byte “This program cannot continue execution.”,cr,lf,0
ExitPgm

; If the shared memory TSR is present, get the address of the shared segment
; into the ES register:

ItsThere: mov ah, cl ;ID of our TSR.
mov al, 14h ;Attach call
mov dx, 1234h;Our “key” value
int 2Fh

Processes, Coroutines, and Concurrency

Page 1103

; Print the string input in SHMAPP3:

print
byte “String from SHMAPP3 is ‘”,0

puts

print
byte “‘ from shared memory.”,cr,lf,0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.3 Coroutines

DOS processes, even when using shared memory, suffer from one primary drawback – each program
executes to completion before returning control back to the parent process. While this paradigm is suit-
able for many applications, it certainly does not suffice for all. A common paradigm is for two programs to
swap control of the CPU back and forth while executing. This mechanism, slightly different from the sub-
routine call and return mechanism, is a coroutine.

Before discussing coroutines, it is probably a good idea to provide a solid definition for the term pro-
cess. In a nutshell, a process is a program that is executing. A program can exist on the disk; processes
exist in memory and have a program stack (with return addresses, etc.) associated with them. If there are
multiple processes in memory at one time, each process must have its own program stack.

A cocall operation transfers control between two processes. A cocall is effectively a call and a return
instruction all rolled into one operation. From the point of view of the process executing the cocall, the
cocall operation is equivalent to a procedure call; from the point of view of the processing being called,
the cocall operation is equivalent to a return operation. When the second process cocalls the first, control
resumes not at the beginning of the first process, but immediately after the cocall operation. If two pro-
cesses execute a sequence of mutual cocalls, control will transfer between the two processes in the follow-
ing fashion:

Chapter 19

Page 1104

Cocalls are quite useful for games where the “players” take turns, following different strategies. The
first player executes some code to make its first move, then cocalls the second player and allows it to make
a move. After the second player makes its move, it cocalls the first process and gives the first player its sec-
ond move, picking up immediately after its cocall. This transfer of control bounces back and forth until
one player wins.

The 80x86 CPUs do not provide a cocall instruction. However, it is easy to implement cocalls with
existing instructions. Even so, there is little need for you to supply your own cocall mechanism, the UCR
Standard Library provides a cocall package for 8086, 80186, and 80286 processors2. This package includes
the pcb (process control block) data structure and three functions you can call: coinit, cocall, and
cocalll.

The pcb structure maintains the current state of a process. The pcb maintains all the register values
and other accounting information for a process. When a process makes a cocall, it stores the return
address for the cocall in the pcb. Later, when some other process cocalls this process, the cocall operation
simply reloads the registers, include cs:ip, from the pcb and that returns control to the next instruction
after the first process’ cocall. The pcb structure takes the following form:

pcb struct

2. The cocall package works fine with the other processors as long as you don’t use the 32-bit register set. Later, we will discuss how to extend the
Standard Library routines to handle the 32-bit capabilities of the 80386 and late processors.

Process #1 Process #2

cocall prcs2

cocall prcs1

cocall prcs2

cocall prcs1

cocall prcs2

cocall prcs1

Cocall Sequence Between Two Processes

Processes, Coroutines, and Concurrency

Page 1105

NextProc dword ? ;Link to next PCB (for multitasking).
regsp word ?
regss word ?
regip word ?
regcs word ?
regax word ?
regbx word ?
regcx word ?
regdx word ?
regsi word ?
regdi word ?
regbp word ?
regds word ?
reges word ?
regflags word ?
PrcsID word ?
StartingTime dword ? ;Used for multitasking accounting.
StartingDate dword ? ;Used for multitasking accounting.
CPUTime dword ? ;Used for multitasking accounting.

Four of these fields (as labelled) exist for preemptive multitasking and have no meaning for coroutines.
We will discuss preemptive multitasking in the next section.

There are two important things that should be evident from this structure. First, the main reason the
existing Standard Library coroutine support is limited to 16 bit register is because there is only room for the
16 bit versions of each of the registers in the pcb. If you want to support the 80386 and later 32 bit register
sets, you would need to modify the pcb structure and the code that saves and restores registers in the
pcb.

The second thing that should be evident is that the coroutine code preserves all registers across a
cocall. This means you cannot pass information from one process to another in the registers when using a
cocall. You will need to pass data between processes in global memory locations. Since coroutines gener-
ally exist in the same program, you will not even need to resort to the shared memory techniques. Any
variables you declare in your data segment will be visible to all coroutines.

Note, by the way, that a program may contain more than two coroutines. If coroutine one cocalls
coroutine two, and coroutine two cocalls coroutine three, and then coroutine three cocalls coroutine one,
coroutine one picks up immediately after the cocall it made to coroutine two.

Since a cocall effectively returns to the target coroutine, you might wonder what happens on the
first cocall to any process. After all, if that process has not executed any code, there is no “return address”
where you can resume execution. This is an easy problem to solve, we need only initialize the return
address of such a process to the address of the first instruction to execute in that process.

Process #1 Process #2 Process #3

cocall prcs2 cocall prcs3

cocall prcs1

Cocalls Between Three Processes

Chapter 19

Page 1106

A similar problem exists for the stack. When a program begins execution, the main program (corou-
tine one) takes control and uses the stack associated with the entire program. Since each process must
have its own stack, where do the other coroutines get their stacks?

The easiest way to initialize the stack and initial address for a coroutine is to do this when declaring a
pcb for a process. Consider the following pcb variable declaration:

ProcessTwo pcb {0, offset EndStack2, seg EndStack2,
offset StartLoc2, seg StartLoc2}

This definition initializes the NextProc field with NULL (the Standard Library coroutine functions do not
use this field) and initialize the ss:sp and cs:ip fields with the last address of a stack area (EndStack2)
and the first instruction of the process (StartLoc2). Now all you need to do is reserve a reasonable
amount of stack storage for the process. You can create multiple stacks in the SHELL.ASM sseg as follows:

sseg segment para stack ‘stack’

; Stack for process #2:

stk2 byte 1024 dup (?)
EndStack2 word ?

; Stack for process #3:

stk3 byte 1024 dup (?)
EndStack3 word ?

; The primary stack for the main program (process #1) must appear at
; the end of sseg.

stk byte 1024 dup (?)
sseg ends

There is the question of “how much space should one reserve for each stack?” This, of course, varies
with the application. If you have a simple application that doesn’t use recursion or allocate any local vari-
ables on the stack, you could get by with as little as 256 bytes of stack space for a process. On the other
hand, if you have recursive routines or allocate storage on the stack, you will need considerably more
space. For simple programs, 1-8K stack storage should be sufficient. Keep in mind that you can allocate a
maximum of 64K in the SHELL.ASM sseg. If you need additional stack space, you will need to up the other
stacks in a different segment (they do not need to be in sseg, it’s just a convenient place for them) or you
will need to allocate the stack space differently.

Note that you do not have to allocate the stack space as an array within your program. You can also
allocate stack space dynamically using the Standard Library malloc call. The following code demon-
strates how to set up an 8K dynamically allocated stack for the pcb variable Process2:

mov cx, 8192
malloc
jc InsufficientRoom
mov Process2.ss, es
mov Process2.sp, di

Setting up the coroutines the main program will call is pretty easy. However, there is the issue of set-
ting up the pcb for the main program. You cannot initialize the pcb for the main program the same way
you initialize the pcb for the other processes; it is already running and has valid cs:ip and ss:sp values.
Were you to initialize the main program’s pcb the same way we did for the other processes, the system
would simply restart the main program when you make a cocall back to it. To initialize the pcb for the
main program, you must use the coinit function. The coinit function expects you to pass it the address
of the main program’s pcb in the es:di register pair. It initializes some variables internal to the Standard
Library so the first cocall operation will save the 80x86 machine state in the pcb you specify by es:di.
After the coinit call, you can begin making cocalls to other processes in your program.

Processes, Coroutines, and Concurrency

Page 1107

To cocall a coroutine, you use the Standard Library cocall function. The cocall function call takes
two forms. Without any parameters this function transfers control to the coroutine whose pcb address
appears in the es:di register pair. If the address of a pcb appears in the operand field of this instruction,
cocall transfers control to the specified coroutine (don’t forget, the name of the pcb, not the process,
must appear in the operand field).

The best way to learn how to use coroutines is via example. The following program is an interesting
piece of code that generates mazes on the PC’s display. The maze generation algorithm has one major
constraint – there must be no more than one correct solution to the maze (it is possible for there to be no
solution). The main program creates a set of background processes called “demons” (actually, daemon is
the correct term, but demon sounds more appropriate here). Each demon begins carving out a portion of
the maze subject to the main constraint. Each demon gets to dig one cell from the maze and then it passes
control to another demon. As it turns out, demons can “dig themselves into a corner” and die (demons live
only to dig). When this happens, the demon removes itself from the list of active demons. When all
demons die off, the maze is (in theory) complete. Since the demons die off fairly regularly, there must be
some mechanism to create new demons. Therefore, this program randomly spawns new demons who
start digging their own tunnels perpendicular to their parents. This helps ensure that there is a sufficient
supply of demons to dig out the entire maze; the demons all die off only when there are no, or few, cells
remaining to dig in the maze.

; AMAZE.ASM
;
; A maze generation/solution program.
;
; This program generates an 80x25 maze and directly draws the maze on the
; video display. It demonstrates the use of coroutines within a program.

.xlist
include stdlib.a
includelib stdlib.lib
.list

byp textequ <byte ptr>

dseg segment para public ‘data’

; Constants:
;
; Define the “ToScreen” symbol (to any value) if the maze is 80x25 and you
; want to display it on the video screen.

ToScreen equ 0

; Maximum X and Y coordinates for the maze (matching the display).

MaxXCoord equ 80
MaxYCoord equ 25

; Useful X,Y constants:

WordsPerRow = MaxXCoord+2
BytesPerRow = WordsPerRow*2

StartX equ 1 ;Starting X coordinate for maze
StartY equ 3 ;Starting Y coordinate for maze
EndX equ MaxXCoord ;Ending X coordinate for maze
EndY equ MaxYCoord-1 ;Ending Y coordinate for maze

EndLoc = ((EndY-1)*MaxXCoord + EndX-1)*2
StartLoc = ((StartY-1)*MaxXCoord + StartX-1)*2

; Special 16-bit PC character codes for the screen for symbols drawn during
; maze generation. See the chapter on the video display for details.

ifdef mono ;Mono display adapter.

WallChar equ 7dbh ;Solid block character

Chapter 19

Page 1108

NoWallChar equ 720h ;space
VisitChar equ 72eh ;Period
PathChar equ 72ah ;Asterisk

else ;Color display adapter.

WallChar equ 1dbh ;Solid block character
NoWallChar equ 0edbh ;space
VisitChar equ 0bdbh ;Period
PathChar equ 4e2ah ;Asterisk

endif

; The following are the constants that may appear in the Maze array:

Wall = 0
NoWall = 1
Visited = 2

; The following are the directions the demons can go in the maze

North = 0
South = 1
East = 2
West = 3

; Some important variables:

; The Maze array must contain an extra row and column around the
; outside edges for our algorithm to work properly.

Maze word (MaxYCoord+2) dup ((MaxXCoord+2) dup (Wall))

; The follow macro computes an index into the above array assuming
; a demon’s X and Y coordinates are in the dl and dh registers, respectively.
; Returns index in the AX register

MazeAdrs macro
mov al, dh
mov ah, WordsPerRow ;Index into array is computed
mul ah ; by (Y*words/row + X)*2.
add al, dl
adc ah, 0
shl ax, 1 ;Convert to byte index
endm

; The following macro computes an index into the screen array, using the
; same assumptions as above. Note that the screen matrix is 80x25 whereas
; the maze matrix is 82x27; The X/Y coordinates in DL/DH are 1..80 and
; 1..25 rather than 0..79 and 0..24 (like we need). This macro adjusts
; for that.

ScrnAdrs macro
mov al, dh
dec al
mov ah, MaxXCoord
mul ah
add al, dl
adc ah, 0
dec ax
shl ax, 1
endm

; PCB for the main program. The last live demon will call this guy when
; it dies.

MainPCB pcb {}

Processes, Coroutines, and Concurrency

Page 1109

; List of up to 32 demons.

MaxDemons = 32 ;Must be a power of two.
ModDemons = MaxDemons-1 ;Mask for MOD computation.

DemonList pcb MaxDemons dup ({})

DemonIndex byte 0 ;Index into demon list.
DemonCnt byte 0 ;Number of demons in list.

; Random number generator seed (we’ll use our random number generator
; rather than the standard library’s because we want to be able to specify
; an initial seed value).

Seed word 0

dseg ends

; The following is the segment address of the video display, change this
; from 0B800h to 0B000h if you have a monochrome display rather than a
; color display.

ScreenSeg segment at 0b800h
Screen equ this word ;Don’t generate in date here!
ScreenSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Totally bogus random number generator, but we don’t need a really
; great one for this program. This code uses its own random number
; generator rather than the one in the Standard Library so we can
; allow the user to use a fixed seed to produce the same maze (with
; the same seed) or different mazes (by choosing different seeds).

RandNum proc near
push cx
mov cl, byte ptr Seed
and cl, 7
add cl, 4
mov ax, Seed
xor ax, 55aah
rol ax, cl
xor ax, Seed
inc ax
mov Seed, ax
pop cx
ret

RandNum endp

; Init- Handles all the initialization chores for the main program.
; In particular, it initializes the coroutine package, gets a
; random number seed from the user, and initializes the video display.

Init proc near
print
byte “Enter a small integer for a random number seed:”,0
getsm
atoi
free
mov Seed, ax

; Fill the interior of the maze with wall characters, fill the outside
; two rows and columns with nowall values. This will prevent the demons
; from wandering outside the maze.

; Fill the first row with Visited values.

Chapter 19

Page 1110

cld
mov cx, WordsPerRow
lesi Maze
mov ax, Visited

rep stosw

; Fill the last row with NoWall values.

mov cx, WordsPerRow
lea di, Maze+(MaxYCoord+1)*BytesPerRow

rep stosw

; Write a NoWall value to the starting position:

mov Maze+(StartY*WordsPerRow+StartX)*2, NoWall

; Write NoWall values along the two vertical edges of the maze.

lesi Maze
mov cx, MaxYCoord+1

EdgesLoop: mov es:[di], ax ;Plug the left edge.
mov es:[di+BytesPerRow-2], ax ;Plug the right edge.
add di, BytesPerRow
loop EdgesLoop

ifdef ToScreen

; Okay, fill the screen with WallChar values:

lesi Screen
mov ax, WallChar
mov cx, 2000

rep stosw

; Write appropriate characters to the starting and ending locations:

mov word ptr es:Screen+EndLoc, PathChar
mov word ptr es:Screen+StartLoc, NoWallChar

endif ;ToScreen

; Zero out the DemonList:

mov cx, (size pcb)*MaxDemons
lea di, DemonList
mov ax, dseg
mov es, ax
xor ax, ax

rep stosb

ret
Init endp

; CanStart- This function checks around the current position
; to see if the maze generator can start digging a new tunnel
; in a direction perpendicular to the current tunnel. You can
; only start a new tunnel if there are wall characters for at
; least two positions in the desired direction:
;
; ##
; *##
; ##
;
; If “*” is current position and “#” represent wall characters
; and the current direction is north or south, then it is okay
; for the maze generator to start a new path in the east dir-
; ection. Assuming “.” represents a tunnel, you cannot start
; a new tunnel in the east direction if any of the following
; patterns occur:

Processes, Coroutines, and Concurrency

Page 1111

;
; .# #. ## ## ## ##
; *## *## *.# *#. *## *##
; ## ## ## ## .# #.
;
; CanStart returns true (carry set) if we can start a new tunnel off the
; path being dug by the current demon.
;
; On entry, dl is demon’s X-Coordinate
; dh is demon’s Y-Coordinate
; cl is demon’s direction

CanStart proc near
push ax
push bx

MazeAdrs ;Compute index to demon(x,y) in maze.
mov bx, ax

; CL contains the current direction, 0=north, 1=south, 2=east, 3=west.
; Note that we can test bit #1 for north/south (0) or east/west (1).

test cl, 10b ;See if north/south or east/west
jz NorthSouth

; If the demon is going in an east or west direction, we can start a new
; tunnel if there are six wall blocks just above or below the current demon.
; Note: We are checking if all values in these six blocks are Wall values.
; This code depends on the fact that Wall characters are zero and the sum
; of these six blocks will be zero if a move is possible.

mov al, byp Maze[bx+BytesPerRow*2] ;Maze[x, y+2]
add al, byp Maze[bx+BytesPerRow*2+2] ;Maze[x+1,y+2]
add al, byp Maze[bx+BytesPerRow*2-2] ;Maze[x-1,y+2]
je ReturnTrue

mov al, byp Maze[bx-BytesPerRow*2] ;Maze[x, y-2]
add al, byp Maze[bx-BytesPerRow*2+2] ;Maze[x+1,y-2]
add al, byp Maze[bx-BytesPerRow*2-2] ;Maze[x-1,y-2]
je ReturnTrue

ReturnFalse: clc ;Clear carry = false.
pop bx
pop ax
ret

; If the demon is going in a north or south direction, we can start a
; new tunnel if there are six wall blocks just to the left or right
; of the current demon.

NorthSouth: mov al, byp Maze[bx+4];Maze[x+2,y]
add al, byp Maze[bx+BytesPerRow+4];Maze[x+2,y+1]
add al, byp Maze[bx-BytesPerRow+4];Maze[x+2,y-1]
je ReturnTrue

mov al, byp Maze[bx-4];Maze[x-2,y]
add al, byp Maze[bx+BytesPerRow-4];Maze[x-2,y+1]
add al, byp Maze[bx-BytesPerRow-4];Maze[x-2,y-1]
jne ReturnFalse

ReturnTrue: stc ;Set carry = true.
pop bx
pop ax
ret

CanStart endp

; CanMove- Tests to see if the current demon (dir=cl, x=dl, y=dh) can
; move in the specified direction. Movement is possible if
; the demon will not come within one square of another tunnel.
; This function returns true (carry set) if a move is possible.
; On entry, CH contains the direction this code should test.

Chapter 19

Page 1112

CanMove proc
push ax
push bx

MazeAdrs ;Put @Maze[x,y] into ax.
mov bx, ax

cmp ch, South
jb IsNorth
je IsSouth
cmp ch, East
je IsEast

; If the demon is moving west, check the blocks in the rectangle formed
; by Maze[x-2,y-1] to Maze[x-1,y+1] to make sure they are all wall values.

mov al, byp Maze[bx-BytesPerRow-4];Maze[x-2, y-1]
add al, byp Maze[bx-BytesPerRow-2];Maze[x-1, y-1]
add al, byp Maze[bx-4];Maze[x-2, y]
add al, byp Maze[bx-2];Maze[x-1, y]
add al, byp Maze[bx+BytesPerRow-4];Maze[x-2, y+1]
add al, byp Maze[bx+BytesPerRow-2];Maze[x-1, y+1]
je ReturnTrue

ReturnFalse: clc
pop bx
pop ax
ret

; If the demon is going east, check the blocks in the rectangle formed
; by Maze[x+1,y-1] to Maze[x+2,y+1] to make sure they are all wall values.

IsEast: mov al, byp Maze[bx-BytesPerRow+4];Maze[x+2, y-1]
add al, byp Maze[bx-BytesPerRow+2];Maze[x+1, y-1]
add al, byp Maze[bx+4];Maze[x+2, y]
add al, byp Maze[bx+2];Maze[x+1, y]
add al, byp Maze[bx+BytesPerRow+4];Maze[x+2, y+1]
add al, byp Maze[bx+BytesPerRow+2];Maze[x+1, y+1]
jne ReturnFalse

ReturnTrue: stc
pop bx
pop ax
ret

; If the demon is going north, check the blocks in the rectangle formed
; by Maze[x-1,y-2] to Maze[x+1,y-1] to make sure they are all wall values.

IsNorth: mov al, byp Maze[bx-BytesPerRow-2];Maze[x-1, y-1]
add al, byp Maze[bx-BytesPerRow*2-2];Maze[x-1, y-2]
add al, byp Maze[bx-BytesPerRow];Maze[x, y-1]
add al, byp Maze[bx-BytesPerRow*2];Maze[x, y-2]
add al, byp Maze[bx-BytesPerRow+2];Maze[x+1, y-1]
add al, byp Maze[bx-BytesPerRow*2+2];Maze[x+1, y-2]
jne ReturnFalse
stc
pop bx
pop ax
ret

; If the demon is going south, check the blocks in the rectangle formed
; by Maze[x-1,y+2] to Maze[x+1,y+1] to make sure they are all wall values.

IsSouth: mov al, byp Maze[bx+BytesPerRow-2];Maze[x-1, y+1]
add al, byp Maze[bx+BytesPerRow*2-2];Maze[x-1, y+2]
add al, byp Maze[bx+BytesPerRow];Maze[x, y+1]
add al, byp Maze[bx+BytesPerRow*2];Maze[x, y+2]
add al, byp Maze[bx+BytesPerRow+2];Maze[x+1, y+1]
add al, byp Maze[bx+BytesPerRow*2+2];Maze[x+1, y+2]
jne ReturnFalse
stc

Processes, Coroutines, and Concurrency

Page 1113

pop bx
pop ax
ret

CanMove endp

; SetDir- Changes the current direction. The maze digging algorithm has
; decided to change the direction of the tunnel begin dug by one
; of the demons. This code checks to see if we CAN change the direction,
; and picks a new direction if possible.
;
; If the demon is going north or south, a direction change causes the demon
; to go east or west. Likewise, if the demon is going east or west, a
; direction change forces it to go north or south. If the demon cannot
; change directions (because it cannot move in the new direction for one
; reason or another), SetDir returns without doing anything. If a direction
; change is possible, then SetDir selects a new direction. If there is only
; one possible new direction, the demon is sent off in that direction.
; If the demon could move off in one of two different directions, SetDir
; “flips a coin” to choose one of the two new directions.
;
; This function returns the new direction in al.

SetDir proc near

test cl, 10b ;See if north/south
je IsNS ; or east/west direction.

; We’re going east or west. If we can move EITHER north or south from
; this point, randomly choose one of the directions. If we can only
; move one way or the other, choose that direction. If we can’t go either
; way, return without changing the direction.

mov ch, North ;See if we can move north
call CanMove
jnc NotNorth
mov ch, South ;See if we can move south
call CanMove
jnc DoNorth
call RandNum ;Get a random direction
and ax, 1 ;Make it north or south.
ret

DoNorth: mov ax, North
ret

NotNorth: mov ch, South
call CanMove
jnc TryReverse

DoSouth: mov ax, South
ret

; If the demon is moving north or south, choose a new direction of east
; or west, if possible.

IsNS: mov ch, East ;See if we can move East
call CanMove
jnc NotEast
mov ch, West ;See if we can move West
call CanMove
jnc DoEast
call RandNum ;Get a random direction
and ax, 1b ;Make it East or West
or al, 10b
ret

DoEast: mov ax, East
ret

Chapter 19

Page 1114

DoWest: mov ax, West
ret

NotEast: mov ch, West
call CanMove
jc DoWest

; Gee, we can’t switch to a perpendicular direction, see if we can
; turn around.

TryReverse: mov ch, cl
xor ch, 1
call CanMove
jc ReverseDir

; If we can’t turn around (likely), then keep going in the same direction.

mov ah, 0
mov al, cl ;Stay in same direction.
ret

; Otherwise reverse direction down here.

ReverseDir: mov ah, 0
mov al, cl
xor al, 1
ret

SetDir endp

; Stuck- This function checks to see if a demon is stuck and cannot
; move in any direction. It returns true if the demon is
; stuck and needs to be killed.

Stuck proc near
mov ch, North
call CanMove
jc NotStuck
mov ch, South
call CanMove
jc NotStuck
mov ch, East
call CanMove
jc NotStuck
mov ch, West
call CanMove

NotStuck: ret
Stuck endp

; NextDemon- Searches through the demon list to find the next available
; active demon. Return a pointer to this guy in es:di.

NextDemon proc near
push ax

NDLoop: inc DemonIndex ;Move on to next demon,
and DemonIndex, ModDemons ; MOD MaxDemons.
mov al, size pcb ;Compute index into
mul DemonIndex ; DemonList.
mov di, ax ;See if the demon at this
add di, offset DemonList ; offset is active.
cmp byp [di].pcb.NextProc, 0
je NDLoop

mov ax, ds
mov es, ax
pop ax
ret

NextDemon endp

Processes, Coroutines, and Concurrency

Page 1115

; Dig- This is the demon process.
; It moves the demon one position (if possible) in its current
; direction. After moving one position forward, there is
; a 25% chance that this guy will change its direction; there
; is a 25% chance this demon will spawn a child process to
; dig off in a perpendicular direction.

Dig proc near

; See if the current demon is stuck. If the demon is stuck, then we’ve
; go to remove it from the demon list. If it is not stuck, then have it
; continue digging. If it is stuck and this is the last active demon,
; then return control to the main program.

call Stuck
jc NotStuck

; Okay, kill the current demon.
; Note: this will never kill the last demon because we have the timer
; process running. The timer process is the one that always stops
; the program.

dec DemonCnt

; Since the count is not zero, there must be more demons in the demon
; list. Free the stack space associated with the current demon and
; then search out the next active demon and have at it.

MoreDemons: mov al, size pcb
mul DemonIndex
mov bx, ax

; Free the stack space associated with this process. Note this code is
; naughty. It assumes the stack is allocated with the Standard Library
; malloc routine that always produces a base address of 8.

mov es, DemonList[bx].regss
mov di, 8 ;Cheating!
free

; Mark the demon entry for this guy as unused.

mov byp DemonList[bx].NextProc, 0 ;Mark as unused.

; Okay, locate the next active demon in the list.

FndNxtDmn: call NextDemon
cocall ;Never returns

; If the demon is not stuck, then continue digging away.

NotStuck: mov ch, cl
call CanMove
jnc DontMove

; If we can move, then adjust the demon’s coordinates appropriately:

cmp cl, South
jb MoveNorth
je MoveSouth
cmp cl, East
jne MoveWest

; Moving East:

inc dl
jmp MoveDone

MoveWest: dec dl

Chapter 19

Page 1116

jmp MoveDone

MoveNorth: dec dh
jmp MoveDone

MoveSouth:inc dh

; Okay, store a NoWall value at this entry in the maze and output a NoWall
; character to the screen (if writing data to the screen).

MoveDone: MazeAdrs
mov bx, ax
mov Maze[bx], NoWall

ifdef ToScreen
ScrnAdrs
mov bx, ax
push es
mov ax, ScreenSeg
mov es, ax
mov word ptr es:[bx], NoWallChar
pop es
endif

; Before leaving, see if this demon shouldn’t change direction.

DontMove: call RandNum
and al, 11b ;25% chance result is zero.
jne NoChangeDir
call SetDir
mov cl, al

NoChangeDir:

; Also, see if this demon should spawn a child process

call RandNum
and al, 11b ;Give it a 25% chance.
jne NoSpawn

; Okay, see if it’s possible to spawn a new process at this point:

call CanStart
jnc NoSpawn

; See if we’ve already got MaxDemons active:

cmp DemonCnt, MaxDemons
jae NoSpawn

inc DemonCnt ;Add another demon.

; Okay, create a new demon and add him to the list.

push dx ;Save cur demon info.
push cx

; Locate a free slot for this demon

lea si, DemonList- size pcb
FindSlot: add si, size pcb

cmp byp [si].pcb.NextProc, 0
jne FindSlot

; Allocate some stack space for the new demon.

mov cx, 256 ;256 byte stack.
malloc

; Set up the stack pointer for this guy:

Processes, Coroutines, and Concurrency

Page 1117

add di, 248 ;Point stack at end.
mov [si].pcb.regss, es
mov [si].pcb.regsp, di

; Set up the execution address for this guy:

mov [si].pcb.regcs, cs
mov [si].pcb.regip, offset Dig

; Initial coordinates and direction for this guy:

mov [si].pcb.regdx, dx

; Select a direction for this guy.

pop cx ;Retrieve direction.
push cx

call SetDir
mov ah, 0
mov [si].pcb.regcx, ax

; Set up other misc junk:

mov [si].pcb.regds, seg dseg
sti
pushf
pop [si].pcb.regflags
mov byp [si].pcb.NextProc, 1 ;Mark active.

; Restore current process’ parameters

pop cx ;Restore current demon.
pop dx

NoSpawn:

; Okay, with all of the above done, it’s time to pass control on to a new
; digger. The following cocall passes control to the next digger in the
; DemonList.

GetNextDmn: call NextDemon

; Okay, we’ve got a pointer to the next demon in the list (might be the
; same demon if there’s only one), pass control to that demon.

cocall
jmp Dig

Dig endp

; TimerDemon- This demon introduces a delay between
; each cycle in the demon list. This slows down the
; maze generation so you can see the maze being built
; (which makes the program more interesting to watch).

TimerDemon proc near
push es
push ax

mov ax, 40h ;BIOS variable area
mov es, ax
mov ax, es:[6Ch] ;BIOS timer location

Wait4Change: cmp ax, es:[6Ch] ;BIOS changes this every
je Wait4Change ; 1/18th second.

cmp DemonCnt, 1
je QuitProgram
pop es
pop ax
call NextDemon
cocall
jmp TimerDemon

Chapter 19

Page 1118

QuitProgram: cocall MainPCB ;Quit the program
TimerDemon endp

; What good is a maze generator program if it cannot solve the mazes it
; creates? SolveMaze finds the solution (if any) for this maze. It marks
; the solution path and the paths it tried, but failed on.
;
; function solvemaze(x,y:integer):boolean

sm_X textequ <[bp+6]>
sm_Y textequ <[bp+4]>

SolveMaze proc near
push bp
mov bp, sp

; See if we’ve just solved the maze:

cmp byte ptr sm_X, EndX
jne NotSolved
cmp byte ptr sm_Y, EndY
jne NotSolved
mov ax, 1 ;Return true.
pop bp
ret 4

; See if moving to this spot was an illegal move. There will be
; a NoWall value at this cell in the maze if the move is legal.

NotSolved: mov dl, sm_X
mov dh, sm_Y
MazeAdrs
mov bx, ax
cmp Maze[bx], NoWall
je MoveOK
mov ax, 0 ;Return failure
pop bp
ret 4

; Well, it is possible to move to this point, so place an appropriate
; value on the screen and keep searching for the solution.

MoveOK: mov Maze[bx], Visited

ifdef ToScreen
push es ;Write a “VisitChar”
ScrnAdrs ; character to the
mov bx, ax ; screen at this X,Y
mov ax, ScreenSeg ; position.
mov es, ax
mov word ptr es:[bx], VisitChar
pop es
endif

; Recusively call SolveMaze until we get a solution. Just call SolveMaze
; for the four possible directions (up, down, left, right) we could go.
; Since we’ve left “Visited” values in the Maze, we will not accidentally
; search back through the path we’ve already travelled. Furthermore, if
; we cannot go in one of the four directions, SolveMaze will catch this
; immediately upon entry (see the code at the start of this routine).

mov ax, sm_X ;Try the path at location
dec ax ; (X-1, Y)
push ax
push sm_Y
call SolveMaze
test ax, ax ;Solution?
jne Solved

push sm_X ;Try the path at location

Processes, Coroutines, and Concurrency

Page 1119

mov ax, sm_Y ; (X, Y-1)
dec ax
push ax
call SolveMaze
test ax, ax ;Solution?
jne Solved

mov ax, sm_X ;Try the path at location
inc ax ; (X+1, Y)
push ax
push sm_Y
call SolveMaze
test ax, ax ;Solution?
jne Solved

push sm_X ;Try the path at location
mov ax, sm_Y ; (X, Y+1)
inc ax
push ax
call SolveMaze
test ax, ax ;Solution?
jne Solved
pop bp
ret 4

Solved:
ifdef ToScreen ;Draw return path.
push es
mov dl, sm_X
mov dh, sm_Y
ScrnAdrs
mov bx, ax
mov ax, ScreenSeg
mov es, ax
mov word ptr es:[bx], PathChar
pop es
mov ax, 1 ;Return true
endif

pop bp
ret 4

SolveMaze endp

; Here’s the main program that drives the whole thing:

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

call Init ;Initialize maze stuff.
lesi MainPCB ;Initialize coroutine
coinit ; package.

; Create the first demon.
; Set up the stack pointer for this guy:

mov cx, 256
malloc
add di, 248
mov DemonList.regsp, di
mov DemonList.regss, es

; Set up the execution address for this guy:

mov DemonList.regcs, cs
mov DemonList.regip, offset Dig

; Initial coordinates and direction for this guy:

Chapter 19

Page 1120

mov cx, East ;Start off going east.
mov dh, StartY
mov dl, StartX
mov DemonList.regcx, cx
mov DemonList.regdx, dx

; Set up other misc junk:

mov DemonList.regds, seg dseg
sti
pushf
pop DemonList.regflags
mov byp DemonList.NextProc, 1 ;Demon is “active”.
inc DemonCnt
mov DemonIndex, 0

; Set up the Timer demon:

mov DemonList.regsp+(size pcb), offset EndTimerStk
mov DemonList.regss+(size pcb), ss

; Set up the execution address for this guy:

mov DemonList.regcs+(size pcb), cs
mov DemonList.regip+(size pcb), offset TimerDemon

; Set up other misc junk:

mov DemonList.regds+(size pcb), seg dseg
sti
pushf
pop DemonList.regflags+(size pcb)
mov byp DemonList.NextProc+(size pcb), 1
inc DemonCnt

; Start the ball rolling.

mov ax, ds
mov es, ax
lea di, DemonList
cocall

; Wait for the user to press a key before solving the maze:

getc

mov ax, StartX
push ax
mov ax, StartY
push ax
call SolveMaze

; Wait for another keystroke before quitting:

getc

mov ax, 3 ;Clear screen and reset video mode.
int 10h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Stack for the timer demon we create (we’ll allocate the other
; stacks dynamically).

TimerStk byte 256 dup (?)
EndTimerStk word ?

Processes, Coroutines, and Concurrency

Page 1121

; Main program’s stack:

stk byte 512 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The existing Standard Library coroutine package is not suitable for programs that use the 80386 and
later 32 bit register sets. As mentioned earlier, the problem lies in the fact that the Standard Library only
preserves the 16-bit registers when switching between processes. However, it is a relatively trivial exten-
sion to modify the Standard Library so that it saves 32 bit registers. To do so, just change the definition of
the pcb (to make room for the 32 bit registers) and the sl_cocall routine:

.386
option segment:use16

dseg segment para public ‘data’

wp equ <word ptr>

; 32-bit PCB. Note we only keep the L.O. 16 bits of SP since we are
; operating in real mode.

pcb32 struc
regsp word ?
regss word ?
regip word ?
regcs word ?

regeax dword ?
regebx dword ?
regecx dword ?
regedx dword ?
regesi dword ?
regedi dword ?
regebp dword ?

regds word ?
reges word ?
regflags dword ?
pcb32 ends

DefaultPCB pcb32 <>
DefaultCortn pcb32 <>

CurCoroutine dword DefaultCortn ;Points at the currently executing
; coroutine.

dseg ends

cseg segment para public ‘slcode’

;==
;
; 32-Bit Coroutine support.
;
; COINIT32- ES:DI contains the address of the current (default) process’ PCB.

CoInit32 proc far
assume ds:dseg
push ax

Chapter 19

Page 1122

push ds
mov ax, dseg
mov ds, ax
mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es
pop ds
pop ax
ret

CoInit32 endp

; COCALL32- transfers control to a coroutine. ES:DI contains the address
; of the PCB. This routine transfers control to that coroutine and then
; returns a pointer to the caller’s PCB in ES:DI.

cocall32 proc far
assume ds:dseg
pushfd
push ds
push es ;Save these for later
push edi
push eax
mov ax, dseg
mov ds, ax
cli ;Critical region ahead.

; Save the current process’ state:

les di, dseg:CurCoroutine
pop es:[di].pcb32.regeax
mov es:[di].pcb32.regebx, ebx
mov es:[di].pcb32.regecx, ecx
mov es:[di].pcb32.regedx, edx
mov es:[di].pcb32.regesi, esi
pop es:[di].pcb32.regedi
mov es:[di].pcb32.regebp, ebp

pop es:[di].pcb32.reges
pop es:[di].pcb32.regds
pop es:[di].pcb32.regflags
pop es:[di].pcb32.regip
pop es:[di].pcb32.regcs
mov es:[di].pcb32.regsp, sp
mov es:[di].pcb32.regss, ss

mov bx, es ;Save so we can return in
mov ecx, edi ; ES:DI later.
mov edx, es:[di].pcb32.regedi
mov es, es:[di].pcb32.reges
mov di, dx ;Point es:di at new PCB

mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es

mov es:[di].pcb32.regedi, ecx ;The ES:DI return values.
mov es:[di].pcb32.reges, bx

; Okay, switch to the new process:

mov ss, es:[di].pcb32.regss
mov sp, es:[di].pcb32.regsp
mov eax, es:[di].pcb32.regeax
mov ebx, es:[di].pcb32.regebx
mov ecx, es:[di].pcb32.regecx
mov edx, es:[di].pcb32.regedx
mov esi, es:[di].pcb32.regesi
mov ebp, es:[di].pcb32.regebp
mov ds, es:[di].pcb32.regds

push es:[di].pcb32.regflags
push es:[di].pcb32.regcs
push es:[di].pcb32.regip
push es:[di].pcb32.regedi

Processes, Coroutines, and Concurrency

Page 1123

mov es, es:[di].pcb32.reges
pop edi
iret

cocall32 endp

; CoCall32l works just like cocall above, except the address of the pcb
; follows the call in the code stream rather than being passed in ES:DI.
; Note: this code does *not* return the caller’s PCB address in ES:DI.
;

cocall32l proc far
assume ds:dseg
push ebp
mov bp, sp
pushfd
push ds
push es
push edi
push eax
mov ax, dseg
mov ds, ax
cli ;Critical region ahead.

; Save the current process’ state:

les di, dseg:CurCoroutine
pop es:[di].pcb32.regeax
mov es:[di].pcb32.regebx, ebx
mov es:[di].pcb32.regecx, ecx
mov es:[di].pcb32.regedx, edx
mov es:[di].pcb32.regesi, esi
pop es:[di].pcb32.regedi
pop es:[di].pcb32.reges
pop es:[di].pcb32.regds
pop es:[di].pcb32.regflags
pop es:[di].pcb32.regebp
pop es:[di].pcb32.regip
pop es:[di].pcb32.regcs
mov es:[di].pcb32.regsp, sp
mov es:[di].pcb32.regss, ss

mov dx, es:[di].pcb32.regip ;Get return address (ptr to
mov cx, es:[di].pcb32.regcs ; PCB address.
add es:[di].pcb32.regip, 4 ;Skip ptr on return.
mov es, cx ;Get the ptr to the new pcb
mov di, dx ; address, then fetch the
les di, es:[di] ; pcb val.
mov wp dseg:CurCoroutine, di
mov wp dseg:CurCoroutine+2, es

; Okay, switch to the new process:

mov ss, es:[di].pcb32.regss
mov sp, es:[di].pcb32.regsp
mov eax, es:[di].pcb32.regeax
mov ebx, es:[di].pcb32.regebx
mov ecx, es:[di].pcb32.regecx
mov edx, es:[di].pcb32.regedx
mov esi, es:[di].pcb32.regesi
mov ebp, es:[di].pcb32.regebp
mov ds, es:[di].pcb32.regds

push es:[di].pcb32.regflags
push es:[di].pcb32.regcs
push es:[di].pcb32.regip
push es:[di].pcb32.regedi
mov es, es:[di].pcb32.reges
pop edi
iret

cocall32l endp
cseg ends

Chapter 19

Page 1124

19.4 Multitasking

Coroutines provide a reasonable mechanism for switching between processes that must take turns.
For example, the maze generation program in the previous section would generate poor mazes if the dae-
mon processes didn’t take turns removing one cell at a time from the maze. However, the coroutine para-
digm isn’t always suitable; not all processes need to take turns. For example, suppose you are writing an
action game where the user plays against the computer. In addition, the computer player operates inde-
pendently of the user in real time. This could be, for example, a space war game or a flight simulator game
(where you are dog fighting other pilots). Ideally, we would like to have two computers. One to handle
the user interaction and one for the computer player. Both systems would communicate their moves to
one another during the game. If the (human) player simply sits and watches the screen, the computer
player would win since it is active and the human player is not. Of course, it would considerably limit the
marketability of your game were it to require two computers to play. However, you can use multitasking
to simulate two separate computer systems on a single CPU.

The basic idea behind multitasking is that one process runs for a period of time (the time quantum
or time slice) and then a timer interrupts the process. The timer ISR saves the state of the process and then
switches control to another process. That process runs for its time slice and then the timer interrupt
switches to another process. In this manner, each process gets some amount of computer time. Note that
multitasking is very easy to implement if you have a coroutine package. All you need to do is write a timer
ISR that cocalls the various processes, one per timer interrupt A timer interrupt that switches between pro-
cesses is a dispatcher.

One decision you will need to make when designing a dispatcher is a policy for the process selection
algorithm. A simple policy is to place all processes in a queue and then rotate among them. This is known
as the round-robin policy. Since this is the policy the UCR Standard Library process package uses, we will
adopt it as well. However, there are other process selection criteria, generally involving the priority of a
process, available as well. See a good text on operating systems for details.

The choice of the time quantum can have a big impact on performance. Generally, you would like
the time quantum to be small. The time sharing (switching between processes based on the clock) will be
much smoother if you use small time quanta. For example, suppose you choose five second time quanta
and you were running four processes concurrently. Each process would get five seconds; it would run
very fast during those five seconds. However, at the end of its time slice it would have to wait for the other
three process’ turns, 15 seconds, before it ran again. The users of such programs would get very frustrated
with them, users like programs whose performance is relatively consistent from one moment to the next.

If we make the time slice one millisecond, instead of five seconds, each process would run for one
millisecond and then switch to the next processes. This means that each processes gets one millisecond
out of five. This is too small a time quantum for the user to notice the pause between processes.

Since smaller time quanta seem to be better, you might wonder “why not make them as small as pos-
sible?” For example, the PC supports a one millisecond timer interrupt. Why not use that to switch
between processes? The problem is that there is a fair amount of overhead required to switch from one
processes to another. The smaller you make the time quantum, the larger will be the overhead of using
time slicing. Therefore, you want to pick a time quantum that is a good balance between smooth process
switching and too much overhead. As it turns out, the 1/18th second clock is probably fine for most multi-
tasking requirements.

19.4.1 Lightweight and HeavyWeight Processes

There are two major types of processes in the world of multitasking: lightweight processes, also
known as threads, and heavyweight processes. These two types of processes differ mainly in the details of
memory management. A heavyweight process swaps memory management tables and moves lots of data

Processes, Coroutines, and Concurrency

Page 1125

around. Threads only swap the stack and CPU registers. Threads have much less overhead cost than
heavyweight processes.

We will not consider heavyweight processes in this text. Heavyweight processes appear in protected
mode operating systems like UNIX, Linux, OS/2, or Windows NT. Since there is rarely any memory man-
agement (at the hardware level) going on under DOS, the issue of changing memory management tables
around is moot. Switching from one heavyweight application to another generally corresponds to switch-
ing from one application to another.

Using lightweight processes (threads) is perfectly reasonable under DOS. Threads (short for “execu-
tion thread” or “thread of execution”) correspond to two or more concurrent execution paths within the
same program. For example, we could think of each of the demons in the maze generation program as
being a separate thread of execution.

Although threads have different stacks and machine states, they share code and data memory. There
is no need to use a “shared memory TSR” to provide global shared memory (see “Shared Memory” on
page 1078). Instead, maintaining local variables is the difficult task. You must either allocate local vari-
ables on the process’ stack (which is separate for each process) or you’ve got to make sure that no other
process uses the variables you declare in the data segment specifically for one thread.

We could easily write our own threads package, but we don’t have to; the UCR Standard Library pro-
vides this capability in the processes package. To see how to incorporate threads into your programs, keep
reading…

19.4.2 The UCR Standard Library Processes Package

The UCR Standard Library provides six routines to let you manage threads. These routines include
prcsinit, prcsquit, fork, die, kill , and yield. These functions let you initialize and shut down the
threads system, start new processes, terminate processes, and voluntarily pass the CPU off to another pro-
cess.

The prcsinit and prcsquit functions let you initialize and shutdown the system. The prcsinit
call prepares the threads package. You must call this routine before executing any of the other five process
routines. The prcsquit function shuts down the threads system in preparation for program termination.
Prcsinit patches into the timer interrupt (interrupt 8). Prcsquit restores the interrupt 8 vector. It is
very important that you call prcsquit before your program returns to DOS. Failure to do so will leave the
int 8 vector pointing off into memory which may cause the system to crash when DOS loads the next pro-
gram. Your program must patch the break and critical error exception vectors to ensure that you call
prcsquit in the event of abnormal program termination. Failure to do so may crash the system if the user
terminates the program with ctrl-break or an abort on an I/O error. Prcsinit and prcsquit do not
require any parameters, nor do they return any values.

The fork call spawns a new process. On entry, es:di must point at a pcb for the new process. The
regss and regsp fields of the pcb must contain the address of the top of the stack area for this new pro-
cess. The fork call fills in the other fields of the pcb (including cs:ip)/

For each call you make to fork, the fork routine returns twice, once for each thread of execution.
The parent process typically returns first, but this is not certain; the child process is usually the second
return from the fork call. To differentiate the two calls, fork returns two process identifiers (PIDs) in the
ax and bx registers. For the parent process, fork returns with ax containing zero and bx containing the
PID of the child process. For the child process, fork returns with ax containing the child’s PID and bx
containing zero. Note that both threads return and continuing executing the same code after the call to
fork. If you want the child and parent processes to take separate paths, you would execute code like the
following:

Chapter 19

Page 1126

lesi NewPCB ;Assume regss/regsp are initialized.
fork
test ax, ax ;Parent PID is zero at this point.
je ParentProcess ;Go elsewhere if parent process.

; Child process continues execution here

The parent process should save the child’s PID. You can use the PID to terminate a process at some later
time.

It is important to repeat that you must initialize the regss and regsp fields in the pcb before calling
fork. You must allocate storage for a stack (dynamically or statically) and point ss:sp at the last word of
this stack area. Once you call fork, the process package uses whatever value that happens to be in the
regss and regsp fields. If you have not initialized these values, they will probably contain zero and
when the process starts it will wipe out the data at address 0:FFFE. This may crash the system at one point
or another.

The die call kills the current process. If there are multiple processes running, this call transfers con-
trol to some other processes waiting to run. If the current process is the only process on the system’s run
queue, then this call will crash the system.

The kill call lets one process terminate another. Typically, a parent process will use this call to termi-
nate a child process. To kill a process, simply load the ax register with the PID of the process you want to
terminate and then call kill . If a process supplies its own PID to the kill function, the process terminates
itself (that is, this is equivalent to a die call). If there is only one process in the run queue and that process
kills itself, the system will crash.

The last multitasking management routine in the process package is the yield call. Yield voluntar-
ily gives up the CPU. This is a direct call to the dispatcher, that will switch to another task in the run queue.
Control returns after the yield call when the next time slice is given to this process. If the current process
is the only one in the queue, yield immediately returns. You would normally use the yield call to free
up the CPU between long I/O operations (like waiting for a keypress). This would allow other tasks to get
maximum use of the CPU while your process is just spinning in a loop waiting for some I/O operation to
complete.

The Standard Library multitasking routines only work with the 16 bit register set of the 80x86 family.
Like the coroutine package, you will need to modify the pcb and the dispatcher code if you want to sup-
port the 32 bit register set of the 80386 and later processors. This task is relatively simple and the code is
quite similar to that appearing in the section on coroutines; so there is no need to present the solution
here.

19.4.3 Problems with Multitasking

When threads share code and data certain problems can develop. First of all, reentrancy becomes a
problem. You cannot call a non-reentrant routine (like DOS) from two separate threads if there is ever the
possibility that the non-reentrant code could be interrupted and control transferred to a second thread that
reenters the same routine. Reentrancy is not the only problem, however. It is quite possible to design two
routines that access shared variables and those routines misbehave depending on where the interrupts
occur in the code sequence. We will explore these problems in the section on synchronization (see “Syn-
chronization” on page 1129), just be aware, for now, that these problems exist.

Note that simply turning off the interrupts (with cli) may not solve the reentrancy problem. Consider
the following code:

cli ;Prevent reentrancy.
mov ah, 3Eh ;DOS close call.
mov bx, Handle
int 21h
sti ;Turn interrupts back on.

Processes, Coroutines, and Concurrency

Page 1127

This code will not prevent DOS from being reentered because DOS (and BIOS) turn the interrupts back
on! There is a solution to this problem, but it’s not by using cli and sti.

19.4.4 A Sample Program with Threads

The following program provides a simple demonstration of the Standard Library processes package.
This short program creates two threads – the main program and a timer process. On each timer tick the
background (timer) process kicks in and increments a memory variable. It then yields the CPU back to the
main program. On the next timer tick control returns to the background process and this cycle repeats.
The main program reads a string from the user while the background process is counting off timer ticks.
When the user finishes the line by pressing the enter key, the main program kills the background process
and then prints the amount of time necessary to enter the line of text.

Of course, this isn’t the most efficient way to time how long it takes someone to enter a line of text,
but it does provide an example of the multitasking features of the Standard Library. This short program
segment demonstrates all the process routines except die. Note that it also demonstrates the fact that you
must supply int 23h and int 24h handlers when using the process package.

; MULTI.ASM
; Simple program to demonstrate the use of multitasking.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

ChildPID word 0 ;Child’s PID so we can kill it.
BackGndCnt word 0 ;Counts off clock ticks in backgnd.

; PCB for our background process. Note we initialize ss:sp here.

BkgndPCB pcb {0,offset EndStk2, seg EndStk2}

; Data buffer to hold an input string.

InputLine byte 128 dup (0)

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h

Chapter 19

Page 1128

and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

; Okay, this is a pretty weak background process, but it does demonstrate
; how to use the Standard Library calls.

BackGround proc
sti
mov ax, dseg
mov ds, ax
inc BackGndCnt ;Bump call Counter by one.
yield ;Give CPU back to foregnd.
jmp BackGround

BackGround endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

Processes, Coroutines, and Concurrency

Page 1129

lesi BkgndPCB ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround ;Go do backgroun stuff.

ParentPrcs: mov ChildPID, bx ;Save child process ID.

print
byte “I am timing you while you enter a string. So type”
byte cr,lf
byte “quickly: “,0

lesi InputLine
gets

mov ax, ChildPID ;Stop the child from running.
kill

printf
byte “While entering ‘%s’ you took %d clock ticks”
byte cr,lf,0
dword InputLine, BackGndCnt

prcsquit

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byte 256 dup (?)
EndStk2 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

19.5 Synchronization

Many problems occur in cooperative concurrently executing processes due to synchronization (or
the lack thereof). For example, one process can produce data that other processes consume. However, it
might take much longer for the producer to create than data than it takes for the consumer to use it. Some
mechanism must be in place to ensure that the consumer does not attempt to use the data before the pro-
ducer creates it. Likewise, we need to ensure that the consumer uses the data created by the producer
before the producer creates more data.

The producer-consumer problem is one of several very famous synchronization problems from
operating systems theory. In the producer-consumer problem there are one or more processes that pro-
duce data and write this data to a shared buffer. Likewise, there are one or more consumers that read data
from this buffer. There are two synchronization issues we must deal with – the first is to ensure that the
producers do not produce more data than the buffer can hold (conversely, we must prevent the consum-
ers from removing data from an empty buffer); the second is to ensure the integrity of the buffer data struc-
ture by allowing access to only one process at a time.

Chapter 19

Page 1130

Consider what can happen in a simple producer-consumer problem. Suppose the producer and con-
sumer processes share a single data buffer structure organized as follows:

buffer struct
Count word 0
InPtr word 0
OutPtr word 0
Data byte MaxBufSize dup (?)
buffer ends

The Count field specifies the number of data bytes currently in the buffer. InPtr points at the next avail-
able location to place data in the buffer. OutPtr is the address of the next byte to remove from the buffer.
Data is the actual buffer array. Adding and removing data is very easy. The following code segments
almost handle this job:

; Producer- This procedure adds the value in al to the buffer.
; Assume that the buffer variable MyBuffer is in the data segment.

Producer proc near
pushf
sti ;Must have interrupts on!
push bx

; The following loop waits until there is room in the buffer to insert
; another byte.

WaitForRoom: cmp MyBuffer.Count, MaxBufSize
jae WaitForRoom

; Okay, insert the byte into the buffer.

mov bx, MyBuffer.InPtr
mov MyBuffer.Data[bx], al
inc MyBuffer.Count ;We just added a byte to the buffer.
inc MyBuffer.InPtr ;Move on to next item in buffer.

; If we are at the physical end of the buffer, wrap around to the beginning.

cmp MyBuffer.InPtr, MaxBufSize
jb NoWrap
mov MyBuffer.InPtr, 0

NoWrap:
pop bx
popf
ret

Producer endp

; Consumer- This procedure waits for data (if necessary) and returns the
; next available byte from the buffer.

Consumer proc near
pushf ;Must have interrupts on!
sti
push bx

WaitForData: cmp Count, 0 ;Is the buffer empty?
je WaitForData ;If so, wait for data to arrive.

; Okay, fetch an input character

mov bx, MyBuffer.OutPtr
mov al, MyBuffer.Data[bx]
dec MyBuffer.Count
inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:
pop bx
popf
ret

Consumer endp

Processes, Coroutines, and Concurrency

Page 1131

The only problem with this code is that it won’t always work if there are multiple producer or consumer
processes. In fact, it is easy to come up with a version of this code that won’t work for a single set of pro-
ducer and consumer processes (although the code above will work fine, in that special case). The problem
is that these procedures access global variables and, therefore, are not reentrant. In particular, the problem
lies with the way these two procedures manipulate the buffer control variables. Consider, for a moment,
the following statements from the Consumer procedure:

dec MyBuffer.Count

« Suppose an interrupt occurs here »

inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:

If an interrupt occurs at the specified point above and control transfers to another consumer process that
reenters this code, the second consumer would malfunction. The problem is that the first consumer has
fetched data from the buffer but has yet to update the output pointer. The second consumer comes along
and removes the same byte as the first consumer. The second consumer then properly updates the output
pointer to point at the next available location in the circular buffer. When control eventually returns to the
first consumer process, it finishes the operation by incrementing the output pointer. This causes the system
to skip over the next byte which no process has read. The end result is that two consumer processes fetch
the same byte and then skip a byte in the buffer.

This problem is easily solved by recognizing the fact that the code that manipulates the buffer data is
a critical region. By restricting execution in the critical region to one process at a time, we can solve this
problem. In the simple example above, we can easily prevent reentrancy by turning the interrupts off
while in the critical region. For the consumer procedure, the code would look like this:

; Consumer- This procedure waits for data (if necessary) and returns the
; next available byte from the buffer.

Consumer proc near
pushf ;Must have interrupts on!
sti
push bx

WaitForData: cmp Count, 0 ;Is the buffer empty?
je WaitForData ;If so, wait for data to arrive.

; The following is a critical region, so turn the interrupts off.

cli

; Okay, fetch an input character

mov bx, MyBuffer.OutPtr
mov al, MyBuffer.Data[bx]
dec MyBuffer.Count
inc MyBuffer.OutPtr
cmp MyBuffer.OutPtr, MaxBufSize
jb NoWrap
mov MyBuffer.OutPtr, 0

NoWrap:
pop bx
popf ;Restore interrupt flag.
ret

Consumer endp

Note that we cannot turn the interrupts off during the execution of the whole procedure. Interrupts must
be on while this procedure is waiting for data, otherwise the producer process will never be able to put
data in the buffer for the consumer.

Simply turning the interrupts off does not always work. Some critical regions may take a considerable
amount of time (seconds, minutes, or even hours) and you cannot leave the interrupts off for that amount

Chapter 19

Page 1132

of time3. Another problem is that the critical region may call a procedure that turns the interrupts back on
and you have no control over this. A good example is a procedure that calls MS-DOS. Since MS-DOS is not
reentrant, MS-DOS is, by definition, a critical section; we can only allow one process at a time inside
MS-DOS. However, MS-DOS reenables the interrupts, so we cannot simply turn off the interrupts before
calling an MS-DOS function an expect this to prevent reentrancy.

Turning off the interrupts doesn’t even work for the consumer/producer procedures given earlier.
Note that interrupts must be on while the consumer is waiting for data to arrive in the buffer (conversely,
the producers must have interrupts on while waiting for room in the buffer). It is quite possible for the
code to detect the presence of data and just before the execution of the cli instruction, an interrupt trans-
fers control to a second consumer process. While it is not possible for both processes to update the buffer
variables concurrently, it is possible for the second consumer process to remove the only data value from
the input buffer and then switch back to the first consumer that removes a phantom value from the buffer
(and causes the Count variable to go negative).

One poorly thought out solution is to use a flag to control access to a critical region. A process, before
entering the critical region, tests the flag to see if any other process is currently in the critical region; if not,
the process sets the flag to “in use” and then enters the critical region. Upon leaving the critical region, the
process sets the flag to “not in use.” If a process wants to enter a critical region and the flag’s value is “in
use”, the process must wait until the process currently in the critical section finishes and writes the “not in
use” value to the flag.

The only problem with this solution is that it is nothing more than a special case of the producer/con-
sumer problem. The instructions that update the in-use flag form their own critical section that you must
protect. As a general solution, the in-use flag idea fails.

19.5.1 Atomic Operations, Test & Set, and Busy-Waiting

The problem with the in-use flag idea is that it takes several instructions to test and set the flag. A typ-
ical piece of code that tests such a flag would read its value and determine if the critical section is in use. If
not, it would then write the “in-use” value to the flag to let other processes know that it is in the critical sec-
tion. The problem is that an interrupt could occur after the code tests the flag but before it sets the flag to
“in use.” Then some other process can come along, test the flag and find that it is not in use, and enter the
critical region. The system could interrupt that second process while it is still in the critical region and
transfer control back to the first. Since the first process has already determined that the critical region is not
in use, it sets the flag to “in use” and enters the critical region. Now we have two processes in the critical
region and the system is in violation of the mutual exclusion requirement (only one process in a critical
region at a time).

The problem with this approach is that testing and setting the in-use flag is not an uninterruptable
(atomic) operation. If it were, then there would be no problem. Of course, it is easy to make a sequence
of instructions non-interruptible by putting a cli instruction before them. Therefore, we can test and set a
flag in an atomic operation as follows (assume in-use is zero, not in-use is one):

pushf
TestLoop: cli ;Turn ints off while testing and

cmp Flag, 0 ; setting flag.
je IsInUse ;Already in use?
mov Flag, 0 ;If not, make it so.

IsInUse: sti ;Allow ints (if in-use already).
je TestLoop ;Wait until not in use.
popf

; When we get down here, the flag was “not in-use” and we’ve just set it
; to “in-us.” We now have exclusive access to the critical section.

3. In general, you should not leave the interrupts off for more than about 30 milliseconds when using the 1/18th second clock for multitasking. A
general rule of thumb is that interrupts should not be off for much more than abou;50% of the time quantum.

Processes, Coroutines, and Concurrency

Page 1133

Another solution is to use a so-called “test and set” instruction – one that both tests a specific condi-
tion and sets the flag to a desired value. In our case, we need an instruction that both tests a flag to see if it
is not in-use and sets it to in-use at the same time (if the flag was already in-use, it will remain in use after-
ward). Although the 80x86 does not support a specific test and set instruction, it does provide several oth-
ers that can achieve the same effect. These instructions include xchg, shl, shr, sar, rcl, rcr, rol, ror,
btc/btr/bts (available only on the 80386 and later processors), and cmpxchg (available only on the
80486 and later processors). In a limited sense, you can also use the addition and subtraction instructions
(add, sub, adc, sbb, inc, and dec) as well.

The exchange instruction provides the most generic form for the test and set operation. If you have a
flag (0=in use, 1=not in use) you can test and set this flag without messing with the interrupts using the fol-
lowing code:

InUseLoop: mov al, 0 ;0=In Use
xchg al, Flag
cmp al, 0
je InUseLoop

The xchg instruction atomically swaps the value in al with the value in the flag variable. Although the
xchg instruction doesn’t actually test the value, it does place the original flag value in a location (al) that
is safe from modification by another process. If the flag originally contained zero (in-use), this exchange
sequence swaps a zero for the existing zero and the loop repeats. If the flag originally contained a one (not
in-use) then this code swaps a zero (in-use) for the one and falls out of the in use loop.

The shift and rotate instructions also act as test and set instructions, assuming you use the proper val-
ues for the in-use flag. With in-use equal to zero and not in-use equal to one, the following code demon-
strates how to use the shr instruction for the test and set operation:

InUseLoop: shr Flag, 1 ;In-use bit to carry, 0->Flag.
jnc InUseLoop ;Repeat if already in use.

This code shifts the in-use bit (bit number zero) into the carry flag and clears the in-use flag. At the same
time, it zeros the Flag variable, assuming Flag always contains zero or one. The code for the atomic test
and set sequences using the other shift and rotates is very similar and appears in the exercises.

Starting with the 80386, Intel provided a set of instructions explicitly intended for test and set opera-
tions: btc (bit test and complement), bts (bit test and set), and btr (bit test and reset). These instructions
copy a specific bit from the destination operand into the carry flag and then complement, set, or reset
(clear) that bit. The following code demonstrates how to use the btr instruction to manipulate our in-use
flag:

InUseLoop: btr Flag, 0 ;In-use flag is in bit zero.
jnc InUseLoop

The btr instruction is a little more flexible than the shr instruction because you don’t have to guarantee
that all the other bits in the Flag variable are zero; it tests and clears bit zero without affect any other bits
in the Flag variable.

The 80486 (and later) cmpxchg instruction provides a very generic synchronization primitive. A
“compare and swap” instruction turns out to be the only atomic instruction you need to implement almost
any synchronization primitive. However, its generic structure means that it is a little too complex for sim-
ple test and set operations. You will get an opportunity to design a test and set sequence using cmpxchg in
the exercises. For more details on cmpxchg, see “The CMPXCHG, and CMPXCHG8B Instructions” on
page 263.

Returning to the producer/consumer problem, we can easily solve the critical region problem that
exists in these routines using the test and set instruction sequence presented above. The following code
does this for the Producer procedure, you would modify the Consumer procedure in a similar fashion.

; Producer- This procedure adds the value in al to the buffer.
; Assume that the buffer variable MyBuffer is in the data segment.

Producer proc near

Chapter 19

Page 1134

pushf
sti ;Must have interrupts on!

; Okay, we are about to enter a critical region (this whole procedure),
; so test the in-use flag to see if this critical region is already in use.

InUseLoop: shr Flag, 1
jnc InUseLoop

push bx

; The following loop waits until there is room in the buffer to insert
; another byte.

WaitForRoom: cmp MyBuffer.Count, MaxBufSize
jae WaitForRoom

; Okay, insert the byte into the buffer.

mov bx, MyBuffer.InPtr
mov MyBuffer.Data[bx], al
inc MyBuffer.Count ;We just added a byte to the buffer.
inc MyBuffer.InPtr ;Move on to next item in buffer.

; If we are at the physical end of the buffer, wrap around to the beginning.

cmp MyBuffer.InPtr, MaxBufSize
jb NoWrap
mov MyBuffer.InPtr, 0

NoWrap:
mov Flag, 1 ;Set flag to not in use.
pop bx
popf
ret

Producer endp

One minor problem with the test and set approach to protecting a critical region is that it uses a
busy-waiting loop. While the critical region is not available, the process spins in a loop waiting for its turn
at the critical region. If the process that is currently in the critical region remains there for a considerable
length of time (say, seconds, minutes, or hours), the process(es) waiting to enter the critical region con-
tinue to waste CPU time waiting for the flag. This, in turn, wastes CPU time that could be put to better use
getting the process in the critical region through it so another process can enter.

Another problem that might exist is that it is possible for one process to enter the critical region, lock-
ing other processes out, leave the critical region, do some processing, and then reenter the critical region
all during the same time slice. If it turns out that the process is always in the critical region when the timer
interrupt occurs, none of the other processes waiting to enter the critical region will ever do so. This is a
problem known as starvation – processes waiting to enter the critical region never do so because some
other process always beats them into it.

One solution to these two problems is to use a synchronization object known as a semaphore. Sema-
phores provide an efficient and general purpose mechanism for protecting critical regions. To find out
about semaphores, keep reading...

19.5.2 Semaphores

A semaphore is an object with two basic methods: wait and signal (or release). To use a semaphore,
you create a semaphore variable (an instance) for a particular critical region or other resource you want to
protect. When a process wants to use a given resource, it waits on the semaphore. If no other process is
currently using the resource, then the wait call sets the semaphore to in-use and immediately returns to the
process. At that time, the process has exclusive access to the resource. If some other process is already
using the resource (e.g., is in the critical region), then the semaphore blocks the current process by mov-
ing it off the run queue and onto the semaphore queue. When the process that currently holds the

Processes, Coroutines, and Concurrency

Page 1135

resource releases it, the release operation removes the first waiting process from the semaphore queue
and places it back in the run queue. At the next available time slice, that new process returns from its wait
call and can enter its critical region.

Semaphores solve the two important problems with the busy-waiting loop described in the previous
section. First, when a process waits and the semaphore blocks the process, that process is no longer on the
run queue, so it consumes no more CPU time until the point that a release operation places it back onto
the run queue. So unlike busy-waiting, the semaphore mechanism does not waste (as much) CPU time on
processes that are waiting for some resource.

Semaphores can also solve the starvation problem. The wait operation, when blocking a process, can
place it at the end of a FIFO semaphore queue. The release operation can fetch a new process from the
front of the FIFO queue to place back on to the run queue. This policy ensures that each process entering
the semaphore queue gets equal priority access to the resource4.

Implementing semaphores is an easy task. A semaphore generally consists of an integer variable and
a queue. The system initializes the integer variable with the number of processes than may share the
resource at one time (this value is usually one for critical regions and other resources requiring exclusive
access). The wait operation decrements this variable. If the result is greater than or equal to zero, the wait
function simply returns to the caller; if the result is less than zero, the wait function saves the machine
state, moves the process’ pcb from the run queue to the semaphore’s queue, and then switches the CPU
to a different process (i.e., a yield call).

The release function is almost the converse. It increments the integer value. If the result is not one,
the release function moves a pcb from the front of the semaphore queue to the run queue. If the integer
value becomes one, there are no more processes on the semaphore queue, so the release function simply
returns to the caller. Note that the release function does not activate the process it removes from the sema-
phore process queue. It simply places that process in the run queue. Control always returns to the process
that made the release call (unless, of course, a timer interrupt occurs while executing the release function).

Of course, any time you manipulate the system’s run queue you are in a critical region. Therefore, we
seem to have a minor problem here – the whole purpose of a semaphore is to protect a critical region, yet
the semaphore itself has a critical region we need to protect. This seems to involve circular reasoning.
However, this problem is easily solved. Remember, the main reasons we do not turn off interrupts to pro-
tect a critical region is because that critical region may take a long time to execute or it may call other rou-
tines that turn the interrupts back on. The critical section in a semaphore is very short and does not call
any other routines. Therefore, briefly turning off the interrupts while in the semaphore’s critical region is
perfectly reasonable.

If you are not allowed to turn off interrupts, you can always use a test and set instruction in a loop to
protect a critical region. Although this introduces a busy-waiting loop, it turns out that you will never wait
more than two time slices before exiting the busy-waiting loop, so you do not waste much CPU time wait-
ing to enter the semaphore’s critical region.

Although semaphores solve the two major problems with the busy waiting loop, it is very easy to get
into trouble when using semaphores. For example, if a process waits on a semaphore and the semaphore
grants exclusive access to the associate resource, then that process never releases the semaphore, any pro-
cesses waiting on that semaphore will be suspended indefinitely. Likewise, any process that waits on the
same semaphore twice without a release in-between will suspend itself, and any other processes that wait
on that semaphore, indefinitely. Any process that does not release a resource it no longer needs violates
the concept of a semaphore and is a logic error in the program. There are also some problems that may
develop if a process waits on multiple semaphores before releasing any. We will return to that problem in
the section on deadlocks (see “Deadlock” on page 1146).

4. This FIFO policy is but one example of a release policy. You could have some other policy based on a priority scheme. However, the FIFO policy
does not promote starvation.

Chapter 19

Page 1136

Although we could write our own semaphore package (and there is good reason to), the Standard
Library process package provides its own wait and release calls along with a definition for a semaphore
variable. The next section describes those calls.

19.5.3 The UCR Standard Library Semaphore Support

The UCR Standard Library process package provides two functions to manipulate semaphore vari-
ables: WaitSemaph and RlsSemaph. These functions wait and signal a semaphore, respectively. These
routines mesh with the process management facilities, making it easy to implement synchronization using
semaphores in your programs.

The process package provides the following definition for a semaphore data type:

semaphore struct
SemaCnt word 1
smaphrLst dword ?
endsmaphrLst dword ?
semaphore ends

The SemaCnt field determines how many more processes can share a resource (if positive), or how many
processes are currently waiting for the resource (if negative). By default, this field is initialized to the value
one. This allows one process at a time to use the resource protected by the semaphore. Each time a pro-
cess waits on a semaphore, it decrements this field. If the decremented result is positive or zero, the wait
operation immediately returns. If the decremented result is negative, then the wait operation moves the
current process’ pcb from the run queue to the semaphore queue defined by the smaphrLst and
endsmaphrLst fields in the structure above.

Most of the time you will use the default value of one for the SemaCnt field. There are some occa-
sions, though, when you might want to allow more than one process access to some resource. For exam-
ple, suppose you’ve developed a multiplayer game that communicates between different machines using
the serial communications port or a network adapter card. You might have an area in the game which has
room for only two players at a time. For example, players could be racing to a particular “transporter”
room in an alien space ship, but there is room for only two players in the transporter room at a time. By
initializing the semaphore variable to two, rather than one, the wait operation would allow two players to
continue at one time rather than just one. When the third player attempts to enter the transporter room, the
WaitSemaph function would block the player from entering the room until one of the other players left
(perhaps by “transporting out” of the room).

To use the WaitSemaph or RlsSemaph function is very easy; just load the es:di register pair with
the address of desired semaphore variable and issue the appropriate function call. RlsSemaph always
returns immediately (assuming a timer interrupt doesn’t occur while in RlsSemaph), the WaitSemaph
call returns when the semaphore will allow access to the resource it protects. Examples of these two calls
appear in the next section.

Like the Standard Library coroutine and process packages, the semaphore package only preserves the
16 bit register set of the 80x86 CPU. If you want to use the 32 bit register set of the 80386 and later proces-
sors, you will need to modify the source code for the WaitSemaph and RlsSemaph functions. The
code you need to change is almost identical to the code in the coroutine and process packages, so this is
nearly a trivial change. Do keep in mind, though, that you will need to change this code if you use any 32
bit facilities of the 80386 and later processors.

19.5.4 Using Semaphores to Protect Critical Regions

You can use semaphores to provide mutually exclusive access to any resource. For example, if sev-
eral processes want to use the printer, you can create a semaphore that allows access to the printer by only
one process at a time (a good example of a process that will be in the “critical region” for several minutes

Processes, Coroutines, and Concurrency

Page 1137

at a time). However the most common task for a semaphore is to protect a critical region from reentry.
Three common examples of code you need to protect from reentry include DOS calls, BIOS calls, and var-
ious Standard Library calls. Semaphores are ideal for controlling access to these functions.

To protect DOS from reentry by several different processes, you need only create a DOSsmaph vari-
able and issue appropriate WaitSemaph and RlsSemaph calls around the call to DOS. The following
sample code demonstrates how to do this.

; MULTIDOS.ASM
;
; This program demonstrates how to use semaphores to protect DOS calls.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

DOSsmaph semaphore {}

; Macros to wait and release the DOS semaphore:

DOSWait macro
push es
push di
lesi DOSsmaph
WaitSemaph
pop di
pop es
endm

DOSRls macro
push es
push di
lesi DOSsmaph
RlsSemaph
pop di
pop es
endm

; PCB for our background process:

BkgndPCB pcb {0,offset EndStk2, seg EndStk2}

; Data the foreground and background processes print:

StrPtrs1 dword str1_a, str1_b, str1_c, str1_d, str1_e, str1_f
dword str1_g, str1_h, str1_i, str1_j, str1_k, str1_l
dword 0

str1_a byte “Foreground: string ‘a’”,cr,lf,0
str1_b byte “Foreground: string ‘b’”,cr,lf,0
str1_c byte “Foreground: string ‘c’”,cr,lf,0
str1_d byte “Foreground: string ‘d’”,cr,lf,0
str1_e byte “Foreground: string ‘e’”,cr,lf,0
str1_f byte “Foreground: string ‘f’”,cr,lf,0
str1_g byte “Foreground: string ‘g’”,cr,lf,0
str1_h byte “Foreground: string ‘h’”,cr,lf,0
str1_i byte “Foreground: string ‘i’”,cr,lf,0
str1_j byte “Foreground: string ‘j’”,cr,lf,0
str1_k byte “Foreground: string ‘k’”,cr,lf,0
str1_l byte “Foreground: string ‘l’”,cr,lf,0

StrPtrs2 dword str2_a, str2_b, str2_c, str2_d, str2_e, str2_f
dword str2_g, str2_h, str2_i
dword 0

str2_a byte “Background: string ‘a’”,cr,lf,0
str2_b byte “Background: string ‘b’”,cr,lf,0

Chapter 19

Page 1138

str2_c byte “Background: string ‘c’”,cr,lf,0
str2_d byte “Background: string ‘d’”,cr,lf,0
str2_e byte “Background: string ‘e’”,cr,lf,0
str2_f byte “Background: string ‘f’”,cr,lf,0
str2_g byte “Background: string ‘g’”,cr,lf,0
str2_h byte “Background: string ‘h’”,cr,lf,0
str2_i byte “Background: string ‘i’”,cr,lf,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

Processes, Coroutines, and Concurrency

Page 1139

; This background process calls DOS to print several strings to the
; screen. In the meantime, the foreground process is also printing
; strings to the screen. To prevent reentry, or at least a jumble of
; characters on the screen, this code uses semaphores to protect the
; DOS calls. Therefore, each process will print one complete line
; then release the semaphore. If the other process is waiting it will
; print its line.

BackGround proc
mov ax, dseg
mov ds, ax
lea bx, StrPtrs2 ;Array of str ptrs.

PrintLoop: cmp word ptr [bx+2], 0 ;At end of pointers?
je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die ;Terminate this process
BackGround endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

lesi BkgndPCB ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround ;Go do background stuff.

; The parent process will print a bunch of strings at the same time
; the background process is doing this. We’ll use the DOS semaphore
; to protect the call to DOS that PUTS makes.

ParentPrcs: DOSWait ;Force the other process
mov cx, 0 ; to wind up waiting in

DlyLp0: loop DlyLp0 ; the semaphore queue by
DlyLp1: loop DlyLp1 ; delay for at least one
DlyLp2: loop DlyLp2 ; clock tick.

DOSRls

lea bx, StrPtrs1 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je ForeGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

ForeGndDone: prcsquit

Chapter 19

Page 1140

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byte 1024 dup (?)
EndStk2 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

This program doesn’t directly call DOS, but it calls the Standard Library puts routine that does. In general,
you could use a single semaphore to protect all BIOS, DOS, and Standard Library calls. However, this is
not particularly efficient. For example, the Standard Library pattern matching routines make no DOS calls;
therefore, waiting on the DOS semaphore to do a pattern match while some other process is making a
DOS call unnecessarily delays the pattern match. There is nothing wrong with having one process do a
pattern match while another is making a DOS call. Unfortunately, some Standard Library routines do
make DOS calls (puts is a good example), so you must use the DOS semaphore around such calls.

In theory, we could use separate semaphores to protect DOS, different BIOS calls, and different Stan-
dard Library calls. However, keeping track of all those semaphores within a program is a big task. Further-
more, ensuring that a call to DOS does not also invoke an unprotected BIOS routine is a difficult task. So
most programmers use a single semaphore to protect all Standard Library, DOS, and BIOS calls.

19.5.5 Using Semaphores for Barrier Synchronization

Although the primary use of a semaphores is to provide exclusive access to some resource, there are
other synchronization uses for semaphores as well. In this section we’ll look at the use of the Standard
Library’s semaphores objects to create a barrier.

A barrier is a point in a program where a process stops and waits for other processes to synchronize
(reach their respective barriers). In many respects, a barrier is the dual to a semaphore. A semaphore pre-
vents more than n processes from gaining access to some resource. A barrier does not grant access until at
least n processes are requesting access.

Given the different nature of these two synchronization methods, you might think that it would be
difficult to use the WaitSemaph and RlsSemaph routines to implement barriers. However, it turns out
to be quite simple. Suppose we were to initialize the semaphore's SemaCnt field to zero rather than one.
When the first process waits on this semaphore, the system will immediately block that process. Likewise,
each additional process that waits on this semaphore will block and wait on the semaphore queue. This
would normally be a disaster since there is no active process that will signal the semaphore so it will acti-
vate the blocked processes. However, if we modify the wait call so that it checks the SemaCnt field
before actually doing the wait, the nth process can skip the wait call and reactivate the other processes.
Consider the following macro:

Processes, Coroutines, and Concurrency

Page 1141

barrier macro Wait4Cnt
local AllHere, AllDone
cmp es:[di].semaphore.SemaCnt, -(Wait4Cnt-1)
jle AllHere
WaitSemaph
cmp es:[di].semaphore.SemaCnt, 0
je AllDone

AllHere: RlsSemaph
AllDone:

endm

This macro expects a single parameter that should be the number of processes (including the current
process) that need to be at a barrier before any of the processes can proceed. The SemaCnt field is a neg-
ative number whose absolute value determines how many processes are currently waiting on the sema-
phore. If a barrier requires four processes, no process can proceed until the fourth process hits the barrier;
at that time the SemaCnt field will contain minus three. The macro above computes what the value of
SemaCnt should be if all processes are at the barrier. If SemaCnt matches this value, it signals the sema-
phore that begins a chain of operations with each blocked process releasing the next. When SemaCnt
hits zero, the last blocked process does not release the semaphore since there are no other processes wait-
ing on the queue.

It is very important to remember to initialize the SemaCnt field to zero before using semaphores for
barrier synchronization in this manner. If you do not initialize SemaCnt to zero, the WaitSemaph call
will probably not block any of the processes.

The following sample program provides a simple example of barrier synchronization using the Stan-
dard Library’s semaphore package:

; BARRIER.ASM
;
; This sample program demonstrates how to use the Standard Library’s
; semaphore objects to synchronize several processes at a barrier.
; This program is similar to the MULTIDOS.ASM program insofar as the
; background processes all print a set of strings. However, rather than
; using an inelegant delay loop to synchronize the foreground and background
; processes, this code uses barrier synchronization to achieve this.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

BarrierSemaph semaphore {0} ;Must init SemaCnt to zero.
DOSsmaph semaphore {}

; Macros to wait and release the DOS semaphore:

DOSWait macro
push es
push di
lesi DOSsmaph
WaitSemaph
pop di
pop es
endm

DOSRls macro
push es
push di
lesi DOSsmaph
RlsSemaph
pop di
pop es
endm

; Macro to synchronize on a barrier:

Chapter 19

Page 1142

Barrier macro Wait4Cnt
local AllHere, AllDone
cmp es:[di].semaphore.SemaCnt, -(Wait4Cnt-1)
jle AllHere
WaitSemaph
cmp es:[di].semaphore.SemaCnt, 0
jge AllDone

AllHere: RlsSemaph
AllDone:

endm

; PCBs for our background processes:

BkgndPCB2 pcb {0,offset EndStk2, seg EndStk2}
BkgndPCB3 pcb {0,offset EndStk3, seg EndStk3}

; Data the foreground and background processes print:

StrPtrs1 dword str1_a, str1_b, str1_c, str1_d, str1_e, str1_f
dword str1_g, str1_h, str1_i, str1_j, str1_k, str1_l
dword 0

str1_a byte “Foreground: string ‘a’”,cr,lf,0
str1_b byte “Foreground: string ‘b’”,cr,lf,0
str1_c byte “Foreground: string ‘c’”,cr,lf,0
str1_d byte “Foreground: string ‘d’”,cr,lf,0
str1_e byte “Foreground: string ‘e’”,cr,lf,0
str1_f byte “Foreground: string ‘f’”,cr,lf,0
str1_g byte “Foreground: string ‘g’”,cr,lf,0
str1_h byte “Foreground: string ‘h’”,cr,lf,0
str1_i byte “Foreground: string ‘i’”,cr,lf,0
str1_j byte “Foreground: string ‘j’”,cr,lf,0
str1_k byte “Foreground: string ‘k’”,cr,lf,0
str1_l byte “Foreground: string ‘l’”,cr,lf,0

StrPtrs2 dword str2_a, str2_b, str2_c, str2_d, str2_e, str2_f
dword str2_g, str2_h, str2_i
dword 0

str2_a byte “Background 1: string ‘a’”,cr,lf,0
str2_b byte “Background 1: string ‘b’”,cr,lf,0
str2_c byte “Background 1: string ‘c’”,cr,lf,0
str2_d byte “Background 1: string ‘d’”,cr,lf,0
str2_e byte “Background 1: string ‘e’”,cr,lf,0
str2_f byte “Background 1: string ‘f’”,cr,lf,0
str2_g byte “Background 1: string ‘g’”,cr,lf,0
str2_h byte “Background 1: string ‘h’”,cr,lf,0
str2_i byte “Background 1: string ‘i’”,cr,lf,0

StrPtrs3 dword str3_a, str3_b, str3_c, str3_d, str3_e, str3_f
dword str3_g, str3_h, str3_i
dword 0

str3_a byte “Background 2: string ‘j’”,cr,lf,0
str3_b byte “Background 2: string ‘k’”,cr,lf,0
str3_c byte “Background 2: string ‘l’”,cr,lf,0
str3_d byte “Background 2: string ‘m’”,cr,lf,0
str3_e byte “Background 2: string ‘n’”,cr,lf,0
str3_f byte “Background 2: string ‘o’”,cr,lf,0
str3_g byte “Background 2: string ‘p’”,cr,lf,0
str3_h byte “Background 2: string ‘q’”,cr,lf,0
str3_i byte “Background 2: string ‘r’”,cr,lf,0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; A replacement critical error handler. This routine calls prcsquit
; if the user decides to abort the program.

Processes, Coroutines, and Concurrency

Page 1143

CritErrMsg byte cr,lf
byte “DOS Critical Error!”,cr,lf
byte “A)bort, R)etry, I)gnore, F)ail? $”

MyInt24 proc far
push dx
push ds
push ax

push cs
pop ds

Int24Lp: lea dx, CritErrMsg
mov ah, 9 ;DOS print string call.
int 21h

mov ah, 1 ;DOS read character call.
int 21h
and al, 5Fh ;Convert l.c. -> u.c.

cmp al, ‘I’ ;Ignore?
jne NotIgnore
pop ax
mov al, 0
jmp Quit24

NotIgnore: cmp al, ‘r’ ;Retry?
jne NotRetry
pop ax
mov al, 1
jmp Quit24

NotRetry: cmp al, ‘A’ ;Abort?
jne NotAbort
prcsquit ;If quitting, fix INT 8.
pop ax
mov al, 2
jmp Quit24

NotAbort: cmp al, ‘F’
jne BadChar
pop ax
mov al, 3

Quit24: pop ds
pop dx
iret

BadChar: mov ah, 2
mov dl, 7 ;Bell character
jmp Int24Lp

MyInt24 endp

; We will simply disable INT 23h (the break exception).

MyInt23 proc far
iret

MyInt23 endp

; This background processes call DOS to print several strings to the
; screen. In the meantime, the foreground process is also printing
; strings to the screen. To prevent reentry, or at least a jumble of
; characters on the screen, this code uses semaphores to protect the
; DOS calls. Therefore, each process will print one complete line
; then release the semaphore. If the other process is waiting it will
; print its line.

BackGround1 proc
mov ax, dseg
mov ds, ax

Chapter 19

Page 1144

; Wait for everyone else to get ready:

lesi BarrierSemaph
barrier 3

; Okay, start printing the strings:

lea bx, StrPtrs2 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die
BackGround1 endp

BackGround2 proc
mov ax, dseg
mov ds, ax

lesi BarrierSemaph
barrier 3

lea bx, StrPtrs3 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je BkGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

BkGndDone: die
BackGround2 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Initialize the INT 23h and INT 24h exception handler vectors.

mov ax, 0
mov es, ax
mov word ptr es:[24h*4], offset MyInt24
mov es:[24h*4 + 2], cs
mov word ptr es:[23h*4], offset MyInt23
mov es:[23h*4 + 2], cs

prcsinit ;Start multitasking system.

; Start the first background process:

lesi BkgndPCB2 ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je StartBG2
jmp BackGround1 ;Go do backgroun stuff.

; Start the second background process:

StartBG2: lesi BkgndPCB3 ;Fire up a new process
fork

Processes, Coroutines, and Concurrency

Page 1145

test ax, ax ;Parent’s return?
je ParentPrcs
jmp BackGround2 ;Go do backgroun stuff.

; The parent process will print a bunch of strings at the same time
; the background process is doing this. We’ll use the DOS semaphore
; to protect the call to DOS that PUTS makes.

ParentPrcs: lesi BarrierSemaph
barrier 3

lea bx, StrPtrs1 ;Array of str ptrs.
PrintLoop: cmp word ptr [bx+2],0 ;At end of pointers?

je ForeGndDone
les di, [bx] ;Get string to print.
DOSWait
puts ;Calls DOS to print string.
DOSRls
add bx, 4 ;Point at next str ptr.
jmp PrintLoop

ForeGndDone: prcsquit

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’

; Here are the stacks for the background processes we start

stk2 byte 1024 dup (?)
EndStk2 word ?

stk3 byte 1024 dup (?)
EndStk3 word ?

;Here’s the stack for the main program/foreground process.

stk byte 1024 dup (?)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Sample Output:

Background 1: string ‘a’
Background 1: string ‘b’
Background 1: string ‘c’
Background 1: string ‘d’
Background 1: string ‘e’
Background 1: string ‘f’
Foreground: string ‘a’
Background 1: string ‘g’
Background 2: string ‘j’
Foreground: string ‘b’
Background 1: string ‘h’
Background 2: string ‘k’
Foreground: string ‘c’
Background 1: string ‘i’
Background 2: string ‘l’
Foreground: string ‘d’
Background 2: string ‘m’
Foreground: string ‘e’
Background 2: string ‘n’
Foreground: string ‘f’
Background 2: string ‘o’
Foreground: string ‘g’

Chapter 19

Page 1146

Background 2: string ‘p’
Foreground: string ‘h’
Background 2: string ‘q’
Foreground: string ‘i’
Background 2: string ‘r’
Foreground: string ‘j’
Foreground: string ‘k’
Foreground: string ‘l’

Note how background process number one ran for one clock period before the other processes waited on
the DOS semaphore. After this initial burst, the processes all took turns calling DOS.

19.6 Deadlock

Although semaphores can solve any synchronization problems, don’t get the impression that sema-
phores don’t introduce problems of their own. As you’ve already seen, the improper use of semaphores
can result in the indefinite suspension of processes waiting on the semaphore queue. However, even if
you correctly wait and signal individual semaphores, it is quite possible for correct operations on
combinations of semaphores to produce this same effect. Indefinite suspension of a process because of
semaphore problems is a serious issue. This degenerate situation is known as deadlock or deadly
embrace.

Deadlock occurs when one process holds one resource and is waiting for another while a second
process is holding that other resource and waiting for the first. To see how deadlock can occur, consider
the following code:

; Process one:

lesi Semaph1
WaitSemaph

« Assume interrupt occurs here »

lesi Semaph2
WaitSemaph
 .
 .
 .

; Process two:

lesi Semaph2
WaitSemaph
lesi Semaph1
WaitSemaph
 .
 .
 .

Process one grabs the semaphore associated with Semaph1. Then a timer interrupt comes along which
causes a context switch to process two. Process two grabs the semaphore associated with Semaph2 and
then tries to get Semaph1. However, process one is already holding Semaph1, so process two blocks
and waits for process one to release this semaphore. This returns control (eventually) to process one. Pro-
cess one then tries to graph Semaph2. Unfortunately, process two is already holding Semaph2, so pro-
cess one blocks waiting for Semaph2. Now both processes are blocked waiting for the other. Since
neither process can run, neither process can release the semaphore the other needs. Both processes are
deadlocked.

One easy way to prevent deadlock from occurring is to never allow a process to hold more than one
semaphore at a time. Unfortunately, this is not a practical solution; many processes may need to have
exclusive access to several resources at one time. However, we can devise another solution by observing
the pattern that resulted in deadlock in the previous example. Deadlock came about because the two pro-
cesses grabbed different semaphores and then tried to grab the semaphore that the other was holding. In

Processes, Coroutines, and Concurrency

Page 1147

other words, they grabbed the two semaphores in a different order (process one grabbed Semaph1 first
and Semaph2 second, process two grabbed Semaph2 first and Semaph1 second). It turns out that two
process will never deadlock if they wait on common semaphores in the same order. We could modify the
previous example to eliminate the possibility of deadlock thusly:

; Process one:

lesi Semaph1
WaitSemaph
lesi Semaph2
WaitSemaph
 .
 .
 .

; Process two:

lesi Semaph1
WaitSemaph
lesi Semaph2
WaitSemaph
 .
 .
 .

Now it doesn’t matter where the interrupt occurs above, deadlock cannot occur. If the interrupt occurs
between the two WaitSemaph calls in process one (as before), when process two attempts to wait on
Semaph1, it will block and process one will continue with Semaph2 available.

An easy way to keep out of trouble with deadlock is to number all your semaphore variables and
make sure that all processes acquire (wait on) semaphores from the smallest numbered semaphore to the
highest. This ensures that all processes acquire the semaphores in the same order, and that ensures that
deadlock cannot occurs.

Note that this policy of acquiring semaphores only applies to semaphores that a process holds con-
currently. If a process needs semaphore six for a while, and then it needs semaphore two after it has
released semaphore six, there is no problem acquiring semaphore two after releasing semaphore six.
However, if at any point the process needs to hold both semaphores, it must acquire semaphore two first.

Processes may release the semaphores in any order. The order that a process releases semaphores
does not affect whether deadlock can occur. Of course, processes should always release a semaphore as
soon as the process is done with the resource guarded by that semaphore; there may be other processes
waiting on that semaphore.

While the above scheme works and is easy to implement, it is by no means the only way to handle
deadlock, nor is it always the most efficient. However, it is simple to implement and it always works. For
more information on deadlocks, see a good operating systems text.

19.7 Summary

Despite the fact that DOS is not reentrant and doesn’t directly support multitasking, that doesn’t mean
your applications can’t multitask; it’s just difficult to get different applications to run independently of one
another under DOS.

Although DOS doesn’t switch among different programs in memory, DOS certainly allows you to load
multiple programs into memory at one time. The only catch is that only one such program actually exe-
cutes. DOS provides several calls to load and execute “.EXE” and “.COM” files from the disk. These pro-
cesses effectively behave like subroutine calls, with control returning to the program invoking such a
program only after that “child” program terminates. For more details, see

• “DOS Processes” on page 1065
• “Child Processes in DOS” on page 1065

Chapter 19

Page 1148

• “Load and Execute” on page 1066
• “Load Program” on page 1068
• “Loading Overlays” on page 1069
• “Terminating a Process” on page 1069
• “Obtaining the Child Process Return Code” on page 1070

Certain errors can occur during the execution of a DOS process that transfer control to exception han-
dlers. Besides the 80x86 exceptions, DOS’ break handler and critical error handler are the primary
examples. Any program that patches the interrupt vectors should provide its own exception handlers for
these conditions so it can restore interrupts on a ctrl-C or I/O error exception. Furthermore, well-written
program always provide replacement exception handlers for these two conditions that provide better sup-
port that the default DOS handlers. For more information on DOS exceptions, see

• “Exception Handling in DOS: The Break Handler” on page 1070
• “Exception Handling in DOS: The Critical Error Handler” on page 1071
• “Exception Handling in DOS: Traps” on page 1075

When a parent process invokes a child process with the LOAD or LOADEXEC calls, the child process
inherits all open files from the parent process. In particular, the child process inherits the standard input,
standard output, standard error, auxiliary I/O, and printer devices. The parent process can easily redi-
rect I/O to/from these devices before passing control to a child process. This, in effect, redirects the I/O
during the execution of the child process. For more details, see

• “Redirection of I/O for Child Processes” on page 1075

When two DOS programs want to communicate with each other, they typically read and write data to
a file. However, creating, opening, reading, and writing files is a lot of work, especially just to share a few
variable values. A better alternative is to use shared memory. Unfortunately, DOS does not provide sup-
port to allow two programs to share a common block of memory. However, it is very easy to write a TSR
that manages shared memory for various programs. For details and the complete code to two shared mem-
ory managers, see:

• “Shared Memory” on page 1078
• “Static Shared Memory” on page 1078
• “Dynamic Shared Memory” on page 1088

A coroutine call is the basic mechanism for switching control between two processes. A “cocall” oper-
ation is the equivalent of a subroutine call and return all rolled into one operation. A cocall transfers con-
trol to some other process. When some other process returns control to a coroutine (via cocall), control
resumes with the first instruction after the cocall code. The UCR Standard Library provides complete
coroutine support so you can easily put coroutines into your assembly language programs. For all the
details on coroutines, plus a neat maze generator program that uses coroutines, see

• “Coroutines” on page 1103

Although you can use coroutines to simulate multitasking (“cooperative multitasking”), the major
problem with coroutines is that each application must decide when to switch to another process via a
cocall. Although this eliminates certain reentrancy and synchronization problems, deciding when and
where to make such calls increases the work necessary to write multitasking applications. A better
approach is to use preemptive multitasking where the timer interrupt performs the context switches.
Reentrancy and synchronization problems develop in such a system, but with care those problems are eas-
ily overcome. For the details on true preemptive multitasking, and to see how the UCR Standard Library
supports multitasking, see

• “Multitasking” on page 1124
• “Lightweight and HeavyWeight Processes” on page 1124
• “The UCR Standard Library Processes Package” on page 1125
• “Problems with Multitasking” on page 1126
• “A Sample Program with Threads” on page 1127

Processes, Coroutines, and Concurrency

Page 1149

Preemptive multitasking opens up a Pandora’s box. Although multitasking makes certain programs
easier to implement, the problems of process synchronization and reentrancy rears its ugly head in a mul-
titasking system. Many processes require some sort of synchronized access to global variables. Further,
most processes will need to call DOS, BIOS, or some other routine (e.g., the Standard Library) that is not
reentrant. Somehow we need to control access to such code so that multiple processes do not adversely
affect one another. Synchronization is achievable using several different techniques. In some simple cases
we can simply turn off the interrupts, eliminating the reentrancy problems. In other cases we can use test
and set or semaphores to protect a critical region. For more details on these synchronization operations,
see

• “Synchronization” on page 1129
• “Atomic Operations, Test & Set, and Busy-Waiting” on page 1132
• “Semaphores” on page 1134
• “The UCR Standard Library Semaphore Support” on page 1136
• “Using Semaphores to Protect Critical Regions” on page 1136
• “Using Semaphores for Barrier Synchronization” on page 1140

The use of synchronization objects, like semaphores, can introduce new problems into a system.
Deadlock is a perfect example. Deadlock occurs when one process is holding some resource and wants
another and a second process is hold the desired resource and wants the resource held by the first pro-
cess5. You can easily avoid deadlock by controlling the order that the various processes acquire groups of
semaphores. For all the details, see

• “Deadlock” on page 1146

5. Or any chain of processes where everyone in the chain is holding something that another process in the chain wants.

Chapter 19

Page 1150

Page 1153

The PC Keyboard Chapter 20

The PC’s keyboard is the primary human input device on the system. Although it seems rather mun-
dane, the keyboard is the primary input device for most software, so learning how to program the key-
board properly is very important to application developers.

IBM and countless keyboard manufacturers have produced numerous keyboards for PCs and com-
patibles. Most modern keyboards provide at least 101 different keys and are reasonably compatible with
the IBM PC/AT 101 Key Enhanced Keyboard. Those that do provide extra keys generally program those
keys to emit a sequence of other keystrokes or allow the user to program a sequence of keystrokes on the
extra keys. Since the 101 key keyboard is ubiquitous, we will assume its use in this chapter.

When IBM first developed the PC, they used a very simple interface between the keyboard and the
computer. When IBM introduced the PC/AT, they completely redesigned the keyboard interface. Since the
introduction of the PC/AT, almost every keyboard has conformed to the PC/AT standard. Even when IBM
introduced the PS/2 systems, the changes to the keyboard interface were minor and upwards compatible
with the PC/AT design. Therefore, this chapter will also limit its attention to PC/AT compatible devices
since so few PC/XT keyboards and systems are still in use.

There are five main components to the keyboard we will consider in this chapter – basic keyboard
information, the DOS interface, the BIOS interface, the int 9 keyboard interrupt service routine, and the
hardware interface to the keyboard. The last section of this chapter will discuss how to fake keyboard
input into an application.

20.1 Keyboard Basics

The PC’s keyboard is a computer system in its own right. Buried inside the keyboards case is an 8042
microcontroller chip that constantly scans the switches on the keyboard to see if any keys are down. This
processing goes on in parallel with the normal activities of the PC, hence the keyboard never misses a key-
stroke because the 80x86 in the PC is busy.

A typical keystroke starts with the user pressing a key on the keyboard. This closes an electrical con-
tact in the switch so the microcontroller and sense that you’ve pressed the switch. Alas, switches (being
the mechanical things that they are) do not always close (make contact) so cleanly. Often, the contacts
bounce off one another several times before coming to rest making a solid contact. If the microcontroller
chip reads the switch constantly, these bouncing contacts will look like a very quick series of key presses
and releases. This could generate

multiple

 keystrokes to the main computers, a phenomenon known as

keybounce

, common to many cheap and old keyboards. But even on the most expensive and newest key-
boards, keybounce is a problem if you look at the switch a million times a second; mechanical switches
simply cannot settle down that quickly. Most keyboard scanning algorithms, therefore, control how often
they scan the keyboard. A typical inexpensive key will settle down within five milliseconds, so if the key-
board scanning software only looks at the key every ten milliseconds, or so, the controller will effectively
miss the keybounce

1

.

Simply noting that a key is pressed is not sufficient reason to generate a key code. A user may hold a
key down for many tens of milliseconds before releasing it. The keyboard controller must not generate a
new key sequence every time it scans the keyboard and finds a key held down. Instead, it should generate
a single key code value when the key goes from an up position to the down position (a

down key

 opera-
tion). Upon detecting a down key stroke, the microcontroller sends a keyboard

scan code

 to the PC. The
scan code is

not

 related to the ASCII code for that key, it is an arbitrary value IBM chose when they first
developed the PC’s keyboard.

1. A typical user cannot type 100 characters/sec nor reliably press a key for less than 1/50th of a second, so scanning the keyboard at 10 msec inter-
vals will not lose any keystrokes.

Thi d t t d ith F M k 4 0 2

Chapter 20

Page 1154

The PC keyboard actually generates

two

 scan codes for every key you press. It generates a

down
code

 when you press a key and an

up code

 when you release the key. The 8042 microcontroller chip
transmits these scan codes to the PC where they are processed by the keyboard’s interrupt service routine.
Having separate up and down codes is important because certain keys (like shift, control, and alt) are only
meaningful when held down. By generating up codes for all the keys, the keyboard ensures that the key-
board interrupt service routine knows which keys are pressed while the user is holding down one of these

modifier

 keys. The following table lists the scan codes that the keyboard microcontroller transmits to the
PC:

The keys in italics are found on the numeric keypad. Note that certain keys transmit two or more scan
codes to the system. The keys that transmit more than one scan code were new keys added to the key-
board when IBM designed the 101 key enhanced keyboard.

Table 72: PC Keyboard Scan Codes (in hex)

Key Down Up Key Down Up Key Down Up Key Down Up

Esc 1 81 [{ 1A 9A , < 33 B3

center

4C CC

1 ! 2 82] } 1B 9B . > 34 B4

right

4D CD

2 @ 3 83 Enter 1C 9C / ? 35 B5

+

4E CE

3 # 4 84 Ctrl 1D 9D R shift 36 B6

end

4F CF

4 $ 5 85 A 1E 9E * PrtSc 37 B7

down

50 D0

5 % 6 86 S 1F 9F alt 38 B8

pgdn

51 D1

6 ^ 7 87 D 20 A0 space 39 B9

ins

52 D2

7 & 8 88 F 21 A1 CAPS 3A BA

del

53 D3

8 * 9 89 G 22 A2 F1 3B BB

/

E0 35 B5

9 (0A 8A H 23 A3 F2 3C BC

enter

E0 1C 9C

0) 0B 8B J 24 A4 F3 3D BD F11 57 D7

- _ 0C 8C K 25 A5 F4 3E BE F12 58 D8

= + 0D 8D L 26 A6 F5 3F BF ins E0 52 D2

Bksp 0E 8E ; : 27 A7 F6 40 C0 del E0 53 D3

Tab 0F 8F ‘ “ 28 A8 F7 41 C1 home E0 47 C7

Q 10 90 ` ~ 29 A9 F8 42 C2 end E0 4F CF

W 11 91 L shift 2A AA F9 43 C3 pgup E0 49 C9

E 12 92 \ | 2B AB F10 44 C4 pgdn E0 51 D1

R 13 93 Z 2C AC NUM 45 C5 left E0 4B CB

T 14 94 X 2D AD SCRL 46 C6 right E0 4D CD

Y 15 95 C 2E AE

home

47 C7 up E0 48 C8

U 16 96 V 2F AF

up

48 C8 down E0 50 D0

I 17 97 B 30 B0

pgup

49 C9 R alt E0 38 B8

O 18 98 N 31 B1

-

4A CA R ctrl E0 1D 9D

P 19 99 M 32 B2

left

4B CB Pause E1 1D
45 E1
9D C5

-

The PC Keyboard

Page 1155

When the scan code arrives at the PC, a second microcontroller chip receives the scan code, does a
conversion on the scan code

2

, makes the scan code available at I/O port 60h, and then interrupts the pro-
cessor and leaves it up to the keyboard ISR to fetch the scan code from the I/O port.

The keyboard (int 9) interrupt service routine reads the scan code from the keyboard input port and
processes the scan code as appropriate. Note that the scan code the system receives from the keyboard
microcontroller is a single value, even though some keys on the keyboard represent up to four different
values. For example, the “A” key on the keyboard can produce A, a, ctrl-A, or alt-A. The actual code the
system yields depends upon the current state of the modifier keys (shift, ctrl, alt, capslock, and numlock).
For example, if an A key scan code comes along (1Eh) and the shift key is down, the system produces the
ASCII code for an uppercase A. If the user is pressing

multiple

 modifier keys the system prioritizes them
from low to high as follows:

• No modifier key down
• Numlock/Capslock (same precedence, lowest priority)
• shift
• ctrl
• alt (highest priority)

Numlock and capslock affect different sets of keys

3

, so there is no ambiguity resulting from their equal
precedence in the above chart. If the user is pressing two modifier keys at the same time, the system only
recognizes the modifier key with the highest priority above. For example, if the user is pressing the ctrl
and alt keys at the same time, the system only recognizes the alt key. The numlock, capslock, and shift
keys are a special case. If numlock or capslock is active, pressing the shift key makes it inactive. Likewise,
if numlock or capslock is inactive, pressing the shift key effectively “activates” these modifiers.

Not all modifiers are legal for every key. For example, ctrl-8 is not a legal combination. The keyboard
interrupt service routine ignores all keypresses combined with illegal modifier keys. For some unknown
reason, IBM decided to make certain key combinations legal and others illegal. For example, ctrl-left and
ctrl-right are legal, but ctrl-up and ctrl-down are not. You’ll see how to fix this problem a little later.

The shift, ctrl, and alt keys are

active

 modifiers. That is, modification to a keypress occurs only while
the user holds down one of these modifier keys. The keyboard ISR keeps track of whether these keys are
down or up by setting an associated bit upon receiving the down code and clearing that bit upon receiving
the up code for shift, ctrl, or alt. In contrast, the numlock, scroll lock, and capslock keys are

toggle

 modifi-
ers

4

. The keyboard ISR inverts an associated bit every time it sees a down code followed by an up code for
these keys.

Most of the keys on the PC’s keyboard correspond to ASCII characters. When the keyboard ISR
encounters such a character, it translates it to a 16 bit value whose L.O. byte is the ASCII code and the H.O.
byte is the key’s scan code. For example, pressing the “A” key with no modifier, with shift, and with con-
trol produces 1E61h, 1E41h, and 1E01h, respectively (“a”, “A”, and ctrl-A). Many key sequences do not
have corresponding ASCII codes. For example, the function keys, the cursor control keys, and the alt key
sequences do not have corresponding ASCII codes. For these special

extended

 code, the keyboard ISR
stores a zero in the L.O. byte (where the ASCII code typically goes) and the extended code goes in the
H.O. byte. The extended code is usually, though certainly not always, the scan code for that key.

The only problem with this extended code approach is that the value zero is a legal ASCII character
(the NUL character). Therefore, you cannot directly enter NUL characters into an application. If an applica-
tion must input NUL characters, IBM has set aside the extended code 0300h (ctrl-3) for this purpose. You
application must explicitly convert this extended code to the NUL character (actually, it need only recog-

2. The keyboard doesn’t actually transmit the scan codes appearing in the previous table. Instead, it transmits its own scan code that the PC’s micro-
controller translates to the scan codes in the table. Since the programmer never sees the native scan codes so we will ignore them.
3. Numlock only affects the keys on the numeric keypad, capslock only affects the alphabetic keys.
4. It turns out the INS key is also a toggle modifier, since it toggles a bit in the BIOS variable area. However, INS also returns a scan code, the other
modifiers do not.

Chapter 20

Page 1156

nize the H.O. value 03, since the L.O. byte already is the NUL character). Fortunately, very few programs
need to allow the input of the NUL character from the keyboard, so this problem is rarely an issue.

The following table lists the scan and extended key codes the keyboard ISR generates for applications
in response to a keypress with various modifiers. Extended codes are in italics. All other values (except the
scan code column) represent the L.O. eight bits of the 16 bit code. The H.O. byte comes from the scan
code column.

Table 73: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift
Caps

Shift
Num

Esc 01 1B 1B 1B 1B 1B 1B 1B

1 ! 02 31 21

7800

31 31 31 31

2 @ 03 32 40

0300 7900

32 32 32 32

3 # 04 33 23

7A00

33 33 33 33

4 $ 05 34 24

7B00

34 34 34 34

5 % 06 35 25

7C00

35 35 35 35

6 ^ 07 36 5E 1E

7D00

36 36 36 36

7 & 08 37 26

7E00

37 37 37 37

8 * 09 38 2A

7F00

38 38 38 38

9 (0A 39 28

8000

39 39 39 39

0) 0B 30 29

8100

30 30 30 30

- _ 0C 2D 5F 1F

8200

2D 2D 5F 5F

= + 0D 3D 2B

8300

3D 3D 2B 2B

Bksp 0E 08 08 7F 08 08 08 08

Tab 0F 09

0F00

09 09

0F00 0F00

Q 10 71 51 11

1000

71 51 71 51

W 11 77 57 17

1100

77 57 77 57

E 12 65 45 05

1200

65 45 65 45

R 13 72 52 12

1300

72 52 72 52

T 14 74 54 14

1400

74 54 74 54

Y 15 79 59 19

1500

79 59 79 59

U 16 75 55 15

1600

75 55 75 55

I 17 69 49 09

1700

69 49 69 49

O 18 6F 4F 0F

1800

6F 4F 6F 4F

P 19 70 50 10

1900

70 50 70 50

[{ 1A 5B 7B 1B 5B 5B 7B 7B

] } 1B 5D 7D 1D 5D 5D 7D 7D

enter 1C 0D 0D 0A 0D 0D 0A 0A

ctrl 1D

A 1E 61 41 01

1E00

61 41 61 41

S 1F 73 53 13

1F00

73 53 73 53

D 20 64 44 04

2000

64 44 64 44

F 21 66 46 06

2100

66 46 66 46

G 22 67 47 07

2200

67 47 67 47

H 23 68 48 08

2300

68 48 68 48

J 24 6A 4A 0A

2400

6A 4A 6A 4A

K 25 6B 4B 0B

2500

6B 4B 6B 4B

L 26 6C 4C 0C

2600

6C 4C 6C 4C

; : 27 3B 3A 3B 3B 3A 3A

‘ “ 28 27 22 27 27 22 22

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift
Caps

Shift
Num

The PC Keyboard

Page 1157

a. For the alphabetic characters, if capslock is active then see the shift-capslock column.
b. Pressing the PrtSc key does not produce a scan code. Instead, BIOS executes an int 5 instruction which
should print the screen.
c. This is the control-P character that will activate the printer under MS-DOS.
d. This is the minus key on the keypad.
e. This is the plus key on the keypad.

` ~ 29 60 7E 60 60 7E 7E

Lshift 2A

\ | 2B 5C 7C 1C 5C 5C 7C 7C

Z 2C 7A 5A 1A

2C00

7A 5A 7A 5A

X 2D 78 58 18

2D00

78 58 78 58

C 2E 63 43 03

2E00

63 43 63 43

V 2F 76 56 16

2F00

76 56 76 56

B 30 62 42 02

3000

62 42 62 42

N 31 6E 4E 0E

3100

6E 4E 6E 4E

M 32 6D 4D 0D

3200

6D 4D 6D 4D

, < 33 2C 3C 2C 2C 3C 3C

. > 34 2E 3E 2E 2E 3E 3E

/ ? 35 2F 3F 2F 2F 3F 3F

Rshift 36

* PrtSc 37 2A INT 5

b

10

c

2A 2A INT 5 INT 5

alt 38

space 39 20 20 20 20 20 20 20

caps 3A

F1 3B

3B00 5400 5E00 6800 3B00 3B00 5400 5400

F2 3C

3C00 5500 5F00 6900 3C00 3C00 5500 5500

F3 3D

3D00 5600 6000 6A00 3D00 3D00 5600 5600

F4 3E

3E00 5700 6100 6B00 3E00 3E00 5700 5700

F5 3F

3F00 5800 6200 6C00 3F00 3F00 5800 5800

F6 40

4000 5900 6300 6D00 4000 4000 5900 5900

F7 41

4100 5A00 6400 6E00 4100 4100 5A00 5A00

F8 42

4200 5B00 6500 6F00 4200 4200 5B00 5B00

F9 43

4300 5C00 6600 7000 4300 4300 5C00 5C00

F10 44

4400 5D00 6700 7100 4400 4400 5D00 5D00

num 45

scrl 46

home 47

4700

37

7700

37 4700 37 4700

up 48

4800

38 38 4800 38 4800

pgup 49

4900

39

8400

39 4900 39 4900

-

d

4A 2D 2D 2D 2D 2D 2D

left 4B

4B00

34

7300

34 4B00 34 4B00

center 4C

4C00

35 35 4C00 35 4C00

right 4D

4D00

36

7400

36 4D00 36 4D00

+

e

4E 2B 2B 2B 2B 2B 2B

end 4F

4F00

31

7500

31 4F00 31 4F00

down 50

5000

32 32 5000 32 5000

pgdn 51

5100

33

7600

33 5100 33 5100

ins 52

5200

30 30 5200 30 5200

del 53

5300

2E 2E 5300 2E 5300

Table 73: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift
Caps

Shift
Num

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift
Caps

Shift
Num

Chapter 20

Page 1158

The 101-key keyboards generally provide an enter key and a “/” key on the numeric keypad. Unless
you write your own int 9 keyboard ISR, you will not be able to differentiate these keys from the ones on
the main keyboard. The separate cursor control pad also generates the same extended codes as the
numeric keypad, except it never generates numeric ASCII codes. Otherwise, you cannot differentiate these
keys from the equivalent keys on the numeric keypad (assuming numlock is off, of course).

The keyboard ISR provides a special facility that lets you enter the ASCII code for a keystroke directly
from the keyboard. To do this, hold down the alt key and typing out the

decimal

 ASCII code (0..255) for a
character on the numeric keypad. The keyboard ISR will convert these keystrokes to an eight-bit value,
attach at H.O. byte of zero to the character, and use that as the character code.

The keyboard ISR inserts the 16 bit value into the PC’s

type ahead buffer

. The system type ahead
buffer is a circular queue that uses the following variables

40:1A - HeadPtr word ?
40:1C - TailPtr word ?
40:1E - Buffer word 16 dup (?)

The keyboard ISR inserts data at the location pointed at by

TailPtr

. The BIOS keyboard function
removes characters from the location pointed at by the

HeadPtr

 variable. These two pointers almost
always contain an offset into the

Buffer

 array

5

. If these two pointers are equal, the type ahead buffer is
empty. If the value in

HeadPtr

 is two greater than the value in

TailPtr

 (or

HeadPtr

 is 1Eh and

TailPtr

 is 3Ch), then the buffer is full and the keyboard ISR will reject any additional keystrokes.

Note that the

TailPtr

 variable always points at the next available location in the type ahead buffer.
Since there is no “count” variable providing the number of entries in the buffer, we must always leave one
entry free in the buffer area; this means the type ahead buffer can only hold 15 keystrokes, not 16.

In addition to the type ahead buffer, the BIOS maintains several other keyboard-related variables in
segment 40h. The following table lists these variables and their contents:

5. It is possible to change these pointers so they point elsewhere in the 40H segment, but this is not a good idea because many applications assume
that these two pointers contain a value in the range 1Eh..3Ch.

Table 74: Keyboard Related BIOS Variables

Name Address

a

Size Description

KbdFlags1
(modifier
flags)

40:17 Byte This byte maintains the current status of the modifier
keys on the keyboard. The bits have the following
meanings:
bit 7: Insert mode toggle
bit 6: Capslock toggle (1=capslock on)
bit 5: Numlock toggle (1=numlock on)
bit 4: Scroll lock toggle (1=scroll lock on)
bit 3: Alt key (1=alt is down)
bit 2: Ctrl key (1=ctrl is down)
bit 1: Left shift key (1=left shift is down)
bit 0: Right shift key (1=right shift is down)

The PC Keyboard

Page 1159

One comment is in order about

KbdFlags1

 and

KbdFlags4

. Bits zero through two of the

KbdFlags4 variable is BIOS’ current settings for the LEDs on the keyboard. periodically, BIOS compares
the values for capslock, numlock, and scroll lock in KbdFlags1 against these three bits in KbdFlags4.
If they do not agree, BIOS will send an appropriate command to the keyboard to update the LEDs and it
will change the values in the KbdFlags4 variable so the system is consistent. Therefore, if you mask in
new values for numlock, scroll lock, or caps lock, the BIOS will automatically adjust KbdFlags4 and set
the LEDs accordingly.

20.2 The Keyboard Hardware Interface

IBM used a very simple hardware design for the keyboard port on the original PC and PC/XT
machines. When they introduced the PC/AT, IBM completely resigned the interface between the PC and

a. Addresses are all given in hexadecimal

KbdFlags2
(Toggle
keys
down)

40:18 Byte Specifies if a toggle key is currently down.
bit 7: Insert key (currently down if 1)
bit 6: Capslock key (currently down if 1)
bit 5: Numlock key (currently down if 1)
bit 4: Scroll lock key (currently down if 1)
bit 3: Pause state locked (ctrl-Numlock) if one
bit 2: SysReq key (currently down if 1)
bit 1: Left alt key (currently down if 1)
bit 0: Left ctrl key (currently down if 1)

AltKpd 40:19 Byte BIOS uses this to compute the ASCII code for an alt--
Keypad sequence.

BufStart 40:80 Word Offset of start of keyboard buffer (1Eh). Note: this vari-
able is not supported on many systems, be careful if
you use it.

BufEnd 40:82 Word Offset of end of keyboard buffer (3Eh). See the note
above.

KbdFlags3 40:96 Byte Miscellaneous keyboard flags.
bit 7: Read of keyboard ID in progress
bit 6: Last char is first kbd ID character
bit 5: Force numlock on reset
bit 4: 1 if 101-key kbd, 0 if 83/84 key kbd.
bit 3: Right alt key pressed if 1
bit 2: Right ctrl key pressed if 1
bit 1: Last scan code was E0h
bit 0: Last scan code was E1h

KbdFlags4 40:97 Byte More miscellaneous keyboard flags.
bit 7: Keyboard transmit error
bit 6: Mode indicator update
bit 5: Resend receive flag
bit 4: Acknowledge received
bit 3: Must always be zero
bit 2: Capslock LED (1=on)
bit 1: Numlock LED (1=on)
bit 0: Scroll lock LED (1=on)

Table 74: Keyboard Related BIOS Variables

Name Addressa Size Description

Chapter 20

Page 1160

the keyboard. Since then, almost every PC model and PC clone has followed this keyboard interface stan-
dard6. Although IBM extended the capabilities of the keyboard controller when they introduced their PS/2
systems, the PS/2 models are still upwards compatible from the PC/AT design. Since there are so few orig-
inal PCs in use today (and fewer people write original software for them), we will ignore the original PC
keyboard interface and concentrate on the AT and later designs.

There are two keyboard microcontrollers that the system communicates with – one on the PC’s moth-
erboard (the on-board microcontroller) and one inside the keyboard case (the keyboard microcontrol-
ler). Communication with the on-board microcontroller is through I/O port 64h. Reading this byte
provides the status of the keyboard controller. Writing to this byte sends the on-board microcontroller a
command. The organization of the status byte is

Communication to the microcontroller in the keyboard unit is via the bytes at I/O addresses 60h and
64h. Bits zero and one in the status byte at port 64h provide the necessary handshaking control for these
ports. Before writing any data to these ports, bit zero of port 64h must be zero; data is available for reading
from port 60h when bit one of port 64h contains a one. The keyboard enable and disable bits in the com-
mand byte (port 64h) determine whether the keyboard is active and whether the keyboard will interrupt
the system when the user presses (or releases) a key, etc.

Bytes written to port 60h are sent to the keyboard microcontroller and bytes written to port 64h are
sent to the on-board microcontroller. Bytes read from port 60h generally come from the keyboard,
although you can program the on-board microcontroller to return certain values at this port, as well. The
following tables lists the commands sent to the keyboard microcontroller and the values you can expect
back. The following table lists the allowable commands you can write to port 64h:

6. We will ignore the PCjr machine in this discussion.

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

20 Transmit keyboard controller’s command byte to system as a scan code at port 60h.

60 The next byte written to port 60h will be stored in the keyboard controller’s command
byte.

7 6 5 4 3 2 1 0

Output Buffer Status (1 = full, 0 = empty)
Input Buffer Status (1= full, 0 = empty)
System Flag (1 = self test passed, 0 = failed)
Command/Data Available (0 = data available at port 60h,
 1 = command available at port 64h)
Keyboard active (1=enabled, 0=disabled)
Error detected (1 = error in transmission, 0 = no error)
Time-out error (1 = keyboard timed out, 0 = no time out error)
Parity error (1 = parity error on transmission, 0 = no error)

On-Board 8042 Keyboard Microcontroller Status Byte (Read Port 64h)

The PC Keyboard

Page 1161

A4 Test if a password is installed (PS/2 only). Result comes back in port 60h. 0FAh means a
password is installed, 0F1h means no password.

A5 Transmit password (PS/2 only). Starts receipt of password. The next sequence of scan
codes written to port 60h, ending with a zero byte, are the new password.

A6 Password match. Characters from the keyboard are compared to password until a match
occurs.

A7 Disable mouse device (PS/2 only). Identical to setting bit five of the command byte.

A8 Enable mouse device (PS/2 only). Identical to clearing bit five of the command byte.

A9 Test mouse device. Returns 0 if okay, 1 or 2 if there is a stuck clock, 3 or 4 if there is a
stuck data line. Results come back in port 60h.

AA Initiates self-test. Returns 55h in port 60h if successful.

AB Keyboard interface test. Tests the keyboard interface. Returns 0 if okay, 1 or 2 if there is
a stuck clock, 3 or 4 if there is a stuck data line. Results come back in port 60h.

AC Diagnostic. Returns 16 bytes from the keyboard’s microcontroller chip. Not available on
PS/2 systems.

AD Disable keyboard. Same operation as setting bit four of the command register.

AE Enable keyboard. Same operation as clearing bit four of the command register.

C0 Read keyboard input port to port 60h. This input port contains the following values:
bit 7: Keyboard inhibit keyswitch (0 = inhibit, 1 = enabled).
bit 6: Display switch (0=color, 1=mono).
bit 5: Manufacturing jumper.
bit 4: System board RAM (always 1).
bits 0-3: undefined.

C1 Copy input port (above) bits 0-3 to status bits 4-7. (PS/2 only)

C2 Copy input pot (above) bits 4-7 to status port bits 4-7. (PS/2 only).

D0 Copy microcontroller output port value to port 60h (see definition below).

D1 Write the next data byte written to port 60h to the microcontroller output port. This port
has the following definition:
bit 7: Keyboard data.
bit 6: Keyboard clock.
bit 5: Input buffer empty flag.
bit 4: Output buffer full flag.
bit 3: Undefined.
bit 2: Undefined.
bit 1: Gate A20 line.
bit 0: System reset (if zero).

Note: writing a zero to bit zero will reset the machine.
Writing a one to bit one combines address lines 19 and 20 on the PC’s address bus.

D2 Write keyboard buffer. The keyboard controller returns the next value sent to port 60h as
though a keypress produced that value. (PS/2 only).

D3 Write mouse buffer. The keyboard controller returns the next value sent to port 60h as
though a mouse operation produced that value. (PS/2 only).

D4 Writes the next data byte (60h) to the mouse (auxiliary) device. (PS/2 only).

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

Chapter 20

Page 1162

Commands 20h and 60h let you read and write the keyboard controller command byte. This byte is
internal to the on-board microcontroller and has the following layout:

The system transmits bytes written to I/O port 60h directly to the keyboard’s microcontroller. Bit zero
of the status register must contain a zero before writing any data to this port. The commands the keyboard
recognizes are

E0 Read test inputs. Returns in port 60h the status of the keyboard serial lines. Bit zero con-
tains the keyboard clock input, bit one contains the keyboard data input.

Fx Pulse output port (see definition for D1). Bits 0-3 of the keyboard controller command
byte are pulsed onto the output port. Resets the system if bit zero is a zero.

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) Description

ED Send LED bits. The next byte written to port 60h updates the LEDs on the keyboard. The
parameter (next) byte contains:
bits 3-7: Must be zero.
bit 2: Capslock LED (1 = on, 0 = off).
bit 1: Numlock LED (1 = on, 0 = off).
bit 0: Scroll lock LED (1 = on, 0 = off).

EE Echo commands. Returns 0EEh in port 60h as a diagnostic aid.

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

7 6 5 4 3 2 1 0

Keyboard interrupt (1 = enabled, 0= disabled)
Mouse device interrupt (1 = enabled, 0 = disabled)
System Flag (1 = self test passed, 0 = failed)
PC/AT inhibit override (1 = enabled always)
 Must be zero on PS/2 systems
Keyboard disable (1 = disable keyboard, 0 = no action)
PC/AT keyboard enable (1 = enable keyboard, 0 = no action)
 PS/2 mouse disable (1 = disable, 0 = no action)
PC Compatibility mode (1 = translate kbd codes to PC scan codes)
Must be zero.

On-Board 8042 Keyboard Microcontroller Command byte (see commands 20h and 60h)

The PC Keyboard

Page 1163

The following short program demonstrates how to send commands to the keyboard’s controller. This
little TSR utility programs a “light show” on the keyboard’s LEDs.

; LEDSHOW.ASM
;
; This short TSR creates a light show on the keyboard’s LEDs. For space
; reasons, this code does not implement a multiplex handler nor can you
; remove this TSR once installed. See the chapter on resident programs
; for details on how to do this.
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

F0 Select alternate scan code set (PS/2 only). The next byte written to port 60h selects one
of the following options:
00: Report current scan code set in use (next value read from port 60h).
01: Select scan code set #1 (standard PC/AT scan code set).
02: Select scan code set #2.
03: Select scan code set #3.

F2 Send two-byte keyboard ID code as the next two bytes read from port 60h (PS/2 only).

F3 Set Autorepeat delay and repeat rate. Next byte written to port 60h determines rate:
bit 7: must be zero
bits 5,6: Delay. 00- 1/4 sec, 01- 1/2 sec, 10- 3/4 sec, 11- 1 sec.
bits 0-4: Repeat rate. 0- approx 30 chars/sec to 1Fh- approx 2 chars/sec.

F4 Enable keyboard.

F5 Reset to power on condition and wait for enable command.

F6 Reset to power on condition and begin scanning keyboard.

F7 Make all keys autorepeat (PS/2 only).

F8 Set all keys to generate an up code and a down code (PS/2 only).

F9 Set all keys to generate an up code only (PS/2 only).

FA Set all keys to autorepeat and generate up and down codes (PS/2 only).

FB Set an individual key to autorepeat. Next byte contains the scan code of the desired key.
(PS/2 only).

FC Set an individual key to generate up and down codes. Next byte contains the scan code
of the desired key. (PS/2 only).

FD Set an individual key to generate only down codes. Next byte contains the scan code of
the desired key. (PS/2 only).

FE Resend last result. Use this command if there is an error receiving data.

FF Reset keyboard to power on state and start the self-test.

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) Description

Chapter 20

Page 1164

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov al, 0ADh ;Disable kbd for now.
call SetCmd

cli ;Disable ints while accessing HW.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al

mov al, 0AEh ;Reenable keyboard.
call SetCmd
sti ;Allow interrupts now.

pop cx
pop bx
pop ds
ret

SendCmd endp

The PC Keyboard

Page 1165

; SetLEDs- Writes the value in AL to the LEDs on the keyboard.
; Bits 0..2 correspond to scroll, num, and caps lock,
; respectively.

SetLEDs proc near
push ax
push cx

mov ah, al ;Save LED bits.

mov al, 0EDh ;8042 set LEDs cmd.
call SendCmd ;Send the command to 8042.
mov al, ah ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

pop cx
pop ax
ret

SetLEDs endp

; MyInt1C- Every 1/4 seconds (every 4th call) this routine
; rotates the LEDs to produce an interesting light show.

CallsPerIter equ 4
CallCnt byte CallsPerIter
LEDIndex word LEDTable
LEDTable byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b

byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b
byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b
byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b

byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b

byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b

byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b

byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b

TableEnd equ this byte

OldInt1C dword ?

MyInt1C proc far
assume ds:cseg

push ds
push ax
push bx

mov ax, cs
mov ds, ax

dec CallCnt
jne NotYet
mov CallCnt, CallsPerIter ;Reset call count.
mov bx, LEDIndex
mov al, [bx]
call SetLEDs

Chapter 20

Page 1166

inc bx
cmp bx, offset TableEnd
jne SetTbl
lea bx, LEDTable

SetTbl: mov LEDIndex, bx
NotYet: pop bx

pop ax
pop ds
jmp cs:OldInt1C

MyInt1C endp

Main proc

mov ax, cseg
mov ds, ax

print
byte “LED Light Show”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 1Ch interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 1Ch values directly into
; the OldInt1C variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[1Ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1Ch*4 + 2]
mov word ptr OldInt1C+2, ax
mov es:[1Ch*4], offset MyInt1C
mov es:[1Ch*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The keyboard microcontroller also sends data to the on-board microcontroller for processing and
release to the system through port 60h. Most of these values are key press scan codes (up or down codes),
but the keyboard transmits several other values as well. A well designed keyboard interrupt service rou-
tine should be able to handle (or at least ignore) the non-scan code values. Any particular, any program
that sends commands to the keyboard needs to be able to handle the resend and acknowledge commands

The PC Keyboard

Page 1167

that the keyboard microcontroller returns in port 60h. The keyboard microcontroller sends the following
values to the system:

Assuming you have not disabled keyboard interrupts (see the keyboard controller command byte),
any value the keyboard microcontroller sends to the system through port 60h will generate an interrupt on
IRQ line one (int 9). Therefore, the keyboard interrupt service routine normally handles all the above
codes. If you are patching into int 9, don’t forget to send and end of interrupt (EOI) signal to the 8259A PIC
at the end of your ISR code. Also, don’t forget you can enable or disable the keyboard interrupt at the
8259A.

In general, your application software should not access the keyboard hardware directly. Doing so
will probably make your software incompatible with utility software such as keyboard enhancers (key-
board macro programs), pop-up software, and other resident programs that read the keyboard or insert
data into the system’s type ahead buffer. Fortunately, DOS and BIOS provide an excellent set of functions
to read and write keyboard data. Your programs will be much more robust if you stick to using those func-
tions. Accessing the keyboard hardware directly should be left to keyboard ISRs and those keyboard
enhancers and pop-up programs that absolutely have to talk directly to the hardware.

20.3 The Keyboard DOS Interface

MS-DOS provides several calls to read characters from the keyboard (see “MS-DOS, PC-BIOS, and File
I/O” on page 699). The primary thing to note about the DOS calls is that they only return a single byte.
This means that you lose the scan code information the keyboard interrupt service routine saves in the
type ahead buffer.

If you press a key that has an extended code rather than an ASCII code, MS-DOS returns two key-
codes. On the first call MS-DOS returns a zero value. This tells you that you must call the get character rou-
tine again. The code MS-DOS returns on the second call is the extended key code.

Note that the Standard Library routines call MS-DOS to read characters from the keyboard. Therefore,
the Standard Library getc routine also returns extended keycodes in this manner. The gets and getsm

Table 77: Keyboard to System Transmissions

Value (hex) Description

00 Data overrun. System sends a zero byte as the last value when the keyboard controller’s
internal buffer overflows.

1..58
81..D8

Scan codes for key presses. The positive values are down codes, the negative values
(H.O. bit set) are up codes.

83AB Keyboard ID code returned in response to the F2 command (PS/2 only).

AA Returned during basic assurance test after reset. Also the up code for the left shift key.

EE Returned by the ECHO command.

F0 Prefix to certain up codes (N/A on PS/2).

FA Keyboard acknowledge to keyboard commands other than resend or ECHO.

FC Basic assurance test failed (PS/2 only).

FD Diagnostic failure (not available on PS/2).

FE Resend. Keyboard requests the system to resend the last command.

FF Key error (PS/2 only).

Chapter 20

Page 1168

routines throw away any non-ASCII keystrokes since it would not be a good thing to insert zero bytes into
the middle of a zero terminated string.

20.4 The Keyboard BIOS Interface

Although MS-DOS provides a reasonable set of routines to read ASCII and extended character codes
from the keyboard, the PC’s BIOS provides much better keyboard input facilities. Furthermore, there are
lots of interesting keyboard related variables in the BIOS data area you can poke around at. In general, if
you do not need the I/O redirection facilities provided by MS-DOS, reading your keyboard input using
BIOS functions provides much more flexibility.

To call the MS-DOS BIOS keyboard services you use the int 16h instruction. The BIOS provides the
following keyboard functions:

Table 78: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

0 al- ASCII character
ah- scan code

Read character. Reads next available character from the
system’s type ahead buffer. Wait for a keystroke if the
buffer is empty.

1 ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Checks to see if a character is available in the type ahead
buffer. Sets the zero flag if not key is available, clears the
zero flag if a key is available. If there is an available key,
this function returns the ASCII and scan code value in ax.
The value in ax is undefined if no key is available.

2 al- shift flags Returns the current status of the shift flags in al. The shift
flags are defined as follows:

bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Alt key is down
bit 2: Ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

3 al = 5
bh = 0, 1, 2, 3 for
1/4, 1/2, 3/4, or 1
second delay
bl= 0..1Fh for
30/sec to 2/sec.

Set auto repeat rate. The bh register contains the amount
of time to wait before starting the autorepeat operation,
the bl register contains the autorepeat rate.

5 ch = scan code
cl = ASCII code

Store keycode in buffer. This function stores the value in
the cx register at the end of the type ahead buffer. Note
that the scan code in ch doesn’t have to correspond to the
ASCII code appearing in cl. This routine will simply insert
the data you provide into the system type ahead buffer.

The PC Keyboard

Page 1169

Note that many of these functions are not supported in every BIOS that was ever written. In fact, only
the first three functions were available in the original PC. However, since the AT came along, most BIOSes
have supported at least the functions above. Many BIOS provide extra functions, and there are many TSR
applications you can buy that extend this list even farther. The following assembly code demonstrates
how to write an int 16h TSR that provides all the functions above. You can easily extend this if you desire.

; INT16.ASM
;
; A short passive TSR that replaces the BIOS’ int 16h handler.
; This routine demonstrates the function of each of the int 16h
; functions that a standard BIOS would provide.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
cseg ends

; Marker segment, to find the end of the resident section.

10h al- ASCII character
ah- scan code

Read extended character. Like ah=0 call, except this one
passes all key codes, the ah=0 call throws away codes that
are not PC/XT compatible.

11h ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Like the ah=01h call except this one does not throw away
keycodes that are not PC/XT compatible (i.e., the extra
keys found on the 101 key keyboard).

12h al- shift flags
ah- extended shift
flags

Returns the current status of the shift flags in ax. The shift
flags are defined as follows:

bit 15: SysReq key pressed
bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down
bit 10:Right ctrl key is down
bit 9: Left alt key is down
bit 8: Left ctrl key is down
bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Either alt key is down (some machines, left only)
bit 2: Either ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

Table 78: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

Chapter 20

Page 1170

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

OldInt16 dword ?

; BIOS variables:

KbdFlags1 equ <ds:[17h]>
KbdFlags2 equ <ds:[18h]>
AltKpd equ <ds:[19h]>
HeadPtr equ <ds:[1ah]>
TailPtr equ <ds:[1ch]>
Buffer equ 1eh
EndBuf equ 3eh

KbdFlags3 equ <ds:[96h]>
KbdFlags4 equ <ds:[97h]>

incptr macro which
local NoWrap
add bx, 2
cmp bx, EndBuf
jb NoWrap
mov bx, Buffer

NoWrap: mov which, bx
endm

; MyInt16- This routine processes the int 16h function requests.
;
; AH Description
; -- --
; 00h Get a key from the keyboard, return code in AX.
; 01h Test for available key, ZF=1 if none, ZF=0 and
; AX contains next key code if key available.
; 02h Get shift status. Returns shift key status in AL.
; 03h Set Autorepeat rate. BH=0,1,2,3 (delay time in
; quarter seconds), BL=0..1Fh for 30 char/sec to
; 2 char/sec repeat rate.
; 05h Store scan code (in CX) in the type ahead buffer.
; 10h Get a key (same as 00h in this implementation).
; 11h Test for key (same as 01h).
; 12h Get extended key status. Returns status in AX.

MyInt16 proc far
test ah, 0EFh ;Check for 0h and 10h
je GetKey
cmp ah, 2 ;Check for 01h and 02h
jb TestKey
je GetStatus
cmp ah, 3 ;Check for AutoRpt function.
je SetAutoRpt
cmp ah, 5 ;Check for StoreKey function.
je StoreKey
cmp ah, 11h ;Extended test key opcode.
je TestKey
cmp ah, 12h ;Extended status call
je ExtStatus

; Well, it’s a function we don’t know about, so just return to the caller.

The PC Keyboard

Page 1171

iret

; If the user specified ah=0 or ah=10h, come down here (we will not
; differentiate between extended and original PC getc calls).

GetKey: mov ah, 11h
int 16h ;See if key is available.
je GetKey ;Wait for keystroke.

push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Critical region! Ints off.
mov bx, HeadPtr ;Ptr to next character.
mov ax, [bx] ;Get the character.
incptr HeadPtr ;Bump up HeadPtr
pop bx
pop ds
iret ;Restores interrupt flag.

; TestKey- Checks to see if a key is available in the keyboard buffer.
; We need to turn interrupts on here (so the kbd ISR can
; place a character in the buffer if one is pending).
; Generally, you would want to save the interrupt flag here.
; But BIOS always forces interrupts on, so there may be some
; programs out there that depend on this, so we won’t “fix”
; this problem.
;
; Returns key status in ZF and AX. If ZF=1 then no key is
; available and the value in AX is indeterminate. If ZF=0
; then a key is available and AX contains the scan/ASCII
; code of the next available key. This call does not remove
; the next character from the input buffer.

TestKey: sti ;Turn on the interrupts.
push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Critical region, ints off!
mov bx, HeadPtr
mov ax, [bx] ;BIOS returns avail keycode.
cmp bx, TailPtr ;ZF=1, if empty buffer
pop bx
pop ds
sti ;Inst back on.
retf 2 ;Pop flags (ZF is important!)

; The GetStatus call simply returns the KbdFlags1 variable in AL.

GetStatus: push ds
mov ax, 40h
mov ds, ax
mov al, KbdFlags1 ;Just return Std Status.
pop ds
iret

; StoreKey- Inserts the value in CX into the type ahead buffer.

StoreKey: push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Ints off, critical region.
mov bx, TailPtr ;Address where we can put
push bx ; next key code.
mov [bx], cx ;Store the key code away.
incptr TailPtr ;Move on to next entry in buf.
cmp bx, HeadPtr ;Data overrun?
jne StoreOkay ;If not, jump, if so
pop TailPtr ; ignore key entry.

Chapter 20

Page 1172

sub sp, 2 ;So stack matches alt path.
StoreOkay: add sp, 2 ;Remove junk data from stk.

pop bx
pop ds
iret ;Restores interrupts.

; ExtStatus- Retrieve the extended keyboard status and return it in
; AH, also returns the standard keyboard status in AL.

ExtStatus: push ds
mov ax, 40h
mov ds, ax

mov ah, KbdFlags2
and ah, 7Fh ;Clear final sysreq field.
test ah, 100b ;Test cur sysreq bit.
je NoSysReq ;Skip if it’s zero.
or ah, 80h ;Set final sysreq bit.

NoSysReq:
and ah, 0F0h ;Clear alt/ctrl bits.
mov al, KbdFlags3
and al, 1100b ;Grab rt alt/ctrl bits.
or ah, al ;Merge into AH.
mov al, KbdFlags2
and al, 11b ;Grab left alt/ctrl bits.
or ah, al ;Merge into AH.

mov al, KbdFlags1 ;AL contains normal flags.
pop ds
iret

; SetAutoRpt- Sets the autorepeat rate. On entry, bh=0, 1, 2, or 3 (delay
; in 1/4 sec before autorepeat starts) and bl=0..1Fh (repeat
; rate, about 2:1 to 30:1 (chars:sec).

SetAutoRpt: push cx
push bx

mov al, 0ADh ;Disable kbd for now.
call SetCmd

and bh, 11b ;Force into proper range.
mov cl, 5
shl bh, cl ;Move to final position.
and bl, 1Fh ;Force into proper range.
or bh, bl ;8042 command data byte.
mov al, 0F3h ;8042 set repeat rate cmd.
call SendCmd ;Send the command to 8042.
mov al, bh ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

mov al, 0AEh ;Reenable keyboard.
call SetCmd
mov al, 0F4h ;Restart kbd scanning.
call SendCmd

pop bx
pop cx
iret

MyInt16 endp

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

The PC Keyboard

Page 1173

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov bh, 3 ;Retry cnt.
RetryLp: cli ;Disable ints while accessing HW.

; Clear the Error, Acknowledge received, and resend received flags
; in KbdFlags4

and byte ptr KbdFlags4, 4fh

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al
sti ;Allow interrupts now.

; Wait for the arrival of an acknowledgement from the keyboard ISR:

xor cx, cx ;Wait a long time, if need be.
Wait4Ack: test byp KbdFlags4, 10 ;Acknowledge received bit.

jnz GotAck
loop Wait4Ack
dec bh ;Do a retry on this guy.
jne RetryLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFlags4, 80h ;Set error bit.

GotAck: pop cx
pop bx
pop ds
ret

SendCmd endp

Main proc

Chapter 20

Page 1174

mov ax, cseg
mov ds, ax

print
byte “INT 16h Replacement”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 and INT 16 interrupt vectors. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 and INT 16 values directly into
; the OldInt9 and OldInt16 variables.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.5 The Keyboard Interrupt Service Routine

The int 16h ISR is the interface between application programs and the keyboard. In a similar vein, the
int 9 ISR is the interface between the keyboard hardware and the int 16h ISR. It is the job of the int 9 ISR to
process keyboard hardware interrupts, convert incoming scan codes to scan/ASCII code combinations
and place them in the typeahead buffer, and process other messages the keyboard generates.

To convert keyboard scan codes to scan/ASCII codes, the int 9 ISR must keep track of the current
state of the modifier keys. When a scan code comes along, the int 9 ISR can use the xlat instruction to
translate the scan code to an ASCII code using a table int 9 selects on the basis of the modifier flags.
Another important issue is that the int 9 handler must handle special key sequences like ctrl-alt-del (reset)
and PrtSc. The following assembly code provides a simple int 9 handler for the keyboard. It does not sup-
port alt-Keypad ASCII code entry or a few other minor features, but it does support almost everything you
need for a keyboard interrupt service routine. Certainly it demonstrates all the techniques you need to
know when programming the keyboard.

The PC Keyboard

Page 1175

; INT9.ASM
;
; A short TSR to provide a driver for the keyboard hardware interrupt.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

NumLockScan equ 45h
ScrlLockScan equ 46h
CapsLockScan equ 3ah
CtrlScan equ 1dh
AltScan equ 38h
RShiftScan equ 36h
LShiftScan equ 2ah
InsScanCode equ 52h
DelScanCode equ 53h

; Bits for the various modifier keys

RShfBit equ 1
LShfBit equ 2
CtrlBit equ 4
AltBit equ 8
SLBit equ 10h
NLBit equ 20h
CLBit equ 40h
InsBit equ 80h

KbdFlags equ <byte ptr ds:[17h]>
KbdFlags2 equ <byte ptr ds:[18h]>
KbdFlags3 equ <byte ptr ds:[96h]>
KbdFlags4 equ <byte ptr ds:[97h]>

byp equ <byte ptr>

cseg segment para public ‘code’
assume ds:nothing

; Scan code translation table.
; The incoming scan code from the keyboard selects a row.
; The modifier status selects the column.
; The word at the intersection of the two is the scan/ASCII code to
; put into the PC’s type ahead buffer.
; If the value fetched from the table is zero, then we do not put the
; character into the type ahead buffer.
;
; norm shft ctrl alt num caps shcap shnum

ScanXlat word 0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h
word 011bh, 011bh, 011bh, 011bh, 011bh, 011bh, 011bh, 011bh ;ESC
word 0231h, 0231h, 0000h, 7800h, 0231h, 0231h, 0231h, 0321h ;1 !

Chapter 20

Page 1176

word 0332h, 0340h, 0300h, 7900h, 0332h, 0332h, 0332h, 0332h ;2 @
word 0433h, 0423h, 0000h, 7a00h, 0433h, 0433h, 0423h, 0423h ;3 #
word 0534h, 0524h, 0000h, 7b00h, 0534h, 0534h, 0524h, 0524h ;4 $
word 0635h, 0625h, 0000h, 7c00h, 0635h, 0635h, 0625h, 0625h ;5 %
word 0736h, 075eh, 071eh, 7d00h, 0736h, 0736h, 075eh, 075eh ;6 ^

word 0837h, 0826h, 0000h, 7e00h, 0837h, 0837h, 0826h, 0826h ;7 &
word 0938h, 092ah, 0000h, 7f00h, 0938h, 0938h, 092ah, 092ah ;8 *
word 0a39h, 0a28h, 0000h, 8000h, 0a39h, 0a39h, 0a28h, 0a28h ;9 (
word 0b30h, 0b29h, 0000h, 8100h, 0b30h, 0b30h, 0b29h, 0b29h ;0)
word 0c2dh, 0c5fh, 0000h, 8200h, 0c2dh, 0c2dh, 0c5fh, 0c5fh ;- _
word 0d3dh, 0d2bh, 0000h, 8300h, 0d3dh, 0d3dh, 0d2bh, 0d2bh ;= +
word 0e08h, 0e08h, 0e7fh, 0000h, 0e08h, 0e08h, 0e08h, 0e08h ;bksp
word 0f09h, 0f00h, 0000h, 0000h, 0f09h, 0f09h, 0f00h, 0f00h ;Tab

; norm shft ctrl alt num caps shcap shnum
word 1071h, 1051h, 1011h, 1000h, 1071h, 1051h, 1051h, 1071h ;Q
word 1177h, 1057h, 1017h, 1100h, 1077h, 1057h, 1057h, 1077h ;W
word 1265h, 1245h, 1205h, 1200h, 1265h, 1245h, 1245h, 1265h ;E
word 1372h, 1352h, 1312h, 1300h, 1272h, 1252h, 1252h, 1272h ;R
word 1474h, 1454h, 1414h, 1400h, 1474h, 1454h, 1454h, 1474h ;T
word 1579h, 1559h, 1519h, 1500h, 1579h, 1559h, 1579h, 1559h ;Y
word 1675h, 1655h, 1615h, 1600h, 1675h, 1655h, 1675h, 1655h ;U
word 1769h, 1749h, 1709h, 1700h, 1769h, 1749h, 1769h, 1749h ;I

word 186fh, 184fh, 180fh, 1800h, 186fh, 184fh, 186fh, 184fh ;O
word 1970h, 1950h, 1910h, 1900h, 1970h, 1950h, 1970h, 1950h ;P
word 1a5bh, 1a7bh, 1a1bh, 0000h, 1a5bh, 1a5bh, 1a7bh, 1a7bh ;[{
word 1b5dh, 1b7dh, 1b1dh, 0000h, 1b5dh, 1b5dh, 1b7dh, 1b7dh ;] }
word 1c0dh, 1c0dh, 1c0ah, 0000h, 1c0dh, 1c0dh, 1c0ah, 1c0ah ;enter
word 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h ;ctrl
word 1e61h, 1e41h, 1e01h, 1e00h, 1e61h, 1e41h, 1e61h, 1e41h ;A
word 1f73h, 1f5eh, 1f13h, 1f00h, 1f73h, 1f53h, 1f73h, 1f53h ;S

; norm shft ctrl alt num caps shcap shnum
word 2064h, 2044h, 2004h, 2000h, 2064h, 2044h, 2064h, 2044h ;D
word 2166h, 2146h, 2106h, 2100h, 2166h, 2146h, 2166h, 2146h ;F
word 2267h, 2247h, 2207h, 2200h, 2267h, 2247h, 2267h, 2247h ;G
word 2368h, 2348h, 2308h, 2300h, 2368h, 2348h, 2368h, 2348h ;H
word 246ah, 244ah, 240ah, 2400h, 246ah, 244ah, 246ah, 244ah ;J
word 256bh, 254bh, 250bh, 2500h, 256bh, 254bh, 256bh, 254bh ;K
word 266ch, 264ch, 260ch, 2600h, 266ch, 264ch, 266ch, 264ch ;L
word 273bh, 273ah, 0000h, 0000h, 273bh, 273bh, 273ah, 273ah ;; :

word 2827h, 2822h, 0000h, 0000h, 2827h, 2827h, 2822h, 2822h ;’ “
word 2960h, 297eh, 0000h, 0000h, 2960h, 2960h, 297eh, 297eh ;` ~
word 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h ;LShf
word 2b5ch, 2b7ch, 2b1ch, 0000h, 2b5ch, 2b5ch, 2b7ch, 2b7ch ;\ |
word 2c7ah, 2c5ah, 2c1ah, 2c00h, 2c7ah, 2c5ah, 2c7ah, 2c5ah ;Z
word 2d78h, 2d58h, 2d18h, 2d00h, 2d78h, 2d58h, 2d78h, 2d58h ;X
word 2e63h, 2e43h, 2e03h, 2e00h, 2e63h, 2e43h, 2e63h, 2e43h ;C
word 2f76h, 2f56h, 2f16h, 2f00h, 2f76h, 2f56h, 2f76h, 2f56h ;V

; norm shft ctrl alt num caps shcap shnum
word 3062h, 3042h, 3002h, 3000h, 3062h, 3042h, 3062h, 3042h ;B
word 316eh, 314eh, 310eh, 3100h, 316eh, 314eh, 316eh, 314eh ;N
word 326dh, 324dh, 320dh, 3200h, 326dh, 324dh, 326dh, 324dh ;M
word 332ch, 333ch, 0000h, 0000h, 332ch, 332ch, 333ch, 333ch ;, <
word 342eh, 343eh, 0000h, 0000h, 342eh, 342eh, 343eh, 343eh ;. >
word 352fh, 353fh, 0000h, 0000h, 352fh, 352fh, 353fh, 353fh ;/ ?
word 3600h, 3600h, 3600h, 3600h, 3600h, 3600h, 3600h, 3600h ;rshf
word 372ah, 0000h, 3710h, 0000h, 372ah, 372ah, 0000h, 0000h ;* PS

word 3800h, 3800h, 3800h, 3800h, 3800h, 3800h, 3800h, 3800h ;alt
word 3920h, 3920h, 3920h, 0000h, 3920h, 3920h, 3920h, 3920h ;spc
word 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h ;caps
word 3b00h, 5400h, 5e00h, 6800h, 3b00h, 3b00h, 5400h, 5400h ;F1
word 3c00h, 5500h, 5f00h, 6900h, 3c00h, 3c00h, 5500h, 5500h ;F2
word 3d00h, 5600h, 6000h, 6a00h, 3d00h, 3d00h, 5600h, 5600h ;F3
word 3e00h, 5700h, 6100h, 6b00h, 3e00h, 3e00h, 5700h, 5700h ;F4
word 3f00h, 5800h, 6200h, 6c00h, 3f00h, 3f00h, 5800h, 5800h ;F5

; norm shft ctrl alt num caps shcap shnum
word 4000h, 5900h, 6300h, 6d00h, 4000h, 4000h, 5900h, 5900h ;F6

The PC Keyboard

Page 1177

word 4100h, 5a00h, 6400h, 6e00h, 4100h, 4100h, 5a00h, 5a00h ;F7
word 4200h, 5b00h, 6500h, 6f00h, 4200h, 4200h, 5b00h, 5b00h ;F8
word 4300h, 5c00h, 6600h, 7000h, 4300h, 4300h, 5c00h, 5c00h ;F9
word 4400h, 5d00h, 6700h, 7100h, 4400h, 4400h, 5d00h, 5d00h ;F10
word 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h ;num
word 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h ;scrl
word 4700h, 4737h, 7700h, 0000h, 4737h, 4700h, 4737h, 4700h ;home

word 4800h, 4838h, 0000h, 0000h, 4838h, 4800h, 4838h, 4800h ;up
word 4900h, 4939h, 8400h, 0000h, 4939h, 4900h, 4939h, 4900h ;pgup
word 4a2dh, 4a2dh, 0000h, 0000h, 4a2dh, 4a2dh, 4a2dh, 4a2dh ;-
word 4b00h, 4b34h, 7300h, 0000h, 4b34h, 4b00h, 4b34h, 4b00h ;left
word 4c00h, 4c35h, 0000h, 0000h, 4c35h, 4c00h, 4c35h, 4c00h ;Center
word 4d00h, 4d36h, 7400h, 0000h, 4d36h, 4d00h, 4d36h, 4d00h ;right
word 4e2bh, 4e2bh, 0000h, 0000h, 4e2bh, 4e2bh, 4e2bh, 4e2bh ;+
word 4f00h, 4f31h, 7500h, 0000h, 4f31h, 4f00h, 4f31h, 4f00h ;end

; norm shft ctrl alt num caps shcap shnum
word 5000h, 5032h, 0000h, 0000h, 5032h, 5000h, 5032h, 5000h ;down
word 5100h, 5133h, 7600h, 0000h, 5133h, 5100h, 5133h, 5100h ;pgdn
word 5200h, 5230h, 0000h, 0000h, 5230h, 5200h, 5230h, 5200h ;ins
word 5300h, 532eh, 0000h, 0000h, 532eh, 5300h, 532eh, 5300h ;del
word 0,0,0,0,0,0,0,0 ; --
word 0,0,0,0,0,0,0,0 ; --
word 0,0,0,0,0,0,0,0 ; --
word 5700h, 0000h, 0000h, 0000h, 5700h, 5700h, 0000h, 0000h ;F11

word 5800h, 0000h, 0000h, 0000h, 5800h, 5800h, 0000h, 0000h ;F12

;**
;
; AL contains keyboard scan code.

PutInBuffer proc near
push ds
push bx

mov bx, 40h ;Point ES at the BIOS
mov ds, bx ; variables.

; If the current scan code is E0 or E1, we need to take note of this fact
; so that we can properly process cursor keys.

cmp al, 0e0h
jne TryE1
or KbdFlags3, 10b ;Set E0 flag
and KbdFlags3, 0FEh ;Clear E1 flag
jmp Done

TryE1: cmp al, 0e1h
jne DoScan
or KbdFlags3, 1 ;Set E1 flag
and KbdFlags3, 0FDh ;Clear E0 Flag
jmp Done

; Before doing anything else, see if this is Ctrl-Alt-Del:

DoScan: cmp al, DelScanCode
jnz TryIns
mov bl, KbdFlags
and bl, AltBit or CtrlBit ;Alt = bit 3, ctrl = bit 2
cmp bl, AltBit or CtrlBit
jne DoPIB
mov word ptr ds:[72h], 1234h ;Warm boot flag.
jmp dword ptr cs:RebootAdrs ;REBOOT Computer

RebootAdrs dword 0ffff0000h ;Reset address.

; Check for the INS key here. This one needs to toggle the ins bit
; in the keyboard flags variables.

Chapter 20

Page 1178

TryIns: cmp al, InsScanCode
jne TryInsUp
or KbdFlags2, InsBit ;Note INS is down.
jmp doPIB ;Pass on INS key.

TryInsUp: cmp al, InsScanCode+80h ;INS up scan code.
jne TryLShiftDn
and KbdFlags2, not InsBit ;Note INS is up.
xor KbdFlags, InsBit ;Toggle INS bit.
jmp QuitPIB

; Handle the left and right shift keys down here.

TryLShiftDn: cmp al, LShiftScan
jne TryLShiftUp
or KbdFlags, LShfBit ;Note that the left
jmp QuitPIB ; shift key is down.

TryLShiftUp: cmp al, LShiftScan+80h
jne TryRShiftDn
and KbdFlags, not LShfBit ;Note that the left
jmp QuitPIB ; shift key is up.

TryRShiftDn: cmp al, RShiftScan
jne TryRShiftUp
or KbdFlags, RShfBit ;Right shf is down.
jmp QuitPIB

TryRShiftUp: cmp al, RShiftScan+80h
jne TryAltDn
and KbdFlags, not RShfBit ;Right shf is up.
jmp QuitPIB

; Handle the ALT key down here.

TryAltDn: cmp al, AltScan
jne TryAltUp
or KbdFlags, AltBit ;Alt key is down.

GotoQPIB: jmp QuitPIB

TryAltUp: cmp al, AltScan+80h
jne TryCtrlDn
and KbdFlags, not AltBit ;Alt key is up.
jmp DoPIB

; Deal with the control key down here.

TryCtrlDn: cmp al, CtrlScan
jne TryCtrlUp
or KbdFlags, CtrlBit ;Ctrl key is down.
jmp QuitPIB

TryCtrlUp: cmp al, CtrlScan+80h
jne TryCapsDn
and KbdFlags, not CtrlBit ;Ctrl key is up.
jmp QuitPIB

; Deal with the CapsLock key down here.

TryCapsDn: cmp al, CapsLockScan
jne TryCapsUp
or KbdFlags2, CLBit ;Capslock is down.
xor KbdFlags, CLBit ;Toggle capslock.
jmp QuitPIB

TryCapsUp: cmp al, CapsLockScan+80h
jne TrySLDn
and KbdFlags2, not CLBit ;Capslock is up.
call SetLEDs
jmp QuitPIB

The PC Keyboard

Page 1179

; Deal with the Scroll Lock key down here.

TrySLDn: cmp al, ScrlLockScan
jne TrySLUp
or KbdFlags2, SLBit ;Scrl lock is down.
xor KbdFlags, SLBit ;Toggle scrl lock.
jmp QuitPIB

TrySLUp: cmp al, ScrlLockScan+80h
jne TryNLDn
and KbdFlags2, not SLBit ;Scrl lock is up.
call SetLEDs
jmp QuitPIB

; Handle the NumLock key down here.

TryNLDn: cmp al, NumLockScan
jne TryNLUp
or KbdFlags2, NLBit ;Numlock is down.
xor KbdFlags, NLBit ;Toggle numlock.
jmp QuitPIB

TryNLUp: cmp al, NumLockScan+80h
jne DoPIB
and KbdFlags2, not NLBit ;Numlock is up.
call SetLEDs
jmp QuitPIB

; Handle all the other keys here:

DoPIB: test al, 80h ;Ignore other up keys.
jnz QuitPIB

; If the H.O. bit is set at this point, we’d best only have a zero in AL.
; Otherwise, this is an up code which we can safely ignore.

call Convert
test ax, ax ;Chk for bad code.
je QuitPIB

PutCharInBuf: push cx
mov cx, ax
mov ah, 5 ;Store scan code into
int 16h ; type ahead buffer.
pop cx

QuitPIB: and KbdFlags3, 0FCh ;E0, E1 not last code.

Done: pop bx
pop ds
ret

PutInBuffer endp

;**
;
; Convert- AL contains a PC Scan code. Convert it to an ASCII char/Scan
; code pair and return the result in AX. This code assumes
; that DS points at the BIOS variable space (40h).

Convert proc near
push bx

test al, 80h ;See if up code
jz DownScanCode
mov ah, al
mov al, 0
jmp CSDone

Chapter 20

Page 1180

; Okay, we’ve got a down key. But before going on, let’s see if we’ve
; got an ALT-Keypad sequence.

DownScanCode: mov bh, 0
mov bl, al
shl bx, 1 ;Multiply by eight to compute
shl bx, 1 ; row index index the scan
shl bx, 1 ; code xlat table

; Compute modifier index as follows:
;
; if alt then modifier = 3

test KbdFlags, AltBit
je NotAlt
add bl, 3
jmp DoConvert

; if ctrl, then modifier = 2

NotAlt: test KbdFlags, CtrlBit
je NotCtrl
add bl, 2
jmp DoConvert

; Regardless of the shift setting, we’ve got to deal with numlock
; and capslock. Numlock is only a concern if the scan code is greater
; than or equal to 47h. Capslock is only a concern if the scan code
; is less than this.

NotCtrl: cmp al, 47h
jb DoCapsLk
test KbdFlags, NLBit ;Test Numlock bit
je NoNumLck
test KbdFlags, LShfBit or RShfBit ;Check l/r shift.
je NumOnly
add bl, 7 ;Numlock and shift.
jmp DoConvert

NumOnly: add bl, 4 ;Numlock only.
jmp DoConvert

; If numlock is not active, see if a shift key is:

NoNumLck: test KbdFlags, LShfBit or RShfBit ;Check l/r shift.
je DoConvert ;normal if no shift.
add bl, 1
jmp DoConvert

; If the scan code’s value is below 47h, we need to check for capslock.

DoCapsLk: test KbdFlags, CLBit ;Chk capslock bit
je DoShift
test KbdFlags, LShfBit or RShfBit ;Chk for l/r shift
je CapsOnly
add bl, 6 ;Shift and capslock.
jmp DoConvert

CapsOnly: add bl, 5 ;Capslock
jmp DoConvert

; Well, nothing else is active, check for just a shift key.

DoShift: test KbdFlags, LShfBit or RShfBit ;l/r shift.
je DoConvert
add bl, 1 ;Shift

DoConvert: shl bx, 1 ;Word array
mov ax, ScanXlat[bx]

CSDone: pop bx
ret

Convert endp

The PC Keyboard

Page 1181

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov bh, 3 ;Retry cnt.
RetryLp: cli ;Disable ints while accessing HW.

; Clear the Error, Acknowledge received, and resend received flags
; in KbdFlags4

and byte ptr KbdFlags4, 4fh

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al
sti ;Allow interrupts now.

; Wait for the arrival of an acknowledgement from the keyboard ISR:

xor cx, cx ;Wait a long time, if need be.
Wait4Ack: test byp KbdFlags4,10h ;Acknowledge received bit.

jnz GotAck
loop Wait4Ack
dec bh ;Do a retry on this guy.
jne RetryLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFlags4,80h ;Set error bit.

Chapter 20

Page 1182

GotAck: pop cx
pop bx
pop ds
ret

SendCmd endp

; SetLEDs- Updates the KbdFlags4 LED bits from the KbdFlags
; variable and then transmits new flag settings to
; the keyboard.

SetLEDs proc near
push ax
push cx
mov al, KbdFlags
mov cl, 4
shr al, cl
and al, 111b
and KbdFlags4, 0F8h ;Clear LED bits.
or KbdFlags4, al ;Mask in new bits.
mov ah, al ;Save LED bits.

mov al, 0ADh ;Disable kbd for now.
call SetCmd

mov al, 0EDh ;8042 set LEDs cmd.
call SendCmd ;Send the command to 8042.
mov al, ah ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

mov al, 0AEh ;Reenable keyboard.
call SetCmd
mov al, 0F4h ;Restart kbd scanning.
call SendCmd
pop cx
pop ax
ret

SetLEDs endp

; MyInt9- Interrupt service routine for the keyboard hardware
; interrupt.

MyInt9 proc far
push ds
push ax
push cx

mov ax, 40h
mov ds, ax

mov al, 0ADh ;Disable keyboard
call SetCmd
cli ;Disable interrupts.
xor cx, cx

Wait4Data: in al, 64h ;Read kbd status port.
test al, 10b ;Data in buffer?
loopz Wait4Data ;Wait until data available.
in al, 60h ;Get keyboard data.
cmp al, 0EEh ;Echo response?
je QuitInt9
cmp al, 0FAh ;Acknowledge?
jne NotAck
or KbdFlags4, 10h ;Set ack bit.
jmp QuitInt9

NotAck: cmp al, 0FEh ;Resend command?
jne NotResend
or KbdFlags4, 20h ;Set resend bit.
jmp QuitInt9

; Note: other keyboard controller commands all have their H.O. bit set

The PC Keyboard

Page 1183

; and the PutInBuffer routine will ignore them.

NotResend: call PutInBuffer ;Put in type ahead buffer.

QuitInt9: mov al, 0AEh ;Reenable the keyboard
call SetCmd

mov al, 20h ;Send EOI (end of interrupt)
out 20h, al ; to the 8259A PIC.
pop cx
pop ax
pop ds
iret

MyInt9 endp

Main proc
assume ds:cseg

mov ax, cseg
mov ds, ax

print
byte “INT 9 Replacement”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 20

Page 1184

20.6 Patching into the INT 9 Interrupt Service Routine

For many programs, such as pop-up programs or keyboard enhancers, you may need to intercept
certain “hot keys” and pass all remaining scan codes through to the default keyboard interrupt service rou-
tine. You can insert an int 9 interrupt service routine into an interrupt nine chain just like any other inter-
rupt. When the keyboard interrupts the system to send a scan code, your interrupt service routine can read
the scan code from port 60h and decide whether to process the scan code itself or pass control on to some
other int 9 handler. The following program demonstrates this principle; it deactivates the ctrl-alt-del reset
function on the keyboard by intercepting and throwing away delete scan codes when the ctrl and alt bits
are set in the keyboard flags byte.

; NORESET.ASM
;
; A short TSR that patches the int 9 interrupt and intercepts the
; ctrl-alt-del keystroke sequence.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

DelScanCode equ 53h

; Bits for the various modifier keys

CtrlBit equ 4
AltBit equ 8

KbdFlags equ <byte ptr ds:[17h]>

cseg segment para public ‘code’
assume ds:nothing

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

The PC Keyboard

Page 1185

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; MyInt9- Interrupt service routine for the keyboard hardware
; interrupt. Tests to see if the user has pressed a
; DEL key. If not, it passes control on to the original
; int 9 handler. If so, it first checks to see if the
; alt and ctrl keys are currently down; if not, it passes
; control to the original handler. Otherwise it eats the
; scan code and doesn’t pass the DEL through.

MyInt9 proc far
push ds
push ax
push cx

mov ax, 40h
mov ds, ax

mov al, 0ADh ;Disable keyboard
call SetCmd
cli ;Disable interrupts.
xor cx, cx

Wait4Data: in al, 64h ;Read kbd status port.
test al, 10b ;Data in buffer?
loopz Wait4Data ;Wait until data available.

in al, 60h ;Get keyboard data.
cmp al, DelScanCode ;Is it the delete key?
jne OrigInt9
mov al, KbdFlags ;Okay, we’ve got DEL, is
and al, AltBit or CtrlBit ; ctrl+alt down too?
cmp al, AltBit or CtrlBit
jne OrigInt9

; If ctrl+alt+DEL is down, just eat the DEL code and don’t pass it through.

mov al, 0AEh ;Reenable the keyboard
call SetCmd

mov al, 20h ;Send EOI (end of interrupt)
out 20h, al ; to the 8259A PIC.
pop cx
pop ax
pop ds
iret

; If ctrl and alt aren’t both down, pass DEL on to the original INT 9
; handler routine.

OrigInt9: mov al, 0AEh ;Reenable the keyboard
call SetCmd

pop cx
pop ax
pop ds
jmp cs:OldInt9

MyInt9 endp

Main proc
assume ds:cseg

Chapter 20

Page 1186

mov ax, cseg
mov ds, ax

print
byte “Ctrl-Alt-Del Filter”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.7 Simulating Keystrokes

At one point or another you may want to write a program that passes keystrokes on to another appli-
cation. For example, you might want to write a keyboard macro TSR that lets you capture certain keys on
the keyboard and send a sequence of keys through to some underlying application. Perhaps you’ll want to
program an entire string of characters on a normally unused keyboard sequence (e.g., ctrl-up or ctrl--
down). In any case, your program will use some technique to pass characters to a foreground application.
There are three well-known techniques for doing this: store the scan/ASCII code directly in the keyboard
buffer, use the 80x86 trace flag to simulate in al, 60h instructions, or program the on-board 8042 micro-
controller to transmit the scan code for you. The next three sections describe these techniques in detail.

20.7.1 Stuffing Characters in the Type Ahead Buffer

Perhaps the easiest way to insert keystrokes into an application is to insert them directly into the sys-
tem’s type ahead buffer. Most modern BIOSes provide an int 16h function to do this (see “The Keyboard

The PC Keyboard

Page 1187

BIOS Interface” on page 1168). Even if your system does not provide this function, it is easy to write your
own code to insert data in the system type ahead buffer; or you can copy the code from the int 16h han-
dler provided earlier in this chapter.

The nice thing about this approach is that you can deal directly with ASCII characters (at least, for
those key sequences that are ASCII). You do not have to worry about sending shift up and down codes
around the scan code for tn “A” so you can get an upper case “A”, you need only insert 1E41h into the
buffer. In fact, most programs ignore the scan code, so you can simply insert 0041h into the buffer and
almost any application will accept the funny scan code of zero.

The major drawback to the buffer insertion technique is that many (popular) applications bypass
DOS and BIOS when reading the keyboard. Such programs go directly to the keyboard’s port (60h) to read
their data. As such, shoving scan/ASCII codes into the type ahead buffer will have no effect. Ideally, you
would like to stuff a scan code directly into the keyboard controller chip and have it return that scan code
as though someone actually pressed that key. Unfortunately, there is no universally compatible way to do
this. However, there are some close approximations, keep reading...

20.7.2 Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions

One way to deal with applications that access the keyboard hardware directly is to simulate the
80x86 instruction set. For example, suppose we were able to take control of the int 9 interrupt service rou-
tine and execute each instruction under our control. We could choose to let all instructions except the in
instruction execute normally. Upon encountering an in instruction (that the keyboard ISR uses to read the
keyboard data), we check to see if it is accessing port 60h. If so, we simply load the al register with the
desired scan code rather than actually execute the in instruction. It is also important to check for the out
instruction, since the keyboard ISR will want to send and EOI signal to the 8259A PIC after reading the
keyboard data, we can simply ignore out instructions that write to port 20h.

The only difficult part is telling the 80x86 to pass control to our routine when encountering certain
instructions (like in and out) and to execute other instructions normally. While this is not directly possi-
ble in real mode7, there is a close approximation we can make. The 80x86 CPUs provide a trace flag that
generates an exception after the execution of each instruction. Normally, debuggers use the trace flag to
single step through a program. However, by writing our own exception handler for the trace exception,
we can gain control of the machine between the execution of every instruction. Then, we can look at the
opcode of the next instruction to execute. If it is not an in or out instruction, we can simply return and
execute the instruction normally. If it is an in or out instruction, we can determine the I/O address and
decide whether to simulate or execute the instruction.

In addition to the in and out instructions, we will need to simulate any int instructions we find as
well. The reason is because the int instruction pushes the flags on the stack and then clears the trace bit in
the flags register. This means that the interrupt service routine associated with that int instruction would
execute normally and we would miss any in or out instructions appearing therein. However, it is easy to
simulate the int instruction, leaving the trace flag enabled, so we will add int to our list of instructions to
interpret.

The only problem with this approach is that it is slow. Although the trace trap routine will only exe-
cute a few instructions on each call, it does so for every instruction in the int 9 interrupt service routine. As
a result, during simulation, the interrupt service routine will run 10 to 20 times slower than the real code
would. This generally isn’t a problem because most keyboard interrupt service routines are very short.
However, you might encounter an application that has a large internal int 9 ISR and this method would
noticeably slow the program. However, for most applications this technique works just fine and no one
will notice any performance loss while they are typing away (slowly) at the keyboard.

7. It is possible to trap I/O instructions when running in protected mode.

Chapter 20

Page 1188

The following assembly code provides a short example of a trace exception handler that simulates
keystrokes in this fashion:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume ds:nothing

; ScanCode must be in the Code segment.

ScanCode byte 0

;**
;
; KbdSim- Passes the scan code in AL through the keyboard controller
; using the trace flag. The way this works is to turn on the
; trace bit in the flags register. Each instruction then causes a trace
; trap. The (installed) trace handler then looks at each instruction to
; handle IN, OUT, INT, and other special instructions. Upon encountering
; an IN AL, 60 (or equivalent) this code simulates the instruction and
; returns the specified scan code rather than actually executing the IN
; instruction. Other instructions need special treatment as well. See
; the code for details. This code is pretty good at simulating the hardware,
; but it runs fairly slow and has a few compatibility problems.

KbdSim proc near

pushf
push es
push ax
push bx

xor bx, bx ;Point es at int vector tbl
mov es, bx ; (to simulate INT 9).
cli ;No interrupts for now.
mov cs:ScanCode, al ;Save output scan code.

push es:[1*4] ;Save current INT 1 vector
push es:2[1*4] ; so we can restore it later.

; Point the INT 1 vector at our INT 1 handler:

mov word ptr es:[1*4], offset MyInt1
mov word ptr es:[1*4 + 2], cs

; Turn on the trace trap (bit 8 of flags register):

pushf
pop ax
or ah, 1
push ax
popf

; Simulate an INT 9 instruction. Note: cannot actually execute INT 9 here
; since INT instructions turn off the trace operation.

pushf
call dword ptr es:[9*4]

The PC Keyboard

Page 1189

; Turn off the trace operation:

pushf
pop ax
and ah, 0feh ;Clear trace bit.
push ax
popf

; Disable trace operation.

pop es:[1*4 + 2] ;Restore previous INT 1
pop es:[1*4] ; handler.

; Okay, we’re done. Restore registers and return.

VMDone: pop bx
pop ax
pop es
popf
ret

KbdSim endp

;--
;
; MyInt1- Handles the trace trap (INT 1). This code looks at the next
; opcode to determine if it is one of the special opcodes we have to
; handle ourselves.

MyInt1 proc far
push bp
mov bp, sp ;Gain access to return adrs via BP.
push bx
push ds

; If we get down here, it’s because this trace trap is directly due to
; our having punched the trace bit. Let’s process the trace trap to
; simulate the 80x86 instruction set.
;
; Get the return address into DS:BX

NextInstr: lds bx, 2[bp]

; The following is a special case to quickly eliminate most opcodes and
; speed up this code by a tiny amount.

cmp byte ptr [bx], 0cdh ;Most opcodes are less than
jnb NotSimple ; 0cdh, hence we quickly
pop ds ; return back to the real
pop bx ; program.
pop bp
iret

NotSimple: je IsIntInstr ;If it’s an INT instruction.

mov bx, [bx] ;Get current instruction’s opcode.
cmp bl, 0e8h ;CALL opcode
je ExecInstr
jb TryInOut0

cmp bl, 0ech ;IN al, dx instr.
je MayBeIn60
cmp bl, 0eeh ;OUT dx, al instr.
je MayBeOut20
pop ds ;A normal instruction if we get
pop bx ; down here.
pop bp
iret

Chapter 20

Page 1190

TryInOut0: cmp bx, 60e4h ;IN al, 60h instr.
je IsINAL60
cmp bx, 20e6h ;out 20, al instr.
je IsOut20

; If it wasn’t one of our magic instructions, execute it and continue.

ExecInstr: pop ds
pop bx
pop bp
iret

; If this instruction is IN AL, DX we have to look at the value in DX to
; determine if it’s really an IN AL, 60h instruction.

MayBeIn60: cmp dx, 60h
jne ExecInstr
inc word ptr 2[bp] ;Skip over this 1 byte instr.
mov al, cs:ScanCode
jmp NextInstr

; If this is an IN AL, 60h instruction, simulate it by loading the current
; scan code into AL.

IsInAL60: mov al, cs:ScanCode
add word ptr 2[bp], 2 ;Skip over this 2-byte instr.
jmp NextInstr

; If this instruction is OUT DX, AL we have to look at DX to see if we’re
; outputting to location 20h (8259).

MayBeOut20: cmp dx, 20h
jne ExecInstr
inc word ptr 2[bp] ;Skip this 1 byte instruction.
jmp NextInstr

; If this is an OUT 20h, al instruction, simply skip over it.

IsOut20: add word ptr 2[bp], 2 ;Skip instruction.
jmp NextInstr

; IsIntInstr- Execute this code if it’s an INT instruction.
;
; The problem with the INT instructions is that they reset the trace bit
; upon execution. For certain guys (see above) we can’t have that.
;
; Note: at this point the stack looks like the following:
;
; flags
;
; rtn cs -+
; |
; rtn ip +-- Points at next instr the CPU will execute.
; bp
; bx
; ds
;
; We need to simulate the appropriate INT instruction by:
;
; (1) adding two to the return address on the stack (so it returns
; beyond the INT instruction.
; (2) pushing the flags onto the stack.
; (3) pushing a phony return address onto the stack which simulates
; the INT 1 interrupt return address but which “returns” us to
; the specified interrupt vector handler.
;
; All this results in a stack which looks like the following:
;
; flags
;
; rtn cs -+

The PC Keyboard

Page 1191

; |
; rtn ip +-- Points at next instr beyond the INT instruction.
;
; flags --- Bogus flags to simulate those pushed by INT instr.
;
; rtn cs -+
; |
; rtn ip +-- “Return address” which points at the ISR for this INT.
; bp
; bx
; ds

IsINTInstr: add word ptr 2[bp], 2 ;Bump rtn adrs beyond INT instr.
mov bl, 1[bx]
mov bh, 0
shl bx, 1 ;Multiply by 4 to get vector
shl bx, 1 ; address.

push [bp-0] ;Get and save BP
push [bp-2] ;Get and save BX.
push [bp-4] ;Get and save DS.

push cx
xor cx, cx ;Point DS at interrupt
mov ds, cx ; vector table.

mov cx, [bp+6] ;Get original flags.
mov [bp-0], cx ;Save as pushed flags.

mov cx, ds:2[bx] ;Get vector and use it as
mov [bp-2], cx ; the return address.
mov cx, ds:[bx]
mov [bp-4], cx

pop cx
pop ds
pop bx
pop bp
iret

;
MyInt1 endp

; Main program - Simulates some keystrokes to demo the above code.

Main proc

mov ax, cseg
mov ds, ax

print
byte “Simulating keystrokes via Trace Flag”,cr,lf
byte “This program places ‘DIR’ in the keyboard buffer”
byte cr,lf,0

mov al, 20h ;”D” down scan code
call KbdSim
mov al, 0a0h ;”D” up scan code
call KbdSim

mov al, 17h ;”I” down scan code
call KbdSim
mov al, 97h ;”I” up scan code
call KbdSim

mov al, 13h ;”R” down scan code
call KbdSim
mov al, 93h ;”R” up scan code
call KbdSim

mov al, 1Ch ;Enter down scan code

Chapter 20

Page 1192

call KbdSim
mov al, 9Ch ;Enter up scan code
call KbdSim

ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.7.3 Using the 8042 Microcontroller to Simulate Keystrokes

Although the trace flag based “keyboard stuffer” routine works with most software that talks to the
hardware directly, it still has a few problems. Specifically, it doesn’t work at all with programs that operate
in protected mode via a “DOS Extender” library (programming libraries that let programmers access more
than one megabyte of memory while running under DOS). The last technique we will look at is to pro-
gram the on-board 8042 keyboard microcontroller to transmit a keystroke for us. There are two ways to do
this: the PS/2 way and the hard way.

The PS/2’s microcontroller includes a command specifically designed to return user programmable
scan codes to the system. By writing a 0D2h byte to the controller command port (64h) and a scan code
byte to port 60h, you can force the controller to return that scan code as though the user pressed a key on
the keyboard. See “The Keyboard Hardware Interface” on page 1159 for more details.

Using this technique provides the most compatible (with existing software) way to return scan codes
to an application. Unfortunately, this trick only works on machines that have keyboard controllers that are
compatible with the PS/2’s; this is not the majority of machines out there. However, if you are writing code
for PS/2s or compatibles, this is the best way to go.

The keyboard controller on the PC/AT and most other PC compatible machines does not support the
0D2h command. Nevertheless, there is a sneaky way to force the keyboard controller to transmit a scan
code, if you’re willing to break a few rules. This trick may not work on all machines (indeed, there are
many machines on which this trick is known to fail), but it does provide a workaround on a large number
of PC compatible machines.

The trick is simple. Although the PC’s keyboard controller doesn’t have a command to return a byte
you send it, it does provide a command to return the keyboard controller command byte (KCCB). It also
provides another command to write a value to the KCCB. So by writing a value to the KCCB and then issu-
ing the read KCCB command, we can trick the system into returning a user programmable code. Unfortu-
nately, the KCCB contains some undefined reserved bits that have different meanings on different brands
of keyboard microcontroller chips. That is the main reason this technique doesn’t work with all machines.
The following assembly code demonstrates how to use the PS/2 and PC keyboard controller stuffing meth-
ods:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’

The PC Keyboard

Page 1193

assume ds:nothing

;**
;
; PutInATBuffer-
;
; The following code sticks the scan code into the AT-class keyboard
; microcontroller chip and asks it to send the scan code back to us
; (through the hardware port).
;
; The AT keyboard controller:
;
; Data port is at I/O address 60h
; Status port is at I/O address 64h (read only)
; Command port is at I/O address 64h (write only)
;
; The controller responds to the following values sent to the command port:
;
; 20h - Read Keyboard Controller’s Command Byte (KCCB) and send the data to
; the data port (I/O address 60h).
;
; 60h - Write KCCB. The next byte written to I/O address 60h is placed in
; the KCCB. The bits of the KCCB are defined as follows:
;
; bit 7- Reserved, should be a zero
; bit 6- IBM industrial computer mode.
; bit 5- IBM industrial computer mode.
; bit 4- Disable keyboard.
; bit 3- Inhibit override.
; bit 2- System flag
; bit 1- Reserved, should be a zero.
; bit 0- Enable output buffer full interrupt.
;
; AAh - Self test
; ABh - Interface test
; ACh - Diagnostic dump
; ADh - Disable keyboard
; AEh - Enable keyboard
; C0h - Read Keyboard Controller input port (equip installed)
; D0h - Read Keyboard Controller output port
; D1h - Write Keyboard Controller output port
; E0h - Read test inputs
; F0h - FFh - Pulse Output port.
;
; The keyboard controller output port is defined as follows:
;
; bit 7 - Keyboard data (output)
; bit 6 - Keyboard clock (output)
; bit 5 - Input buffer empty
; bit 4 - Output buffer full
; bit 3 - undefined
; bit 2 - undefined
; bit 1 - Gate A20
; bit 0 - System reset (0=reset)
;
; The keyboard controller input port is defined as follows:
;
; bit 7 - Keyboard inhibit switch (0=inhibited)
; bit 6 - Display switch (0=color, 1= mono)
; bit 5 - Manufacturing jumper
; bit 4 - System board RAM (0=disable 2nd 256K RAM on system board).
; bits 0-3 - undefined.
;
; The keyboard controller status port (64h) is defined as follows:
;
; bit 1 - Set if input data (60h) not available.
; bit 0 - Set if output port (60h) cannot accept data.

PutInATBuffer proc near
assume ds:nothing
pushf
push ax

Chapter 20

Page 1194

push bx
push cx
push dx

mov dl, al ;Save char to output.

; Wait until the keyboard controller does not contain data before
; proceeding with shoving stuff down its throat.

xor cx, cx
WaitWhlFull: in al, 64h

test al, 1
loopnz WaitWhlFull

; First things first, let’s mask the interrupt controller chip (8259) to
; tell it to ignore interrupts coming from the keyboard. However, turn the
; interrupts on so we properly process interrupts from other sources (this
; is especially important because we’re going to wind up sending a false
; EOI to the interrupt controller inside the INT 9 BIOS routine).

cli
in al, 21h ;Get current mask
push ax ;Save intr mask
or al, 2 ;Mask keyboard interrupt
out 21h, al

; Transmit the desired scan code to the keyboard controller. Call this
; byte the new keyboard controller command (we’ve turned off the keyboard,
; so this won’t affect anything).
;
; The following code tells the keyboard controller to take the next byte
; sent to it and use this byte as the KCCB:

call WaitToXmit
mov al, 60h ;Write new KCCB command.
out 64h, al

; Send the scan code as the new KCCB:

call WaitToXmit
mov al, dl
out 60h, al

; The following code instructs the system to transmit the KCCB (i.e., the
; scan code) to the system:

call WaitToXmit
mov al, 20h ;”Send KCCB” command.
out 64h, al

xor cx, cx
Wait4OutFull: in al, 64h

test al, 1
loopz Wait4OutFull

; Okay, Send a 45h back as the new KCCB to allow the normal keyboard to work
; properly.

call WaitToXmit
mov al, 60h
out 64h, al

call WaitToXmit
mov al, 45h
out 60h, al

; Okay, execute an INT 9 routine so the BIOS (or whoever) can read the key
; we just stuffed into the keyboard controller. Since we’ve masked INT 9
; at the interrupt controller, there will be no interrupt coming along from
; the key we shoved in the buffer.

The PC Keyboard

Page 1195

DoInt9: in al, 60h ;Prevents ints from some codes.
int 9 ;Simulate hardware kbd int.

; Just to be safe, reenable the keyboard:

call WaitToXmit
mov al, 0aeh
out 64h, al

; Okay, restore the interrupt mask for the keyboard in the 8259a.

pop ax
out 21h, al

pop dx
pop cx
pop bx
pop ax
popf
ret

PutInATBuffer endp

; WaitToXmit- Wait until it’s okay to send a command byte to the keyboard
; controller port.

WaitToXmit proc near
push cx
push ax
xor cx, cx

TstCmdPortLp: in al, 64h
test al, 2 ;Check cntrlr input buffer full flag.
loopnz TstCmdPortLp
pop ax
pop cx
ret

WaitToXmit endp

;**
;
; PutInPS2Buffer- Like PutInATBuffer, it uses the keyboard controller chip
; to return the keycode. However, PS/2 compatible controllers
; have an actual command to return keycodes.

PutInPS2Buffer proc near
pushf
push ax
push bx
push cx
push dx

mov dl, al ;Save char to output.

; Wait until the keyboard controller does not contain data before
; proceeding with shoving stuff down its throat.

xor cx, cx
WaitWhlFull: in al, 64h

test al, 1
loopnz WaitWhlFull

; The following code tells the keyboard controller to take the next byte
; sent to it and return it as a scan code.

call WaitToXmit
mov al, 0d2h ;Return scan code command.
out 64h, al

Chapter 20

Page 1196

; Send the scan code:

call WaitToXmit
mov al, dl
out 60h, al

pop dx
pop cx
pop bx
pop ax
popf
ret

PutInPS2Buffer endp

; Main program - Simulates some keystrokes to demo the above code.

Main proc

mov ax, cseg
mov ds, ax

print
byte “Simulating keystrokes via Trace Flag”,cr,lf
byte “This program places ‘DIR’ in the keyboard buffer”
byte cr,lf,0

mov al, 20h ;”D” down scan code
call PutInATBuffer
mov al, 0a0h ;”D” up scan code
call PutInATBuffer

mov al, 17h ;”I” down scan code
call PutInATBuffer
mov al, 97h ;”I” up scan code
call PutInATBuffer

mov al, 13h ;”R” down scan code
call PutInATBuffer
mov al, 93h ;”R” up scan code
call PutInATBuffer

mov al, 1Ch ;Enter down scan code
call PutInATBuffer
mov al, 9Ch ;Enter up scan code
call PutInATBuffer

ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.8 Summary

This chapter might seem excessively long for such a mundane topic as keyboard I/O. After all, the
Standard Library provides only one primitive routine for keyboard input, getc. However, the keyboard on
the PC is a complex beast, having no less than two specialized microprocessors controlling it. These
microprocessors accept commands from the PC and send commands and data to the PC. If you want to

The PC Keyboard

Page 1197

write some tricky keyboard handling code, you need to have a firm understanding of the keyboard’s
underlying hardware.

This chapter began by describing the actions the system takes when a user presses a key. As it turns
out, the system transmits two scan codes every time you press a key – one scan code when you press the
key and one scan code when you release the key. These are called down codes and up codes, accord-
ingly. The scan codes the keyboard transmits to the system have little relationship to the standard ASCII
character set. Instead, the keyboard uses its own character set and relies upon the keyboard interrupt ser-
vice routine to translate these scan codes to their appropriate ASCII codes. Some keys do not have ASCII
codes, for these keys the system passes along an extended key code to the application requesting key-
board input. While translating scan codes to ASCII codes, the keyboard interrupt service routine makes
use of certain BIOS flags that track the position of the modifier keys. These keys include the shift, ctrl, alt,
capslock, and numlock keys. These keys are known as modifiers because the modify the normal code
produced by keys on the keyboard. The keyboard interrupt service routine stuffs incoming characters in
the system type ahead buffer and updates other BIOS variables in segment 40h. An application program
or other system service can access this data prepared by the keyboard interrupt service routine. For more
information, see

• “Keyboard Basics” on page 1153

The PC interfaces to the keyboard using two separate microcontroller chips. These chips provide user
programming registers and a very flexible command set. If you want to program the keyboard beyond
simply reading the keystrokes produced by the keyboard (i.e., manipulate the LEDs on the keyboard), you
will need to become familiar with the registers and command sets of these microcontrollers. The discus-
sion of these topics appears in

• “The Keyboard Hardware Interface” on page 1159

Both DOS and BIOS provide facilities to read a key from the system’s type ahead buffer. As usual,
BIOS’ functions provide the most flexibility in terms of getting at the hardware. Furthermore, the BIOS
int 16h routine lets you check shift key status, stuff scan/ASCII codes into the type ahead buffer, adjust the
autorepeat rate, and more. Given this flexibility, it is difficult to understand why someone would want to
talk directly to the keyboard hardware, especially considering the compatibility problems that seem to
plague such projects. To learn the proper way to read characters from the keyboard, and more, see

• “The Keyboard DOS Interface” on page 1167
• “The Keyboard BIOS Interface” on page 1168

Although accessing the keyboard hardware directly is a bad idea for most applications, there is a
small class of programs, like keyboard enhancers and pop-up programs, that really do need to access the
keyboard hardware directly. These programs must supply an interrupt service routine for the int 9 (key-
board) interrupt. For all the details, see:

• “The Keyboard Interrupt Service Routine” on page 1174
• “Patching into the INT 9 Interrupt Service Routine” on page 1184

A keyboard macro program (keyboard enhancer) is a perfect example of a program that might need
to talk directly to the keyboard hardware. One problem with such programs is that they need to pass char-
acters along to some underlying application. Given the nature of applications present in the world, this
can be a difficult task if you want to be compatible with a large number of PC applications. The problems,
and some solutions, appear in

• “Simulating Keystrokes” on page 1186
• “Stuffing Characters in the Type Ahead Buffer” on page 1186
• “Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions” on page 1187
• “Using the 8042 Microcontroller to Simulate Keystrokes” on page 1192

Chapter 20

Page 1198

Page 1199

The PC Parallel Ports Chapter 21

The original IBM PC design provided support for three parallel printer ports that IBM designated
LPT1:, LPT2:, and LPT3:

1

. IBM probably envisioned machines that could support a standard dot matrix
printer, a daisy wheel printer, and maybe some other auxiliary type of printer for different purposes, all on
the same machine (laser printers were still a few years in the future at that time). Surely IBM did not antic-
ipate the general use that parallel ports have received or they would probably have designed them differ-
ently. Today, the PC’s parallel port controls keyboards, disk drives, tape drives, SCSI adapters, ethernet
(and other network) adapters, joystick adapters, auxiliary keypad devices, other miscellaneous devices,
and, oh yes, printers. This chapter will not attempt to describe how to use the parallel port for all these var-
ious purposes – this book is long enough already. However, a thorough discussion of how the parallel
interface controls a printer and one other application of the parallel port (cross machine communication)
should provide you with enough ideas to implement the next great parallel device.

21.1 Basic Parallel Port Information

There are two basic data transmission methods modern computes employ: parallel data transmission
and serial data transmission. In a serial data transmission scheme (see “The PC Serial Ports” on page 1223)
one device sends data to another a single bit at a time across one wire. In a parallel transmission scheme,
one device sends data to another several bits at a time (in parallel) on several different wires. For example,
the PC’s parallel port provides eight data lines compared to the serial port’s single data line. Therefore, it
would seem that the parallel port would be able to transmit data eight times as fast since there are eight
times as many wires in the cable. Likewise, it would seem that a serial cable, for the same price as a paral-
lel cable, would be able to go eight times as far since there are fewer wires in the cable. And these are the
common trade-offs typically given for parallel vs. serial communication methods: speed vs. cost.

In practice, parallel communications is not eight times faster than serial communications, nor do par-
allel cables cost eight times as much. In generally, those who design serial cables (.e.g, ethernet cables)
use higher materials and shielding. This raises the cost of the cable, but allows devices to transmit data, still
a bit at a time, much faster. Furthermore, the better cable design allows greater distances between devices.
Parallel cables, on the other hand, are generally quite inexpensive and designed for very short connec-
tions (generally no more than about six to ten feet). The real world problems of electrical noise and
cross-talk create problems when using long parallel cables and limit how fast the system can transmit data.
In fact the original Centronics printer port specification called for no more than 1,000 characters/second
data transmission rate, so many printers were designed to handle data at this transmission rate. Most paral-
lel ports can easily outperform this value; however, the limiting factor is still the cable, not any intrinsic
limitation in a modern computer.

Although a parallel communication system could use any number of wires to transmit data, most par-
allel systems use eight data lines to transmit a byte at a time. There are a few notable exceptions. For
example, the SCSI interface is a parallel interface, yet newer versions of the SCSI standard allow eight, six-
teen, and even thirty-two bit data transfers. In this chapter we will concentrate on byte-sized transfers
since the parallel port on the PC provides for eight-bit data.

A typical parallel communication system can be one way (or

unidirectional

) or two way
(

bidirectional

). The PC’s parallel port generally supports unidirectional communications (from the PC to
the printer), so we will consider this simpler case first.

In a unidirectional parallel communication system there are two distinguished sites: the transmitting
site and the receiving site. The transmitting site places its data on the data lines and informs the receiving
site that data is available; the receiving site then reads the data lines and informs the transmitting site that it

1. In theory, the BIOS allows for a fourth parallel printer port, LPT4:, but few (if any) adapter cards have ever been built that claim to work as LPT4:.

Thi d t t d ith F M k 4 0 2

Chapter 21

Page 1200

has taken the data. Note how the two sites synchronize their access to the data lines – the receiving site
does not read the data lines until the transmitting site tells it to, the transmitting site does not place a new
value on the data lines until the receiving site removes the data and tells the transmitting site that it has the
data.

Handshaking

 is the term that describes how these two sites coordinate the data transfer.

To properly implement handshaking requires two additional lines. The

strobe

 (or data strobe) line is
what the transmitting site uses to tell the receiving site that data is available. The

acknowledge

 line is what
the receiving site uses to tell the transmitting site that it has taken the data and is ready for more. The PC’s
parallel port actually provides a third handshaking line,

busy

, that the receiving site can use to tell the
transmitting site that it is busy and the transmitting site should not attempt to send data. A typical data
transmission session looks something like the following:

Transmitting site:

1) The transmitting site checks the busy line to see if the receiving is busy. If the busy line is active,
the transmitter waits in a loop until the busy line becomes inactive.

2) The transmitting site places its data on the data lines.

3) The transmitting site activates the strobe line.

4) The transmitting site waits in a loop for the acknowledge line to become active.

5) The transmitting site sets the strobe inactive.

6) The transmitting site waits in a loop for the acknowledge line to become inactive.

7) The transmitting site repeats steps one through six for each byte it must transmit.

Receiving site:

1) The receiving site sets the busy line inactive (assuming it is ready to accept data).

2) The receiving site waits in a loop until the strobe line becomes active.

3) The receiving site reads the data from the data lines (and processes the data, if necessary).

4) The receiving site activates the acknowledge line.

5) The receiving site waits in a loop until the strobe line goes inactive.

6) The receiving site sets the acknowledge line inactive.

7) The receiving site repeats steps one through six for each additional byte it must receive.

By carefully following these steps, the receiving and transmitting sites carefully coordinate their actions so
the transmitting site doesn’t attempt to put several bytes on the data lines before the receiving site con-
sumes them and the receiving site doesn’t attempt to read data that the transmitting site has not sent.

Bidirectional data transmission is often nothing more than two unidirectional data transfers with the
roles of the transmitting and receiving sites reversed for the second communication channel. Some PC par-
allel ports (particularly on PS/2 systems and many notebooks) provide a bidirectional parallel port. Bidi-
rectional data transmission on such hardware is slightly more complex than on systems that implement
bidirectional communication with two unidirectional ports. Bidirectional communication on a bidirec-
tional parallel port requires an extra set of control lines so the two sites can determine who is writing to the
common data lines at any one time.

The PC Parallel Ports

Page 1201

21.2 The Parallel Port Hardware

The standard unidirectional parallel port on the PC provides more than the 11 lines described in the
previous section (eight data, three handshake). The PC’s parallel port provides the following signals:

Note that the parallel port provides 12 output lines (eight data lines, strobe, autofeed, init, and select
input) and five input lines (acknowledge, busy, out of paper, select, and error). Even though the port is
unidirectional, there is a good mixture of input and output lines available on the port. Many devices (like
disk and tape drives) that require bidirectional data transfer use these extra lines to perform bidirectional
data transfer.

On bidirectional parallel ports (found on PS/2 and laptop systems), the strobe and data lines are both
input and output lines. There is a bit in a control register associated with the parallel port that selects the
transfer direction at any one given instant (you cannot transfer data in both direction simultaneously).

There are three I/O addresses associated with a typical PC compatible parallel port. These addresses
belong to the

data register, the status register,

and

the control register

. The data register is an eight-bit
read/write port. Reading the data register (in a unidirectional mode) returns the value last written to the
data register. The control and status registers provide the interface to the other I/O lines. The organization
of these ports is as follows:

Table 79: Parallel Port Signals

Pin Number on
Connector

I/O
Direction

Active
Polarity

Signal
Description

1 output 0 Strobe (data available signal).

2-9 output - Data lines (bit 0 is pin 2, bit 7 is pin 9).

10 input 0 Acknowledge line (active when remote system has taken data).

11 input 0 Busy line (when active, remote system is busy and cannot accept data).

12 input 1 Out of paper (when active, printer is out of paper).

13 input 1 Select. When active, the printer is selected.

14 output 0 Autofeed. When active, the printer automatically inserts a line feed after
every carriage return it receives.

15 input 0 Error. When active, there is a printer error.

16 output 0 Init. When held active for at least 50

µ

sec, this signal causes the printer to
initialize itself.

17 output 0 Select input. This signal, when inactive, forces the printer off-line

18-25 - - Signal ground.

Unused
Printer ackon PS/2 systems (active if zero)
Device error (active if zero)
Device selected (selected if one)
Device out of paper (out of paper if one)
Printer acknowledge (ack if zero)
Printer busy (busy if zero)

Parallel Port Status Register (read only)

7 6 5 4 3 2 1 0

Chapter 21

Page 1202

Bit two (printer acknowledge) is available only on PS/2 and other systems that support a bidirectional
printer port. Other systems do not use this bit.

The parallel port control register is an output register. Reading this location returns the last value written to
the control register

except for bit five

 that is write only. Bit five, the data direction bit, is available only on
PS/2 and other systems that support a bidirectional parallel port. If you write a zero to this bit, the strobe
and data lines are output bits, just like on the unidirectional parallel port. If you write a one to this bit, then
the data and strobe lines are inputs. Note that in the input mode (bit 5 = 1), bit zero of the control register
is actually an input. Note: writing a one to bit four of the control register enables the printer IRQ (IRQ 7).
However, this feature does not work on all systems so very few programs attempt to use interrupts with
the parallel port. When active, the parallel port will generate an int 0Fh whenever the printer acknowl-
edges a data transmission.

Since the PC supports up to three separate parallel ports, there could be as many as three sets of these
parallel port registers in the system at any one time. There are three

parallel port base addresses

 associ-
ated with the three possible parallel ports: 3BCh, 378h, and 278h. We will refer to these as the base
addresses for LPT1:, LPT2:, and LPT3:, respectively. The parallel port data register is always located at the
base address for a parallel port, the status register appears at the base address plus one, and the control
register appears at the base address plus two. For example, for LPT1:, the data register is at I/O address
3BCh, the status register is at I/O address 3BDh, and the control register is at I/O address 3BEh.

There is one minor glitch. The I/O addresses for LPT1:, LPT2:, and LPT3: given above are the

physical
addresses

 for the parallel ports. The BIOS provides

logical addresses

 for these parallel ports as well. This
lets users remap their printers (since most software only writes to LPT1:). To accomplish this, the BIOS
reserves eight bytes in the BIOS variable space (40:8, 40:0A, 40:0C, and 40:0E). Location 40:8 contains the
base address for logical LPT1:, location 40:0A contains the base address for logical LPT2:, etc. When soft-
ware accesses LPT1:, LPT2:, etc., it generally accesses the parallel port whose base address appears in one
of these locations.

21.3 Controlling a Printer Through the Parallel Port

Although there are many devices that connect to the PC’s parallel port, printers still make up the vast
number of such connections. Therefore, describing how to control a printer from the PC’s parallel port is
probably the best first example to present. As with the keyboard, your software can operate at three differ-
ent levels: it can print data using DOS, using BIOS, or by writing directly to the parallel port hardware. As
with the keyboard interface, using DOS or BIOS is the best approach if you want to maintain compatibility
with other devices that plug into the parallel port

2

. Of course, if you are controlling some other type of

2. Many devices connect to the parallel port with a pass-through plug allowing you to use that device and still use the parallel port for your printer.
However, if you talk directly to the parallel port with your software, it may conflict with that device’s operation.

Strobe (data available = 1)
Autofeed (add linefeed = 1)
Init (initialize printer = 0)
Select input (On-line = 1)
Enable parallel port IRQ (active if 1)
PS/2 Data direction (output = 0, input = 1)
Unused

Parallel Port Control Register

7 6 5 4 3 2 1 0

The PC Parallel Ports

Page 1203

device, going directly to the hardware is your only choice. However, the BIOS provides good printer sup-
port, so going directly to the hardware is rarely necessary if you simply want to send data to the printer.

21.3.1 Printing via DOS

MS-DOS provides two calls you can use to send data to the printer. DOS function 05h writes the char-
acter in the

dl

 register directly to the printer. Function 40h, with a file handle of 04h, also sends data to the
printer. Since the chapter on DOS and BIOS fully describes these functions, we will not discuss them any
further here. For more information, see “MS-DOS, PC-BIOS, and File I/O” on page 699 .

21.3.2 Printing via BIOS

Although DOS provides a reasonable set of functions to send characters to the printer, it does not pro-
vide functions to let you initialize the printer or obtain the current printer status. Furthermore, DOS only
prints to LPT1:. The PC’s int 17h BIOS routine provides three functions, print, initialize, and status. You
can apply these functions to any supported parallel port on the system. The print function is roughly
equivalent to DOS’ print character function. The initialize function initializes the printer using system
dependent timing information. The printer status returns the information from the printer status port along
with time-out information. For more information on these routines, see “MS-DOS, PC-BIOS, and File I/O”
on page 699.

21.3.3 An INT 17h Interrupt Service Routine

Perhaps the best way to see how the BIOS functions operate is to write a replacement int 17h ISR for
a printer. This section explains the handshaking protocol and variables the printer driver uses. It also
describes the operation and return results associated with each machine.

There are eight variables in the BIOS variable space (segment 40h) the printer driver uses. The fol-
lowing table describes each of these variables:

You will notice a slight deviation in the handshake protocol in the following code. This printer driver
does not wait for an acknowledge from the printer

after

 sending a character. Instead, it checks to see if

Table 80: BIOS Parallel Port Variables

Address Description

40:08 Base address of LPT1: device.

40:0A Base address of LPT2: device.

40:0C Base address of LPT3: device.

40:0E Base address of LPT4: device.

40:78 LPT1: time-out value. The printer port driver software should return an
error if the printer device does not respond in a reasonable amount of
time. This variable (if non-zero) determines how many loops of 65,536
iterations each a driver will wait for a printer acknowledge. If zero, the
driver will wait forever.

40:79 LPT2: time-out value. See description above.

40:7A LPT3: time-out value. See description above.

40:7B LPT4: time-out value. See description above.

Chapter 21

Page 1204

the printer has sent an acknowledge to the previous character

before

 sending a character. This saves a
small amount of time because the program printer then characters can continue to operating in parallel
with the receipt of the acknowledge from the printer. You will also notice that this particular driver does
not monitor the busy lines. Almost every printer in existence leaves this line inactive (not busy), so there is
no need to check it. If you encounter a printer than does manipulate the busy line, the modification to this
code is trivial. The following code implements the int 17h service:

; INT17.ASM
;
; A short passive TSR that replaces the BIOS’ int 17h handler.
; This routine demonstrates the function of each of the int 17h
; functions that a standard BIOS would provide.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

OldInt17 dword ?

; BIOS variables:

PrtrBase equ 8
PrtrTimeOut equ 78h

; This code handles the INT 17H operation. INT 17H is the BIOS routine
; to send data to the printer and report on the printer’s status. There
; are three different calls to this routine, depending on the contents
; of the AH register. The DX register contains the printer port number.
;
; DX=0 -- Use LPT1:
; DX=1 -- Use LPT2:
; DX=2 -- Use LPT3:
; DX=3 -- Use LPT4:
;
; AH=0 -- Print the character in AL to the printer. Printer status is
; returned in AH. If bit #0 = 1 then a timeout error occurred.
;
; AH=1 -- Initialize printer. Status is returned in AH.
;
; AH=2 -- Return printer status in AH.
;
;
; The status bits returned in AH are as follows:
;

The PC Parallel Ports

Page 1205

; Bit Function Non-error values
; --- -------------------------- ----------------
; 0 1=time out error 0
; 1 unused x
; 2 unused x
; 3 1=I/O error 0
; 4 1=selected, 0=deselected. 1
; 5 1=out of paper 0
; 6 1=acknowledge x
; 7 1=not busy x
;
; Note that the hardware returns bit 3 with zero if an error has occurred,
; with one if there is no error. The software normally inverts this bit
; before returning it to the caller.
;
;
; Printer port hardware locations:
;
; There are three ports used by the printer hardware:
;
; PrtrPortAdrs --- Output port where data is sent to printer (8 bits).
; PrtrPortAdrs+1 --- Input port where printer status can be read (8 bits).
; PrtrPortAdrs+2 --- Output port where control information is sent to the
; printer.
;
; Data output port- 8-bit data is transmitted to the printer via this port.
;
; Input status port:
; bit 0: unused.
; bit 1: unused.
; bit 2: unused.
;
; bit 3: -Error, normally this bit means that the
; printer has encountered an error. However,
; with the P101 installed this is a data
; return line for the keyboard scan.
;
; bit 4: +SLCT, normally this bit is used to determine
; if the printer is selected or not. With the
; P101 installed this is a data return
; line for the keyboard scan.
;
; bit 5: +PE, a 1 in this bit location means that the
; printer has detected the end of paper. On
; many printer ports, this bit has been found
; to be inoperative.
;
; bit 6: -ACK, A zero in this bit position means that
; the printer has accepted the last character
; and is ready to accept another. This bit
; is not normally used by the BIOS as bit 7
; also provides this function (and more).
;
; bit 7: -Busy, When this signal is active (0) the
; printer is busy and cannot accept data.
; When this bit is set to one, the printer
; can accept another character.
;
;
;
; Output control port:
;
; Bit 0: +Strobe, A 0.5 us (minimum) active high pulse
; on this bit clocks the data latched into the
; printer data output port to the printer.
;
; Bit 1: +Auto FD XT - A 1 stored at this bit causes
; the printer to line feed after a line is
; printed. On some printer interfaces (e.g.,
; the Hercules Graphics Card) this bit is
; inoperative.
;
; Bit 2: -INIT, a zero on this bit (for a minimum of
; 50 us) will cause the printer to (re)init-

Chapter 21

Page 1206

; ialize itself.
;
; Bit 3: +SLCT IN, a one in this bit selects the
; printer. A zero will cause the printer to
; go off-line.
;
; Bit 4: +IRQ ENABLE, a one in this bit position
; allows an interrupt to occur when -ACK
; changes from one to zero.
;
; Bit 5: Direction control on BI-DIR port. 0=output,
; 1=input.
; Bit 6: reserved, must be zero.
; Bit 7: reserved, must be zero.

MyInt17 proc far
assume ds:nothing

push ds
push bx
push cx
push dx

mov bx, 40h ;Point DS at BIOS vars.
mov ds, bx

cmp dx, 3 ;Must be LPT1..LPT4.
ja InvalidPrtr

cmp ah, 0 ;Branch to the appropriate code for
jz PrtChar ; the printer function
cmp ah, 2
jb PrtrInit
je PrtrStatus

; If they passed us an opcode we don’t know about, just return.

InvalidPrtr: jmp ISR17Done

; Initialize the printer by pulsing the init line for at least 50 us.
; The delay loop below will delay well beyond 50 usec even on the fastest
; machines.

PrtrInit: mov bx, dx ;Get printer port value.
shl bx, 1 ;Convert to byte index.
mov dx, PrtrBase[bx] ;Get printer base address.
test dx, dx ;Does this printer exist?
je InvalidPrtr ;Quit if no such printer.
add dx, 2 ;Point dx at control reg.
in al, dx ;Read current status.
and al, 11011011b ;Clear INIT/BIDIR bits.
out dx, al ;Reset printer.
mov cx, 0 ;This will produce at least

PIDelay: loop PIDelay ; a 50 usec delay.
or al, 100b ;Stop resetting printer.
out dx, al
jmp ISR17Done

; Return the current printer status. This code reads the printer status
; port and formats the bits for return to the calling code.

PrtrStatus: mov bx, dx ;Get printer port value.
shl bx, 1 ;Convert to byte index.
mov dx, PrtrBase[bx] ;Base address of printer port.
mov al, 00101001b ;Dflt: every possible error.
test dx, dx ;Does this printer exist?
je InvalidPrtr ;Quit if no such printer.
inc dx ;Point at status port.
in al, dx ;Read status port.
and al, 11111000b ;Clear unused/timeout bits.
jmp ISR17Done

The PC Parallel Ports

Page 1207

; Print the character in the accumulator!

PrtChar: mov bx, dx
mov cl, PrtrTimeOut[bx] ;Get time out value.
shl bx, 1 ;Convert to byte index.
mov dx, PrtrBase[bx] ;Get Printer port address
or dx, dx ;Non-nil pointer?
jz NoPrtr2 ; Branch if a nil ptr

; The following code checks to see if an acknowlege was received from
; the printer. If this code waits too long, a time-out error is returned.
; Acknowlege is supplied in bit #7 of the printer status port (which is
; the next address after the printer data port).

push ax
inc dx ;Point at status port
mov bl, cl ;Put timeout value in bl
mov bh, cl ; and bh.

WaitLp1: xor cx, cx ;Init count to 65536.
WaitLp2: in al, dx ;Read status port

mov ah, al ;Save status for now.
test al, 80h ;Printer acknowledge?
jnz GotAck ;Branch if acknowledge.
loop WaitLp2 ;Repeat 65536 times.
dec bl ;Decrement time out value.
jnz WaitLp1 ;Repeat 65536*TimeOut times.

; See if the user has selected no timeout:

cmp bh, 0
je WaitLp1

; TIMEOUT ERROR HAS OCCURRED!
;
; A timeout - I/O error is returned to the system at this point.
; Either we fall through to this point from above (time out error) or
; the referenced printer port doesn’t exist. In any case, return an error.

NoPrtr2: or ah, 9 ;Set timeout-I/O error flags
and ah, 0F9h ;Turn off unused flags.
xor ah, 40h ;Flip busy bit.

; Okay, restore registers and return to caller.

pop cx ;Remove old ax.
mov al, cl ;Restore old al.
jmp ISR17Done

; If the printer port exists and we’ve received an acknowlege, then it’s
; okay to transmit data to the printer. That job is handled down here.

GotAck: mov cx, 16 ;Short delay if crazy prtr
GALp: loop GALp ; needs hold time after ack.

pop ax ;Get char to output and
push ax ; save again.
dec dx ;Point DX at printer port.
pushf ;Turn off interrupts for now.
cli
out dx, al ;Output data to the printer.

; The following short delay gives the data time to travel through the
; parallel lines. This makes sure the data arrives at the printer before
; the strobe (the times can vary depending upon the capacitance of the
; parallel cable’s lines).

mov cx, 16 ;Give data time to settle
DataSettleLp: loop DataSettleLp ; before sending strobe.

; Now that the data has been latched on the printer data output port, a
; strobe must be sent to the printer. The strobe line is connected to

Chapter 21

Page 1208

; bit zero of the control port. Also note that this clears bit 5 of the
; control port. This ensures that the port continues to operate as an
; output port if it is a bidirectional device. This code also clears bits
; six and seven which IBM claims should be left zero.

inc dx ;Point DX at the printer
inc dx ; control output port.
in al, dx ;Get current control bits.
and al, 01eh ;Force strobe line to zero and
out dx, al ; make sure it’s an output port.

mov cx, 16 ;Short delay to allow data
Delay0: loop Delay0 ; to become good.

or al, 1 ;Send out the (+) strobe.
out dx, al ;Output (+) strobe to bit 0

mov cx, 16 ;Short delay to lengthen strobe
StrobeDelay: loop StrobeDelay

and al, 0FEh ;Clear the strobe bit.
out dx, al ;Output to control port.
popf ;Restore interrupts.

pop dx ;Get old AX value
mov al, dl ;Restore old AL value

ISR17Done: pop dx
pop cx
pop bx
pop ds
iret

MyInt17 endp

Main proc

mov ax, cseg
mov ds, ax

print
byte “INT 17h Replacement”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 17 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 17 value directly into
; the OldInt17 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[17h*4]
mov word ptr OldInt17, ax
mov ax, es:[17h*4 + 2]
mov word ptr OldInt17+2, ax
mov es:[17h*4], offset MyInt17
mov es:[17h*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.

The PC Parallel Ports

Page 1209

int 21h
Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

21.4 Inter-Computer Communications on the Parallel Port

Although printing is, by far, the most popular use for the parallel port on a PC, many devices use the
parallel port for other purposes, as mentioned earlier. It would not be fitting to close this chapter without
at least one example of a non-printer application for the parallel port. This section will describe how to get
two computers to transmit files from one to the other across the parallel port.

The Laplink

 program from Travelling Software is a good example of a commercial product that can
transfer data across the PC’s parallel port; although the following software is not as robust or feature laden
as Laplink, it does demonstrate the basic principles behind such software.

Note that you cannot connect two computer’s parallel ports with a simple cable that has DB25 con-
nectors at each end. In fact, doing so could damage the computers’ parallel ports because you’d be con-
necting digital outputs to digital outputs (a real no-no). However, you purchase “Laplink compatible”
cables (or buy

real

 Laplink cables for that matter) the provide proper connections between the parallel
ports of two computers. As you may recall from the section on the parallel port hardware, the unidirec-
tional parallel port provides five input signals. A Laplink cable routes four of the data lines to four of these
input lines in both directions. The connections on a Laplink compatible cable are as follows:

Data written on bits zero through three of the data register at the transmitting site appear, unchanged,
on bits three through six of the status port on the receiving site. Bit four of the transmitting site appears,
inverted, at bit seven of the receiving site. Note that Laplink compatible cables are bidirectional. That is,
you can transmit data from either site to the other using the connections above. However, since there are
only five input bits on the parallel port, you must transfer the data four bits at a time (we need one bit for
the data strobe). Since the receiving site needs to acknowledge data transmissions, we cannot simulta-
neously transmit data in both directions. We must use one of the output lines at the site receiving data to
acknowledge the incoming data.

Data bit 4

Data bit 3

Data bit 2

Data bit 1

Data bit 0

Busy (inverted)

Acknowledge

Paper Empty

Select

Error

Connections on a Laplink Compatible Cable

Transmitting Site Receiving Site

Chapter 21

Page 1210

Since the two sites cooperating in a data transfer across the parallel cable must take turns transmitting
and receiving data, we must develop a

protocol

 so each participant in the data transfer knows when it is
okay to transmit and receive. Our protocol will be very simple – a site is either a transmitter or a receiver,
the roles will never switch. Designing a more complex protocol is not difficult, but this simple protocol
will suffice for the example you are about to see. Later in this section we will discuss ways to develop a
protocol that allows two-way transmissions.

The following example programs will transmit and receive a single file across the parallel port. To use
this software, you run the

transmit

 program on the transmitting site and the

receive

 program on the
receiving site. The transmission program fetches a file name from the DOS command line and opens that
file for reading (generating an error, and quitting, if the file does not exist). Assuming the file exists, the
transmit program then queries the receiving site to see if it is available. The transmitter checks for the pres-
ence of the receiving site by alternately writing zeros and ones to all output bits then reading its input bits.
The receiving site will invert these values and write them back when it comes on-line. Note that the order
of execution (transmitter first or receiver first) does not matter. The two programs will attempt to hand-
shake until the other comes on line.When both sites cycle through the inverting values three times, they
write the value 05h to their output ports to tell the other site they are ready to proceed. A time-out function
aborts either program if the other site does not respond in a reasonable amount of time.

Once the two sites are synchronized, the transmitting site determines the size of the file and then
transmits the file name and size to the receiving site. The receiving site then begins waiting for the receipt
of data.

The transmitting site sends the data 512 bytes at a time to the receiving site. After the transmission of
512 bytes, the receiving site delays sending an acknowledgment and writes the 512 bytes of data to the
disk. Then the receiving site sends the acknowledge and the transmitting site begins sending the next 512
bytes. This process repeats until the receiving site has accepted all the bytes from the file.

Here is the code for the transmitter:

; TRANSMIT.ASM
;
; This program is the transmitter portion of the programs that transmit files
; across a Laplink compatible parallel cable.
;
; This program assumes that the user want to use LPT1: for transmission.
; Adjust the equates, or read the port from the command line if this
; is inappropriate.

.286

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

TimeOutConst equ 4000 ;About 1 min on 66Mhz 486.
PrtrBase equ 10 ;Offset to LPT1: adrs.

MyPortAdrs word ? ;Holds printer port address.
FileHandle word ? ;Handle for output file.
FileBuffer byte 512 dup (?) ;Buffer for incoming data.

FileSize dword ? ;Size of incoming file.
FileNamePtr dword ? ;Holds ptr to filename

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; TestAbort- Check to see if the user has pressed ctrl-C and wants to
; abort this program. This routine calls BIOS to see if the

The PC Parallel Ports

Page 1211

; user has pressed a key. If so, it calls DOS to read the
; key (function AH=8, read a key w/o echo and with ctrl-C
; checking).

TestAbort proc near
push ax
push cx
push dx
mov ah, 1
int 16h ;See if keypress.
je NoKeyPress ;Return if no keypress.
mov ah, 8 ;Read char, chk for ctrl-C.
int 21h ;DOS aborts if ctrl-C.

NoKeyPress: pop dx
pop cx
pop ax
ret

TestAbort endp

; SendByte- Transmit the byte in AL to the receiving site four bits
; at a time.

SendByte proc near
push cx
push dx
mov ah, al ;Save byte to xmit.

mov dx, MyPortAdrs ;Base address of LPT1: port.

; First, just to be sure, write a zero to bit #4. This reads as a one
; in the busy bit of the receiver.

mov al, 0
out dx, al ;Data not ready yet.

; Wait until the receiver is not busy. The receiver will write a zero
; to bit #4 of its data register while it is busy. This comes out as a
; one in our busy bit (bit 7 of the status register). This loop waits
; until the receiver tells us its ready to receive data by writing a
; one to bit #4 (which we read as a zero). Note that we check for a
; ctrl-C every so often in the event the user wants to abort the
; transmission.

inc dx ;Point at status register.
W4NBLp: mov cx, 10000
Wait4NotBusy: in al, dx ;Read status register value.

test al, 80h ;Bit 7 = 1 if busy.
loopne Wait4NotBusy ;Repeat while busy, 10000 times.
je ItsNotbusy ;Leave loop if not busy.
call TestAbort ;Check for Ctrl-C.
jmp W4NBLp

; Okay, put the data on the data lines:

ItsNotBusy: dec dx ;Point at data register.
mov al, ah ;Get a copy of the data.
and al, 0Fh ;Strip out H.O. nibble
out dx, al ;”Prime” data lines, data not avail.
or al, 10h ;Turn data available on.
out dx, al ;Send data w/data available strobe.

; Wait for the acknowledge from the receiving site. Every now and then
; check for a ctrl-C so the user can abort the transmission program from
; within this loop.

inc dx ;Point at status register.
W4ALp: mov cx, 10000 ;Times to loop between ctrl-C checks.
Wait4Ack: in al, dx ;Read status port.

test al, 80h ;Ack = 1 when rcvr acknowledges.
loope Wait4Ack ;Repeat 10000 times or until ack.
jne GotAck ;Branch if we got an ack.
call TestAbort ;Every 10000 calls, check for a

Chapter 21

Page 1212

jmp W4ALp ; ctrl-C from the user.

; Send the data not available signal to the receiver:

GotAck: dec dx ;Point at data register.
mov al, 0 ;Write a zero to bit 4, this appears
out dx, al ; as a one in the rcvr’s busy bit.

; Okay, on to the H.O. nibble:

inc dx ;Point at status register.
W4NB2: mov cx, 10000 ;10000 calls between ctrl-C checks.
Wait4NotBsy2: in al, dx ;Read status register.

test al, 80h ;Bit 7 = 1 if busy.
loopne Wait4NotBsy2 ;Loop 10000 times while busy.
je NotBusy2 ;H.O. bit clear (not busy)?
call TestAbort ;Check for ctrl-C.
jmp W4NB2

; Okay, put the data on the data lines:

NotBusy2: dec dx ;Point at data register.
mov al, ah ;Retrieve data to get H.O. nibble.
shr al, 4 ;Move H.O. nibble to L.O. nibble.
out dx, al ;”Prime” data lines.
or al, 10h ;Data + data available strobe.
out dx, al ;Send data w/data available strobe.

; Wait for the acknowledge from the receiving site:

inc dx ;Point at status register.
W4A2Lp: mov cx, 10000
Wait4Ack2: in al, dx ;Read status port.

test al, 80h ;Ack = 1
loope Wait4Ack2 ;While while no acknowledge
jne GotAck2 ;H.O. bit = 1 (ack)?
call TestAbort ;Check for ctrl-C
jmp W4A2Lp

; Send the data not available signal to the receiver:

GotAck2: dec dx ;Point at data register.
mov al, 0 ;Output a zero to bit #4 (that
out dx, al ; becomes busy=1 at rcvr).

mov al, ah ;Restore original data in AL.
pop dx
pop cx
ret

SendByte endp

; Synchronization routines:
;
; Send0s- Transmits a zero to the receiver site and then waits to
; see if it gets a set of ones back. Returns carry set if
; this works, returns carry clear if we do not get a set of
; ones back in a reasonable amount of time.

Send0s proc near
push cx
push dx

mov dx, MyPortAdrs

mov al, 0 ;Write the initial zero
out dx, al ; value to our output port.

xor cx, cx ;Checks for ones 10000 times.
Wait41s: inc dx ;Point at status port.

in al, dx ;Read status port.
dec dx ;Point back at data port.

The PC Parallel Ports

Page 1213

and al, 78h ;Mask input bits.
cmp al, 78h ;All ones yet?
loopne Wait41s
je Got1s ;Branch if success.
clc ;Return failure.
pop dx
pop cx
ret

Got1s: stc ;Return success.
pop dx
pop cx
ret

Send0s endp

; Send1s- Transmits all ones to the receiver site and then waits to
; see if it gets a set of zeros back. Returns carry set if
; this works, returns carry clear if we do not get a set of
; zeros back in a reasonable amount of time.

Send1s proc near
push cx
push dx

mov dx, MyPortAdrs ;LPT1: base address.

mov al, 0Fh ;Write the “all ones”
out dx, al ; value to our output port.

mov cx, 0
Wait40s: inc dx ;Point at input port.

in al, dx ;Read the status port.
dec dx ;Point back at data port.
and al, 78h ;Mask input bits.
loopne Wait40s ;Loop until we get zero back.
je Got0s ;All zeros? If so, branch.
clc ;Return failure.
pop dx
pop cx
ret

Got0s: stc ;Return success.
pop dx
pop cx
ret

Send1s endp

; Synchronize-This procedure slowly writes all zeros and all ones to its
; output port and checks the input status port to see if the
; receiver site has synchronized. When the receiver site
; is synchronized, it will write the value 05h to its output
; port. So when this site sees the value 05h on its input
; port, both sites are synchronized. Returns with the
; carry flag set if this operation is successful, clear if
; unsuccessful.

Synchronize proc near
print
byte “Synchronizing with receiver program”
byte cr,lf,0

mov dx, MyPortAdrs

mov cx, TimeOutConst ;Time out delay.
SyncLoop: call Send0s ;Send zero bits, wait for

jc Got1s ; ones (carry set=got ones).

; If we didn’t get what we wanted, write some ones at this point and see
; if we’re out of phase with the receiving site.

Chapter 21

Page 1214

Retry0: call Send1s ;Send ones, wait for zeros.
jc SyncLoop ;Carry set = got zeros.

; Well, we didn’t get any response yet, see if the user has pressed ctrl-C
; to abort this program.

DoRetry: call TestAbort

; Okay, the receiving site has yet to respond. Go back and try this again.

loop SyncLoop

; If we’ve timed out, print an error message and return with the carry
; flag clear (to denote a timeout error).

print
byte “Transmit: Timeout error waiting for receiver”
byte cr,lf,0
clc
ret

; Okay, we wrote some zeros and we got some ones. Let’s write some ones
; and see if we get some zeros. If not, retry the loop.

Got1s:
call Send1s ;Send one bits, wait for
jnc DoRetry ; zeros (carry set=got zeros).

; Well, we seem to be synchronized. Just to be sure, let’s play this out
; one more time.

call Send0s ;Send zeros, wait for ones.
jnc Retry0
call Send1s ;Send ones, wait for zeros.
jnc DoRetry

; We’re syncronized. Let’s send out the 05h value to the receiving
; site to let it know everything is cool:

mov al, 05h ;Send signal to receiver to
out dx, al ; tell it we’re sync’d.

xor cx, cx ;Long delay to give the rcvr
FinalDelay: loop FinalDelay ; time to prepare.

print
byte “Synchronized with receiving site”
byte cr,lf,0
stc
ret

Synchronize endp

; File I/O routines:
;
; GetFileInfo-Opens the user specified file and passes along the file
; name and file size to the receiving site. Returns the
; carry flag set if this operation is successful, clear if
; unsuccessful.

GetFileInfo proc near

; Get the filename from the DOS command line:

mov ax, 1
argv
mov word ptr FileNamePtr, di
mov word ptr FileNamePtr+2, es

printf
byte “Opening %^s\n”,0
dword FileNamePtr

The PC Parallel Ports

Page 1215

; Open the file:

push ds
mov ax, 3D00h ;Open for reading.
lds dx, FileNamePtr
int 21h
pop ds
jc BadFile
mov FileHandle, ax

; Compute the size of the file (do this by seeking to the last position
; in the file and using the return position as the file length):

mov bx, ax ;Need handle in BX.
mov ax, 4202h ;Seek to end of file.
xor cx, cx ;Seek to position zero
xor dx, dx ; from the end of file.
int 21h
jc BadFile

; Save final position as file length:

mov word ptr FileSize, ax
mov word ptr FileSize+2, dx

; Need to rewind file back to the beginning (seek to position zero):

mov bx, FileHandle ;Need handle in BX.
mov ax, 4200h ;Seek to beginning of file.
xor cx, cx ;Seek to position zero
xor dx, dx
int 21h
jc BadFile

; Okay, transmit the good stuff over to the receiving site:

mov al, byte ptr FileSize ;Send the file
call SendByte ; size over.
mov al, byte ptr FileSize+1
call SendByte
mov al, byte ptr FileSize+2
call SendByte
mov al, byte ptr FileSize+3
call SendByte

les bx, FileNamePtr ;Send the characters
SendName: mov al, es:[bx] ; in the filename to

call SendByte ; the receiver until
inc bx ; we hit a zero byte.
cmp al, 0
jne SendName
stc ;Return success.
ret

BadFile: print
byte “Error transmitting file information:”,0
puti
putcr
clc
ret

GetFileInfo endp

; GetFileData-This procedure reads the data from the file and transmits
; it to the receiver a byte at a time.

GetFileData proc near
mov ah, 3Fh ;DOS read opcode.
mov cx, 512 ;Read 512 bytes at a time.
mov bx, FileHandle ;File to read from.
lea dx, FileBuffer ;Buffer to hold data.
int 21h ;Read the data

Chapter 21

Page 1216

jc GFDError ;Quit if error reading data.

mov cx, ax ;Save # of bytes actually read.
jcxz GFDDone ; quit if at EOF.
lea bx, FileBuffer ;Send the bytes in the file

XmitLoop: mov al, [bx] ; buffer over to the rcvr
call SendByte ; one at a time.
inc bx
loop XmitLoop
jmp GetFileData ;Read rest of file.

GFDError: print
byte “DOS error #”,0
puti
print
byte “ while reading file”,cr,lf,0

GFDDone: ret
GetFileData endp

; Okay, here’s the main program that controls everything.

Main proc
mov ax, dseg
mov ds, ax
meminit

; First, get the address of LPT1: from the BIOS variables area.

mov ax, 40h
mov es, ax
mov ax, es:[PrtrBase]
mov MyPortAdrs, ax

; See if we have a filename parameter:

argc
cmp cx, 1
je GotName
print
byte “Usage: transmit <filename>”,cr,lf,0
jmp Quit

GotName: call Synchronize ;Wait for the transmitter program.
jnc Quit

call GetFileInfo ;Get file name and size.
jnc Quit

call GetFileData ;Get the file’s data.

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

The PC Parallel Ports

Page 1217

Here is the receiver program that accepts and stores away the data sent by the program above:

; RECEIVE.ASM
;
; This program is the receiver portion of the programs that transmit files
; across a Laplink compatible parallel cable.
;
; This program assumes that the user want to use LPT1: for transmission.
; Adjust the equates, or read the port from the command line if this
; is inappropriate.

.286

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

TimeOutConst equ 100 ;About 1 min on 66Mhz 486.
PrtrBase equ 8 ;Offset to LPT1: adrs.

MyPortAdrs word ? ;Holds printer port address.
FileHandle word ? ;Handle for output file.
FileBuffer byte 512 dup (?) ;Buffer for incoming data.

FileSize dword ? ;Size of incoming file.
FileName byte 128 dup (0) ;Holds filename

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; TestAbort- Reads the keyboard and gives the user the opportunity to
; hit the ctrl-C key.

TestAbort proc near
push ax
mov ah, 1
int 16h ;See if keypress.
je NoKeypress
mov ah, 8 ;Read char, chk for ctrl-C
int 21h

NoKeyPress: pop ax
ret

TestAbort endp

; GetByte- Reads a single byte from the parallel port (four bits at
; at time). Returns the byte in AL.

GetByte proc near
push cx
push dx

; Receive the L.O. Nibble.

mov dx, MyPortAdrs
mov al, 10h ;Signal not busy.
out dx, al

inc dx ;Point at status port

W4DLp: mov cx, 10000
Wait4Data: in al, dx ;See if data available.

test al, 80h ; (bit 7=0 if data available).
loopne Wait4Data
je DataIsAvail ;Is data available?
call TestAbort ;If not, check for ctrl-C.

Chapter 21

Page 1218

jmp W4DLp

DataIsAvail: shr al, 3 ;Save this four bit package
and al, 0Fh ; (This is the L.O. nibble
mov ah, al ; for our byte).

dec dx ;Point at data register.
mov al, 0 ;Signal data taken.
out dx, al

inc dx ;Point at status register.
W4ALp: mov cx, 10000
Wait4Ack: in al, dx ;Wait for transmitter to

test al, 80h ; retract data available.
loope Wait4Ack ;Loop until data not avail.
jne NextNibble ;Branch if data not avail.
call TestAbort ;Let user hit ctrl-C.
jmp W4ALp

; Receive the H.O. nibble:

NextNibble: dec dx ;Point at data register.
mov al, 10h ;Signal not busy
out dx, al
inc dx ;Point at status port

W4D2Lp: mov cx, 10000
Wait4Data2: in al, dx ;See if data available.

test al, 80h ; (bit 7=0 if data available).
loopne Wait4Data2 ;Loop until data available.
je DataAvail2 ;Branch if data available.
call TestAbort ;Check for ctrl-C.
jmp W4D2Lp

DataAvail2: shl al, 1 ;Merge this H.O. nibble
and al, 0F0h ; with the existing L.O.
or ah, al ; nibble.
dec dx ;Point at data register.
mov al, 0 ;Signal data taken.
out dx, al

inc dx ;Point at status register.
W4A2Lp: mov cx, 10000
Wait4Ack2: in al, dx ;Wait for transmitter to

test al, 80h ; retract data available.
loope Wait4Ack2 ;Wait for data not available.
jne ReturnData ;Branch if ack.
call TestAbort ;Check for ctrl-C
jmp W4A2Lp

ReturnData: mov al, ah ;Put data in al.
pop dx
pop cx
ret

GetByte endp

; Synchronize-This procedure waits until it sees all zeros on the input
; bits we receive from the transmitting site. Once it receives
; all zeros, it writes all ones to the output port. When
; all ones come back, it writes all zeros. It repeats this
; process until the transmitting site writes the value 05h.

Synchronize proc near

print
byte “Synchronizing with transmitter program”
byte cr,lf,0

mov dx, MyPortAdrs
mov al, 0 ;Initialize our output port
out dx, al ; to prevent confusion.
mov bx, TimeOutConst ;Time out condition.

The PC Parallel Ports

Page 1219

SyncLoop: mov cx, 0 ;For time out purposes.
SyncLoop0: inc dx ;Point at input port.

in al, dx ;Read our input bits.
dec dx
and al, 78h ;Keep only the data bits.
cmp al, 78h ;Check for all ones.
je Got1s ;Branch if all ones.
cmp al, 0 ;See if all zeros.
loopne SyncLoop0

; Since we just saw a zero, write all ones to the output port.

mov al, 0FFh ;Write all ones
out dx, al

; Now wait for all ones to arrive from the transmitting site.

SyncLoop1: inc dx ;Point at status register.
in al, dx ;Read status port.
dec dx ;Point back at data register.
and al, 78h ;Keep only the data bits.
cmp al, 78h ;Are they all ones?
loopne SyncLoop1 ;Repeat while not ones.
je Got1s ;Branch if got ones.

; If we’ve timed out, check to see if the user has pressed ctrl-C to
; abort.

call TestAbort ;Check for ctrl-C.
dec bx ;See if we’ve timed out.
jne SyncLoop ;Repeat if time-out.

print
byte “Receive: connection timed out during synchronization”
byte cr,lf,0
clc ;Signal time-out.
ret

; Jump down here once we’ve seen both a zero and a one. Send the two
; in combinations until we get a 05h from the transmitting site or the
; user presses Ctrl-C.

Got1s: inc dx ;Point at status register.
in al, dx ;Just copy whatever appears
dec dx ; in our input port to the
shr al, 3 ; output port until the
and al, 0Fh ; transmitting site sends
cmp al, 05h ; us the value 05h
je Synchronized
not al ;Keep inverting what we get
out dx, al ; and send it to xmitter.
call TestAbort ;Check for CTRL-C here.
jmp Got1s

; Okay, we’re synchronized. Return to the caller.

Synchronized:
and al, 0Fh ;Make sure busy bit is one
out dx, al ; (bit 4=0 for busy=1).
print
byte “Synchronized with transmitting site”
byte cr,lf,0
stc
ret

Synchronize endp

; GetFileInfo-The transmitting program sends us the file length and a
; zero terminated filename. Get that data here.

GetFileInfo proc near
mov dx, MyPortAdrs
mov al, 10h ;Set busy bit to zero.

Chapter 21

Page 1220

out dx, al ;Tell xmit pgm, we’re ready.

; First four bytes contain the filesize:

call GetByte
mov byte ptr FileSize, al
call GetByte
mov byte ptr FileSize+1, al
call GetByte
mov byte ptr FileSize+2, al
call GetByte
mov byte ptr FileSize+3, al

; The next n bytes (up to a zero terminating byte) contain the filename:

mov bx, 0
GetFileName: call GetByte

mov FileName[bx], al
call TestAbort
inc bx
cmp al, 0
jne GetFileName

ret
GetFileInfo endp

; GetFileData-Receives the file data from the transmitting site
; and writes it to the output file.

GetFileData proc near

; First, see if we have more than 512 bytes left to go

cmp word ptr FileSize+2, 0 ;If H.O. word is not
jne MoreThan512 ; zero, more than 512.
cmp word ptr FileSize, 512 ;If H.O. is zero, just
jbe LastBlock ; check L.O. word.

; We’ve got more than 512 bytes left to go in this file, read 512 bytes
; at this point.

MoreThan512: mov cx, 512 ;Receive 512 bytes
lea bx, FileBuffer ; from the xmitter.

ReadLoop: call GetByte ;Read a byte.
mov [bx], al ;Save the byte away.
inc bx ;Move on to next
loop ReadLoop ; buffer element.

; Okay, write the data to the file:

mov ah, 40h ;DOS write opcode.
mov bx, FileHandle ;Write to this file.
mov cx, 512 ;Write 512 bytes.
lea dx, Filebuffer ;From this address.
int 21h
jc BadWrite ;Quit if error.

; Decrement the file size by 512 bytes:

sub word ptr FileSize, 512 ;32-bit subtraction
sbb word ptr FileSize, 0 ; of 512.
jmp GetFileData

; Process the last block, that contains 1..511 bytes, here.

LastBlock:
mov cx, word ptr FileSize ;Receive the last
lea bx, FileBuffer ; 1..511 bytes from

ReadLB: call GetByte ; the transmitter.
mov [bx], al
inc bx
loop ReadLB

The PC Parallel Ports

Page 1221

mov ah, 40h ;Write the last block
mov bx, FileHandle ; of bytes to the
mov cx, word ptr FileSize ; file.
lea dx, Filebuffer
int 21h
jnc Closefile

BadWrite: print
byte “DOS error #”,0
puti
print
byte “ while writing data.”,cr,lf,0

; Close the file here.

CloseFile: mov bx, FileHandle ;Close this file.
mov ah, 3Eh ;DOS close opcode.
int 21h
ret

GetFileData endp

; Here’s the main program that gets the whole ball rolling.

Main proc
mov ax, dseg
mov ds, ax
meminit

; First, get the address of LPT1: from the BIOS variables area.

mov ax, 40h ;Point at BIOS variable segment.
mov es, ax
mov ax, es:[PrtrBase]
mov MyPortAdrs, ax

call Synchronize ;Wait for the transmitter program.
jnc Quit

call GetFileInfo ;Get file name and size.

printf
byte “Filename: %s\nFile size: %ld\n”,0
dword Filename, FileSize

mov ah, 3Ch ;Create file.
mov cx, 0 ;Standard attributes
lea dx, Filename
int 21h
jnc GoodOpen
print
byte “Error opening file”,cr,lf,0
jmp Quit

GoodOpen: mov FileHandle, ax
call GetFileData ;Get the file’s data.

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Chapter 21

Page 1222

21.5 Summary

The PC’s parallel port, though originally designed for controlling parallel printers, is a general pur-
pose eight bit output port with several handshaking lines you can use to control many other devices in
addition to printers.

In theory, parallel communications should be many times faster than serial communications. In prac-
tice, however, real world constraints and economics prevent this from being the case. Nevertheless, you
can still connect high performance devices to the PC’s parallel port.

The PC’s parallel ports come in two varieties: unidirectional and bidirectional. The bidirectional ver-
sions are available only on PS/2s, certain laptops, and a few other machines. Whereas the eight data lines
are output only on the unidirectional ports, you can program them as inputs or outputs on the bidirec-
tional port. While this bidirectional operation is of little value to a printer, it can improve the performance
of other devices that connect to the parallel port, such as disk and tape drives, network adapters, SCSI
adapters, and so on.

When the system communicates with some other device over the parallel port, it needs some way to
tell that device that data is available on the data lines. Likewise, the devices needs some way to tell the sys-
tem that it is not busy and it has accepted the data. This requires some additional signals on the parallel
port known as handshaking lines. A typical PC parallel port provides three handshaking signals: the data
available strobe, the data taken acknowledge signal, and the device busy line. These lines easily control
the flow of data between the PC and some external device.

In addition to the handshaking lines, the PC’s parallel port provides several other auxiliary I/O lines
as well. In total, there are 12 output lines and five input lines on the PC’s parallel port. There are three I/O
ports in the PC’s address space associated with each I/O port. The first of these (at the port’s base address)
is the data register. This is an eight bit output register on unidirectional ports, it is an input/output register
on bidirectional ports. The second register, at the base address plus one, is the status register. The status
register is an input port. Five of those bits correspond to the five input lines on the PC’s parallel port. The
third register (at base address plus two) is the control register. Four of these bits correspond to the addi-
tional four output bits on the PC, one of the bits controls the IRQ line on the parallel port, and a sixth bit
controls the data direction on the birdirectional ports.

For more information on the parallel port’s hardware configuration, see:

• “Basic Parallel Port Information” on page 1199
• “The Parallel Port Hardware” on page 1201

Although many vendors use the parallel port to control lots of different devices, a parallel printer is
still the device most often connected to the parallel port. There are three ways application programs com-
monly send data to the printer: by calling DOS to print a character, by calling BIOS’ int 17h ISR to print a
character, or by talking directly to the parallel port. You should avoid this last technique because of possi-
ble software incompatibilities with other devices that connect to the parallel port. For more information on
printing data, including how to write your own int 17h ISR/printer driver, see:

• “Controlling a Printer Through the Parallel Port” on page 1202
• “Printing via DOS” on page 1203
• “Printing via BIOS” on page 1203
• “An INT 17h Interrupt Service Routine” on page 1203

One popular use of the parallel port is to transfer data between two computers; for example, transfer-
ring data between a desktop and a laptop machine. To demonstrate how to use the parallel port to control
other devices besides printers, this chapter presents a program to transfer data between computers on the
unidirectional parallel ports (it also works on bidirectional ports). For all the details, see

• “Inter-Computer Communications on the Parallel Port” on page 1209

Page 1223

The PC Serial Ports Chapter 22

The RS-232 serial communication standard is probably the most popular serial communication
scheme in the world. Although it suffers from many drawbacks, speed being the primary one, it use is
widespread and there are literally thousands of devices you can connect to a PC using an RS-232 interface.
The PC supports up to four RS-232 compatible devices using the COM1:, COM2:, COM3:, and COM4:
devices

1

. For those who need even more serial devices (e.g., to control an electronic bulletin board system
[BBS], you can even buy devices that let you add 16, or more, serial ports to the PC. Since most PCs only
have one or two serial ports, we will concentrate on how to use COM1: and COM2: in this chapter.

Although, in theory, the PC’s original design allows system designers to implement the serial commu-
nication ports using any hardware they desire, much of today’s software that does serial communication
talks directly to the 8250 Serial Communications Chip (SCC) directly. This introduces the same compatibil-
ity problems you get when you talk directly to the parallel port hardware. However, whereas the BIOS
provides an excellent interface to the parallel port, supporting anything you would wish to do by going
directly to the hardware, the serial support is not so good. Therefore, it is common practice to bypass the
BIOS int 14h functions and control the 8250 SCC chip directly so software can access every bit of every
register on the 8250.

Perhaps an even greater problem with the BIOS code is that it does not support interrupts. Although
software controlling parallel ports rarely uses interrupt driven I/O

2

, it is very common to find software that
provides interrupt service routines for the serial ports. Since the BIOS does not provide such routines, any
software that wants to use interrupt driven serial I/O will need to talk directly to the 8250 and bypass BIOS
anyway. Therefore, the first part of this chapter will discuss the 8250 chip.

Manipulating the serial port is not difficult. However, the 8250 SCC contains lots of registers and pro-
vides many features. Therefore it takes a lot of code to control every feature of the chip. Fortunately, you
do not have to write that code yourself. The UCR Standard Library provides an excellent set of routines
that let you control the 8250. They even an interrupt service routine allowing interrupt driven I/O. The sec-
ond part of this chapter will present the code from the Standard Library as an example of how to program
each of the registers on the 8250 SCC.

22.1 The 8250 Serial Communications Chip

The 8250 and compatible chips (like the 16450 and 16550 devices) provide nine I/O registers. Certain
upwards compatible devices (e.g., 16450 and 16550) provide a tenth register as well. These registers con-
sume eight I/O port addresses in the PC’s address space. The hardware and locations of the addresses for
these devices are the following:

1. Most programs support only COM1: and COM2:. Support for additional serial devices is somewhat limited among various applications.
2. Because many parallel port adapters do not provide hardware support for interrupts.

a. Locations 40:4 and 40:6 contain the logical addresses for COM3: and COM4:, but
we will not consider those ports here.

Table 81: COM Port Addresses

Port Physical Base Address (in hex) BIOS variable Containing Physical Address

a

COM1: 3F8 40:0

COM2: 2F8 40:2

Thi d t t d ith F M k 4 0 2

Chapter 22

Page 1224

Like the PC’s parallel ports, we can swap COM1: and COM2: at the software level by swapping their
base addresses in BIOS variable 40:0 and 40:2. However, software that goes directly to the hardware, espe-
cially interrupt service routines for the serial ports, needs to deal with hardware addresses, not logical
addresses. Therefore, we will always mean I/O base address 3F8h when we discuss COM1: in this chapter.
Likewise, we will always mean I/O base address 2F8h when we discuss COM2: in this chapter.

The base address is the first of eight I/O locations consumed by the 8250 SCC. The exact purpose of
these eight I/O locations appears in the following table:

The following sections describe the purpose of each of these registers.

22.1.1 The Data Register (Transmit/Receive Register)

The data register is actually two separate registers: the transmit register and the receive register. You
select the transmit register by writing to I/O addresses 3F8h or 2F8h, you select the receive register by
reading from these addresses. Assuming the transmit register is empty, writing to the transmit register
begins a data transmission across the serial line. Assuming the receive register is full, reading the receive
register returns the data. To determine if the transmitter is empty or the receiver is full, see the Line Status
Register. Note that the Baud Rate Divisor register shares this I/O address with the receive and transmit reg-
isters. Please see “The Baud Rate Divisor” on page 1225 and “The Line Control Register” on page 1227 for
more information on the dual use of this I/O location.

22.1.2 The Interrupt Enable Register (IER)

When operating in interrupt mode, the 8250 SCC provides four sources of interrupt: the character
received interrupt, the transmitter empty interrupt, the communication error interrupt, and the status
change interrupt. You can individually enable or disable these interrupt sources by writing ones or zeros
to the 8250 IER (Interrupt Enable Register). Writing a zero to a corresponding bit disables that particular
interrupt. Writing a one enables that interrupt. This register is read/write, so you can interrogate the cur-
rent settings at any time (for example, if you want to mask in a particular interrupt without affecting the
others). The layout of this register is

Table 82: 8250 SCC Registers

I/O Address (hex) Description

3F8/2F8 Receive/Transmit data register. Also the L.O. byte of the Baud Rate Divisor
Latch register.

3F9/2F9 Interrupt Enable Register. Also the H.O. byte of the Baud Rate Divisor
Register.

3FA/2FA Interrupt Identification Register (read only).

3FB/2FB Line Control Register.

3FC/2FC Modem Control Register.

3FD/2FD Line Status Register (read only).

3FE/2FE Modem Status Register (read only).

3FF/2FF Shadow Receive Register (read only, not available on original PCs).

The PC Serial Ports

Page 1225

The interrupt enable register I/O location is also common with the Baud Rate Divisor Register. Please
see the next section and “The Line Control Register” on page 1227 for more information on the dual use of
this I/O location.

22.1.3 The Baud Rate Divisor

The Baud Rate Divisor Register is a 16 bit register that shares I/O locations 3F8h/2F8h and 3F9h/2F9h
with the data and interrupt enable registers. Bit seven of the Line Control Register (see “The Line Control
Register” on page 1227) selects the divisor register or the data/interrupt enable registers.

The Baud Rate Divisor register lets you select the data transmission rate (properly called

bits per sec-
ond

, or

bps

, not baud

3

). The following table lists the values you should write to these registers to control
the transmission/reception rate:

3. The term “baud” describes the rate at which tones can change on a modem/telephone line. It turns out that, with normal telephone lines, the
maximum baud rate is 600 baud. Modems that operate at 1200 bps use a different technique (beyond switching tones) to increase the data transfer
rate. In general, there is no such thing as a “1200 baud,” “9600 baud,” or “14.4 kbaud” modem. Properly, these are 1200 bps, 9600bps, and 14.4K bps
modems.

Table 83: Baud Rate Divisor Register Values

Bits Per Second 3F9/3F9 Value 3F8/2F8 Value

110 4 17h

300 1 80h

600 0 C0h

1200 0 60h

1800 0 40h

2400 0 30h

3600 0 20h

4800 0 18h

9600 0 0Ch

19.2K 0 6

38.4K 0 3

56K 0 1

Data Available Interrupt
Transmitter Empty Interrupt
Error or Break Interrupt
Status Change Interrupt

Unused (should be zero)

Serial Port Interrupt Enable Register (IER)

7 6 5 4 3 2 1 0

Chapter 22

Page 1226

You should only operate at speeds greater than 19.2K on fast PCs with high performance SCCs (e.g.,
16450 or 16550). Furthermore, you should use high quality cables and keep your cables very short when
running at high speeds.

22.1.4 The Interrupt Identification Register (IIR)

The Interrupt Identification Register is a read-only register that specifies whether an interrupt is pend-
ing and which of the four interrupt sources requires attention. This register has the following layout:

Since the IIR can only report one interrupt at a time, and it is certainly possible to have two or more
pending interrupts, the 8250 SCC prioritizes the interrupts. Interrupt source 00 (status change) has the low-
est priority and interrupt source 11 (error or break) has the highest priority; i.e., the interrupt source num-
ber provides the priority (with three being the highest priority).

The following table describes the interrupt sources and how you “clear” the interrupt value in the IIR.
If two interrupts are pending and you service the higher priority request, the 8250 SCC replaces the value
in the IIR with the identification of the next highest priority interrupt source.

One interesting point to note about the organization of the IIR: the bit layout provides a convenient
way to transfer control to the appropriate section of the SCC interrupt service routine. Consider the follow-
ing code:

 .
 .
 .
in al, dx ;Read IIR.

Table 84: Interrupt Cause and Release Functions

Priority ID Value Interrupt Caused By Reset By

Highest 11b Error or Break Overrun error, parity error, framing
error, or break interrupt.

Reading the Line Status Register.

Next to
highest

10b Data available Data arriving from an external
source in the Receive Register.

Reading the Receive Register.

Next to
lowest

01b Transmitter
empty

The transmitter finishes sending
data and is ready to accept addi-
tional data.

Reading the IIR (with an interrupt
ID of 01b) or writing to the Data
Register.

Lowest 00b Modem Status Change in clear to send, data set
ready, ring indicator, or received
line signal detect signals.

Reading the modem status register.

Interrupt pending if zero (no interrupt if one)
Interrupt source:
 00: Status change interrupt
 01: Transmitter empty interrupt
 10: Data available interrupt
 11: Error or break interrupt
Always zero.

Interrupt Identification Register (IIR)

7 6 5 4 3 2 1 0

The PC Serial Ports

Page 1227

mov bl, al
mov bh, 0
jmp HandlerTbl[bx]

HandlerTbl word RLSHandler, RDHandler, TEHandler, MSHandler

When an interrupt occurs, bit zero of the IIR will be zero. The next two bits contain the interrupt source
number and the H.O. five bits are all zero. This lets us use the IIR value as the index into a table of pointers
to the appropriate handler routines, as the above code demonstrates.

22.1.5 The Line Control Register

The Line Control Register lets you specify the transmission parameters for the SCC. This includes set-
ting the data size, number of stop bits, parity, forcing a break, and selecting the Baud Rate Divisor Register
(see “The Baud Rate Divisor” on page 1225). The Line Control Register is laid out as follows:

The 8250 SCC can transmit serial data as groups of five, six, seven, or eight bits. Most modern serial
communication systems use seven or eight bits for transmission (you only need seven bits to transmit
ASCII, eight bits to transmit binary data). By default, most applications transmit data using eight data bits.
Of course, you always read eight bits from the receive register; the 8250 SCC pads all H.O. bits with zero if
you are receiving less than eight bits. Note that if you are only transmitting ASCII characters, the serial
communications will run about 10% faster with seven bit transmission rather than with eight bit transmis-
sion. This is an important thing to keep in mind if you control both ends of the serial cable. On the other
hand, you will usually be connecting to some device that has a fixed word length, so you will have to pro-
gram the SCC specifically to match that device.

A serial data transmission consists of a

start bit

, five to eight

data bits

, and one or two

stop bits

. The
start bit is a special signal that informs the SCC (or other device) that data is arriving on the serial line. The
stop bits are, essentially, the absence of a start bit to provide a small amount of time between the arrival of
consecutive characters on the serial line. By selecting two stop bits, you insert some additional time
between the transmission of each character. Some older devices may require this additional time or they
will get confused. However, almost all modern serial devices are perfectly happy with a single stop bit.
Therefore, you should usually program the chip with only one stop bit. Adding a second stop bit increases
transmission time by about 10%.

The parity bits let you enable or disable parity and choose the type of parity. Parity is an error detec-
tion scheme. When you enable parity, the SCC adds an extra bit (the parity bit) to the transmission. If you
select odd parity, the parity bit contains a zero or one so that the L.O. bit of the sum of the data and parity

Word length,
 00= 5 bits, 01= 6 bits
 10= 7 bits, 11= 8 bits.
Stop bits (0=1, 1=2)
Parity enable (0=diabled, 1=enabled)
Parity control
 00 = odd parity
 01 = even parity
 10 = parity is always 1
 11 = parity is always 0
Transmit break while 1.
Baud Rate Divisor Latch

Line Control Register (LCR)

7 6 5 4 3 2 1 0

Chapter 22

Page 1228

bits is one. If you select even parity, the SCC produces a parity bit such that the L.O. bit of the sum of the
parity and data bits is zero. The “stuck parity” values (10b and 11b) always produce a parity bit of zero or
one. The main purpose of the parity bit is to detect a possible transmission error. If you have a long, noisy,
or otherwise bad serial communications channel, it is possible to lose information during transmission.
When this happens, it is unlikely that the sum of the bits will match the parity value. The receiving site can
detect this “parity error” and report the error in transmission.

You can also use the stuck parity values (10b and 11b) to strip the eighth bit and always replace it
with a zero or one during transmission. For example, when transmitting eight bit PC/ASCII characters to a
different computer system it is possible that the PC’s extended character set (those characters whose code
is 128 or greater) does not map to the same character on the destination machine. Indeed, sending such
characters may create problems on that machine. By setting the word size to seven bits and the parity to
enabled and stuck at zero, you can automatically strip out all H.O. bits during transmission, replacing them
with zero. Of course, if any extended characters come along, the SCC will map them to possibly unrelated
ASCII characters, but this is a useful trick, on occasion.

The break bit transmits a break signal to the remote system as long as there is a one programmed in
this bit position. You should not leave break enabled while trying to transmit data. The break signal comes
from the teletype days. A break is similar to ctrl-C or ctrl-break on the PC’s keyboard. It is supposed to
interrupt a program running on a remote system. Note that the SCC can detect an incoming break signal
and generate an appropriate interrupt, but this break signal is coming from the remote system, it is not
(directly) connected to the outgoing break signal the LCR controls.

Bit seven of the LCR is the Baud Rate Divisor Register latch bit. When this bit contains a one, locations
3F8h/2F8h and 3F9h/2F9h become the Baud Rate Divisor Register. When this bit contains a zero, those
I/O locations correspond to the Data Registers and the Interrupt Enable Registers. You should always pro-
gram this bit with a zero except while initializing the speed of the SCC.

The LCR is a read/write register. Reading the LCR returns the last value written to it.

22.1.6 The Modem Control Register

The 8250’s Modem Control Register contains five bits that let you directly control various output pins
on the 8250 as well as enable the 8250’s

loopback

 mode. The following diagram displays the contents of
this register:

The 8250 routes the DTR and RTS bits directly to the DTR and RTS lines on the 8250 chip. When these
bits are one, the corresponding outputs are active

4

. These lines are two separate handshake lines for
RS-232 communications.

4. It turns out that the DTR and RTS lines are active low, so the 8250 actually inverts these lines on their way out. However, the receiving site rein-
verts these lines so the receiving site (if it is an 8250 SCC) will read these bits as one when they are active. See the description of the line status reg-
ister for details.

Data Terminal Ready (DTR)
Request To Send (RTS)
OUT 1
Interrupt Enable (OUT 2)
Loopback mode (enabled if 1)

Always zero

Modem Control Register (MCR)

7 6 5 4 3 2 1 0

The PC Serial Ports

Page 1229

The DTR signal is comparable to a

busy

 signal. When a site’s DTR line is inactive, the other site is not
supposed to transmit data to it. The DTR line is a

manual

 handshake line. It appears as the Data Set Ready
(DSR) line on the other side of the serial cable. The other device must explicitly check its DSR line to see if
it can transmit data. The DTR/DSR scheme is mainly intended for handshaking between computers and
modems.

The RTS line provides a second form of handshake. It’s corresponding input signal is CTS (Clear To
Send). The RTS/CTS handshake protocol is mainly intended for directly connected devices like computers
and printers. You may ask “why are there two separate, but orthogonal handshake protocols?” The reason
is because RS-232C has developed over the last 100 years (from the days of the first telegraphs) and is the
result of combining several different schemes over the years.

Out1 is a general purpose output on the SCC that has very little use on the IBM PC. Some adapter
boards connect this signal, other leave it disconnected. In general, this bit has no function on PCs.

The Interrupt Enable bit is a PC-specific item. This is normally a general purpose output (OUT 2) on
the 8250 SCC. However, IBM’s designers connected this output to an external gate to enable or disable all
interrupts from the SCC. This bit must be programmed with a one to enable interrupts. Likewise, you must
ensure that this bit contains a zero if you are not using interrupts.

The loopback bit connects the transmitter register to the receive register. All data sent out the trans-
mitter immediately comes back in the receive register. This is useful for diagnostics, testing software, and
detecting the serial chip. Note, unfortunately, that the loopback circuit will not generate any interrupts.
You can only use this technique with polled I/O.

The remaining bits in the MCR are reserved should always contain zero. Future versions of the SCC
(or compatible chips) may use these bits for other purposes, with zero being the default (8250 simulation)
state.

The MCR is a read/write register. Reading the MCR returns the last value written to it.

22.1.7 The Line Status Register (LSR)

The Line Status Register (LSR) is a read-only register that returns the current communication status.
The bit layout for this register is the following:

The data available bit is set if there is data available in the Receive Register. This also generates an
interrupt. Reading the data in the Receive Register clears this bit.

The 8250 Receive Register can only hold one byte at a time. If a byte arrives and the program does not
read it and then a second byte arrives, the 8250 wipes out the first byte with the second. The 8250 SCC sets

Data Available (if 1)
Overrun error (if 1)
Parity error (if 1)
Framing error (if 1)
Break interrupt (if 1)
Transmitter holding register Empty (if 1)
Transmitter shift register empty (if 1)
Unused

Line Status Register (LSR)

7 6 5 4 3 2 1 0

Chapter 22

Page 1230

the overrun error bit when this occurs. Reading the LSR clears this bit (after reading the LSR). This error
will generate the high priority error interrupt.

The 8250 sets the parity bit if it detects a parity error when receiving a byte. This error only occurs if
you have enabled the parity operation in the LCR. The 8250 resets this bit after you read the LSR. When this
error occurs, the 8250 will generate the error interrupt.

Bit three is the framing error bit. A framing error occurs if the 8250 receives a character without a valid
stop bit. The 8250 will clear this bit after you read the LSR. This error will generate the high priority error
interrupt.

The 8250 sets the break interrupt bit when it receives the break signal from the transmitting device.
This will also generate an error interrupt. Reading the LSR clears this bit.

The 8250 sets bit five, the transmitter holding register empty bit, when it is okay to write another char-
acter to the Data Register. Note that the 8250 actually has two registers associated with the transmitter. The
transmitter shift register contains the data actually being shifted out over the serial line. The transmitter
holding register holds a value that the 8250 writes to the shift register when it finishes shifting out a charac-
ter. Bit five indicates that the holding register is empty and the 8250 can accept another byte. Note that the
8250 might still be shifting out a character in parallel with this operation. The 8250 can generate an inter-
rupt when the transmitter holding register is empty. Reading the LSR or writing to the Data Register clears
this bit.

The 8250 sets bit six when both the transmitter holding and transmitter shift registers are empty. This
bit is clear when either register contains data.

22.1.8 The Modem Status Register (MSR)

The Modem Status Register (MSR) reports the status of the handshake and other modem signals. Four
bits provide the instantaneous values of these signals, the 8250 sets the other four bits if any of these sig-
nals change since the last time the CPU interrogates the MSR. The MSR has the following layout:

The Clear To Send bit (bit #4) is a handshaking signal. This is normally connected to the RTS (Request
To Send) signal on the remove device. When that remote device asserts its RTS line, data transmission can
take place.

The Data Set Ready bit (bit #5) is one if the remote device is not busy. This input is generally con-
nected to the Data Terminal Ready (DTR) line on the remote device.

The 8250 chip sets the Ring Indicator bit (bit #6) when the modem asserts the ring indicator line. You
will rarely use this signal unless you are writing modem controlling software that automatically answers a
telephone call.

Clear To Send has changed.
Data Set Ready has changed
Trailing edge of Ring Indicator
Data Carrier Dectect has changed
Clear To Send
Data Set Ready
Ring Indicator
Data Carrier Detect

Modem Status Register (MSR)

7 6 5 4 3 2 1 0

The PC Serial Ports

Page 1231

The Data Carrier Detect bit (DCD, bit #7) is another modem specific signal. This bit contains a one
while the modem detects a carrier signal on the phone line.

Bits zero through three of the MSR are the “delta” bits. These bits contain a one if their corresponding
modem status signal changes. Such an occurrence will also generate a modem status interrupt. Reading
the MSR will clear these bits.

22.1.9 The Auxiliary Input Register

The auxiliary input register is available only on later model 8250 compatible devices. This is a
read-only register that returns the same value as reading the data register. The difference between reading
this register and reading the data register is that reading the auxiliary input register does not affect the data
available bit in the LSR. This allows you to test the incoming data value without removing it from the input
register. This is useful, for example, when chaining serial chip interrupt service routines and you want to
handle certain “hot” values in one ISR and pass all other characters on to a different serial ISR.

22.2 The UCR Standard Library Serial Communications Support Routines

Although programming the 8250 SCC doesn’t seem like a real big problem, invariably it is a difficult
chore (and tedious) to write all the software necessary to get the serial communication system working.
This is especially true when using interrupt driven serial I/O. Fortunately, you do not have to write this
software from scratch, the UCR Standard library provides 21 support routines that trivialize the use of the
serial ports on the PC. About the only drawback to these routines is that they were written specifically for
COM1:, although it isn’t too much work to modify them to work with COM2:. The following table lists the
available routines:

Table 85: Standard Library Serial Port Support

Name Inputs Outputs Description

ComBaud AX: bps (baud rate) =
110, 150, 300, 600,
1200, 2400, 4800, 9600,
or 19200

Sets the communication rate for the serial port. ComBaud
only supports the specified speeds. If

ax

 contains some
other value on entry, ComBaud ignores the value.

ComStop AX: 1 or 2 Sets the number of stop bits. The

ax

 register contains the
number of stop bits to use (1 or 2).

ComSize AX: word size (5, 6, 7,
or 8)

Sets the number of data bits. The

ax

 register contains the
number of bits to transmit for each byte on the serial line.

ComParity AX: Parity selector. If
bit zero is zero, parity
off, if bit zero is one,
bits one and two are:
00 - odd parity
01 - even parity
10 - parity stuck at 0
11 - parity stuck at 1

Sets the parity (if any) for the serial communications.

ComRead AL- Character read
from port.

Waits until a character is available from in the data register
and returns that character. Used for polled I/O on the serial
port. Do not use if you’ve activated the serial interrupts (see
ComInitIntr).

Chapter 22

Page 1232

The interrupt driven I/O features of the Standard Library routines deserve further explanation. When
you call the ComInitIntr routine, it patches the COM1: interrupt vectors (int 0Ch), enables IRQ 4 in the
8259A PIC, and enables read and write interrupts on the 8250 SCC. One thing this call does not do that you
should is patch the break and critical error exception vectors (int 23h and int 24h) to handle any program
aborts that come along. When your program quits, either normally or via one of the above exceptions, it
must call ComDisIntr to disable the interrupts. Otherwise, the next time a character arrives at the serial port
the machine may crash since it will attempt to jump to an interrupt service routine that might not be there
anymore.

The ComIn and ComOut routines handle interrupt driven serial I/O. The Standard Library provides a
reasonable input and output buffer (similar to the keyboard’s type ahead buffer), so you do not have to
worry about losing characters unless your program is really, really slow or rarely reads any data from the
serial port.

ComWrite AL- Character to write. Waits until the transmitter holding register is empty, then
writes the character in al to the output register. Used for
polled I/O on the serial port. Do not use with interrupts acti-
vated.

ComTstIn AL=0 if no character,
AL=1 if char avail.

Test to see if a character is available at the serial port. Use
only for polling I/O, do not use with interrupts activated.

ComTstOut AL=0 if transmitter
busy, AL=1 if not busy.

Test to see if it is okay to write a character to the output reg-
ister. Use with polled I/O only, do not use with interrupts
active.

ComGetLSR AL= Current LSR value. Returns the current LSR value in the

al

 register. See the sec-
tion on the LSR for more details.

ComGetMSR AL= Current MSR
Value.

Returns the current MSR value in the

al

 register. See the
section on the MSR for more details.

ComGetMCR AL= Current MCR
Value.

Returns the current MCR value in the

al

 register. See the
section on the MCR for more details.

ComSetMCR AL = new MCR Value Stores the value in

al

 into the MCR register. See the section
on the MCR for more details.

ComGetLCR AL= Current LCR
Value.

Returns the current LCR value in the

al

 register. See the sec-
tion on the LCR for more details.

ComSetLCR AL = new LCR Value Stores the value in

al

 into the LCR register. See the section
on the LCR for more details.

ComGetIIR AL= Current IIR Value. Returns the current IIR value in the

al

 register. See the sec-
tion on the IIR for more details.

ComGetIER AL= Current IER Value. Returns the current IER value in the

al

 register. See the sec-
tion on the IER for more details.

ComSetIER AL = new IER Value Stores the value in

al

 into the IER register. See the section
on the IER for more details.

ComInitIntr Initializes the system to support interrupt driven serial I/O.
See details below.

ComDisIntr Resets the system back to polled serial I/O

ComIn Reads a character from the serial port when operating with
interrupt driven I/O.

ComOut Writes a character to the serial port using interrupt driven
I/O.

Table 85: Standard Library Serial Port Support

Name Inputs Outputs Description

The PC Serial Ports

Page 1233

Between the ComInitIntr and ComDisIntr calls, you should not call any other serial support routines
except ComIn and ComOut. The other routines are intended for polled I/O or initialization. Obviously,
you should do any necessary initialization before enabling interrupts, and there is no need to do polled
I/O while the interrupts are operational. Note that there is no equivalent to ComTstIn and ComTstOut
while operating in interrupt mode. These routines are easy to write, instructions appear in the next sec-
tion.

22.3 Programming the 8250 (Examples from the Standard Library)

The UCR Standard Library Serial Communication routines provide an excellent example of how to
program the 8250 SCC directly, since they use nearly all the features of that chip on the PC. Therefore, this
section will list each of the routines and describe exactly what that routine is doing. By studying this code,
you can learn about all the details associated with the SCC and discover how to extend or otherwise mod-
ify the Standard Library routines.

; Useful equates:

BIOSvars = 40h ;BIOS segment address.
Com1Adrs = 0 ;Offset in BIOS vars to COM1: address.
Com2Adrs = 2 ;Offset in BIOS vars to COM2: address.

BufSize = 256 ;# of bytes in buffers.

; Serial port equates. If you want to support COM2: rather than COM1:, simply
; change the following equates to 2F8h, 2F9h, ...

ComPort = 3F8h
ComIER = 3F9h
ComIIR = 3FAh
ComLCR = 3FBh
ComMCR = 3FCh
ComLSR = 3FDh
ComMSR = 3FEh

; Variables, etc. This code assumes that DS=CS. That is, all the variables
; are in the code segment.
;
; Pointer to interrupt vector for int 0Ch in the interrupt vector table.
; Note: change these values to 0Bh*4 and 0Bh*4 + 2 if you want to support
; the COM2: pot.

int0Cofs equ es:[0Ch*4]
int0Cseg equ es:[0Ch*4 + 2]

OldInt0c dword ?

; Input buffer for incoming character (interrupt operation only). See the
; chapter on data structures and the description of circular queus for
; details on how this buffer works. It operates in a fashion not unlike
; the keyboard’s type ahead buffer.

InHead word InpBuf
InTail word InpBuf
InpBuf byte Bufsize dup (?)
InpBufEnd equ this byte

; Output buffer for characters waiting to transmit.

OutHead word OutBuf
OutTail word OutBuf
OutBuf byte BufSize dup (?)
OutBufEnd equ this byte

; The i8259a variable holds a copy of the PIC’s IER so we can restore it
; upon removing our interrupt service routines from memory.

Chapter 22

Page 1234

i8259a byte 0 ;8259a interrupt enable register.

; The TestBuffer variable tells us whether we have to buffer up characters
; or if we can store the next character directly into the 8250’s output
; register (See the ComOut routine for details).

TestBuffer db 0

The first set of routines provided by the Standard Library let you initialize the 8250 SCC. These rou-
tines provide “programmer friendly” interfaces to the baud rate divisor and line control registers. They let
you set the baud rate, data size, number of stop bits, and parity options on the SCC.

The

ComBaud

 routine sets the 8250’s transfer rate (in bits per second). This routine provides a nice
“programmer’s interface” to the 8250 SCC. Rather than having to compute the baud rate divisor value your-
self, you can simply load

ax

 with the bps value you want and simply call this routine. Of course, one
problem is that you must choose a bps value that this routine supports or it will ignore the baud rate
change request. Fortunately, this routine supports all the common bps rates; if you need some other value,
it is easy to modify this code to allow those other rates.

This code consists of two parts. The first part compares the value in ax against the set of valid bps val-
ues. If it finds a match, it loads

ax

 with the corresponding 16 bit divisor constant. The second part of this
code switches on the baud rate divisor registers and stores the value in ax into these registers. Finally, it
switches the first two 8250 I/O registers back to the data and interrupt enable registers.

Note: This routine calls a few routines, notably

ComSetLCR

 and

ComGetLCR

, that we will define a
little later. These routines do the obvious functions, they read and write the LCR register (preserving regis-
ters, as appropriate).

ComBaud proc
push ax
push dx
cmp ax, 9600
ja Set19200
je Set9600
cmp ax, 2400
ja Set4800
je Set2400
cmp ax, 600
ja Set1200
je Set600
cmp ax, 150
ja Set300
je Set150
mov ax, 1047 ;Default to 110 bps.
jmp SetPort

Set150: mov ax, 768 ;Divisor value for 150 bps.
jmp SetPort

Set300: mov ax, 384 ;Divisor value for 300 bps.
jmp SetPort

Set600: mov ax, 192 ;Divisor value for 600 bps.
jmp SetPort

Set1200: mov ax, 96 ;Divisor value for 1200 bps.
jmp SetPort

Set2400: mov ax, 48 ;Divisor value for 2400 bps.
jmp SetPort

Set4800: mov ax, 24 ;Divisor value for 4800 bps.
jmp SetPort

Set9600: mov ax, 12 ;Divisor value for 9600 bps.
jmp short SetPort

The PC Serial Ports

Page 1235

Set19200: mov ax, 6 ;Divisor value for 19.2 kbps.
SetPort: mov dx, ax ;Save baud value.

call GetLCRCom ;Fetch LCR value.
push ax ;Save old divisor bit value.
or al, 80h ;Set divisor select bit.
call SetLCRCom ;Write LCR value back.
mov ax, dx ;Get baud rate divisor value.
mov dx, ComPort ;Point at L.O. byte of divisor reg.
out dx, al ;Output L.O. byte of divisor.
inc dx ;Point at the H.O. byte.
mov al, ah ;Put H.O. byte in AL.
out dx, al ;Output H.O. byte of divisor.
pop ax ;Retrieve old LCR value.
call SetLCRCom1 ;Restore divisor bit value.
pop dx
pop ax
ret

ComBaud endp

The

ComStop

 routine programs the LCR to provide the specified number of stop bits. On entry,

ax

should contain either one or two (the number of stop bits you desire). This code converts that to zero or
one and writes the resulting L.O. bit to the stop bit field of the LCR. Note that this code ignores the other
bits in the

ax

 register. This code reads the LCR, masks out the stop bit field, and then inserts the value the
caller specifies into that field. Note the usage of the

shl ax, 2

 instruction; this requires an 80286 or later
processor.

comStop proc
push ax
push dx
dec ax ;Convert 1 or 2 to 0 or 1.
and al, 1 ;Strip other bits.
shl ax, 2 ;position into bit #2.
mov ah, al ;Save our output value.
call ComGetLCR ;Read LCR value.
and al, 11111011b ;Mask out Stop Bits bit.
or al, ah ;Merge in new # of stop bits.
call ComSetLCR ;Write result back to LCR.
pop dx
pop ax
ret

comStop endp

The

ComSize

 routine sets the word size for data transmission. As usual, this code provides a “pro-
grammer friendly” interface to the 8250 SCC. On enter, you specify the number of bits (5, 6, 7, or 8) in the

ax

 register, you do not have to worry an appropriate bit pattern for the 8250’s LCR register. This routine
will compute the appropriate bit pattern for you. If the value in the ax register is not appropriate, this code
defaults to an eight bit word size.

ComSize proc
push ax
push dx
sub al, 5 ;Map 5..8 -> 00b, 01b, 10b, 11b
cmp al, 3
jbe Okay
mov al, 3 ;Default to eight bits.

Okay: mov ah, al ;Save new bit size.
call ComGetLCR ;Read current LCR value.
and al, 11111100b ;Mask out old word size.
or al, ah ;Merge in new word size.
call ComSetLCR ;Write new LCR value back.
pop dx
pop ax
ret

comsize endp

Chapter 22

Page 1236

The ComParity routine initializes the parity options on the 8250. Unfortunately, there is little possibil-
ity of a “programmer friendly” interface to this routine, So this code requires that you pass one of the fol-
lowing values in the

ax

 register:

comparity proc
push ax
push dx

shl al, 3 ;Move to final position in LCR.
and al, 00111000b ;Mask out other data.
mov ah, al ;Save for later.
call ComGetLCR ;Get current LCR value.
and al, 11000111b ;Mask out existing parity bits.
or al, ah ;Merge in new bits.
call ComSetLCR ;Write results back to the LCR.
pop dx
pop ax
ret

comparity endp

The next set of serial communication routines provide polled I/O support. These routines let you eas-
ily read characters from the serial port, write characters to the serial port, and check to see if there is data
available at the input port or see if it is okay to write data to the output port.

Under no circumstances
should you use these routines when you’ve activated the serial interrupt system.

 Doing so may confuse the
system and produce incorrect data or loss of data.

The

ComRead

 routine is comparable to

getc

 – it waits until data is available at the serial port, reads
that data, and returns it in the

al

 register. This routine begins by making sure we can access the Receive
Data register (by clearing the baud rate divisor latch bit in the LCR).

ComRead proc
push dx
call GetLCRCom
push ax ;Save divisor latch access bit.
and al, 7fh ;Select normal ports.
call SetLCRCom ;Write LCR to turn off divisor reg.

WaitForChar: call GetLSRCom ;Get data available bit from LSR.
test al, 1 ;Data Available?
jz WaitForChar ;Loop until data available.
mov dx, comPort ;Read the data from the input port.
in al, dx
mov dl, al ;Save character
pop ax ;Restore divisor access bit.
call SetLCRCom ;Write it back to LCR.
mov al, dl ;Restore output character.
pop dx
ret

Table 86: ComParity Input Parameters

Value in AX Description

0 Disable parity.

1 Enable odd parity checking.

3 Enable even parity checking.

5 Enable stuck parity bit with value one.

7 Enable stuck parity bit with value zero.

The PC Serial Ports

Page 1237

ComRead endp

The

ComWrite

 routine outputs the character in al to the serial port. It first waits until the transmitter
holding register is empty, then it writes the output data to the output register.

ComWrite proc
push dx
push ax
mov dl, al ;Save character to output
call GetLCRCom ;Switch to output register.
push ax ;Save divisor latch access bit.
and al, 7fh ;Select normal input/output ports
call SetLCRCom ; rather than divisor register.

WaitForXmtr: call GetLSRCom ;Read LSR for xmit empty bit.
test al, 00100000b ;Xmtr buffer empty?
jz WaitForXmtr ;Loop until empty.
mov al, dl ;Get output character.
mov dx, ComPort ;Store it in the ouput port to
out dx, al ; get it on its way.
pop ax ;Restore divisor access bit.
call SetLCRCom
pop ax
pop dx
ret

ComWrite endp

The

ComTstIn

 and

ComTstOut

 routines let you check to see if a character is available at the input
port (

ComTstIn

) or if it is okay to send a character to the output port (

ComTstOut

).

ComTstIn

 returns
zero or one in

al

 if data is not available or is available, respectively.

ComTstOut

 returns zero or one in

al

 if the transmitter register is full or empty, respectively.

ComTstIn proc
call GetComLSR
and ax, 1 ;Keep only data available bit.
ret

ComTstIn endp

ComTstOut proc
push dx
call ComGetLSR ;Get the line status.
test al, 00100000b ;Mask Xmitr empty bit.
mov al, 0 ;Assume not empty.
jz toc1 ;Branch if not empty.
inc ax ;Set to one if it is empty.

toc1: ret
ComTstOut endp

The next set of routines the Standard Library supplies load and store the various registers on the 8250
SCC. Although these are all trivial routines, they allow the programmer to access these register by name
without having to know the address. Furthermore, these routines all preserve the value in the

dx

 register,
saving some code in the calling program if the

dx

 register is already in use.

The following routines let you read (“Get”) the value in the LSR, MSR, LCR, MCR, IIR, and IER regis-
ters, returning said value in the

al

 register. They let you write (“Set”) the value in

al

 to any of the LCR,
MCR, and IER registers. Since these routines are so simple and straight-forward, there is no need to discuss
each routine individually. Note that you should avoid calling these routines outside an SCC ISR while in
interrupt mode, since doing so can affect the interrupt system on the 8250 SCC.

Chapter 22

Page 1238

ComGetLSR proc ;Returns the LSR value in the AL reg.
push dx
mov dx, comLSR ;Select LSR register.
in al, dx ;Read and return the LSR value.
pop dx
ret

ComGetLSR endp

ComGetMSR proc ;Returns the MSR value in the AL reg.
push dx
mov dx, comMSR ;Select MSR register.
in al, dx ;Read and return MSR value.
pop dx
ret

ComGetMSR endp

ComSetMCR proc ;Stores AL’s value to the MCR reg.
push dx
mov dx, comMCR ;Point at MCR register.
out dx, al ;Output value in AL to MCR.
pop dx
ret

ComSetMCR endp

ComGetMCR proc ;Stores value in AL into MCR reg.
push dx
mov dx, comMCR ;Select MCR register.
in al, dx ;Read value from MCR register into AL.
pop dx
ret

ComGetMCR endp

ComGetLCR proc ;Return the LCR value in the AL reg.
push dx
mov dx, comLCR ;Point at LCR register.
in al, dx ;Read and return LCR value.
pop dx
ret

ComGetLCR endp

ComSetLCR proc ;Write a new value to the LCR.
push dx
mov dx, comLCR ;Point at LCR register.
out dx, al ;Write value in AL to the LCR.
pop dx
ret

ComSetLCR endp

ComGetIIR proc ;Return the value in the IIR.
push dx
mov dx, comIIR ;Select IIR register.
in al, dx ;Read IIR value into AL and return.
pop dx
ret

ComGetIIR endp

The PC Serial Ports

Page 1239

ComGetIER proc ;Return IER value in AL.
push dx
call ComGetLCR ;Need to select IER register by saving
push ax ; the LCR value and then clearing the
and al, 7fh ; baud rate divisor latch bit.
call ComSetLCR
mov dx, comIER ;Address the IER.
in al, dx ;Read current IER value.
mov dl, al ;Save for now
pop ax ;Retrieve old LCR value (divisor latch).
call ComSetLCR ;Restore divisor latch
mov al, dl ;Restore IER value
pop dx
ret

ComGetIER endp

ComSetIER proc ;Writes value in AL to the IER.
push dx
push ax ;Save AX’s value.
mov ah, al ;Save IER value to output.
call ComGetLCR ;Get and save divsor access
push ax ; bit.
and al, 7fh ;Clear divisor access bit.
call ComSetLCR
mov al, ah ;Retrieve new IER value.
mov dx, comIER ;Select IER register
out dx, al ;Output IER value.
pop ax ;Restore divisor latch bit.
call ComSetLCR
pop ax
pop dx
ret

ComSetIER endp

The last set of serial support routines appearing in the Standard Library provide support for interrupt
driven I/O. There are five routines in this section of the code:

ComInitIntr

,

ComDisIntr

,

Com-
IntISR

, ComIn, and ComOut. The ComInitIntr initializes the serial port interrupt system. It saves the
old int 0Ch interrupt vector, initializes the vector to point at the ComIntISR interrupt service routine, and
properly initializes the 8259A PIC and 8250 SCC for interrupt based operation. ComDisIntr undoes
everything the ComDisIntr routine sets up; you need to call this routine to disable interrupts before
your program quits. ComOut and ComIn transfer data to and from the buffers described in the variables
section; the ComIntISR routine is responsible for removing data from the transmit queue and sending
over the serial line as well as buffering up incoming data from the serial line.

The ComInitIntr routine initializes the 8250 SCC and 8259A PIC for interrupt based serial I/O. It
also initializes the int 0Ch vector to point at the ComIntISR routine. One thing this code does not do is to
provide break and critical error exception handlers. Remember, if the user hits ctrl-C (or ctrl-Break) or
selects abort on an I/O error, the default exception handlers simply return to DOS without restoring the
int 0Ch vector. It is important that your program provide exception handlers that will call ComDisIntr
before allowing the system to return control to DOS. Otherwise the system may crash when DOS loads the
next program into memory. See “Interrupts, Traps, and Exceptions” on page 995 for more details on writ-
ing these exception handlers.

ComInitIntr proc
pushf ;Save interrupt disable flag.
push es
push ax
push dx

; Turn off the interrupts while we’re doing this.

cli

Chapter 22

Page 1240

; Save old interrupt vector. Obviously, you must change the following code
; to save and set up the int 0Bh vector if you want to access COM2: rather
; than the COM1: port.

xor ax, ax ;Point at interrupt vectors
mov es, ax
mov ax, Int0Cofs
mov word ptr OldIInt0C, ax
mov ax, Int0Cseg
mov word ptr OldInt0C+2, ax

; Point int 0ch vector at our interrupt service routine (see note above
; concerning switching to COM2:).

mov ax, cs
mov Int0Cseg, ax
mov ax, offset ComIntISR
mov Int0Cofs, ax

; Clear any pending interrupts:

call ComGetLSR ;Clear Receiver line status
call ComGetMSR ;Clear CTS/DSR/RI Interrupts
call ComGetIIR ;Clear xmtr empty interrupt
mov dx, ComPort
in al, dx ;Clear data available intr.

; Clear divisor latch access bit. WHILE OPERATING IN INTERRUPT MODE, THE
; DIVISOR ACCESS LATCH BIT MUST ALWAYS BE ZERO. If for some horrible reason
; you need to change the baud rate in the middle of a transmission (or while
; the interrupts are enabled) clear the interrupt flag, do your dirty work,
; clear the divisor latch bit, and finally restore interrupts.

call ComGetLCR ;Get LCR.
and al, 7fh ;Clear divisor latch bit.
call ComSetLCR ;Write new LCR value back.

; Enable the receiver and transmitter interrupts. Note that this code
; ignores error and modem status change interrupts.

mov al, 3 ;Enable rcv/xmit interrupts
call SetIERCom

; Must set the OUT2 line for interrupts to work.
; Also sets DTR and RTS active.

mov al, 00001011b
call ComSetMCR

; Activate the COM1 (int 0ch) bit in the 8259A interrupt controller chip.
; Note: you must change the following code to clear bit three (rather than
; four) to use this code with the COM2: port.

in al, 21h ;Get 8259A interrupt enable value.
mov i8259a, al ;Save interrupt enable bits.
and al, 0efh ;Bit 4=IRQ 4 = INT 0Ch
out 21h, al ;Enable interrupts.

pop dx
pop ax
pop es
popf ;Restore interrupt disable flag.
ret

ComInitIntr endp

The ComDisIntr routine disables serial interrupts. It restores the original value of the 8259A inter-
rupt enable register, it restores the int 0Ch interrupt vector, and it masks interrupts on the 8250 SCC. Note
that this code assumes that you have not changed the interrupt enable bits in the 8259 PIC since calling

The PC Serial Ports

Page 1241

ComInitIntr. It restores the 8259A’s interrupt enable register with the value from the 8259A interrupt
enable register when you originally called ComInitIntr.

It would be a complete disaster to call this routine without first calling ComInitIntr. Doing so
would patch the int 0Ch vector with garbage and, likewise, restore the 8259A interrupt enable register with
a garbage value. Make sure you’ve called ComInitIntr before calling this routine. Generally, you should
call ComInitIntr once, at the beginning of your program, and call ComDisIntr once, either at the end
of your program or within the break or critical error exception routines.

ComDisIntr proc
pushf
push es
push dx
push ax

cli ;Don’t allow interrupts while messing
xor ax, ax ; with the interrupt vectors.
mov es, ax ;Point ES at interrupt vector table.

; First, turn off the interrupt source at the 8250 chip:

call ComGetMCR ;Get the OUT 2 (interrupt enable) bit.
and al, 3 ;Mask out OUT 2 bit (masks ints)
call ComSetMCR ;Write result to MCR.

; Now restore the IRQ 4 bit in the 8259A PIC. Note that you must modify this
; code to restore the IRQ 3 bit if you want to support COM2: instead of COM1:

in al, 21h ;Get current 8259a IER value
and al, 0efh ;Clear IRQ 4 bit (change for COM2:!)
mov ah, i8259a ;Get our saved value
and ah, 1000b ;Mask out com1: bit (IRQ 4).
or al, ah ;Put bit back in.
out 21h, al

; Restore the interrupt vector:

mov ax, word ptr OldInt0C
mov Int0Cofs, ax
mov ax, word ptr OldInt0C+2
mov Int0Cseg, ax

pop ax
pop dx
pop es
popf
ret

ComDisIntr endp

The following code implements the interrupt service routine for the 8250 SCC. When an interrupt
occurs, this code reads the 8250 IIR to determine the source of the interrupt. The Standard Library routines
only provide direct support for data available interrupts and transmitter holding register empty interrupts.
If this code detects an error or status change interrupt, it clears the interrupt status but takes no other
action. If it detects a receive or transmit interrupt, it transfers control to the appropriate handler.

The receiver interrupt handler is very easy to implement. All this code needs to do is read the charac-
ter from the Receive Register and add this character to the input buffer. The only catch is that this code
must ignore any incoming characters if the input buffer is full. An application can access this data using the
ComIn routine that removes data from the input buffer.

The transmit handler is somewhat more complex. The 8250 SCC interrupts the 80x86 when it is able
to accept more data for transmission. However, the fact that the 8250 is ready for more data doesn’t guar-
antee there is data ready for transmission. The application produces data at its own rate, not necessarily at
the rate that 8250 SCC wants it. Therefore, it is quite possible for the 8250 to say “give me more data” but

Chapter 22

Page 1242

the application has not produced any. Obviously, we should not transmit anything at that point. Instead,
we have to wait for the application to produce more data before transmission resumes.

Unfortunately, this complicates the driver for the transmission code somewhat. With the receiver, the
interrupt always indicates that the ISR can move data from the 8250 to the buffer. The application can
remove this data at any time and the process is always the same: wait for a non-empty receive buffer and
then remove the first item from the buffer. Unfortunately, we cannot simply do the converse operation
when transmitting data. That is, we can’t simply store data in the transmit buffer and leave it up to the ISR
to remove this data. The problem is that the 8250 only interrupts the system once when the transmitter
holding register is empty. If there is no data to transmit at that point, the ISR must return without writing
anything to the transmit register. Since there is no data in the transmit buffer, there will be no additional
transmitter interrupts generated, even when there is data added to the transmit buffer. Therefore, the ISR
and the routine responsible for adding data to the output buffer (ComOut) must coordinate their activi-
ties. If the buffer is empty and the transmitter is not currently transmitting anything, the ComOut routine
must write its data directly to the 8250. If the 8250 is currently transmitting data, ComOut must append its
data to the end of the output buffer. The ComIntISR and ComOut use a flag, TestBuffer, to determine
whether ComOut should write directly to the serial port or append its data to the output buffer. See the
following code and the code for ComOut for all the details.

ComIntISR proc far
push ax
push bx
push dx

TryAnother: mov dx, ComIIR
in al, dx ;Get interrupt id value.
test al, 1 ;Any interrupts left?
jnz IntRtn ;Quit if no interrupt pending.
cmp al, 100b ;Since only xmit/rcv ints are
jnz ReadCom1 ; active, this checks for rcv int.
cmp al, 10b ;This checks for xmit empty intr.
jnz WriteCom1

; Bogus interrupt? We shouldn’t ever fall into this code because we have
; not enabled the error or status change interrupts. However, it is possible
; that the application code has gone in and tweakd the IER on the 8250.
; Therefore, we need to supply a default interrupt handler for these conditions.
; The following code just reads all the appropriate registers to clear any
; pending interrupts.

call ComGetLSR ;Clear receiver line status
call ComGetMSR ;Clear modem status.
jmp TryAnother ;Check for lower priority intr.

; When there are no more pending interrupts on the 8250, drop down and
; and return from this ISR.

IntRtn: mov al, 20h ;Acknowledge interrupt to the
out 20h, al ; 8259A interrupt controller.
pop dx
pop bx
pop ax
iret

; Handle incoming data here:
; (Warning: This is a critical region. Interrupts MUST BE OFF while executing
; this code. By default, interrupts are off in an ISR. DO NOT TURN THEM ON
; if you modify this code).

ReadCom1: mov dx, ComPort ;Point at data input register.
in al, dx ;Get the input char

mov bx, InHead ;Insert the character into the
mov [bx], al ; serial input buffer.

inc bx ;Increment buffer ptr.
cmp bx, offset InpBufEnd
jb NoInpWrap

The PC Serial Ports

Page 1243

mov bx, offset InpBuf
NoInpWrap: cmp bx, InTail ;If the buffer is full, ignore this

je TryAnother ; input character.
mov InHead, bx
jmp TryAnother ;Go handle other 8250 interrupts.

; Handle outgoing data here (This is also a critical region):

WriteCom1: mov bx, OutTail ;See if the buffer is empty.
cmp bx, OutHead
jne OutputChar ;If not, output the next char.

; If head and tail are equal, simply set the TestBuffer variable to zero
; and quit. If they are not equal, then there is data in the buffer and
; we should output the next character.

mov TestBuffer, 0
jmp TryAnother ;Handle other pending interrupts.

; The buffer pointers are not equal, output the next character down here.

OutputChar: mov al, [bx] ;Get the next char from the buffer.
mov dx, ComPort ;Select output port.
out dx, al ;Output the character

; Okay, bump the output pointer.

inc bx
cmp bx, offset OutBufEnd
jb NoOutWrap
mov bx, offset OutBuf

NoOutWrap: mov OutTail, bx
jmp TryAnother

ComIntISR endp

These last two routines read data from the serial input buffer and write data to the serial output buffer.
The ComIn routine, that handles the input chore, waits until the input buffer is not empty. Then it
removes the first available byte from the input buffer and returns this value to the caller.

ComIn proc
pushf ;Save interrupt flag
push bx
sti ;Make sure interrupts are on.

TstInLoop: mov bx, InTail ;Wait until there is at least one
cmp bx, InHead ; character in the input buffer.
je TstInLoop
mov al, [bx] ;Get next char.
cli ;Turn off ints while adjusting
inc bx ; buffer pointers.
cmp bx, offset InpBufEnd
jne NoWrap2
mov bx, offset InpBuf

NoWrap2: mov InTail, bx
pop bx
popf ;Restore interrupt flag.
ret

ComIn endp

The ComOut must check the TestBuffer variable to see if the 8250 is currently busy. If not
(TestBuffer equals zero) then this code must write the character directly to the serial port and set
TestBuffer to one (since the chip is now busy). If the TestBuffer contains a non-zero value, this code
simply appends the character in al to the end of the output buffer.

Chapter 22

Page 1244

ComOut proc far
pushf
cli ;No interrupts now!
cmp TestBuffer, 0 ;Write directly to serial chip?
jnz BufferItUp ;If not, go put it in the buffer.

; The following code writes the current character directly to the serial port
; because the 8250 is not transmitting anything now and we will never again
; get a transmit holding register empty interrupt (at least, not until we
; write data directly to the port).

push dx
mov dx, ComPort ;Select output register.
out dx, al ;Write character to port.
mov TestBuffer, 1 ;Must buffer up next char.
pop dx
popf ;Restore interrupt flag.
ret

; If the 8250 is busy, buffer up the character here:

BufferItUp: push bx
mov bx, OutHead ;Pointer to next buffer position.
mov [bx], al ;Add the char to the buffer.

; Bump the output pointer.

inc bx
cmp bx, offset OutBufEnd
jne NoWrap3
mov bx, offset OutBuf

NoWrap3: cmp bx, OutTail ;See if the buffer is full.
je NoSetTail ;Don’t add char if buffer is full.
mov OutHead, bx ;Else, update buffer ptr.

NoSetTail: pop bx
popf ;Restore interrupt flag
ret

ComOut endp

Note that the Standard Library does not provide any routines to see if there is data available in the
input buffer or to see if the output buffer is full (comparable to the ComTstIn and ComTstOut routines).
However, these are very easy routines to write; all you need do is compare the head and tail pointers of
the two buffers. The buffers are empty if the head and tail pointers are equal. The buffers are full if the
head pointer is one byte before the tail pointer (keep in mind, the pointers wrap around at the end of the
buffer, so the buffer is also full if the head pointer is at the last position in the buffer and the tail pointer is
at the first position in the buffer).

22.4 Summary

This chapter discusses RS-232C serial communications on the PC. Like the parallel port, there are
three levels at which you can access the serial port: through DOS, through BIOS, or by programming the
hardware directly. Unlike DOS’ and BIOS’ parallel printer support, the DOS serial support is almost worth-
less and the BIOS support is rather weak (e.g., it doesn’t support interrupt driven I/O). Therefore, it is
common programming practice on the PC to control the hardware directly from an application program.
Therefore, familiarizing one’s self with the 8250 Serial Communication Chip (SCC) is important if you
intend to do serial communications on the PC. This chapter does not discuss serial communication from
DOS or BIOS, mainly because their support is so limited. For further information on programming the
serial port from DOS or BIOS, see “MS-DOS, PC-BIOS, and File I/O” on page 699.

The 8250 supports ten I/O registers that let you control the communication parameters, check the sta-
tus of the chip, control interrupt capabilities, and, of course, perform serial I/O. the 8250 maps these regis-
ters to eight I/O locations in the PC’s I/O address space.

The PC Serial Ports

Page 1245

The PC supports up to four serial communication devices: COM1:, COM2:, COM3:, and COM4:. How-
ever, most software only deals with the COM1: and COM2: ports. Like the parallel port support, BIOS dif-
ferentiates logical communication ports and physical communication ports. BIOS stores the base address
of COM1:..COM4: in memory locations 40:0, 40:2, 40:4, and 40:6. This base address is the I/O address of
the first 8250 register for that particular communication port. For more information on the 8250 hardware,
check out

• “The 8250 Serial Communications Chip” on page 1223
• “The Data Register (Transmit/Receive Register)” on page 1224
• “The Interrupt Enable Register (IER)” on page 1224
• “The Baud Rate Divisor” on page 1225
• “The Interrupt Identification Register (IIR)” on page 1226
• “The Line Control Register” on page 1227
• “The Modem Control Register” on page 1228
• “The Line Status Register (LSR)” on page 1229
• “The Modem Status Register (MSR)” on page 1230
• “The Auxiliary Input Register” on page 1231

The UCR Standard Library provides a very reasonable set of routines you can use to control the serial
port on the PC. Not only does this package provide a set of polling routines you can use much like the
BIOS’ code, but it also provides an interrupt service routine to support interrupt driven I/O on the serial
port. For more information on these routines, see

• “The UCR Standard Library Serial Communications Support Routines” on page 1231

The Standard Library serial I/O routines provide an excellent example of how to program the 8250
SCC. Therefore, this chapter concludes by presenting and explaining the Standard Library’s serial I/O rou-
tines. In particular, this code demonstrates some of the subtle problems with interrupt driven serial com-
munication. For all the details, read

• “Programming the 8250 (Examples from the Standard Library)” on page 1233

Chapter 22

Page 1246

Page 1247

The PC Video Display Chapter 23

The PC’s video display is a very complex system. First, there is not a single common device as exists
for the parallel and serial ports, or even a few devices (like the keyboard systems found on PCs). No, there
are literally dozens of different display adapter cards available for the PC. Furthermore, each adapter typi-
cally supports several different display modes. Given the large number of display modes and uses for the
display adapters, it would be very easy to write a book as large as this one on the PC’s display adapters
alone

1

 However, this is not that text. This book would hardly be complete without at least mentioning the
PC’s video display, but there are not enough pages remaining in this book to do justice to the subject.
Therefore, this chapter will discuss the 80 x 25

text display

mode

that nearly all display adapters support.

23.1 Memory Mapped Video

Most peripheral devices on the PC use

I/O mapped

 input/output. A program communicates with I/O
mapped devices using the 80x86

in

,

out

,

ins

, and

outs

 instructions, accessing devices in the PC’s I/O
address space. While the video controller chips that appear on PC video display adapters also map regis-
ters to the PC’s I/O space, these cards also employ a second form of I/O addressing:

memory mapped I/O

input/output. In particular, the 80 x 25 text display is nothing more than a two dimensional array of words
with each word in the array corresponding a character on the screen. This array appears just above the
640K point in the PC’s memory address space. If you store data into this array using standard memory
addressing instruction (e.g.,

mov

), you will affect the characters appearing on the display.

There are actually two different arrays you need to worry about. Monochrome system (remember
those?) locate their text display starting at location B000:0000 in memory. Color systems locate their text
displays at location B800:0000 in memory. These locations are the base addresses of a column major order
array declared as follows:

Display: array [0..79, 0..24] of word;

If you prefer to work with row major ordered arrays, no problem, the video display is equal to the follow-
ing array definition:

Display: array [0..24, 0..79] of word;

Note that location (0,0) is the upper left hand corner and location (79,24) is the lower right hand corner of
the display (the values in parentheses are the x and y coordinates, with the x/horizontal coordinate
appearing first).

The L.O. byte of each word contains the PC/ASCII code for the character you want to display (see
Appendix A for a listing of the PC/ASCII character set). The H.O. byte of each word is the

attribute byte

.
We will return to the attribute byte in the next section.

The display page consumes slightly less than 4 Kilobytes in the memory map. The color display
adapters actually provide 32K for text displays and let you select one of eight different displays. Each such
display begins on a 4K boundary, at address B800:0, B800:1000, B800:2000, B800:3000, ..., B800:7000.
Note that most modern color display adapters actually provide memory from address A000:0 through
B000:FFFF (and more), but the text display only uses the 32K from B800:0..B800:7FFF. In this chapter, we
will only concern ourselves with the first color display page at address B800:0. However, everything dis-
cussed in this chapter applies to the other display pages as well.

The monochrome adapter provides only a single display page. Indeed, the earliest monochrome dis-
play adapters included only 4K on-board memory (contrast this with modern high density color display
adapters that have up to four megabytes of on-board memory!).

1. In fact, several such books exist. See the bibliography.

Thi d t t d ith F M k 4 0 2

Chapter 23

Page 1248

You can address the memory on the video display like ordinary RAM. You could even store program
variables, or even code, in this memory. However, it is never a good idea to do this. First of all, any time
you write to the display screen, you will wipe out any variables stored in the active display memory. Even
if you store such code or variables in an inactive display page (e.g., pages one through seven on a color
display adapter), using this memory in this manner is not a good idea because access to the display
adapter is very slow. Main memory runs two to ten times faster (depending on the machine).

23.2 The Video Attribute Byte

The video attribute associated with each character on the screen controls underlining, intensity,
inverse video, and blinking video on monochrome adapters. It controls blinking and character fore-
ground/background colors on color displays. The following diagrams provide the possible attribute val-
ues:

Display Mode
 000 000 = Invisible
 000 001 = Underlined
 000 111 = Normal
 111 000 = Inverse video

Intensity: high = 1, low = 0

Blinking = 1, static = 0

Monochrome Display Adapter Attribute Byte Format

7 6 5 4 3 2 1 0

Foreground color:
 0000 = Black 1000 = Dark Gray
 0001 = Blue 1001 = Light Blue
 0010 = Green 1010 = Light Green
 0011 = Cyan 1011 = Light Cyan
 0100 = Red 1100 = Light Red
 0101 = Magenta 1101 = Light Magenta
 0110 = Brown 1110 = Yellow
 0111 = Light Gray 1111 = White

Background color (see values 0000..0111 above)

Blinking = 1, static = 0

Color Display Adapter Attribute Byte Format

7 6 5 4 3 2 1 0

The PC Video Display

Page 1249

To get reverse video on the color display, simply swap the foreground and background colors. Note
that a foreground color of zero with a background color of seven produces black characters on a white
background, the standard reverse video colors and the same attribute values you’d use on the mono-
chrome display adapter.

You need to be careful when choosing foreground and background colors for text on a color display
adapters. Some combinations are impossible to read (e.g., white characters on a white background). Other
colors go together so poorly the text will be extremely difficult to read, if not impossible (how about light
green letters on a green background?). You must choose your colors with care!

Blinking characters are great for drawing attention to some important text on the screen (like a warn-
ing). However, it is easy to overdo blinking text on the screen. You should never have more than one
word or phrase blinking on the screen at one time. Furthermore, you should never leave blinking charac-
ters on the screen for any length of time. After a few seconds, replace blinking characters with normal
characters to avoid annoying the user of your software.

Keep in mind, you can easily change the attributes of various characters on the screen without affect-
ing the actual text. Remember, the attribute bytes appear at odd addresses in the memory space for the
video display. You can easily go in and change these bytes while leaving the character code data alone.

23.3 Programming the Text Display

You might ask why anyone would want to bother working directly with the memory mapped display
on the PC. After all, DOS, BIOS, and the UCR Standard Library provide

much

 more convenient ways to
display text on the screen. Handling new lines (carriage return and line feed) at the end of each line or,
worse yet, scrolling the screen when the display is full, is a lot of work. Work that is taken care of for you
automatically by the aforementioned routines. Work you have to do yourself if you access screen memory
directly. So why bother?

There are two reasons: performance and flexibility. The BIOS video display routines

2

 are

dreadfully

slow. You can easily get a 10 to 100 times performance boost by writing directly to screen memory. For a
typical computer science class project, this may not be important, especially if you’re running on a fast
machine like a 150 MHz Pentium. On the other hand, if you are developing a program that displays and
removes several windows or pop-up menus on the screen, the BIOS routines won’t cut it.

Although the BIOS int 10h functions provide a large set of video I/O routines, there will be lots of
functions you might want to have that the BIOS just doesn’t provide. In such cases, going directly to screen
memory is one way to solve the problem.

Another difficulty with BIOS routine is that they are not reentrant. You cannot call a BIOS display
function from an interrupt service routine, nor can you freely call BIOS from concurrently executing pro-
cesses. However, by writing your own video service routines, you can easily create a window for each
concurrent thread you application is executing. Then each thread can call your routines to display its out-
put independent of the other threads executing on the system.

The AMAZE.ASM program (see “Processes, Coroutines, and Concurrency” on page 1065) is a good
example of a program that directly access the text display by directly storing data into the video display’s
memory mapped display array. This program access display memory directly because it is more conve-
nient to do so (the screen’s display array maps quite nicely to the internal maze array). Simple video games
like a space invaders game or a “remove the bricks” game also map nicely to a memory mapped video dis-
play.

The following program provides an excellent example of an application that needs to access video
memory directly. This program is a

screen capture

 TSR. When you press the left shift key and then the
right shift key, this program copies the current screen contents to an internal buffer. When you press the

2. The Standard Library calls DOS and DOS calls BIOS for all display I/O, hence they all become BIOS calls at one level or another.

Chapter 23

Page 1250

right shift key followed by the left shift key, this program copies its internal buffer to the display screen.
Originally, this program was written to capture CodeView screens for the lab manual accompanying this
text. There are commercial screen capture programs (e.g., HiJak) that would normally do the job, but are
incompatible with CodeView. This short TSR allows one to capture screens in CodeView, quit CodeView,
put the CodeView screen back onto the display, and the use a program like HiJak to capture the output.

; GRABSCRN.ASM
;
; A short TSR to capture the current display screen and display it later.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
ScreenSave byte 4096 dup (?)
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

RShiftScan equ 36h
LShiftScan equ 2ah

; Bits for the shift/modifier keys

RShfBit equ 1
LShfBit equ 2

KbdFlags equ <byte ptr ds:[17h]>

byp equ <byte ptr>

; Screen segment address. This value is for color displays only.
; Change to B000h if you want to use this program on a mono display.

ScreenSeg equ 0B800h

cseg segment para public ‘code’
assume ds:nothing

; MyInt9- INT 9 ISR. This routine reads the keyboard port to see
; if a shift key scan code just came along. If the right
; shift bit is set in KbdFlags the a left shift key scan
; code comes along, we want to copy the data from our
; internal buffer to the screen’s memory. If the left shift
; bit is set and a right shift key scan code comes along,
; we want to copy the screen memory into our local array.
; In any case (including none of the above), we always transfer
; control to the original INT 9 handler.

MyInt9 proc far
push ds
push ax

The PC Video Display

Page 1251

mov ax, 40h
mov ds, ax

in al, 60h ;Read the keyboard port.
cmp al, RShiftScan ;Right shift just go down?
je DoRight
cmp al, LShiftScan ;How about the left shift?
jne QuitMyInt9

; If this is the left scan code, see if the right shift key is already
; down.

test KbdFlags, RShfBit
je QuitMyInt9 ;Branch if no

; Okay, right shift was down and we just saw left shift, copy our local
; data back to screen memory:

pushf
push es
push cx
push di
push si
mov cx, 2048
mov si, cs
mov ds, si
lea si, ScreenSave
mov di, ScreenSeg
mov es, di
xor di, di
jmp DoMove

; Okay, we just saw the right shift key scan code, see if the left shift
; key is already down. If so, save the current screen data to our local
; array.

DoRight: test KbdFlags, LShfBit
je QuitMyInt9

pushf
push es
push cx
push di
push si
mov cx, 2048
mov ax, cs
mov es, ax
lea di, ScreenSave
mov si, ScreenSeg
mov ds, si
xor si, si

DoMove: cld
rep movsw

pop si
pop di
pop cx
pop es
popf

QuitMyInt9:
pop ax
pop ds
jmp OldInt9

MyInt9 endp

Main proc
assume ds:cseg

mov ax, cseg
mov ds, ax

print

Chapter 23

Page 1252

byte “Screen capture TSR”,cr,lf
byte “Pressing left shift, then right shift, captures “
byte “the current screen.”,cr,lf
byte “Pressing right shift, then left shift, displays “
byte “the last captured screen.”,cr,lf
byte 0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

23.4 Summary

The PC’s video system uses a memory mapped array for the screen data. This is an 80 x 25 column
major organized array of words. Each word in the array corresponds to a single character on the screen.
This array begins at location B000:0 for monochrome displays and B800:0 for color displays. For additional
information, see:

• “Memory Mapped Video” on page 1247

The L.O. byte is the PC/ASCII character code for that particular screen position, the H.O. byte con-
tains the attributes for that character. The attribute selects blinking, intensity, and background/foreground
colors (on a color display). For more information on the attribute byte, see:

• “The Video Attribute Byte” on page 1248

There are a few reasons why you would want to bother accessing display memory directly. Speed
and flexibility are the two primary reasons people go directly to screen memory. You can create your own

The PC Video Display

Page 1253

screen functions that the BIOS doesn’t support and do it one or two orders of magnitude faster than the
BIOS by writing directly to screen memory. To find out about this, and to see a simple example, check out

• “Programming the Text Display” on page 1249

Chapter 23

Page 1254

Page 1255

The PC Game Adapter Chapter 24

One need look no farther than the internals of several popular games on the PC to discover than
many programmers do not fully understand one of the least complex devices attached to the PC today –
the analog game adapter. This device allows a user to connect up to four resistive potentiometers and four
digital switch connections to the PC. The design of the PC’s game adapter was obviously influenced by the
analog input capabilities of the Apple II computer

1

, the most popular computer available at the time the
PC was developed. Although IBM provided for twice the analog inputs of the Apple II, thinking that
would give them an edge, their decision to support only four switches and four potentiometers (or “pots”)
seems confining to game designers today – in much the same way that IBM’s decision to support 256K
RAM seems so limiting today. Nevertheless, game designers have managed to create some really marvel-
ous products, even living with the limitations of IBM’s 1981 design.

IBM’s analog input design, like Apple’s, was designed to be dirt cheap. Accuracy and performance
were not a concern at all. In fact, you can purchase the electronic parts to build your own version of the
game adapter, at retail, for under three dollars. Indeed, today you can purchase a game adapter card from
various discount merchants for under eight dollars. Unfortunately, IBM’s low-cost design in 1981 produces
some major performance problems for high-speed machines and high-performance game software in the
1990’s. However, there is no use crying over spilled milk – we’re stuck with the original game adapter
design, we need to make the most of it. The following sections will describe how to do exactly that.

24.1 Typical Game Devices

The game adapter is nothing more than a computer interface to various game input devices. The
game adapter card typically contains a DB15 connector into which you plug an external device. Typical
devices you can obtain for the game adapter include

paddles, joysticks, flight yokes, digital joysticks, rud-
der pedals, RC simulators,

and

steering wheels.

 Undoubtedly, this is but a short list of the types of devices
you can connect to the game adapter. Most of these devices are far more expensive that the game adapter
card itself. Indeed, certain high performance flight simulator consoles for the game adapter cost several
hundred dollars.

The digital joystick is probably the least complex device you can connect to the PC’s game port. This
device consists of four switches and a stick. Pushing the stick forward, left, right, or pulling it backward
closes one of the switches. The game adapter card provides four switch inputs, so you can sense which
direction (including the rest position) the user is pressing the digital joystick. Most digital joysticks also
allow you to sense the in-between positions by closing two contacts at once. for example, pushing the
control stick at a 45 degree angle between forward and right closes both the forward and right switches.
The application software can sense this and take appropriate action. The original allure of these devices is
that they were very cheap to manufacture (these were the original joysticks found on most home game
machines). However, as manufacturers increased production of analog joysticks, the price fell to the point
that digital joysticks failed to offer a substantial price difference. So today, you will rarely encounter such
devices in the hands of a typical user.

The game paddle is another device whose use has declined over the years. A game paddle is a single
pot in a case with a single knob (and, typically, a single push button). Apple used to ship a pair of game
paddles with every Apple II they sold. As a result, games that used game paddles were still quite popular
when IBM released the PC in 1981. Indeed, a couple manufacturers produced game paddles for the PC
when it was first introduced. However, once again the cost of manufacturing analog joysticks fell to the
point that paddles couldn’t compete. Although paddles are the appropriate input device for many games,
joysticks could do just about everything a game paddle could, and more. So the use of game paddles
quickly died out. There is one thing you can do with game paddles that you cannot do with joysticks – you

1. In fact, the PC’s game adapter design was obviously stolen directly from the Apple II.

Thi d t t d ith F M k 4 0 2

Chapter 24

Page 1256

can place four of them on a system and produce a four player game. However, this (obviously) isn’t
important to most game designers who generally design their games for only one player.

Rudder pedals are really nothing more than a specially designed game paddle designed so you can
activate them with your feet. Many flight simulator games take advantage of this input device to provide a
more realistic experience. Generally, you would use rudder pedals in addition to a joystick device.

A joystick contains two pots connected with a stick. Moving the joystick along the x-axis actuates one
of the pots, moving the joystick along the y-axis actuates the other pot. By reading both pots, you can
roughly determine the absolute position of the pot within its working range.

An RC simulator is really nothing more than a box containing two joysticks. The yoke and steering
wheel devices are essentially the same device, sold specifically for flight simulators or automotive games

2

.
The steering wheel is connected to a pot that corresponds to the x-axis on the joystick. Pulling back (or
pushing forward) on the wheel activates a second pot that corresponds to the y-axis on the joystick.

Certain joystick devices, generically known as

flight sticks

, contain three pots. Two pots are con-
nected in a standard joystick fashion, the third is connected to a knob which many games use for the throt-
tle control. Other joysticks, like the Thrustmaster

 or CH Products’ FlightStick Pro, include extra switches
including a special “cooley switch” that provide additional inputs to the game. The cooley switch is, essen-
tially, a digital pot mounted on the top of a joystick. Users can select one of four positions on the cooley
switch using their thumb. Most flight simulator programs compatible with such devices use the cooley
switch to select different views from the aircraft.

2. In fact, many such devices are switchable between the two.

0 Maximum
Reading

A game paddle or set of rudder pedals
generally provide a single number in the
range zero through some system dependent
maximum value.

Game Paddle or Rudder Pedal Game Input Device

Y

X

A joystick uses two independent pots
to provide an (X,Y) input value. Hori-
zontal movements on the joystick af-
fect the x-axis pot independently of
the y-axis pot. Likewise, vertical move-
ments affect the y-axis pot independ-
ent of the x-axis pot. By reading both
pots you can determine the position
of the joystick in the (X,Y) coordinate
system.

Joystick Game Input Device

The Game Adapter

Page 1257

24.2 The Game Adapter Hardware

The game adapter hardware is simplicity itself. There is a single input port and a single output port.
The input port bit layout is

The four switches come in on the H.O. four bits of I/O port 201h. If the user is currently pressing a
button, the corresponding bit position will contain a zero. If the button is up, the corresponding bit will
contain a one.

The pot inputs might seem strange at first glance. After all, how can we represent one of a large num-
ber of potential pot positions (say, at least 256) with a single bit? Obviously we can’t. However, the input
bit on this port does not return any type of numeric value specifying the pot position. Instead, each of the

The cooley switch (shown here on a device layout similar
to the CH Products' FlightStick Pro) is a thumb actuated
digitial joystick. You can move the switch up, down, left
or right, activating individual switches inside the game
input device.

Cooley Switch (found on CH Products and Thrustmaster Joysticks)

Pot #0 input
Pot #1 input
Pot #2 input
Pot #3 input
Switch #0 input
Switch #1 in put
Switch #2 input
Switch #3 input

Game Adapter Input Port

7 6 5 4 3 2 1 0
I/O Address 201h

Chapter 24

Page 1258

four pot bits is connected to an input of a resistive sensitive 558 quad timer chip. When you trigger the
timer chip, it produces an output pulse whose duration is proportional to the resistive input to the timer.
The output of this timer chip appears as the input bit for a given pot. The schematic for this circuit is

Normally, the pot input bits contain zero. When you trigger the timer chip, the pot input lines go high
for some period of time determined by the current resistance of the potentiometer. By measuring how
long this bit stays set, you can get a rough estimate of the resistance. To trigger the pots, simply write any
value to I/O port 201h. The actual value you write is unimportant. The following timing diagram shows
how the signal varies on each pot’s input bit:

558
Timer

Trigger (Write to I/O Address 201h)

D0
D1
D2
D3

External Potentiometers

Joystick Schematic

L.O. Four Bits
on Input Port 201h

Trigger
Occurs
Here

Input on D0..D3 goes high for some
period of time depending on the pot
setting.

0

1

Analog Input Timing Signal

The Game Adapter

Page 1259

The only remaining question is “how do we determine the length of the pulse?” The following short loop
demonstrates one way to determine the width of this timing pulse:

mov cx, -1 ;We’re going to count backwards
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
test al, 1 ;Check pot #0 input.
loopne CntLp ;Repeat while high.
neg cx ;Convert CX to a positive value.

When this loop finish execution, the

cx

 register will contain the number of passes made through this loop
while the timer output signal was a logic one. The larger the value in

cx

, the longer the pulse and, there-
fore, the greater the resistance of pot #0.

There are several minor problems with this code. First of all, the code will obviously produce differ-
ent results on different machines running at different clock rates. For example, a 150 MHz Pentium system
will execute this code much faster than a 5 MHz 8088 system

3

. The second problem is that different joy-
sticks and different game adapter cards produce radically different timing results. Even on the same system
with the same adapter card and joystick, you may not always get consistent readings on different days. It
turns out that the 558 is somewhat temperature sensitive and will produce slightly different readings as the
temperature changes.

Unfortunately, there is no way to design a loop like the above so that it returns consistent readings
across a wide variety of machines, potentiometers, and game adapter cards. Therefore, you have to write
your application software so that it is insensitive to wide variances in the input values from the analog
inputs. Fortunately, this is very easy to do, but more on that later.

24.3 Using BIOS’ Game I/O Functions

The BIOS provides two functions for reading game adapter inputs. Both are subfunctions of the
int 15h handler.

To read the switches, load ah with 84h and dx with zero then execute an int 15h instruction. On
return, al will contain the switch readings in the H.O. four bits (see the diagram in the previous section).
This function is roughly equivalent to reading port 201h directly.

To read the analog inputs, load ah with 84h and dx with one then execute an int 15h instruction. On
return, AX, BX, CX, and DX will contain the values for pots zero, one, two, and three, respectively. In prac-
tice, this call should return values in the range 0-400h, though you cannot count on this for reasons
described in the previous section.

Very few programs use the BIOS joystick support. It’s easier to read the switches directly and reading
the pots is not that much more work that calling the BIOS routine. The BIOS code is

very

 slow. Most BIO-
Ses read the four pots sequentially, taking up to four times longer than a program that reads all four pots
concurrently (see the next section). Because reading the pots can take several hundred microseconds up
to several milliseconds, most programmers writing high performance games do not use the BIOS calls,
they write their own high performance routines instead.

This is a real shame. By writing drivers specific to the PC’s original game adapter design, these devel-
opers force the user to purchase and use a standard game adapter card and game input device. Were the
game to make the BIOS call, third party developers could create different and unique game controllers and
then simply supply a driver that replaces the int 15h routine and provides the same programming inter-
face. For example, Genovation made a device that lets you plug a joystick into the parallel port of a PC.

3. Actually, the speed difference is not as great as you would first think. Joystick adapter cards almost always interface to the computer system via
the ISA bus. The ISA bus runs at only 8 Mhz and requires four clock cycles per data transfer (i.e., 500 ns to read the joystick input port). This is equiv-
alent to a small number of wait states on a slow machine and a gigantic number of wait states on a fast machine. Tests run on a 5 MHz 8088 system
vs. a 50 MHz 486DX system produces only a 2:1 to 3:1 speed difference between the two machines even though the 486 machine was over 50 times
faster for most other computations.

Chapter 24

Page 1260

Colorado Spectrum created a similar device that lets you plug a joystick into the serial port. Both devices
would let you use a joystick on machines that do not (and, perhaps, cannot) have a game adapter
installed. However, games that access the joystick hardware directly will not be compatible with such
devices. However, had the game designer made the int 15h call, their software would have been compati-
ble since both Colorado Spectrum and Genovation supply int 15h TSRs to reroute joystick calls to use their
devices.

To help overcome game designer’s aversion to using the int 15h calls, this text will present a high per-
formance version of the BIOS’ joystick code a little later in this chapter. Developers who adopt this

Stan-
dard Game Device Interface

 will create software that will be compatible with any other device that
supports the SGDI standard. For more details, see “The Standard Game Device Interface (SGDI)” on
page 1262.

24.4 Writing Your Own Game I/O Routines

Consider again the code that returns some value for a given pot setting:

mov cx, -1 ;We’re going to count backwards
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
test al, 1 ;Check pot #0 input.
loopne CntLp ;Repeat while high.
neg cx ;Convert CX to a positive value.

As mentioned earlier, the big problem with this code is that you are going to get wildly different ranges of
values from different game adapter cards, input devices, and computer systems. Clearly you cannot count
on the code above always producing a value in the range 0..180h under these conditions. Your software
will need to dynamically adjust the values it uses depending on the system parameters.

You’ve probably played a game on the PC where the software asks you to

calibrate

 the joystick
before use. Calibration generally consists of moving the joystick handle to one corner (e.g., the upper-left
corner), pressing a button or key and them moving the handle to the opposite corner (e.g., lower-right)
and pressing a button again. Some systems even want you to move the joystick to the center position and
press a button as well.

Software that does this is reading the

minimum, maximum,

 and

centered

 values from the joystick.
Given at least the minimum and maximum values, you can easily scale any reading to any range you want.
By reading the centered value as well, you can get slightly better results, especially on really inexpensive
(cheap) joysticks. This process of scaling a reading to a certain range is known as

normalization

. By read-
ing the minimum and maximum values from the user and normalizing every reading thereafter, you can
write your programs assuming that the values always fall within a certain range, for example, 0..255. To
normalize a reading is very easy, you simply use the following formula:

The

MaximumReading

 and

MinimumReading

 values are the minimum and maximum values
read from the user at the beginning of your application.

CurrentReading

 is the value just read from the
game adapter.

NormalValue

 is the upper bounds on the range to which you want to normalize the
reading (e.g., 255), the lower bound is always zero

4

.

4. If you want a different lower bound, just add whatever value you want fro the lowest value to the result. You will also need to subtract this lower
bound from the NormalValue variable in the above equation.

CurrentReading MinimumReading–()
MaximumReading MinimumReading–()

--- NormalValue×

The Game Adapter

Page 1261

To get better results, especially when using a joystick, you should obtain three readings during the
calibration phase for each pot – a minimum value, a maximum value, and a centered value. To normalize
a reading when you’ve got these three values, you would use one of the following formulae:

If the current reading is in the range minimum..center, use this formula:

If the current reading is in the range center..maximum, use this formula:

A large number of games on the market today jump through all kinds of hoops trying to coerce joy-
stick readings into a reasonable range. It is surprising how few of them use that simple formula above.
Some game designers might argue that the formulae above are overly complex and they are writing high
performance games. This is nonsense. It takes two orders of magnitude more time to wait for the joystick
to time out than it does to compute the above equations. So use them and make your programs easier to
write.

Although normalizing your pot readings takes so little time it is always worthwhile, reading the ana-
log inputs is a very expensive operation in terms of CPU cycles. Since the timer circuit produces relatively
fixed time delays for a given resistance, you will waste even more CPU cycles on a fast machine than you
do on a slow machine (although reading the pot takes about the same amount of

real

 time on any
machine). One sure fire way to waste a lot of time is to read several pots one at a time; for example, when
reading pots zero and one to get a joystick reading, read pot zero first and then read pot one afterwards. It
turns out that you can easily read both pots in parallel. By doing so, you can speed up reading the joystick
by a factor of two. Consider the following code:

mov cx, 1000h ;Max times through loop
mov si, 0 ;We’ll put readings in SI and
mov di, si ; di.
mov ax, si ;Set AH to zero.
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
and al, 11b ;Strip unwanted bits.
jz Done
shr ax, 1 ;Put pot 0 value into carry.
adc si, 0 ;Bump pot 0 value if still active.
add di, ax ;Bump pot 1 value if pot 1 active.
loop CntLp ;Repeat while high.
and si, 0FFFh ;If time-out, force the register(s)
and di, 0FFFh ; containing 1000h to zero.

Done:

This code reads both pot zero and pot one at the same time. It works by looping while either pot is
active

5

. Each time through the loop, this code adds the pots’ bit values to separate register that accumula-
tor the result. When this loop terminates,

si

 and

di

 contain the readings for both pots zero and one.

Although this particular loop contains more instructions than the previous loop, it still takes the same
amount of time to execute. Remember, the output pulses on the 558 timer determine how long this code
takes to execute, the number of instructions in the loop contribute very little to the execution time. How-
ever, the time this loop takes to execute one iteration of the loop does effect the

resolution

 of this joystick
read routine. The faster the loop executes, the more iterations the loop will run during the same timing
period and the finer will be the measurement. Generally, though, the resolution of the above code is much
greater than the accuracy of the electronics and game input device, so this isn’t much of a concern.

5. This code provides a time-out feature in the event there is no game adapter installed. In such an event this code forces the readings to zero.

Current Center–()
Center Minimum–() 2×

--- NormalValue×

Current Center–()
Maximum Center–() 2×

-- NormalValue
NormalValue

2
------------------------------------+×

Chapter 24

Page 1262

The code above demonstrates how to read two pots. It is very easy to extend this code to read three
or four pots. An example of such a routine appears in the section on the SGDI device driver for the stan-
dard game adapter card.

The other game device input, the switches, would seem to be simple in comparison to the potentiom-
eter inputs. As usual, things are not as easy as they would seem at first glance. The switch inputs have
some problems of their own.

The first issue is keybounce. The switches on a typical joystick are probably an order of magnitude
worse than the keys on the cheapest keyboard. Keybounce, and lots of it, is a fact you’re going to have to
deal with when reading joystick switches. In general, you shouldn’t read the joystick switches more often
than once every 10 msec. Many games read the switches on the 55 msec timer interrupt. For example, sup-
pose your timer interrupt reads the switches and stores the result in a memory variable. The main applica-
tion, when wanting to fire a weapon, checks the variable. If it’s set, the main program clears the variable
and fires the weapon. Fifty-five milliseconds later, the timer sets the button variable again and the main
program will fire again the next time it checks the variable. Such a scheme will totally eliminate the prob-
lems with keybounce.

The technique above solves another problem with the switches: keeping track of when the button
first goes down. Remember, when you read the switches, the bits that come back tell you that the switch is
currently down. It does not tell you that the button was just pressed. You have to keep track of this your-
self. One easy way to detect when a user first presses a button is to save the previous switch reading and
compare it against the current reading. If they are different and the current reading indicates a switch
depression, then this is a new switch down.

24.5 The Standard Game Device Interface (SGDI)

The Standard Game Device Interface (SGDI) is a specification for an int 15h service that lets you read
an arbitrary number of pots and joysticks. Writing SGDI compliant applications is easy and helps make
your software compatible with any game device which provides SGDI compliance. By writing your appli-
cations to use the SGDI API you can ensure that your applications will work with future devices that pro-
vide extended SGDI capability. To understand the power and extensibility of the SGDI, you need to take a
look at the

application programmer’s interface

 (API) for the SGDI.

24.5.1 Application Programmer’s Interface (API)

The SGDI interface extends the PC’s joystick BIOS int 15h API. You make SGDI calls by loading the
80x86

ah

 register with 84h and

dx

 with an appropriate SGDI function code and then executing an int 15h
instruction. The SGDI interface simply extends the functionality of the built-in BIOS routines. Note that
and program that calls the standard BIOS joystick routines will work with an SGDI driver. The following
table lists each of the SGDI functions:

Table 87: SGDI Functions and API (int 15h, ah=84h)

DH Inputs Outputs Description

00

dl

 = 0

al

- Switch
readings

Read4Sw. This is the standard BIOS subfunction zero call. This reads the
status of the first four switches and returns their values in the upper four
bits of the

al

 register.

00

dl

 = 1

ax

- pot 0

bx

- pot 1

cx

- pot 2

dx

- pot 3

Read4Pots. Standard BIOS subfunction one call. Reads all four pots (con-
currently) and returns their raw values in

ax

,

bx

,

cx

, and

dx

 as per BIOS
specifications.

The Game Adapter

Page 1263

24.5.2 Read4Sw

Inputs:

ah

= 84h,

dx

 = 0

This is the standard BIOS read switches call. It returns the status switches zero through three on the
joystick in the upper four bits of the

al

 register. Bit four corresponds to switch zero, bit five to switch one,
bit six to switch two, and bit seven to switch three. One zero in each bit position denotes a depressed
switch, a one bit corresponds to a switch in the up position. This call is provided for compatibility with the
existing BIOS joystick routines. To read the joystick switches you should use the

Read16Sw

call
described later in this document.

24.5.3 Read4Pots:

Inputs:

ah

= 84h,

dx

 = 1

This is the standard BIOS read pots call. It reads the four pots on the standard game adapter card and
returns their readings in the

ax

 (x axis/pot 0),

bx

 (y axis/pot 1),

cx

 (pot 2), and

dx

 (pot 3) registers.
These are

raw, uncalibrated

, pot readings whose values will differ from machine to machine and vary
depending upon the game I/O card in use. This call is provided for compatibility with the existing BIOS

01

dl

 = pot #

al

= pot reading ReadPot. This function reads a pot and returns a

normalized

 reading in
the range 0..255.

02

dl

 = 0

al

 = pot mask

al

 = pot 0

ah

 = pot 1

dl

 = pot 2

dh

 = pot 3

Read4. This routine reads the four pots on the standard game adapter card
just like the Read4Pots function above. However, this routine normalizes
the four values to the range 0..255 and returns those values in

al

,

ah

,

dl

,
and

dh

. On entry, the al register contains a “pot mask” that you can use to
select which of the four pots this routine actually reads.

03 dl = pot #
al = minimum
bx= maximum
cx= centered

Calibrate. This function calibrates the pots for those calls that return nor-
malized values. You must calibrate the pots before calling any such pot
functions (ReadPot and Read4 above). The input values must be

raw

 pot
readings obtained by Read4Pots or other function that returns raw values.

04

dl

 = pot #

al

 = 0 if not cal-
ibrated, 1 if cali-
brated.

TestPotCalibrate. Checks to see if the specified pot has already been cali-
brated. Returns an appropriate value in al denoting the calibration status
for the specified pot. See the note above about the need for calibration.

05

dl

 = pot #

ax

 = raw value ReadRaw. Reads a raw value from the specified pot. You can use this call
to get the raw values required by the calibrate routine, above.

08

dl

= switch #

ax

 = switch
value

ReadSw. Read the specified switch and returns zero (switch up) or one
(switch down) in the

ax

 register.

09

ax

 = switch val-
ues

Read16Sw. This call lets an application read up to 16 switches on a game
device at a time. Bit zero of

ax

 corresponds to switch zero, bit 15 of ax
corresponds to switch fifteen.

80h Remove. This function removes the driver from memory. Application pro-
grams generally won’t make this call.

81h TestPresence. This routine returns zero in the ax register if an SGDI driver
is present in memory. It returns ax’s value unchanged otherwise (in par-
ticular, ah will still contain 84h).

Table 87: SGDI Functions and API (int 15h, ah=84h)

DH Inputs Outputs Description

Chapter 24

Page 1264

joystick routines. To read the pots you should use the ReadPot, Read4, or ReadRaw routines described
in the next several sections.

24.5.4 ReadPot

Inputs: ah=84h, dh=1, dl=Pot number.

This reads the specified pot and returns a normalized pot value in the range 0..255 in the al register.
This routine also sets ah to zero. Although the SGDI standard provides for up to 255 different pots, most
adapters only support pots zero, one, two, and three. If you attempt to read any nonsupported pot this
function returns zero in ax. Since the values are normalized, this call returns comparable values for a
given game control setting regardless of machine, clock frequency, or game I/O card in use. For example,
a reading of 128 corresponds (roughly) to the center setting on almost any machine. To properly produce
normalized results, you must calibrate a given pot before making this call. See the CalibratePot routine
for more details.

24.5.5 Read4:

Inputs: ah = 84h, al = pot mask, dx=0200h

This routine reads the four pots on the game adapter card, just like the BIOS call (Read4Pots).
However, it returns normalized values in al (x axis/pot 0), ah (y axis/pot 1), dl (pot 2), and dh (pot 3).
Since this routine returns normalized values between zero and 255, you must calibrate the pots before call-
ing this code. The al register contains a “pot mask” value. The L.O. four bits of al determine if this routine
will actually read each pot. If bit zero, one, two, or three is one, then this function will read the corre-
sponding pot; if the bits are zero, this routine will not read the corresponding pot and will return zero in
the corresponding register.

24.5.6 CalibratePot

Inputs: ah=84h, dh=3, dl=pot #, al=minimum value, bx=maximum value, cx=centered value.

Before you attempt to read a pot with the ReadPot or Read4 routines, you need to calibrate that
pot. If you read a pot without first calibrating it, the SGDI driver will return only zero for that pot reading.
To calibrate a pot you will need to read raw values for the pot in a minimum position, maximum position,
and a centered position6. These must be raw pot readings. Use readings obtained by the Read4Pots rou-
tine. In theory, you need only calibrate a pot once after loading the SGDI driver. However, temperature
fluctuations and analog circuitry drift may decalibrate a pot after considerable use. Therefore, you should
recalibrate the pots you intend to read each time the user runs your application. Furthermore, you should
give the user the option of recalibrating the pots at any time within your program.

24.5.7 TestPotCalibration

Inputs: ah= 84h, dh=4 , dl = pot #.

This routine returns zero or one in ax denoting not calibrated or calibrated, respectively. You can
use the call to see if the pots you intend to use have already been calibrated and you can skip the calibra-
tion phase. Please, however, note the comments about drift in the previous paragraph.

6. Many programmers compute the centered value as the arithmetic mean of the minimum and maximum values.

The Game Adapter

Page 1265

24.5.8 ReadRaw

Inputs: ah = 84h, dh = 5, dl = pot #

Reads the specified pot and returns a raw (not calibrated) value in ax. You can use this routine to
obtain minimum, centered, and maximum values for use when calling the calibrate routine.

24.5.9 ReadSwitch

Inputs: ah= 84h, dh = 8, dl = switch #

This routine reads the specified switch and returns zero in ax if the switch is not depressed. It returns
one if the switch is depressed. Note that this value is opposite the bit settings the Read4Sw function
returns.

If you attempt to read a switch number for an input that is not available on the current device, the
SGDI driver will return zero (switch up). Standard game devices only support switches zero through three
and most joysticks only provide two switches. Therefore, unless you are willing to tie your application to a
specific device, you shouldn’t use any switches other than zero or one.

24.5.10 Read16Sw

Inputs: ah = 84h, dh = 9

This SGDI routine reads up to sixteen switches with a single call. It returns a bit vector in the ax reg-
ister with bit 0 corresponding to switch zero, bit one corresponding to switch one, etc. Ones denote switch
depressed and zeros denote switches not depressed. Since the standard game adapter only supports four
switches, only bits zero through three of al contain meaningful data (for those devices). All other bits will
always contain zero. SGDI drivers for the CH Product’s Flightstick Pro and Thrustmaster joysticks will
return bits for the entire set of switches available on those devices.

24.5.11 Remove

Inputs: ah= 84h, dh= 80h

This call will attempt to remove the SGDI driver from memory. Generally, only the SGDI.EXE code
itself would invoke this routine. You should use the TestPresence routine (described next) to see if the
driver was actually removed from memory by this call.

24.5.12 TestPresence

Inputs: ah=84h, dh=81h

If an SGDI driver is present in memory, this routine return ax=0 and a pointer to an identification
string in es:bx. If an SGDI driver is not present, this call will return ax unchanged.

24.5.13 An SGDI Driver for the Standard Game Adapter Card

If you write your program to make SGDI calls, you will discover that the TestPresence call will
probably return “not present” when your program searches for a resident SGDI driver in memory. This is
because few manufacturers provide SGDI drivers at this point and even fewer standard game adapter

Chapter 24

Page 1266

companies ship any software at all with their products, much less an SGDI driver. Gee, what kind of stan-
dard is this if no one uses it? Well, the purpose of this section is to rectify that problem.

The assembly code that appears at the end of this section provides a fully functional, public domain,
SGDI driver for the standard game adapter card (the next section present an SGDI driver for the CH Prod-
ucts’ Flightstick Pro). This allows you to write your application making only SGDI calls. By supplying the
SGDI TSR with your product, your customers can use your software with all standard joysticks. Later, if
they purchase a specialized device with its own SGDI driver, your software will automatically work with
that driver with no changes to your software7.

If you do not like the idea of having a user run a TSR before your application, you can always include
the following code within your program’s code space and activate it if the SGDI TestPresence call
determines that no other SGDI driver is present in memory when you start your program.

Here’s the complete code for the standard game adapter SGDI driver:

.286
page 58, 132
name SGDI
title SGDI Driver for Standard Game Adapter Card
subttl This Program is Public Domain Material.

; SGDI.EXE
;
; Usage:
; SDGI
;
; This program loads a TSR which patches INT 15 so arbitrary game programs
; can read the joystick in a portable fashion.
;
;
; We need to load cseg in memory before any other segments!

cseg segment para public ‘code’
cseg ends

; Initialization code, which we do not need except upon initial load,
; goes in the following segment:

Initialize segment para public ‘INIT’
Initialize ends

; UCR Standard Library routines which get dumped later on.

.xlist
include stdlib.a
includelib stdlib.lib
.list

sseg segment para stack ‘stack’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

wp equ <word ptr>
byp equ <byte ptr>

Int15Vect dword 0

PSP word ?

7. Of course, your software may not take advantage of extra features, like additional switches and pots, but at least your software will support the
standard set of features on that device.

The Game Adapter

Page 1267

; Port addresses for a typical joystick card:

JoyPort equ 201h
JoyTrigger equ 201h

; Data structure to hold information about each pot.
; (mainly for calibration and normalization purposes).

Pot struc
PotMask byte 0 ;Pot mask for hardware.
DidCal byte 0 ;Is this pot calibrated?
min word 5000 ;Minimum pot value
max word 0 ;Max pot value
center word 0 ;Pot value in the middle
Pot ends

; Variables for each of the pots. Must initialize the masks so they
; mask out all the bits except the incomming bit for each pot.

Pot0 Pot <1>
Pot1 Pot <2>
Pot2 Pot <4>
Pot3 Pot <8>

; The IDstring address gets passed back to the caller on a testpresence
; call. The four bytes before the IDstring must contain the serial number
; and current driver number.

SerialNumber byte 0,0,0
IDNumber byte 0
IDString byte “Standard SGDI Driver”,0

byte “Public Domain Driver Written by Randall L. Hyde”,0

;==
;
; ReadPots- AH contains a bit mask to determine which pots we should read.
; Bit 0 is one if we should read pot 0, bit 1 is one if we should
; read pot 1, bit 2 is one if we should read pot 2, bit 3 is one
; if we should read pot 3. All other bits will be zero.
;
; This code returns the pot values in SI, BX, BP, and DI for Pot 0, 1,
; 2, & 3.
;

ReadPots proc near
sub bp, bp
mov si, bp
mov di, bp
mov bx, bp

; Wait for any previous signals to finish up before trying to read this
; guy. It is possible that the last pot we read was very short. However,
; the trigger signal starts timers running for all four pots. This code
; terminates as soon as the current pot times out. If the user immediately
; reads another pot, it is quite possible that the new pot’s timer has
; not yet expired from the previous read. The following loop makes sure we
; aren’t measuring the time from the previous read.

mov dx, JoyPort
mov cx, 400h

Wait4Clean: in al, dx
and al, 0Fh
loopnz Wait4Clean

; Okay, read the pots. The following code triggers the 558 timer chip
; and then sits in a loop until all four pot bits (masked with the pot mask
; in AL) become zero. Each time through this loop that one or more of these
; bits contain zero, this loop increments the corresponding register(s).

mov dx, JoyTrigger

Chapter 24

Page 1268

out dx, al ;Trigger pots
mov dx, JoyPort
mov cx, 1000h ;Don’t let this go on forever.

PotReadLoop: in al, dx
and al, ah
jz PotReadDone
shr al, 1
adc si, 0 ;Increment SI if pot 0 still active.
shr al, 1
adc bx, 0 ;Increment BX if pot 1 still active.
shr al, 1
adc bp, 0 ;Increment BP if pot 2 still active.
shr al, 1
adc di, 0 ;Increment DI if pot 3 still active.
loop PotReadLoop ;Stop, eventually, if funny hardware.

and si, 0FFFh ;If we drop through to this point,
and bx, 0FFFh ; one or more pots timed out (usually
and bp, 0FFFh ; because they are not connected).
and di, 0FFFh ; The reg contains 4000h, set it to 0.

PotReadDone: ret
ReadPots endp

;--
;
; Normalize- BX contains a pointer to a pot structure, AX contains
; a pot value. Normalize that value according to the
; calibrated pot.
;
; Note: DS must point at cseg before calling this routine.

assume ds:cseg
Normalize proc near

push cx

; Sanity check to make sure the calibration process went okay.

cmp [bx].Pot.DidCal, 0 ;Is this pot calibrated?
je BadNorm ;If not, quit.

mov dx, [bx].Pot.Center ;Do a sanity check on the
cmp dx, [bx].Pot.Min ; min, center, and max
jbe BadNorm ; values to make sure
cmp dx, [bx].Pot.Max ; min < center < max.
jae BadNorm

; Clip the value if it is out of range.

cmp ax, [bx].Pot.Min ;If the value is less than
ja MinOkay ; the minimum value, set it
mov ax, [bx].Pot.Min ; to the minimum value.

MinOkay:

cmp ax, [bx].Pot.Max ;If the value is greater than
jb MaxOkay ; the maximum value, set it
mov ax, [bx].Pot.Max ; to the maximum value.

MaxOkay:

; Scale this guy around the center:

cmp ax, [bx].Pot.Center ;See if less than or greater
jb Lower128 ; than centered value.

; Okay, current reading is greater than the centered value, scale the reading
; into the range 128..255 here:

sub ax, [bx].Pot.Center
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh

The Game Adapter

Page 1269

shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Max
sub cx, [bx].Pot.Center
jz BadNorm ;Prevent division by zero.
div cx ;Compute normalized value.
add ax, 128 ;Scale to range 128..255.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

; If the reading is below the centered value, scale it into the range
; 0..127 here:

Lower128: sub ax, [bx].Pot.Min
mov dl, ah
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Center
sub cx, [bx].Pot.Min
jz BadNorm
div cx
cmp ah, 0
je NormDone
mov ax, 0ffh
jmp NormDone

; If something went wrong, return zero as the normalized value.

BadNorm: sub ax, ax

NormDone: pop cx
ret

Normalize endp
assume ds:nothing

;==
; INT 15h handler functions.
;==
;
; Although these are defined as near procs, they are not really procedures.
; The MyInt15 code jumps to each of these with BX, a far return address, and
; the flags sitting on the stack. Each of these routines must handle the
; stack appropriately.
;
;--
; BIOS- Handles the two BIOS calls, DL=0 to read the switches, DL=1 to
; read the pots. For the BIOS routines, we’ll ignore the cooley
; switch (the hat) and simply read the other four switches.

BIOS proc near
cmp dl, 1 ;See if switch or pot routine.
jb Read4Sw
je ReadBIOSPots

; If not a valid BIOS call, jump to the original INT 15 handler and
; let it take care of this call.

pop bx
jmp cs:Int15Vect ;Let someone else handle it!

; BIOS read switches function.

Read4Sw: push dx
mov dx, JoyPort
in al, dx
and al, 0F0h ;Return only switch values.
pop dx
pop bx
iret

Chapter 24

Page 1270

; BIOS read pots function.

ReadBIOSPots: pop bx ;Return a value in BX!
push si
push di
push bp
mov ah, 0Fh ;Read all four pots.
call ReadPots
mov ax, si
mov cx, bp ;BX already contains pot 1 reading.
mov dx, di
pop bp
pop di
pop si
iret

BIOS endp

;--
;
; ReadPot- On entry, DL contains a pot number to read.
; Read and normalize that pot and return the result in AL.

assume ds:cseg
ReadPot proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

; If dl = 0, read and normalize the value for pot 0, if not, try some
; other pot.

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask ;Get bit for this pot.
call ReadPots ;Read pot 0.
lea bx, Pot0 ;Pointer to pot data.
mov ax, si ;Get pot 0 reading.
call Normalize ;Normalize to 0..FFh.
jmp GotPot ;Return to caller.

; Test for DL=1 here (read and normalize pot 1).

Try1: cmp dl, 1
jne Try2
mov ah, Pot1.PotMask
call ReadPots
mov ax, bx
lea bx, Pot1
call Normalize
jmp GotPot

; Test for DL=2 here (read and normalize pot 2).

Try2: cmp dl, 2
jne Try3
mov ah, Pot2.PotMask
call ReadPots
lea bx, Pot2
mov ax, bp
call Normalize
jmp GotPot

; Test for DL=3 here (read and normalize pot 3).

Try3: cmp dl, 3
jne BadPot

The Game Adapter

Page 1271

mov ah, Pot3.PotMask
call ReadPots
lea bx, Pot3
mov ax, di
call Normalize
jmp GotPot

; Bad value in DL if we drop to this point. The standard game card
; only supports four pots.

BadPot: sub ax, ax ;Pot not available, return zero.
GotPot: pop bp

pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadPot endp
assume ds:nothing

;--
;
; ReadRaw- On entry, DL contains a pot number to read.
; Read that pot and return the unnormalized result in AX.

assume ds:cseg
ReadRaw proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

; This code is almost identical to the ReadPot code. The only difference
; is that we don’t bother normalizing the result and (of course) we return
; the value in AX rather than AL.

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
mov ax, si
jmp GotPot

Try1: cmp dl, 1
jne Try2
mov ah, Pot1.PotMask
call ReadPots
mov ax, bx
jmp GotPot

Try2: cmp dl, 2
jne Try3
mov ah, Pot2.PotMask
call ReadPots
mov ax, bp
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
mov ax, di
jmp GotPot

BadPot: sub ax, ax ;Pot not available, return zero.

Chapter 24

Page 1272

GotPot: pop bp
pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadRaw endp
assume ds:nothing

;--
; Read4Pots- Reads pots zero, one, two, and three returning their
; values in AL, AH, DL, and DH.
;
; On entry, AL contains the pot mask to select which pots
; we should read (bit 0=1 for pot 0, bit 1=1 for pot 1, etc).

Read4Pots proc near
;;;;;;;;;;; push bx ;Already on stack

push ds
push cx
push si
push di
push bp

mov dx, cseg
mov ds, dx

mov ah, al
call ReadPots

push bx ;Save pot 1 reading.
mov ax, si ;Get pot 0 reading.
lea bx, Pot0 ;Point bx at pot0 vars.
call Normalize ;Normalize.
mov cl, al ;Save for later.

pop ax ;Retreive pot 1 reading.
lea bx, Pot1
call Normalize
mov ch, al ;Save normalized value.

mov ax, bp
lea bx, Pot2
call Normalize
mov dl, al ;Pot 2 value.

mov ax, di
lea bx, Pot3
call Normalize
mov dh, al ;Pot 3 value.
mov ax, cx ;Pots 0 and 1.

pop bp
pop di
pop si
pop cx
pop ds
pop bx
iret

Read4Pots endp

;--
; CalPot- Calibrate the pot specified by DL. On entry, AL contains
; the minimum pot value (it better be less than 256!), BX
; contains the maximum pot value, and CX contains the centered
; pot value.

assume ds:cseg

The Game Adapter

Page 1273

CalPot proc near
pop bx ;Retrieve maximum value
push ds
push si
mov si, cseg
mov ds, si

; Sanity check on parameters, sort them in ascending order:

mov ah, 0
cmp bx, cx ;Make sure center < max
ja GoodMax
xchg bx, cx

GoodMax: cmp ax, cx ;Make sure min < center.
jb GoodMin ; (note: may make center<max).
xchg ax, cx

GoodMin: cmp cx, bx ;Again, be sure center < max.
jb GoodCenter
xchg cx, bx

GoodCenter:

; Okay, figure out who were supposed to calibrate:

lea si, Pot0
cmp dl, 1
jb DoCal ;Branch if this is pot 0
lea si, Pot1
je DoCal ;Branch if this is pot 1
lea si, Pot2
cmp dl, 3
jb DoCal ;Branch if this is pot 2
jne CalDone ;Branch if not pot 3
lea si, Pot3

DoCal: mov [si].Pot.min, ax ;Store away the minimum,
mov [si].Pot.max, bx ; maximum, and
mov [si].Pot.center, cx ; centered values.
mov [si].Pot.DidCal, 1 ;Note we’ve cal’d this pot.

CalDone: pop si
pop ds
iret

CalPot endp
assume ds:nothing

;--
; TestCal- Just checks to see if the pot specified by DL has already
; been calibrated.

assume ds:cseg
TestCal proc near
;;;;;;;; push bx ;Already on stack

push ds
mov bx, cseg
mov ds, bx

sub ax, ax ;Assume no calibration (also zeros AH)
lea bx, Pot0 ;Get the address of the specified
cmp dl, 1 ; pot’s data structure into the
jb GetCal ; BX register.
lea bx, Pot1
je GetCal
lea bx, Pot2
cmp dl, 3
jb GetCal
jne BadCal
lea bx, Pot3

GetCal: mov al, [bx].Pot.DidCal
BadCal: pop ds

pop bx
iret

TestCal endp

Chapter 24

Page 1274

assume ds:nothing

;--
;
; ReadSw- Reads the switch whose switch number appears in DL.

ReadSw proc near
;;;;;;; push bx ;Already on stack

push cx

sub ax, ax ;Assume no such switch.
cmp dl, 3 ;Return if the switch number is
ja NotDown ; greater than three.

mov cl, dl ;Save switch to read.
add cl, 4 ;Move from position four down to zero.
mov dx, JoyPort
in al, dx ;Read the switches.
shr al, cl ;Move desired switch bit into bit 0.
xor al, 1 ;Invert so sw down=1.
and ax, 1 ;Remove other junk bits.

NotDown: pop cx
pop bx
iret

ReadSw endp

;--
;
; Read16Sw- Reads all four switches and returns their values in AX.

Read16Sw proc near
;;;;;;;; push bx ;Already on stack

mov dx, JoyPort
in al, dx
shr al, 4
xor al, 0Fh ;Invert all switches.
and ax, 0Fh ;Set other bits to zero.
pop bx
iret

Read16Sw endp

;**
;
; MyInt15- Patch for the BIOS INT 15 routine to control reading the
; joystick.

MyInt15 proc far
push bx
cmp ah, 84h ;Joystick code?
je DoJoystick

OtherInt15: pop bx
jmp cs:Int15Vect

DoJoystick: mov bh, 0
mov bl, dh
cmp bl, 80h
jae VendorCalls
cmp bx, JmpSize
jae OtherInt15
shl bx, 1
jmp wp cs:jmptable[bx]

jmptable word BIOS
word ReadPot, Read4Pots, CalPot, TestCal
word ReadRaw, OtherInt15, OtherInt15
word ReadSw, Read16Sw

JmpSize = ($-jmptable)/2

; Handle vendor specific calls here.

The Game Adapter

Page 1275

VendorCalls: je RemoveDriver
cmp bl, 81h
je TestPresence
pop bx
jmp cs:Int15Vect

; TestPresence- Returns zero in AX and a pointer to the ID string in ES:BX

TestPresence: pop bx ;Get old value off stack.
sub ax, ax
mov bx, cseg
mov es, bx
lea bx, IDString
iret

; RemoveDriver-If there are no other drivers loaded after this one in
; memory, disconnect it and remove it from memory.

RemoveDriver:
push ds
push es
push ax
push dx

mov dx, cseg
mov ds, dx

; See if we’re the last routine patched into INT 15h

mov ax, 3515h
int 21h
cmp bx, offset MyInt15
jne CantRemove
mov bx, es
cmp bx, wp seg MyInt15
jne CantRemove

mov ax, PSP ;Free the memory we’re in
mov es, ax
push es
mov ax, es:[2ch] ;First, free env block.
mov es, ax
mov ah, 49h
int 21h

pop es ;Now free program space.
mov ah, 49h
int 21h

lds dx, Int15Vect ;Restore previous int vect.
mov ax, 2515h
int 21h

CantRemove: pop dx
pop ax
pop es
pop ds
pop bx
iret

MyInt15 endp
cseg ends

Initialize segment para public ‘INIT’
assume cs:Initialize, ds:cseg

Main proc
mov ax, cseg ;Get ptr to vars segment
mov es, ax
mov es:PSP, ds ;Save PSP value away
mov ds, ax

mov ax, zzzzzzseg

Chapter 24

Page 1276

mov es, ax
mov cx, 100h
meminit2

print
byte “ Standard Game Device Interface driver”,cr,lf
byte “ PC Compatible Game Adapter Cards”,cr,lf
byte “ Written by Randall Hyde”,cr,lf
byte cr,lf
byte cr,lf
byte “‘SGDI REMOVE’ removes the driver from memory”,cr,lf
byte lf
byte 0

mov ax, 1
argv ;If no parameters, empty str.
stricmpl
byte “REMOVE”,0
jne NoRmv

mov dh, 81h ;Remove opcode.
mov ax, 84ffh
int 15h ;See if we’re already loaded.
test ax, ax ;Get a zero back?
jz Installed
print
byte “SGDI driver is not present in memory, REMOVE “
byte “command ignored.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

Installed: mov ax, 8400h
mov dh, 80h ;Remove call
int 15h
mov ax, 8400h
mov dh, 81h ;TestPresence call
int 15h
cmp ax, 0
je NotRemoved
print
byte “Successfully removed SGDI driver from memory.”
byte cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

NotRemoved: print
byte “SGDI driver is still present in memory.”,cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

; Okay, Patch INT 15 and go TSR at this point.

NoRmv:
mov ax, 3515h
int 21h
mov wp Int15Vect, bx
mov wp Int15Vect+2, es

mov dx, cseg
mov ds, dx
mov dx, offset MyInt15
mov ax, 2515h
int 21h

mov dx, cseg
mov ds, dx
mov dx, seg Initialize
sub dx, ds:psp
add dx, 2
mov ax, 3100h ;Do TSR

The Game Adapter

Page 1277

int 21h
Main endp

Initialize ends

sseg segment para stack ‘stack’
word 128 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
byte 16 dup (0)

zzzzzzseg ends
end Main

The following program makes several different types of calls to an SGDI driver. You can use this code
to test out an SGDI TSR:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

MinVal0 word ?
MinVal1 word ?
MaxVal0 word ?
MaxVal1 word ?

; Wait4Button-Waits until the user presses and releases a button.

Wait4Button proc near
push ax
push dx
push cx

W4BLp: mov ah, 84h
mov dx, 900h ;Read the L.O. 16 buttons.
int 15h
cmp ax, 0 ;Any button down? If not,
je W4BLp ; loop until this is so.

xor cx, cx ;Debouncing delay loop.
Delay: loop Delay

W4nBLp: mov ah, 84h ;Now wait until the user releases
mov dx, 900h ; all buttons
int 15h
cmp ax, 0
jne W4nBLp

Delay2: loop Delay2

pop cx
pop dx
pop ax
ret

Wait4Button endp

Main proc

print
byte “SGDI Test Program.”,cr,lf

Chapter 24

Page 1278

byte “Written by Randall Hyde”,cr,lf,lf
byte “Press any key to continue”,cr,lf,0

getc

mov ah, 84h
mov dh, 4 ;Test presence call.
int 15h
cmp ax, 0 ;See if there
je MainLoop0
print
byte “No SGDI driver present in memory.”,cr,lf,0
jmp Quit

MainLoop0:print
byte “BIOS: “,0

; Okay, read the switches and raw pot values using the BIOS compatible calls.

mov ah, 84h
mov dx, 0 ;BIOS compat. read switches.
int 15h
puth ;Output switch values.
mov al, ‘ ‘
putc

mov ah, 84h ;BIOS compat. read pots.
mov dx, 1
int 15h
putw
mov al, ‘ ‘
putc
mov ax, bx
putw
mov al, ‘ ‘
putc
mov ax, cx
putw
mov al, ‘ ‘
putc
mov ax, dx
putw

putcr
mov ah, 1 ;Repeat until key press.
int 16h
je MainLoop0
getc

; Read the minimum and maximum values for each pot from the user so we
; can calibrate the pots.

print
byte cr,lf,lf,lf
byte “Move joystick to upper left corner and press “
byte “any button.”,cr,lf,0

call Wait4Button
mov ah, 84h
mov dx, 1 ;Read Raw Values
int 15h
mov MinVal0, ax
mov MinVal1, bx

print
byte cr,lf
byte “Move the joystick to the lower right corner “
byte “and press any button”,cr,lf,0

call Wait4Button
mov ah, 84h
mov dx, 1 ;Read Raw Values
int 15h

The Game Adapter

Page 1279

mov MaxVal0, ax
mov MaxVal1, bx

; Calibrate the pots.

mov ax, MinVal0;Will be eight bits or less.
mov bx, MaxVal0
mov cx, bx ;Compute centered value as the
add cx, ax ; average of these two (this is
shr cx, 1 ; dangerous, but usually works!)
mov ah, 84h
mov dx, 300h;Calibrate pot 0
int 15h

mov ax, MinVal1;Will be eight bits or less.
mov bx, MaxVal1
mov cx, bx ;Compute centered value as the
add cx, ax ; average of these two (this is
shr cx, 1 ; dangerous, but usually works!)
mov ah, 84h
mov dx, 301h ;Calibrate pot 1
int 15h

MainLoop1: print
byte “ReadSw: “,0

; Okay, read the switches and raw pot values using the BIOS compatible calls.

mov ah, 84h
mov dx, 800h ;Read switch zero.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 801h ;Read switch one.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 802h ;Read switch two.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 803h ;Read switch three.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 804h ;Read switch four
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 805h ;Read switch five.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 806h ;Read switch six.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 807h ;Read switch seven.
int 15h ;We won’t bother with
or al, ‘0’ ; any more switches.

Chapter 24

Page 1280

putc
mov al, ‘ ‘
putc

mov ah, 84h
mov dh, 9 ;Read all 16 switches.
int 15h
putw

print
byte “ Pots: “,0
mov ax, 8403h ;Read joystick pots.
mov dx, 200h ;Read four pots.
int 15h
puth
mov al, ‘ ‘
putc
mov al, ah
puth
mov al, ‘ ‘
putc

mov ah, 84h
mov dx, 503h ;Raw read, pot 3.
int 15h
putw

putcr
mov ah, 1 ;Repeat until key press.
int 16h
je MainLoop1
getc

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

24.6 An SGDI Driver for the CH Products’ Flight Stick Pro

The CH Product’s FlightStick Pro joystick is a good example of a specialized product for which the
SGDI driver is a perfect solution. The FlightStick Pro provides three pots and five switches, the fifth switch
being a special five-position cooley switch. Although the pots on the FlightStick Pro map to three of the
analog inputs on the standard game adapter card (pots zero, one, and three), there are insufficient digital
inputs to handle the eight inputs necessary for the FlightStick Pro’s four buttons and cooley switch.

The FlightStick Pro (FSP) uses some electronic circuitry to map these eight switch positions to four
input bits. To do so, they place one restriction on the use of the FSP switches – you can only press one of
them at a time. If you hold down two or more switches at the same time, the FSP hardware selects one of
the switches and reports that value; it ignores the other switches until you release the button. Since only
one switch can be read at a time, the FSP hardware generates a four bit value that determines the current
state of the switches. It returns these four bits as the switch values on the standard game adapter card. The
following table lists the values for each of the switches:

The Game Adapter

Page 1281

Note that the buttons look just like a single button press. The cooley switch positions contain a position
value in bits six and seven; bits four and five always contain zero when the cooley switch is active.

The SGDI driver for the FlightStick Pro is very similar to the standard game adapter card SGDI driver.
Since the FlightStick Pro only provides three pots, this code doesn’t bother trying to read pot 2 (which is
non-existent). Of course, the switches on the FlightStick Pro are quite a bit different than those on standard
joysticks, so the FSP SGDI driver maps the FPS switches to eight of the SGDI logical switches. By reading
switches zero through seven, you can test the following conditions on the FSP:

The FSP SGDI driver contains one other novel feature, it will allow the user to swap the functions of
the left and right switches on the joystick. Many games often assign important functions to the trigger and
left button since they are easiest to press (right handed players can easily press the left button with their
thumb). By typing “LEFT” on the command line, the FSP SGDI driver will swap the functions of the left
and right buttons so left handed players can easily activate this function with their thumb as well.

The following code provides the complete listing for the FSPSGDI driver. Note that you can use the
same test program from the previous section to test this driver.

.286
page 58, 132
name FSPSGDI
title FSPSGDI (CH Products Standard Game Device Interface).

; FSPSGDI.EXE

Table 88: FlightStick Pro Switch Return Values

Value (binary) Priority Switch Position

0000 Highest Up position on the cooley switch.

0100 7 Right position on the cooley switch.

1000 6 Down position on the cooley switch.

1100 5 Left position on the cooley switch.

1110 4 Trigger on the joystick.

1101 3 Leftmost button on the joystick.

1011 2 Rightmost button on the joystick.

0111 Lowest Middle button on the joystick.

1111 No buttons currently down.

Table 89: Flight Stick Pro SGDI Switch Mapping

This SGDI Switch number: Maps to this FSP Switch:

0 Trigger on joystick.

1 Left button on joystick.

2 Middle button on joystick.

3 Right button on joystick.

4 Cooley up position.

5 Cooley left position.

6 Cooley right position.

7 Cooley down position.

Chapter 24

Page 1282

;
; Usage:
; FSPSDGI {LEFT}
;
; This program loads a TSR which patches INT 15 so arbitrary game programs
; can read the CH Products FlightStick Pro joystick in a portable fashion.

wp equ <word ptr>
byp equ <byte ptr>

; We need to load cseg in memory before any other segments!

cseg segment para public ‘code’
cseg ends

; Initialization code, which we do not need except upon initial load,
; goes in the following segment:

Initialize segment para public ‘INIT’
Initialize ends

; UCR Standard Library routines which get dumped later on.

.xlist
include stdlib.a
includelib stdlib.lib
.list

sseg segment para stack ‘stack’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

Int15Vect dword 0

PSP word ?

; Port addresses for a typical joystick card:

JoyPort equ 201h
JoyTrigger equ 201h

CurrentReading word 0

Pot struc
PotMask byte 0 ;Pot mask for hardware.
DidCal byte 0 ;Is this pot calibrated?
min word 5000 ;Minimum pot value
max word 0 ;Max pot value
center word 0 ;Pot value in the middle
Pot ends

Pot0 Pot <1>
Pot1 Pot <2>
Pot3 Pot <8>

; SwapButtons-0 if we should use normal flightstick pro buttons,
; 1 if we should swap the left and right buttons.

SwapButtons byte 0

; SwBits- the four bit input value from the Flightstick Pro selects one

The Game Adapter

Page 1283

; of the following bit patterns for a given switch position.

SwBits byte 10h ;Sw4
byte 0 ;NA
byte 0 ;NA
byte 0 ;NA
byte 40h ;Sw6
byte 0 ;NA
byte 0 ;NA
byte 4 ;Sw 2

byte 80h ;Sw 7
byte 0 ;NA
byte 0 ;NA
byte 8 ;Sw 3
byte 20h ;Sw 5
byte 2 ;Sw 1
byte 1 ;Sw 0
byte 0 ;NA

SwBitsL byte 10h ;Sw4
byte 0 ;NA
byte 0 ;NA
byte 0 ;NA
byte 40h ;Sw6
byte 0 ;NA
byte 0 ;NA
byte 4 ;Sw 2

byte 80h ;Sw 7
byte 0 ;NA
byte 0 ;NA
byte 2 ;Sw 3
byte 20h ;Sw 5
byte 8 ;Sw 1
byte 1 ;Sw 0
byte 0 ;NA

; The IDstring address gets passed back to the caller on a testpresence
; call. The four bytes before the IDstring must contain the serial number
; and current driver number.

SerialNumber byte 0,0,0
IDNumber byte 0
IDString byte “CH Products:Flightstick Pro”,0

byte “Written by Randall Hyde”,0

;==
;
; ReadPots- AH contains a bit mask to determine which pots we should read.
; Bit 0 is one if we should read pot 0, bit 1 is one if we should
; read pot 1, bit 3 is one if we should read pot 3. All other bits
; will be zero.
;
; This code returns the pot values in SI, BX, BP, and DI for Pot 0, 1,
; 2, & 3.
;

ReadPots proc near
sub bp, bp
mov si, bp
mov di, bp
mov bx, bp

; Wait for pots to finish any past junk:

mov dx, JoyPort
out dx, al ;Trigger pots
mov cx, 400h

Wait4Pots: in al, dx
and al, 0Fh

Chapter 24

Page 1284

loopnz Wait4Pots

; Okay, read the pots:

mov dx, JoyTrigger
out dx, al ;Trigger pots
mov dx, JoyPort
mov cx, 8000h ;Don’t let this go on forever.

PotReadLoop: in al, dx
and al, ah
jz PotReadDone
shr al, 1
adc si, 0
shr al, 1
adc bp, 0
shr al, 2
adc di, 0
loop PotReadLoop

PotReadDone:
ret

ReadPots endp

;--
;
; Normalize- BX contains a pointer to a pot structure, AX contains
; a pot value. Normalize that value according to the
; calibrated pot.
;
; Note: DS must point at cseg before calling this routine.

assume ds:cseg
Normalize proc near

push cx

; Sanity check to make sure the calibration process went okay.

cmp [bx].Pot.DidCal, 0
je BadNorm
mov dx, [bx].Pot.Center
cmp dx, [bx].Pot.Min
jbe BadNorm
cmp dx, [bx].Pot.Max
jae BadNorm

; Clip the value if it is out of range.

cmp ax, [bx].Pot.Min
ja MinOkay
mov ax, [bx].Pot.Min

MinOkay:

cmp ax, [bx].Pot.Max
jb MaxOkay
mov ax, [bx].Pot.Max

MaxOkay:

; Scale this guy around the center:

cmp ax, [bx].Pot.Center
jb Lower128

; Scale in the range 128..255 here:

sub ax, [bx].Pot.Center
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Max
sub cx, [bx].Pot.Center
jz BadNorm ;Prevent division by zero.

The Game Adapter

Page 1285

div cx ;Compute normalized value.
add ax, 128 ;Scale to range 128..255.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

; Scale in the range 0..127 here:

Lower128: sub ax, [bx].Pot.Min
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Center
sub cx, [bx].Pot.Min
jz BadNorm
div cx ;Compute normalized value.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

BadNorm: sub ax, ax
NormDone: pop cx

ret
Normalize endp

assume ds:nothing

;==
; INT 15h handler functions.
;==
;
; Although these are defined as near procs, they are not really procedures.
; The MyInt15 code jumps to each of these with BX, a far return address, and
; the flags sitting on the stack. Each of these routines must handle the
; stack appropriately.
;
;--
; BIOS- Handles the two BIOS calls, DL=0 to read the switches, DL=1 to
; read the pots. For the BIOS routines, we’ll ignore the cooley
; switch (the hat) and simply read the other four switches.

BIOS proc near
cmp dl, 1 ;See if switch or pot routine.
jb Read4Sw
je ReadBIOSPots
pop bx
jmp cs:Int15Vect ;Let someone else handle it!

Read4Sw: push dx
mov dx, JoyPort
in al, dx
shr al, 4
mov bl, al
mov bh, 0
cmp cs:SwapButtons, 0
je DoLeft2
mov al, cs:SwBitsL[bx]
jmp SBDone

DoLeft2: mov al, cs:SwBits[bx]
SBDone: rol al, 4 ;Put Sw0..3 in upper bits and make

not al ; 0=switch down, just like game card.
pop dx
pop bx
iret

ReadBIOSPots: pop bx ;Return a value in BX!
push si
push di
push bp

Chapter 24

Page 1286

mov ah, 0bh
call ReadPots
mov ax, si
mov bx, bp
mov dx, di
sub cx, cx
pop bp
pop di
pop si
iret

BIOS endp

;--
;
; ReadPot- On entry, DL contains a pot number to read.
; Read and normalize that pot and return the result in AL.

assume ds:cseg
ReadPot proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
lea bx, Pot0
mov ax, si
call Normalize
jmp GotPot

Try1: cmp dl, 1
jne Try3
mov ah, Pot1.PotMask
call ReadPots
lea bx, Pot1
mov ax, bp
call Normalize
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
lea bx, Pot3
mov ax, di
call Normalize
jmp GotPot

BadPot: sub ax, ax ;Question: Should we pass this on
; or just return zero?

GotPot: pop bp
pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadPot endp
assume ds:nothing

;--
;

The Game Adapter

Page 1287

; ReadRaw- On entry, DL contains a pot number to read.
; Read that pot and return the unnormalized result in AL.

assume ds:cseg
ReadRaw proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
mov ax, si
jmp GotPot

Try1: cmp dl, 1
jne Try3
mov ah, Pot1.PotMask
call ReadPots
mov ax, bp
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
mov ax, di
jmp GotPot

BadPot: sub ax, ax ;Just return zero.
GotPot: pop bp

pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadRaw endp
assume ds:nothing

;--
; Read4Pots-Reads pots zero, one, two, and three returning their
; values in AL, AH, DL, and DH. Since the flightstick
; Pro doesn’t have a pot 2 installed, return zero for
; that guy.

Read4Pots proc near
;;;;;;;;;;; push bx ;Already on stack

push ds
push cx
push si
push di
push bp

mov dx, cseg
mov ds, dx

mov ah, 0bh ;Read pots 0, 1, and 3.
call ReadPots

mov ax, si
lea bx, Pot0
call Normalize
mov cl, al

Chapter 24

Page 1288

mov ax, bp
lea bx, Pot1
call Normalize
mov ch, al

mov ax, di
lea bx, Pot3
call Normalize
mov dh, al ;Pot 3 value.
mov ax, cx ;Pots 0 and 1.
mov dl, 0 ;Pot 2 is non-existant.

pop bp
pop di
pop si
pop cx
pop ds
pop bx
iret

Read4Pots endp

;--
; CalPot- Calibrate the pot specified by DL. On entry, AL contains
; the minimum pot value (it better be less than 256!), BX
; contains the maximum pot value, and CX contains the centered
; pot value.

assume ds:cseg
CalPot proc near

pop bx ;Retrieve maximum value
push ds
push si
mov si, cseg
mov ds, si

; Sanity check on parameters, sort them in ascending order:

mov ah, 0
cmp bx, cx
ja GoodMax
xchg bx, cx

GoodMax: cmp ax, cx
jb GoodMin
xchg ax, cx

GoodMin: cmp cx, bx
jb GoodCenter
xchg cx, bx

GoodCenter:

; Okay, figure out who were supposed to calibrate:

lea si, Pot0
cmp dl, 1
jb DoCal
lea si, Pot1
je DoCal
cmp dl, 3
jne CalDone
lea si, Pot3

DoCal: mov [si].Pot.min, ax
mov [si].Pot.max, bx
mov [si].Pot.center, cx
mov [si].Pot.DidCal, 1

CalDone: pop si
pop ds
iret

CalPot endp
assume ds:nothing

The Game Adapter

Page 1289

;--
; TestCal- Just checks to see if the pot specified by DL has already
; been calibrated.

assume ds:cseg
TestCal proc near
;;;;;;;; push bx ;Already on stack

push ds
mov bx, cseg
mov ds, bx

sub ax, ax ;Assume no calibration
lea bx, Pot0
cmp dl, 1
jb GetCal
lea bx, Pot1
je GetCal
cmp dl, 3
jne BadCal
lea bx, Pot3

GetCal: mov al, [bx].Pot.DidCal
mov ah, 0

BadCal: pop ds
pop bx
iret

TestCal endp
assume ds:nothing

;--
;
; ReadSw- Reads the switch whose switch number appears in DL.

SwTable byte 11100000b, 11010000b, 01110000b, 10110000b
byte 00000000b, 11000000b, 01000000b, 10000000b

SwTableL byte 11100000b, 10110000b, 01110000b, 11010000b
byte 00000000b, 11000000b, 01000000b, 10000000b

ReadSw proc near
;;;;;;; push bx ;Already on stack

mov bl, dl ;Save switch to read.
mov bh, 0
mov dx, JoyPort
in al, dx
and al, 0f0h
cmp cs:SwapButtons, 0
je DoLeft0
cmp al, cs:SwTableL[bx]
jne NotDown
jmp IsDown

DoLeft0: cmp al, cs:SwTable[bx]
jne NotDown

IsDown: mov ax, 1
pop bx
iret

NotDown: sub ax, ax
pop bx
iret

ReadSw endp

;--
;
; Read16Sw- Reads all eight switches and returns their values in AX.

Read16Sw proc near
;;;;;;;; push bx ;Already on stack

Chapter 24

Page 1290

mov ah, 0 ;Switches 8-15 are non-existant.
mov dx, JoyPort
in al, dx
shr al, 4
mov bl, al
mov bh, 0
cmp cs:SwapButtons, 0
je DoLeft1
mov al, cs:SwBitsL[bx]
jmp R8Done

DoLeft1: mov al, cs:SwBits[bx]
R8Done: pop bx

iret
Read16Sw endp

;**
;
; MyInt15- Patch for the BIOS INT 15 routine to control reading the
; joystick.

MyInt15 proc far
push bx
cmp ah, 84h ;Joystick code?
je DoJoystick

OtherInt15: pop bx
jmp cs:Int15Vect

DoJoystick: mov bh, 0
mov bl, dh
cmp bl, 80h
jae VendorCalls
cmp bx, JmpSize
jae OtherInt15
shl bx, 1
jmp wp cs:jmptable[bx]

jmptable word BIOS
word ReadPot, Read4Pots, CalPot, TestCal
word ReadRaw, OtherInt15, OtherInt15
word ReadSw, Read16Sw

JmpSize = ($-jmptable)/2

; Handle vendor specific calls here.

VendorCalls: je RemoveDriver
cmp bl, 81h
je TestPresence
pop bx
jmp cs:Int15Vect

; TestPresence- Returns zero in AX and a pointer to the ID string in ES:BX

TestPresence: pop bx ;Get old value off stack.
sub ax, ax
mov bx, cseg
mov es, bx
lea bx, IDString
iret

; RemoveDriver-If there are no other drivers loaded after this one in
; memory, disconnect it and remove it from memory.

RemoveDriver:
push ds
push es
push ax
push dx

mov dx, cseg
mov ds, dx

The Game Adapter

Page 1291

; See if we’re the last routine patched into INT 15h

mov ax, 3515h
int 21h
cmp bx, offset MyInt15
jne CantRemove
mov bx, es
cmp bx, wp seg MyInt15
jne CantRemove

mov ax, PSP ;Free the memory we’re in
mov es, ax
push es
mov ax, es:[2ch] ;First, free env block.
mov es, ax
mov ah, 49h
int 21h

;
pop es ;Now free program space.
mov ah, 49h
int 21h

lds dx, Int15Vect ;Restore previous int vect.
mov ax, 2515h
int 21h

CantRemove: pop dx
pop ax
pop es
pop ds
pop bx
iret

MyInt15 endp
cseg ends

; The following segment is tossed when this code goes resident.

Initialize segment para public ‘INIT’
assume cs:Initialize, ds:cseg

Main proc
mov ax, cseg ;Get ptr to vars segment
mov es, ax
mov es:PSP, ds ;Save PSP value away
mov ds, ax

mov ax, zzzzzzseg
mov es, ax
mov cx, 100h
meminit2

print
byte “Standard Game Device Interface driver”,cr,lf
byte “CH Products Flightstick Pro”,cr,lf
byte “Written by Randall Hyde”,cr,lf
byte cr,lf
byte “‘FSPSGDI LEFT’ swaps the left and right buttons for “
byte “left handed players”,cr,lf
byte “‘FSPSGDI REMOVE’ removes the driver from memory”
byte cr, lf, lf
byte 0

mov ax, 1
argv ;If no parameters, empty str.
stricmpl
byte “LEFT”,0
jne NoLEFT
mov SwapButtons, 1
print
byte “Left and right buttons swapped”,cr,lf,0
jmp SwappedLeft

NoLEFT: stricmpl

Chapter 24

Page 1292

byte “REMOVE”,0
jne NoRmv
mov dh, 81h
mov ax, 84ffh
int 15h ;See if we’re already loaded.
test ax, ax ;Get a zero back?
jz Installed
print
byte “SGDI driver is not present in memory, REMOVE “
byte “command ignored.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

Installed: mov ax, 8400h
mov dh, 80h ;Remove call
int 15h
mov ax, 8400h
mov dh, 81h ;TestPresence call
int 15h
cmp ax, 0
je NotRemoved
print
byte “Successfully removed SGDI driver from memory.”
byte cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

NotRemoved: print
byte “SGDI driver is still present in memory.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

NoRmv:

; Okay, Patch INT 15 and go TSR at this point.

SwappedLeft: mov ax, 3515h
int 21h
mov wp Int15Vect, bx
mov wp Int15Vect+2, es

mov dx, cseg
mov ds, dx
mov dx, offset MyInt15
mov ax, 2515h
int 21h

mov dx, cseg
mov ds, dx
mov dx, seg Initialize
sub dx, ds:psp
add dx, 2
mov ax, 3100h ;Do TSR
int 21h

Main endp

Initialize ends

sseg segment para stack ‘stack’
word 128 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
byte 16 dup (0)

zzzzzzseg ends
end Main

The Game Adapter

Page 1293

24.7 Patching Existing Games

Maybe you’re not quite ready to write the next million dollar game. Perhaps you’d like to get a little
more enjoyment out of the games you already own. Well, this section will provide a practical application
of a semiresident program that patches the Lucas Arts’ XWing (Star Wars simulation) game. This program
patches the XWing game to take advantage of the special features found on the CH Products’ FlightStick
Pro. In particular, it lets you use the throttle pot on the FSP to control the speed of the spacecraft. It also
lets you program each of the buttons with up to four strings of eight characters each.

To describe how you can patch an existing game, a short description of how this patch was devel-
oped is in order. The FSPXW patch was developed by using the Soft-ICE debugging tool. This program
lets you set a breakpoint whenever an 80386 or later processor accesses a specific I/O port8. Setting a
breakpoint at I/O address 201h while running the xwing.exe file stopped the XWing program when it
decided to read the analog and switch inputs. Disassembly of the surrounding code produced complete
joystick and button read routines. After locating these routines, it was easy enough to write a program to
search through memory for the code and patch in jumps to code in the FSPXW patch program.

Note that the original joystick code inside XWing works perfectly fine with the FPS. The only reason
for patching into the joystick code is so our code can read the throttle every how and then and take appro-
priate action.

The button routines were another story altogether. The FSPXW patch needs to take control of
XWing’s button routines because the user of FSPXW might want to redefine a button recognized by XWing
for some other purpose. Therefore, whenever XWing calls its button routine, control transfers to the but-
ton routine inside FSPXW that decides whether to pass real button information back to XWing or to fake
buttons in the up position because those buttons are redefined to other functions. By default (unless you
change the source code, the buttons have the following programming:

The programming of the cooley switch demonstrates an interesting feature of the FSPXW patch: you
can program up to four different strings on each button. The first time you press a button, FSPXW emits
the first string, the second time you press a button it emits the second string, then the third, and finally the
fourth. If the string is empty, the FSPXW string skips it. The FSPXW patch uses the cooley switch to select
the cockpit views. Pressing the cooley switch forward displays the forward view. Pulling the cooley switch
backwards presents the rear view. However, the XWing game provides three left and right views. Pushing
the cooley switch to the left or right once displays the 45 degree view. Pressing it a second time presents

8. This feature is not specific to Soft-ICE, many 80386 debuggers will let you do this.

Rotate Ship

Weapons
Select

Hide/Show Cockpit

Chapter 24

Page 1294

the 90 degree view. Pressing it to the left or right a third time provides the 135 degree view. The following
diagram shows the default programming on the cooley switch:

One word of caution concerning this patch: it only works with the basic XWing game. It does not
support the add-on modules (Imperial Pursuit, B-Wing, Tie Fighter, etc.). Furthermore, this patch assumes
that the basic XWing code has not changed over the years. It could be that a recent release of the XWing
game uses new joystick routines and the code associated with this application will not be able to locate or
patch those new routines. This patch will detect such a situation and will not patch XWing if this is the
case. You must have sufficient free RAM for this patch, XWing, and anything else you have loaded into
memory at the same time (the exact amount of RAM XWing needs depends upon the features you’ve
installed, a fully installed system requires slightly more than 610K free).

Without further ado, here’s the FSPXW code:

.286
page 58, 132
name FSPXW
title FSPXW (Flightstick Pro driver for XWING).
subttl Copyright (C) 1994 Randall Hyde.

; FSPXW.EXE
;
; Usage:
; FSPXW
;
; This program executes the XWING.EXE program and patches it to use the
; Flightstick Pro.

byp textequ <byte ptr>
wp textequ <word ptr>

cseg segment para public ‘CODE’
cseg ends

sseg segment para stack ‘STACK’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

315°

270°

225°

45°

90°

135°

Left
Views

Right
Views

Forward
View

Back
View

The Game Adapter

Page 1295

include stdlib.a
includelib stdlib.lib
matchfuncs

ifndef debug
Installation segment para public ‘Install’
Installation ends

endif

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

; Timer interrupt vector

Int1CVect dword ?

; PSP- Program Segment Prefix. Needed to free up memory before running
; the real application program.

PSP word 0

; Program Loading data structures (for DOS).

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

LoadSSSP dword ?
LoadCSIP dword ?
PgmName dword Pgm

; Variables for the throttle pot.
; LastThrottle contains the character last sent (so we only send one copy).
; ThrtlCntDn counts the number of times the throttle routine gets called.

LastThrottle byte 0
ThrtlCntDn byte 10

; Button Mask- Used to mask out the programmed buttons when the game
; reads the real buttons.

ButtonMask byte 0f0h

; The following variables allow the user to reprogram the buttons.

KeyRdf struct
Ptrs word ? ;The PTRx fields point at the
ptr2 word ? ; four possible strings of 8 chars
ptr3 word ? ; each. Each button press cycles
ptr4 word ? ; through these strings.
Index word ? ;Index to next string to output.
Cnt word ?
Pgmd word ? ;Flag = 0 if not redefined.
KeyRdf ends

; Left codes are output if the cooley switch is pressed to the left.
; Note that the strings ares actually zero terminated strings of words.

Left KeyRdf <Left1, Left2, Left3, Left4, 0, 6, 1>
Left1 word ‘7’, 0
Left2 word ‘4’, 0
Left3 word ‘1’, 0
Left4 word 0

; Right codes are output if the cooley switch is pressed to the Right.

Chapter 24

Page 1296

Right KeyRdf <Right1, Right2, Right3, Right4, 0, 6, 1>
Right1 word ‘9’, 0
Right2 word ‘6’, 0
Right3 word ‘3’, 0
Right4 word 0

; Up codes are output if the cooley switch is pressed Up.

Up KeyRdf <Up1, Up2, Up3, Up4, 0, 2, 1>
Up1 word ‘8’, 0
Up2 word 0
Up3 word 0
Up4 word 0

; DownKey codes are output if the cooley switch is pressed Down.

Down KeyRdf <Down1, Down2, Down3, Down4, 0, 2, 1>
Down1 word ‘2’, 0
Down2 word 0
Down3 word 0
Down4 word 0

; Sw0 codes are output if the user pulls the trigger.(This switch is not
; redefined.)

Sw0 KeyRdf <Sw01, Sw02, Sw03, Sw04, 0, 0, 0>
Sw01 word 0
Sw02 word 0
Sw03 word 0
Sw04 word 0

; Sw1 codes are output if the user presses Sw1 (the left button
; if the user hasn’t swapped the left and right buttons). Not Redefined.

Sw1 KeyRdf <Sw11, Sw12, Sw13, Sw14, 0, 0, 0>
Sw11 word 0
Sw12 word 0
Sw13 word 0
Sw14 word 0

; Sw2 codes are output if the user presses Sw2 (the middle button).

Sw2 KeyRdf <Sw21, Sw22, Sw23, Sw24, 0, 2, 1>
Sw21 word ‘w’, 0
Sw22 word 0
Sw23 word 0
Sw24 word 0

; Sw3 codes are output if the user presses Sw3 (the right button
; if the user hasn’t swapped the left and right buttons).

Sw3 KeyRdf <Sw31, Sw32, Sw33, Sw34, 0, 0, 0>
Sw31 word 0
Sw32 word 0
Sw33 word 0
Sw34 word 0

; Switch status buttons:

CurSw byte 0
LastSw byte 0

;**
; FSPXW patch begins here. This is the memory resident part. Only put code
; which which has to be present at run-time or needs to be resident after
; freeing up memory.
;**

Main proc
mov cs:PSP, ds
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

The Game Adapter

Page 1297

; Get the current INT 1Ch interrupt vector:

mov ax, 351ch
int 21h
mov wp Int1CVect, bx
mov wp Int1CVect+2, es

; The following call to MEMINIT assumes no error occurs. If it does,
; we’re hosed anyway.

mov ax, zzzzzzseg
mov es, ax
mov cx, 1024/16
meminit2

; Do some initialization before running the game. These are calls to the
; initialization code which gets dumped before actually running XWING.

call far ptr ChkBIOS15
call far ptr Identify
call far ptr Calibrate

; If any switches were programmed, remove those switches from the
; ButtonMask:

mov al, 0f0h ;Assume all buttons are okay.
cmp sw0.pgmd, 0
je Sw0NotPgmd
and al, 0e0h ;Remove sw0 from contention.

Sw0NotPgmd:

cmp sw1.pgmd, 0
je Sw1NotPgmd
and al, 0d0h ;Remove Sw1 from contention.

Sw1NotPgmd:

cmp sw2.pgmd, 0
je Sw2NotPgmd
and al, 0b0h ;Remove Sw2 from contention.

Sw2NotPgmd:

cmp sw3.pgmd, 0
je Sw3NotPgmd
and al, 070h ;Remove Sw3 from contention.

Sw3NotPgmd:
mov ButtonMask, al ;Save result as button mask

; Now, free up memory from ZZZZZZSEG on to make room for XWING.
; Note: Absolutely no calls to UCR Standard Library routines from
; this point forward! (ExitPgm is okay, it’s just a macro which calls DOS.)
; Note that after the execution of this code, none of the code & data
; from zzzzzzseg on is valid.

mov bx, zzzzzzseg
sub bx, PSP
inc bx
mov es, PSP
mov ah, 4ah
int 21h
jnc GoodRealloc
print
byte “Memory allocation error.”
byte cr,lf,0
jmp Quit

GoodRealloc:

; Now load the XWING program into memory:

mov bx, seg ExecStruct
mov es, bx

Chapter 24

Page 1298

mov bx, offset ExecStruc ;Ptr to program record.
lds dx, PgmName
mov ax, 4b01h ;Load, do not exec, pgm
int 21h
jc Quit ;If error loading file.

; Search for the joystick code in memory:

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset JoyStickCode
mov cx, JoyLength
call FindCode
jc Quit ;If didn’t find joystick code.

; Patch the XWING joystick code here

mov byp ds:[si], 09ah ;Far call
mov wp ds:[si+1], offset ReadGame
mov wp ds:[si+3], cs

; Find the Button code here.

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset ReadSwCode
mov cx, ButtonLength
call FindCode
jc Quit

; Patch the button code here.

mov byp ds:[si], 9ah
mov wp ds:[si+1], offset ReadButtons
mov wp ds:[si+3], cs
mov byp ds:[si+5], 90h ;NOP.

; Patch in our timer interrupt handler:

mov ax, 251ch
mov dx, seg MyInt1C
mov ds, dx
mov dx, offset MyInt1C
int 21h

; Okay, start the XWING.EXE program running

mov ah, 62h ;Get PSP
int 21h
mov ds, bx
mov es, bx
mov wp ds:[10], offset Quit
mov wp ds:[12], cs
mov ss, wp cseg:LoadSSSP+2
mov sp, wp cseg:LoadSSSP
jmp dword ptr cseg:LoadCSIP

Quit: lds dx, cs:Int1CVect ;Restore timer vector.
mov ax, 251ch
int 21h
ExitPgm

The Game Adapter

Page 1299

Main endp

;**
;
; ReadGame- This routine gets called whenever XWing reads the joystick.
; On every 10th call it will read the throttle pot and send
; appropriate characters to the type ahead buffer, if
; necessary.

assume ds:nothing
ReadGame proc far

dec cs:ThrtlCntDn ;Only do this each 10th time
jne SkipThrottle ; XWING calls the joystick
mov cs:ThrtlCntDn, 10 ; routine.

push ax
push bx ;No need to save bp, dx, or cx as
push di ; XWING preserves these.

mov ah, 84h
mov dx, 103h ;Read the throttle pot
int 15h

; Convert the value returned by the pot routine into the four characters
; 0..63:”\”, 64..127:”[“, 128..191:”]”, 192..255:<bs>, to denote zero, 1/3,
; 2/3, and full power, respectively.

mov dl, al
mov ax, “\” ;Zero power
cmp dl, 192
jae SetPower
mov ax, “[“ ;1/3 power.
cmp dl, 128
jae SetPower
mov ax, “]” ;2/3 power.
cmp dl, 64
jae SetPower
mov ax, 8 ;BS, full power.

SetPower: cmp al, cs:LastThrottle
je SkipPIB
mov cs:LastThrottle, al
call PutInBuffer

SkipPIB: pop di
pop bx
pop ax

SkipThrottle: neg bx ;XWING returns data in these registers.
neg di ;We patched the NEG and STI instrs
sti ; so do that here.
ret

ReadGame endp

assume ds:nothing
ReadButtons proc far

mov ah, 84h
mov dx, 0
int 15h
not al
and al, ButtonMask ;Turn off pgmd buttons.
ret

ReadButtons endp

; MyInt1C- Called every 1/18th second. Reads switches and decides if it
; should shove some characters into the type ahead buffer.

assume ds:cseg
MyInt1c proc far

push ds
push ax
push bx
push dx
mov ax, cseg

Chapter 24

Page 1300

mov ds, ax

mov al, CurSw
mov LastSw, al

mov dx, 900h ;Read the 8 switches.
mov ah, 84h
int 15h

mov CurSw, al
xor al, LastSw ;See if any changes
jz NoChanges
and al, CurSw ;See if sw just went down.
jz NoChanges

; If a switch has just gone down, output an appropriate set of scan codes
; for it, if that key is active. Note that pressing *any* key will reset
; all the other key indexes.

test al, 1 ;See if Sw0 (trigger) was pulled.
jz NoSw0
cmp Sw0.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except SW0.
mov Up.Index, ax
mov Down.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Sw0.Index
mov ax, Sw0.Index
mov bx, Sw0.Ptrs[bx]
add ax, 2
cmp ax, Sw0.Cnt
jb SetSw0
mov ax, 0

SetSw0: mov Sw0.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw0: test al, 2 ;See if Sw1 (left sw) was pressed.
jz NoSw1
cmp Sw1.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw1.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Sw1.Index
mov ax, Sw1.Index
mov bx, Sw1.Ptrs[bx]
add ax, 2
cmp ax, Sw1.Cnt
jb SetSw1
mov ax, 0

SetSw1: mov Sw1.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw1: test al, 4 ;See if Sw2 (middle sw) was pressed.
jz NoSw2
cmp Sw2.Pgmd, 0
je NoChanges
mov ax, 0

The Game Adapter

Page 1301

mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw2.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw3.Index, ax
mov bx, Sw2.Index
mov ax, Sw2.Index
mov bx, Sw2.Ptrs[bx]
add ax, 2
cmp ax, Sw2.Cnt
jb SetSw2
mov ax, 0

SetSw2: mov Sw2.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw2: test al, 8 ;See if Sw3 (right sw) was pressed.
jz NoSw3
cmp Sw3.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw3.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov bx, Sw3.Index
mov ax, Sw3.Index
mov bx, Sw3.Ptrs[bx]
add ax, 2
cmp ax, Sw3.Cnt
jb SetSw3
mov ax, 0

SetSw3: mov Sw3.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw3: test al, 10h ;See if Cooly was pressed upwards.
jz NoUp
cmp Up.Pgmd, 0
je NoChanges
mov ax, 0
mov Right.Index, ax ;Reset all but Up.
mov Left.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Up.Index
mov ax, Up.Index
mov bx, Up.Ptrs[bx]
add ax, 2
cmp ax, Up.Cnt
jb SetUp
mov ax, 0

SetUp: mov Up.Index, ax
call PutStrInBuf
jmp NoChanges

NoUp: test al, 20h ;See if Cooley was pressed left.
jz NoLeft
cmp Left.Pgmd, 0
je NoChanges
mov ax, 0
mov Right.Index, ax ;Reset all but Left.
mov Up.Index, ax

Chapter 24

Page 1302

mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Left.Index
mov ax, Left.Index
mov bx, Left.Ptrs[bx]
add ax, 2
cmp ax, Left.Cnt
jb SetLeft
mov ax, 0

SetLeft: mov Left.Index, ax
call PutStrInBuf
jmp NoChanges

NoLeft: test al, 40h ;See if Cooley was pressed Right
jz NoRight
cmp Right.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset all but Right.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Right.Index
mov ax, Right.Index
mov bx, Right.Ptrs[bx]
add ax, 2
cmp ax, Right.Cnt
jb SetRight
mov ax, 0

SetRight: mov Right.Index, ax
call PutStrInBuf
jmp NoChanges

NoRight: test al, 80h ;See if Cooly was pressed Downward.
jz NoChanges
cmp Down.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset all but Down.
mov Up.Index, ax
mov Right.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Down.Index
mov ax, Down.Index
mov bx, Down.Ptrs[bx]
add ax, 2
cmp ax, Down.Cnt
jb SetDown
mov ax, 0

SetDown: mov Down.Index, ax
call PutStrInBuf

NoChanges: pop dx
pop bx
pop ax
pop ds
jmp cs:Int1CVect

MyInt1c endp
assume ds:nothing

; PutStrInBuf- BX points at a zero terminated string of words.
; Output each word by calling PutInBuffer.

The Game Adapter

Page 1303

PutStrInBuf proc near
push ax
push bx

PutLoop: mov ax, [bx]
test ax, ax
jz PutDone
call PutInBuffer
add bx, 2
jmp PutLoop

PutDone: pop bx
pop ax
ret

PutStrInBuf endp

; PutInBuffer- Outputs character and scan code in AX to the type ahead
; buffer.

assume ds:nothing
KbdHead equ word ptr ds:[1ah]
KbdTail equ word ptr ds:[1ch]
KbdBuffer equ word ptr ds:[1eh]
EndKbd equ 3eh
Buffer equ 1eh

PutInBuffer proc near
push ds
push bx
mov bx, 40h
mov ds, bx
pushf
cli ;This is a critical region!
mov bx, KbdTail ;Get ptr to end of type
inc bx ; ahead buffer and make room
inc bx ; for this character.
cmp bx, buffer+32 ;At physical end of buffer?
jb NoWrap
mov bx, buffer ;Wrap back to 1eH if at end.

;
NoWrap: cmp bx, KbdHead ;Buffer overrun?

je PIBDone
xchg KbdTail, bx ;Set new, get old, ptrs.
mov ds:[bx], ax ;Output AX to old location.

PIBDone: popf ;Restore interrupts
pop bx
pop ds
ret

PutInBuffer endp

;**
;
; FindCode: On entry, ES:DI points at some code in *this* program which
; appears in the ATP game. DS:SI points at a block of memory
; in the XWing game. FindCode searches through memory to find the
; suspect piece of code and returns DS:SI pointing at the start of
; that code. This code assumes that it *will* find the code!
; It returns the carry clear if it finds it, set if it doesn’t.

FindCode proc near
push ax
push bx
push dx

DoCmp: mov dx, 1000h
CmpLoop: push di ;Save ptr to compare code.

push si ;Save ptr to start of string.
push cx ;Save count.

repe cmpsb
pop cx
pop si
pop di
je FoundCode

Chapter 24

Page 1304

inc si
dec dx
jne CmpLoop
sub si, 1000h
mov ax, ds
inc ah
mov ds, ax
cmp ax, 9000h
jb DoCmp

pop dx
pop bx
pop ax
stc
ret

FoundCode: pop dx
pop bx
pop ax
clc
ret

FindCode endp

;**
;
; Joystick and button routines which appear in XWing game. This code is
; really data as the INT 21h patch code searches through memory for this code
; after loading a file from disk.

JoyStickCode proc near
sti
neg bx
neg di
pop bp
pop dx
pop cx
ret
mov bp, bx
in al, dx
mov bl, al
not al
and al, ah
jnz $+11h
in al, dx

JoyStickCode endp
EndJSC:

JoyLength = EndJSC-JoyStickCode

ReadSwCode proc
mov dx, 201h
in al, dx
xor al, 0ffh
and ax, 0f0h

ReadSwCode endp
EndRSC:

ButtonLength = EndRSC-ReadSwCode

cseg ends

Installation segment

; Move these things here so they do not consume too much space in the
; resident part of the patch.

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 2, “ “, 0dh, 126 dup (“ “) ;Cmd line for program
Pgm byte “XWING.EXE”,0

byte 128 dup (?) ;For user’s name

The Game Adapter

Page 1305

; ChkBIOS15- Checks to see if the INT 15 driver for FSPro is present in memory.

ChkBIOS15 proc far
mov ah, 84h
mov dx, 8100h
int 15h
mov di, bx
strcmpl
byte “CH Products:Flightstick Pro”,0
jne NoDriverLoaded
ret

NoDriverLoaded:
print
byte “CH Products SGDI driver for Flightstick Pro is not “
byte “loaded into memory.”,cr,lf
byte “Please run FSPSGDI before running this program.”
byte cr,lf,0
exitpgm

ChkBIOS15 endp

;**
;
; Identify- Prints a sign-on message.

assume ds:nothing
Identify proc far

; Print a welcome string. Note that the string “VersionStr” will be
; modified by the “version.exe” program each time you assemble this code.

print
byte cr,lf,lf
byte “X W I N G P A T C H”,cr,lf
byte “CH Products Flightstick Pro”,cr,lf
byte “Copyright 1994, Randall Hyde”,cr,lf
byte lf
byte 0

ret
Identify endp

;**
;
; Calibrate the throttle down here:

assume ds:nothing
Calibrate proc far

print
byte cr,lf,lf
byte “Calibration:”,cr,lf,lf
byte “Move the throttle to one extreme and press any “
byte “button:”,0

call Wait4Button
mov ah, 84h
mov dx, 1h
int 15h
push dx ;Save pot 3 reading.

print
byte cr,lf
byte “Move the throttle to the other extreme and press “
byte “any button:”,0

call Wait4Button
mov ah, 84h
mov dx, 1
int 15h
pop bx

Chapter 24

Page 1306

mov ax, dx
cmp ax, bx
jb RangeOkay
xchg ax, bx

RangeOkay: mov cx, bx ;Compute a centered value.
sub cx, ax
shr cx, 1
add cx, ax
mov ah, 84h
mov dx, 303h ;Calibrate pot three.
int 15h
ret

Calibrate endp

Wait4Button proc near
mov ah, 84h ;First, wait for all buttons
mov dx, 0 ; to be released.
int 15h
and al, 0F0h
cmp al, 0F0h
jne Wait4Button

mov cx, 0
Delay: loop Delay

Wait4Press: mov ah, 1 ;Eat any characters from the
int 16h ; keyboard which come along, and
je NoKbd ; handle ctrl-C as appropriate.
getc

NoKbd: mov ah, 84h ;Now wait for any button to be
mov dx, 0 ; pressed.
int 15h
and al, 0F0h
cmp al, 0F0h
je Wait4Press

ret
Wait4Button endp
Installation ends

sseg segment para stack ‘STACK’
word 256 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap byte 1024 dup (0)
zzzzzzseg ends

end Main

24.8 Summary

The PC’s game adapter card lets you connect a wide variety of game related input devices to your PC.
Such devices include digital joysticks, paddles, analog joysticks, steering wheels, yokes, and more. Paddle
input devices provide one degree of freedom, joysticks provide two degrees of freedom along an (X,Y)
axis pair. Steering wheels and yokes also provide two degrees of freedom, though they are designed for
different types of games. For more information on these input devices, see

• “Typical Game Devices” on page 1255

Most game input devices connect to the PC through the game adapter card. This device provides for
up to four digital (switch) inputs and four analog (resistive) inputs. This device appears as a single I/O
location in the PC’s I/O address space. Four of the bits at this port correspond to the four switches, four of
the inputs provide the status of the timer pulses from the 558 chip for the analog inputs. The switches you

The Game Adapter

Page 1307

can read directly from the port; to read the analog inputs, you must create a timing loop to count how long
it takes for the pulse associated with a particular device to go from high to low. For more information on
the game adapter hardware, see:

• “The Game Adapter Hardware” on page 1257

Programming the game adapter would be a simple task except that you will get different readings for
the same relative pot position with different game adapter cards, game input devices, computer systems,
and software. The real trick to programming the game adapter is to produce consistent results, regardless
of the actual hardware in use. If you can live with raw input values, the BIOS provides two functions to
read the switches and the analog inputs. However, if you need normalized values, you will probably have
to write your own code. Still, writing such code is very easy if you remember some basic high school alge-
bra. So see how this is done, check out

• “Using BIOS’ Game I/O Functions” on page 1259
• “Writing Your Own Game I/O Routines” on page 1260

As with the other devices on the PC, there is a problem with accessing the game adapter hardware
directly, such code will not work with game input hardware that doesn’t adhere strictly to the original PC’s
design criteria. Fancy game input devices like the Thrustmaster joystick and the CH Product’s FlightStick
Pro will require you to write special software drivers. Furthermore, your basic joystick code may not even
work with future devices, even if they provide a minimal set of features compatible with standard game
input devices. Unfortunately, the BIOS services are very slow and not very good, so few programmers
make BIOS calls, allowing third party developers to provide replacement device drivers for their game
devices. To help alleviate this problem, this chapter presents the Standard Game Device Input application
programmer’s interface – a set of functions specifically designed to provide an extensible, portable, system
for game input device programmers. The current specification provides for up to 256 digital and 256 ana-
log input devices and is easily extended to handle output devices and other input devices as well. For the
details, see

• “The Standard Game Device Interface (SGDI)” on page 1262
• “Application Programmer’s Interface (API)” on page 1262

Since this chapter introduces the SGDI driver, there aren’t many SGDI drivers provided by game
adapter manufacturers at this point. So if you write software that makes SGDI driver calls, you will find that
there are few machines that will have an SGDI TSR in memory. Therefore, this chapter provides SGDI driv-
ers for the standard game adapter card and the standard input devices. It also provides an SGDI driver for
the CH Products’ FlightStick Pro joystick. To obtain these freely distributable drivers, see

• “An SGDI Driver for the Standard Game Adapter Card” on page 1265
• “An SGDI Driver for the CH Products’ Flight Stick Pro” on page 1280

This chapter concludes with an example of a semiresident program that makes SGDI calls. This pro-
gram, that patches the popular XWing game, provides full support for the CH Product’s FlightStick Pro in
XWing. This program demonstrates many of the features of an SGDI driver as well as providing and exam-
ple of how to patch a commercially available game. For the explanation and the source code, see

• “Patching Existing Games” on page 1293

Chapter 24

Page 1308

Page 1311

Optimizing Your Programs Chapter 25

Since program optimization is generally one of the last steps in software development, it is only fitting
to discuss program optimization in the last chapter of this text. Scanning through other texts that cover this
subject, you will find a wide variety of opinions on this subject. Some texts and articles ignore instruction
sets altogether and concentrate on finding a better algorithm. Other documents assume you’ve already
found the best algorithm and discuss ways to select the “best” sequence of instructions to accomplish the
job. Others consider the CPU architecture and describe how to “count cycles” and pair instructions (espe-
cially on superscalar processors or processes with pipelines) to produce faster running code. Others, still,
consider the system architecture, not just the CPU architecture, when attempting to decide how to opti-
mize your program. Some authors spend a lot of time explaining that their method is the “one true way” to
faster programs. Others still get off on a software engineering tangent and start talking about how time
spent optmizing a program isn’t worthwhile for a variety of reasons. Well, this chapter is not going to
present the “one true way,” nor is it going to spend a lot of time bickering about certain optimization tech-
niques. It will simply present you with some examples, options, and suggestions. Since you’re on your
own after this chapter, it’s time for you to start making some of your own decisions. Hopefully, this chap-
ter can provide suitable information so you can make correct decisions.

25.0 Chapter Overview

25.1 When to Optimize, When Not to Optimize

The optimization process is not cheap. If you develop a program and then determine that it is too
slow, you may have to redesign and rewrite major portions of that program to get acceptable performance.
Based on this point alone, the world often divides itself into two camps – those who optimize early and
those who optimize late. Both groups have good arguements; both groups have some bad arguements.
Let’s take a look at both sides of this arguement.

The “optimize late” (OL) crowd uses the 90/10 arguement: 90% of a program’s execution time is spent
in 10% of the code

1

. If you try to optimize every piece of code you write (that is, optimize the code before
you know that it needs to be optimized), 90% of your effort will go to waste. On the other hand, if you
write the code in a normal fashion first and then go in an optimize, you can improve your program’s per-
formance with less work. After all, if you

completely removed

 the 90% portion of your program, your code
would only run about 10% faster. On the other hand, if you completely remove that 10% portion, your pro-
gram will run about 10 times faster. The math is obviously in favor of attacking the 10%. The OL crowd
claims that you should write your code with only the normal attention to performance (i.e., given a choice
between an O(n

2

) and an O(n lg n) algorithm, you should choose the latter). Once the program is working
correctly you can go back and concentrate your efforts on that 10% of the code that takes all the time.

The OL arguements are persuasive. Optimization is a laborious and difficult process. More often that
not there is no clear-cut way to speed up a section of code. The only way to determine which of several
different options is better is to actually code them all up and compare them. Attempting to do this on the
entire program is impractical. However, if you can find that 10% of the code and optimize that, you’ve
reduced your workload by 90%, very inviting indeed. Another good arguement the OL group uses is that
few programmers are capable of anticipating where the time will be spent in a program. Therefore, the
only real way to determine where a program spends its time is to

instrument it

 and measure which func-
tions consume the most time. Obviously, you must have a working program before you can do this. Once

1. Some people prefer to call this the 80/20 rule: 80% of the time is spent in 20% of the code, to be safer in their esitmates. The exact numbers don’t
matter. What is important is that most of a program’s execution time is spent in a small amount of the code.

Thi d t t d ith F M k 4 0 2

Chapter 25

Page 1312

again, they argue that any time spent optimizing the code beforehand is bound to be wasted since you will
probably wind up optimizing that 90% that doesn’t need it.

There are, however, some very good counter arguments to the above. First, when most OL types start
talking about the 90/10 rule, there is this implicit suggestion that this 10% of the code appears as one big
chunk in the middle of the program. A good programmer, like a good surgeon, can locate this malignant
mass, cut it out, and replace with with something much faster, thus boosting the speed of your program
with only a little effort. Unfortunately, this is not often the case in the real world. In real programs, that 10%
of the code that takes up 90% of the execution time is often spread all over your program. You’ll get 1%
here, 0.5% over there, a “gigantic” 2.5% in one function, and so on. Worse still, optimizing 1% of the code
within one function often requires that you modify some of the other code as well. For example, rewriting
a function (the 1%) to speed it up quite a bit may require changing the way you pass parameters to that
function. This may require rewriting several sections of code outside that slow 10%. So often you wind up
rewriting much more than 10% of the code in order to speed up that 10% that takes 90% of the time.

Another problem with the 90/10 rule is that it works on percentages, and the percentages change dur-
ing optimization. For example, suppose you located a single function that was consuming 90% of the exe-
cution time. Let’s suppose you’re Mr. Super Programmer and you managed to speed this routine up by a
factor of two. Your program will now take about 55% of the time to run before it was optimized

2

. If you tri-
ple the speed of this routine, your program takes a total of 40% of the original time to execution. If you are
really great and you manage to get that function running nine times faster, your program now runs in 20%
of the original time, i.e., five times faster.

Suppose you could get that function running nine times faster. Notice that the 90/10 rule no longer
applies to your program. 50% of the execution time is spent in 10% of your code, 50% is spent in the other
90% of your code. And if you’ve managed to speed up that one function by 900%, it is very unlikely you’re
going to squeeze much more out of it (unless it was

really

 bad to begin with). Is it worthwhile messing
around with that other 90% of your code? You bet it is. After all, you can improve the performance of your
program by 25% if you double the speed of that other code. Note, however, that you only get a 25% per-
formance boost

after

 you optimized the 10% as best you could. Had you optimized the 90% of your pro-
gram first, you would only have gotten a 5% performance improvement; hardly something you’d write
home about. Nonetheless, you can see some situations where the 90/10 rule obviously doesn’t apply and
you can see some cases where optimizing that 90% can produce a good boost in performance. The OL
group will smile and say “see, that’s the benefit of optimizing late, you can optimize in stages and get just
the right amount of optimization you need.”

The optimize early (OE) group uses the flaw in percentage arithmetic to point out that you will prob-
ably wind up optimizing a large portion of your program anyway. So why not work all this into your
design in the first place? A big problem with the OL strategy is that you often wind up designing and writ-
ing the program twice – once just to get it functional, the second time to make it practical. After all, if
you’re going to have to rewrite that 90% anyway, why not write it fast in the first place? The OE people
also point out that although programmers are notoriously bad at determining where a program spends
most of its time, there are some obvious places where they know there will be performance problems.
Why wait to discover the obvious? Why not handle such problem areas early on so there is less time spent
measuring and optimizing that code?

Like so many other arguements in Software Engineering, the two camps become quite polarized and
swear by a totally pure approach in either direction (either all OE or all OL). Like so many other argue-
ments in Computer Science, the truth actually lies somewhere between these two extremes. Any project
where the programmer set out to design the perfect program without worry about performance until the
end is doomed. Most programmers in this scenario write

terribly slow

 code. Why? Because it’s easier to do
so and they can always “solve the performance problem during the optimization phase.” As a result, the
90% portion of the program is often so slow that even if the time of the other 10% were reduced to zero,

2.

Figure the 90% of the code originally took one unit of time to execute and the 10% of the code originally took nine units of time to exeute. If we
cut the execution time of the of the 10% in half, we now have 1 unit plus 4.5 units = 5.5 units out of 10 or 55%.

Optimizing Your Programs

Page 1313

the program would still be way too slow. On the other hand, the OE crowd gets so caught up in writing
the best possible code that they miss deadlines and the product may never ship.

There is one undeniable fact that favors the OL arguement – optimized code is difficult to understand
and maintain. Furthermore, it often contains bugs that are not present in the unoptimized code. Since
incorrect code is unacceptable, even if it does run faster, one very good arguement against optimizing
early is the fact that testing, debugging, and quality assurance represent a large portion of the program
development cycle. Optimizing early may create so many additional program errors that you lose any time
saved by not having to optimize the program later in the development cycle.

The correct time to optimize a program is, well, at the correct time. Unfortunately, the “correct time”
varies with the program. However, the first step is to develop program performance requirements along
with the other program specifications. The system analyst should develop target response times for all user
interactions and computations. During development and testing, programmers have a target to shoot for,
so they can’t get lazy and wait for the optimization phase before writing code that performs reasonably
well. On the other hand, they also have a target to shoot for and once the code is running fast enough,
they don’t have to waste time, or make their code less maintainable; they can go on and work on the rest
of the program. Of course, the system analyst could misjudge performance requirements, but this won’t
happen often with a good system design.

Another consideration is when to perform

what

. There are several types of optimizations you can
perform. For example, you can rearrange instructions to avoid hazards to double the speed of a piece of
code. Or you could choose a different algorithm that could run twice as fast. One big problem with optimi-
zation is that it is not a single process and many types of optimizations are best done later rather than ear-
lier, or vice versa. For example, choosing a good algorithm is something you should do early on. If you
decide to use a better algorithm

after

 implementing a poor one, most of the work on the code implement-
ing the old algorithm is lost. Likewise, instruction scheduling is one of the last optimizations you should
do. Any changes to the code after rearranging instructions for performance may force you to spend time
rearranging them again later. Clearly, the lower level the optimization (i.e., relying upon CPU or system
parameters), the later the optimization should be. Conversely, the higher level the optimization (e.g.,
choice of algorithm), the sooner should be the optimization. In all cases, though, you should have target
performance values in mind while developing code.

25.2 How Do You Find the Slow Code in Your Programs?

Although there are problems with the 90/10 rule, the concept behind it is basically solid – programs
tend to spend a large amount of their time executing only a small percentage of the code. Clearly, you
should optimize the slowest portion of your code first. The only problem is how does one find the slowest
code in a program?

There are four common techniques programmers use to find the “hot spots” (the places where pro-
grams spend most of their time). The first is by trial and error. The second is to optimize everything. The
third is to analyze the program. The fourth is to use a

profiler

 or other software monitoring tool to mea-
sure the performance of various parts of a program. After locating a hot spot, the programmer can attempt
to analyze that section of the program.

The trial and error technique is, unfortunately, the most common strategy. A programmer will speed
up various parts of the program by making educated guesses about where it is spending most of its time. If
the programmer guesses right, the program will run much faster after optimization. Experienced program-
mers often use this technique successfully to quickly locate and optimize a program. When the program-
mer guesses correctly, this technique minimizes the amount of time spent looking for hot spots in a
program. Unfortunately, most programmers make fairly poor guesses and wind up optimizing the wrong
sections of code. Such effort often goes to waste since optimizing the

wrong

 10% will not improve perfor-
mance significantly. One of the prime reasons this technique fails so often is that it is often the first choice
of inexperienced programmers who cannot easily recognize slow code. Unfotunately, they are probably

Chapter 25

Page 1314

unaware of other techniques, so rather than try a structured approach, they start making (often) unedu-
cated guesses.

Another way to locate and optimize the slow portion of a program is to optimize everything. Obvi-
ously, this technique does not work well for large programs, but for short sections of code it works reason-
ably well. Later, this text will provide a short example of an optimization problem and will use this
technique to optimize the program. Of course, for large programs or routines this may not be a cost effec-
tive approach. However, where appropriate it can save you time while optimizing your program (or at
least a portion of your program) since you will not need to carefully analyze and measure the performance
of your code. By optimizing everything, you are sure to optimize the slow code.

The analysis method is the most difficult of the four. With this method, you study your code and
determine where it will spend most of its time based on the data you expect it to process. In theory, this is
the best technique. In practice, human beings generally demonstrate a distaste for such analysis work. As
such, the analysis is often incorrect or takes too long to complete. Furthermore, few programmers have
much experience studying their code to determine where it is spending most of its time, so they are often
quite poor at locating hot spots by studying their listings when the need arises.

Despite the problems with program analysis, this is the first technique you should always use when
attempting to optimize a program. Almost all programs spend most of their time executing the body of a
loop or recursive function calls. Therefore, you should try to locate all recursive function calls and loop
bodies (especially nested loops) in your program. Chances are very good that a program will be spending
most of its time in one of these two areas of your program. Such spots are the first to consider when opti-
mizing your programs.

Although the analytical method provides a good way to locate the slow code in a program, analyzing
program is a slow, tedious, and boring process. It is very easy to completely miss the most time consuming
portion of a program, especially in the presence of indirectly recursive function calls. Even locating time
consuming nested loops is often difficult. For example, you might not realize, when looking at a loop
within a procedure, that it is a nested loop by virtue of the fact that the calling code executes a loop when
calling the procedure. In theory, the analytical method should always work. In practice, it is only margin-
ally successful given that fallible humans are doing the analysis. Nevertheless, some hot spots are easy to
find through program analysis, so your first step when optimizing a program should be analysis.

Since programmers are notoriously bad at analyzing programs to find their hot spots, it would make
since to try an automate this process. This is precisely what a

profiler

 can do for you. A profiler is a small
program that measures how long your code spends in any one portion of the program. A profiler typically
works by interrupting your code periodically and noting the return address. The profiler builds a histo-
gram of interrupt return addresses (generally rounded to some user specified value). By studying this his-
togram, you can determine where the program spends most of its time. This tells you which sections of the
code you need to optimize. Of course, to use this technique, you will need a profiler program. Borland,
Microsoft, and several other vendors provide profilers and other optimization tools.

25.3 Is Optimization Necessary?

Except for fun and education, you should never approach a project with the attitude that you are
going to get maximal performance out of your code. Years ago, this was an important attitude because
that’s what it took to get anything decent running on the slow machines of that era. Reducing the run time
of a program from ten minutes to ten seconds made many programs commercially viable. On the other
hand, speeding up a program that takes 0.1 seconds to the point where it runs in a millisecond is often
pointless. You will waste a lot of effort improving the performance, yet few people will notice the differ-
ence.

This is not to say that speeding up programs from 0.1 seconds to 0.001 seconds is never worthwhile.
If you are writing a data capture program that requires you to take a reading every millisecond, and it can
only handle ten readings per second as currently written, you’ve got your work cut out for you. Further-

Optimizing Your Programs

Page 1315

more, even if your program runs fast enough already, there are reasons why you would want to make it
run twice as fast. For example, suppose someone can use your program in a multitasking environment. If
you modify your program to run twice as fast, the user will be able to run another program along side
yours and not notice the performance degradation.

However, the thing to always keep in mind is that you need to write software that is

fast enough

.
Once a program produces results instantaneously (or so close to instantaneous that the user can’t tell),
there is little need to make it run any faster. Since optimization is an expensive and error prone process,
you want to avoid it as much as possible. Writing programs that run faster than fast enough is a waste of
time. However, as is obvious from the set of bloated application programs you’ll find today, this really isn’t
a problem, most programming produce code that is way too slow, not way too fast.

A common reason stated for not producing optimal code is advancing hardware design. Many pro-
grammers and managers feel that the high-end machines they develop software on today will be the
mid-range machines two years from now when they finally release their software. So if they design their
software to run on today’s very high-end machines, it will perform okay on midrange machines when they
release their software.

There are two problems with the approach above. First, the operating system running on those
machines two years from now will gobble a large part of the machine’s resources (including CPU cycles).
It is interesting to note that today’s machines are hundreds of times faster than the original 8088 based PCs,
yet many applications actually run

slower

 than those that ran on the original PC. True, today’s software
provides many more features beyond what the original PC provided, but that’s the whole point of this
arguement – customers will demand features like multiple windows, GUI, pull-down menus, etc., that all
consume CPU cycles. You cannot assume that newer machines will provide extra clock cycles so your
slow code will run faster. The OS or user interface to your program will wind up eating those extra avail-
able clock cycles.

So the first step is to realistically determine the performance requirements of your software. Then
write your software to meet that performance goal. If you fail to meet the performance requirements, then
it is time to optimize your program. However, you shouldn’t waste additional time optimizing your code
once your program meets or exceed the performance specifications.

25.4 The Three Types of Optimization

There are three forms of optimization you can use when improving the performance of a program.
They are choosing a better algorithm (high level optimization), implementing the algorithm better (a
medium level optmization), and “counting cycles” (a low level optimization). Each technique has its place
and, generally, you apply them at different points in the development process.

Choosing a better algorithm is the most highly touted optimization technique. Alas it is the technique
used least often. It is easy for someone to announce that you should always find a better algorithm if you
need more speed; but finding that algorithm is a little more difficult. First, let us define an algorithm
change as using a fundamentally different technique to solve the problem. For example, switching from a
“bubble sort” algorithm to a “quick sort” algorithm is a good example of an algorithm change. Generally,
though certainly not always, changing algorithms means you use a program with a better Big-Oh function

3

For example, when switching from the bubble sort to the quick sort, you are swapping an algorithm with
an O(n

2

) running time for one with an O(n lg n) expected running time.

You must remember the restrictions on Big-Oh functions when comparing algorithms. The value for

n

 must be sufficiently large to mask the effect of hidden constant. Furthermore, Big-Oh analysis is usually

worst-case

 and may not apply to your program. For example, if you wish to sort an array that is “nearly”
sorted to begin with, the bubble sort algorithm is usually much faster than the quicksort algorithm, regard-

3. Big-Oh function are approximations of the running time of a program.

Chapter 25

Page 1316

less of the value for

n

. For data that is almost sorted, the bubble sort runs in almost O(n) time whereas the
quicksort algorithm runs in O(n

2

) time

4

.

The second thing to keep in mind is the constant itself. If two algorithms have the same Big-Oh func-
tion, you cannot determine any difference between the two based on the Big-Oh analysis. This does not
mean that they will take the same amount of time to run. Don’t forget, in Big-Oh analysis we throw out all
the low order terms and multiplicative constants. The asymptotic notation is of little help in this case.

To get truly phenomenal performance improvements requires an algorithmic change to your pro-
gram. However, discovering an O(n lg n) algorithm to replace your O(n

2

) algorithm is often difficult if a
published solution does not already exist. Presumably, a well-designed program is not going to contain
many obvious algorithms you can dramatically improve (if they did, they wouldn’t be well-designed, now,
would they?). Therefore, attempting to find a better algorithm may not prove successful. Nevertheless, it is
always the first step you should take because the following steps operate on the algorithm you have. If
you perform the other steps on a bad algorithm and then discover a better algorithm later, you will have to
repeat these time-consumings steps all over again on the new algorithm.

There are two steps to discovering a new algorithms: research and development. The first step is to
see if you can find a better solution in the existing literature. Failing that, the second step is to see if you
can develop a better algorithm on your own. The key thing is to budget an appropriate amount of time to
these two activities. Research is an open-ended process. You can always read one more book or article. So
you’ve got to decide how much time you’re going to spend looking for an existing solution. This might be
a few hours, days, weeks, or months. Whatever you feel is cost-effective. You then head to the library (or
your bookshelf) and begin looking for a better solution. Once your time expires, it is time to abandon the
research approach unless you are sure you are on the right track in the material you are studying. If so,
budget a little more time and see how it goes. At some point, though, you’ve got to decide that you proba-
bly won’t be able to find a better solution and it is time to try to develop a new one on your own.

While searching for a better solution, you should study the papers, texts, articles, etc., exactly as
though you were studying for an important test. While it’s true that much of what you study will not apply
to the problem at hand, you are learning things that will be useful in future projects. Furthermore, while
someone may not provide the solution you need, they may have done some work that is headed in the
same direction that you are and could provide some good ideas, if not the basis, for your own solution.
However, you must always remember that the job of an engineer is to provide a cost-effective solution to
a problem. If you waste too much time searching for a solution that may not appear anywhere in the liter-
ature, you will cause a cost overrun on your project. So know when it’s time to “hang it up” and get on
with the rest of the project.

Developing a new algorithm on your own is also open-ended. You could literally spend the rest of
your life trying to find an efficient solution to an intractible problem. So once again, you need to budget
some time for this process accordingly. Spend the time wisely trying to develop a better solution to your
problem, but once the time is exhausted, it’s time to try a different approach rather than waste any more
time chasing a “holy grail.”

Be sure to use all resources at your disposal when trying to find a better algorithm. A local university’s
library can be a big help. Also, you should network yourself. Attend local computer club meetings, discuss
your problems with other engineers, or talk to interested friends, maybe they’re read about a solution that
you’ve missed. If you have access to the Internet, BIX, Compuserve, or other technically oriented on-line
services or computerized bulletin board systems, by all means post a message asking for help. With liter-
ally millions of users out there, if a better solution exists for your problem, someone has probabaly solved
it for you already. A few posts may turn up a solution you were unable to find or develop yourself.

At some point or another, you may have to admit failure. Actually, you may have to admit success –
you’ve already found as good an algorithm as you can. If this is still too slow for your requirements, it may
be time to try some other technique to improve the speed of your program. The next step is to see if you

4. Yes, O(n

2

). The O(n lg n) rating commonly given the quicksort algorithm is actually the

expected

(average case) analysis, not the worst case anal-
ysis.

Optimizing Your Programs

Page 1317

can provide a better implementation for the algorithm you are using. This optimization step, although
independent of language, is where most assembly language programmers produce dramatic performance
improvements in their code. A better implementation generally involves steps like unrolling loops, using
table lookups rather than computations, eliminating computations from a loop whose value does not
change within a loop, taking advantage of machine idioms (such as using a shift or shift and add rather
than a multiplication), trying to keep variables in registers as long as possible, and so on. It is surprising
how much faster a program can run by using simple techniques like those whose descriptions appear
thoughout this text.

As a last resort, you can resort to

cycle counting

. At this level you are trying to ensure that an instruc-
tion sequence uses as few clock cycles as possible. This is a difficult optimization to perform because you
have to be aware of how many clock cycles each instruction consumes, and that depends on the instruc-
tion, the addressing mode in use, the instructions around the current instruction (i.e., pipelining and
superscalar effects), the speed of the memory system (wait states and cache), and so on. Needless to say,
such optimizations are very tedious and require a very careful analysis of the program and the system on
which it will run.

The OL crowd always claims you should put off optimization as long as possible. These people are
generally talking about this last form of optimization. The reason is simple: any changes you make to your
program after such optimizations may change the interaction of the instructions and, therefore, their exe-
cution time. If you spend considerable time scheduling a sequence of 50 instructions and then discover
you will need to rewrite that code for one reason or another, all the time you spent carefully scheduling
those instructions to avoid hazards is lost. On the other hand, if you wait until the last possible moment to
make such optimizations to you code, you will only optimize that code once.

Many HLL programmers will tell you that a good compiler can beat a human being at scheduling
instructions and optimizing code. This isn’t true. A good compiler will beat a mediocre assembly language
program a good part of the time. However, a good compiler won’t stand a chance against a good assembly
language programmer. After all, the worst that could happen is that the good assembly language program-
mer will look at the output of the compiler and improve on that.

“Counting cycles” can improve the performance of your programs. On the average, you can speed up
your programs by a factor of 50% to 200% by making simple changes (like rearranging instructions). That’s
the difference between an 80486 and a Pentium! So you shouldn’t ignore the possibility of using such opti-
mizations in your programs. Just keep in mind, you should do such optimizations last so you don’t wind
up redoing them as your code changes.

The rest of this chapter will concentrate on the techniques for improving the implementation of an
algorithm, rather than designing a better algorithm or using cycle counting techniques. Designing better
algorithms is beyond the scope of this manual (see a good text on algorithm design). Cycle counting is one
of those processes that differs from processor to processor. That is, the optimization techniques that work
well for the 80386 fail on a 486 or Pentium chip, and vice versa. Since Intel is constantly producing new
chips, requring different optimization techniques, listing those techniques here would only make that
much more material in this book outdated. Intel publishes such optimization hints in their processor pro-
grammer reference manuals. Articles on optimizing assembly language programs often appear in technical
magazines like Dr. Dobb’s Journal, you should read such articles and learn all the current optimization
techniques.

25.5 Improving the Implementation of an Algorithm

One easy way to partially demonstrate how to optimize a piece of code is to provide an example of
some program and the optimization steps you can apply to that program. This section will present a short
program that

blurs

 an eight-bit gray scale image. Then, this section will lead though through several opti-
mization steps and show you how to get that program running over 16 times faster.

Chapter 25

Page 1318

The following code assumes that you provide it with a file containing a 251x256 gray scale photo-
graphic image. The data structure for this file is as follows:

Image: array [0..250, 0..255] of byte;

Each byte contains a value in the range 0..255 with zero denoting black, 255 representing white, and the
other values representing even shades of gray between these two extremes.

The blurring algorithm averages a pixel

5

 with its eight closest neighbors. A single blur operation
applies this average to all interior pixels of an image (that is, it does not apply to the pixels on the bound-
ary of the image because they do not have the same number of neighbors as the other pixels). The follow-
ing Pascal program implements the blurring algorithm and lets the user specify the amount of blurring (by
looping through the algorithm the number of times the user specifies)

6

:

program PhotoFilter(input,output);

(* Here is the raw file data type produced by the Photoshop program *)

type
 image = array [0..250] of array [0..255] of byte;

(* The variables we will use. Note that the “datain” and “dataout” *)
(* variables are pointers because Turbo Pascal will not allow us to *)
(* allocate more than 64K data in the one global data segment it *)
(* supports. *)

var
 h,i,j,k,l,sum,iterations:integer;
 datain, dataout: ^image;
 f,g:file of image;

begin

 (* Open the files and real the input data *)

 assign(f, ‘roller1.raw’);
 assign(g, ‘roller2.raw’);
 reset(f);
 rewrite(g);
 new(datain);
 new(dataout);
 read(f,datain^);

 (* Get the number of iterations from the user *)

 write(‘Enter number of iterations:’);
 readln(iterations);

 writeln(‘Computing result’);

 (* Copy the data from the input array to the output array. *)
 (* This is a really lame way to copy the border from the *)
 (* input array to the output array. *)

 for i := 0 to 250 do
 for j := 0 to 255 do
 dataout^ [i][j] := datain^ [i][j];

 (* Okay, here’s where all the work takes place. The outside *)
 (* loop repeats this blurring operation the number of *)
 (* iterations specified by the user. *)

 for h := 1 to iterations do begin

 (* For each row except the first and the last, compute *)
 (* a new value for each element. *)

 for i := 1 to 249 do

5. Pixel stands for “picture element.” A pixel is an element of the Image array defined above.
6. A comparable C program appears on the diskette accompanying the lab manual.

Optimizing Your Programs

Page 1319

 (* For each column except the first and the last, com- *)
 (* pute a new value for each element. *)

 for j := 1 to 254 do begin

 (* For each element in the array, compute a new
 blurred value by adding up the eight cells
 around an array element along with eight times
 the current cell’s value. Then divide this by

 sixteen to compute a weighted average of the
 nine cells forming a square around the current
 cell. The current cell has a 50% weighting,
 the other eight cells around the current cel
 provide the other 50% weighting (6.25% each). *)

 sum := 0;
 for k := -1 to 1 do

 for l := -1 to 1 do
 sum := sum + datain^ [i+k][j+l];

 (* Sum currently contains the sum of the nine *)
 (* cells, add in seven times the current cell so *)
 (* we get a total of eight times the current cell. *)

 dataout^ [i][j] := (sum + datain^ [i][j]*7) div 16;

 end;

 (* Copy the output cell values back to the input cells *)
 (* so we can perform the blurring on this new data on *)
 (* the next iteration. *)

 for i := 0 to 250 do
 for j := 0 to 255 do

 datain^ [i][j] := dataout^ [i][j];

 end;

 writeln(‘Writing result’);
 write(g,dataout^);
 close(f);
 close(g);

end.

The Pascal program above, compiled with Turbo Pascal v7.0, takes 45 seconds to compute 100 itera-
tions of the blurring algorithm. A comparable program written in C and compiled with Borland C++ v4.02
takes 29 seconds to run. The same source file compiled with Microsoft C++ v8.00 runs in 21 seconds.
Obviously the C compilers produce better code than Turbo Pascal. It took about three hours to get the
Pascal version running and tested. The C versions took about another hour to code and test. The following
two images provide a “before” and “after” example of this program’s function:

Before blurring:

Chapter 25

Page 1320

After blurring (10 iterations):

The following is a crude translation from Pascal directly into assembly language of the above pro-
gram. It requires 36 seconds to run. Yes, the C compilers did a better job, but once you see how bad this
code is, you’ll wonder what it is that Turbo Pascal is doing to run so slow. It took about an hour to trans-
late the Pascal version into this assembly code and debug it to the point it produced the same output as the
Pascal version.

; IMGPRCS.ASM
;
; An image processing program.
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.

Optimizing Your Programs

Page 1321

;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 36 seconds.
; Borland Pascal v7.0- 45 seconds.
; Borland C++ v4.02- 29 seconds.
; Microsoft C++ v8.00- 21 seconds.

.xlist
include stdlib.a
includelib stdlib.lib
.list
.286

dseg segment para public ‘data’

; Loop control variables and other variables:

h word ?
i word ?
j word ?
k word ?
l word ?
sum word ?
iterations word ?

; File names:

InName byte “roller1.raw”,0
OutName byte “roller2.raw”,0

dseg ends

; Here is the input data that we operate on.

InSeg segment para public ‘indata’

DataIn byte 251 dup (256 dup (?))

InSeg ends

; Here is the output array that holds the result.

OutSeg segment para public ‘outdata’

DataOut byte 251 dup (256 dup (?))

OutSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
meminit

mov ax, 3d00h ;Open input file for reading.
lea dx, InName
int 21h
jnc GoodOpen
print
byte “Could not open input file.”,cr,lf,0
jmp Quit

GoodOpen: mov bx, ax ;File handle.
mov dx, InSeg ;Where to put the data.
mov ds, dx
lea dx, DataIn

Chapter 25

Page 1322

mov cx, 256*251 ;Size of data file to read.
mov ah, 3Fh
int 21h
cmp ax, 256*251 ;See if we read the data.
je GoodRead
print
byte “Did not read the file properly”,cr,lf,0
jmp Quit

GoodRead: mov ax, dseg
mov ds, ax
print
byte “Enter number of iterations: “,0
getsm
atoi
free
mov iterations, ax
print
byte “Computing Result”,cr,lf,0

; Copy the input data to the output buffer.

mov i, 0
iloop0: cmp i, 250

ja iDone0
mov j, 0

jloop0: cmp j, 255
ja jDone0

mov bx, i ;Compute index into both
shl bx, 8 ; arrays using the formula
add bx, j ; i*256+j (row major).

mov cx, InSeg ;Point at input segment.
mov es, cx
mov al, es:DataIn[bx] ;Get DataIn[i][j].

mov cx, OutSeg ;Point at output segment.
mov es, cx
mov es:DataOut[bx], al ;Store into DataOut[i][j]

inc j ;Next iteration of j loop.
jmp jloop0

jDone0: inc i ;Next iteration of i loop.
jmp iloop0

iDone0:

; for h := 1 to iterations-

mov h, 1
hloop: mov ax, h

cmp ax, iterations
ja hloopDone

; for i := 1 to 249 -

mov i, 1
iloop: cmp i, 249

ja iloopDone

; for j := 1 to 254 -
mov j, 1

jloop: cmp j, 254
ja jloopDone

; sum := 0;
; for k := -1 to 1 do for l := -1 to 1 do

mov ax, InSeg ;Gain access to InSeg.

Optimizing Your Programs

Page 1323

mov es, ax

mov sum, 0
mov k, -1

kloop: cmp k, 1
jg kloopDone

mov l, -1
lloop: cmp l, 1

jg lloopDone

; sum := sum + datain [i+k][j+l]

mov bx, i
add bx, k
shl bx, 8 ;Multiply by 256.
add bx, j
add bx, l

mov al, es:DataIn[bx]
mov ah, 0
add Sum, ax

inc l
jmp lloop

lloopDone: inc k
jmp kloop

; dataout [i][j] := (sum + datain[i][j]*7) div 16;

kloopDone: mov bx, i
shl bx, 8 ;*256
add bx, j
mov al, es:DataIn[bx]
mov ah, 0
imul ax, 7
add ax, sum
shr ax, 4 ;div 16

mov bx, OutSeg
mov es, bx

mov bx, i
shl bx, 8
add bx, j
mov es:DataOut[bx], al

inc j
jmp jloop

jloopDone: inc i
jmp iloop

iloopDone:
; Copy the output data to the input buffer.

mov i, 0
iloop1: cmp i, 250

ja iDone1
mov j, 0

jloop1: cmp j, 255
ja jDone1

mov bx, i ;Compute index into both
shl bx, 8 ; arrays using the formula
add bx, j ; i*256+j (row major).

mov cx, OutSeg ;Point at input segment.
mov es, cx
mov al, es:DataOut[bx] ;Get DataIn[i][j].

mov cx, InSeg ;Point at output segment.

Chapter 25

Page 1324

mov es, cx
mov es:DataIn[bx], al ;Store into DataOut[i][j]

inc j ;Next iteration of j loop.
jmp jloop1

jDone1: inc i ;Next iteration of i loop.
jmp iloop1

iDone1: inc h
jmp hloop

hloopDone: print
byte “Writing result”,cr,lf,0

; Okay, write the data to the output file:

mov ah, 3ch ;Create output file.
mov cx, 0 ;Normal file attributes.
lea dx, OutName
int 21h
jnc GoodCreate
print
byte “Could not create output file.”,cr,lf,0
jmp Quit

GoodCreate: mov bx, ax ;File handle.
push bx
mov dx, OutSeg ;Where the data can be found.
mov ds, dx
lea dx, DataOut
mov cx, 256*251 ;Size of data file to write.
mov ah, 40h ;Write operation.
int 21h
pop bx ;Retrieve handle for close.
cmp ax, 256*251 ;See if we wrote the data.
je GoodWrite
print
byte “Did not write the file properly”,cr,lf,0
jmp Quit

GoodWrite: mov ah, 3eh ;Close operation.
int 21h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

This assembly code is a very straight-forward, line by line translation of the previous Pascal code.
Even beginning programmers (who’ve read and understand Chapters Eight and Nine) should easily be
able to improve the performance of this code.

While we could run a profiler on this program to determine where the “hot spots” are in this code, a
little analysis, particularly of the Pascal version, should make it obvious that there are a lot of nested loops
in this code. As Chapter Ten points out, when optimizing code you should always start with the innermost
loops. The major change between the code above and the following assembly language version is that
we’ve unrolled the innermost loops and we’ve replaced the array index computations with some constant

Optimizing Your Programs

Page 1325

computations. These minor changes speed up the execution by a factor of six! The assembly version now
runs in six seconds rather than 36. A Microsoft C++ version of the same program with comparable opti-
mzations runs in eight seconds. It required nearly four hours to develop, test, and debug this code. It
required an additional hour to apply these same modifications to the C version

7

.

; IMGPRCS2.ASM
;
; An image processing program (First optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
; Version #2: Three major optimizations. (1) used movsd instruction rather
; than a loop to copy data from DataOut back to DataIn.
; (2) Used repeat..until forms for all loops. (3) unrolled
; the innermost two loops (which is responsible for most of
; the performance improvement).
;
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 6 seconds.
; Original ASM code- 36 seconds.
; Borland Pascal v7.0- 45 seconds.
; Borland C++ v4.02- 29 seconds.
; Microsoft C++ v8.00- 21 seconds.

; « Lots of omitted code goes here, see the previous version»

print
byte “Computing Result”,cr,lf,0

; for h := 1 to iterations-

mov h, 1
hloop:

; Copy the input data to the output buffer.
; Optimization step #1: Replace with movs instruction.

push ds
mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax
lea si, DataOut
lea di, DataIn
mov cx, (251*256)/4

rep movsd
pop ds

; Optimization Step #1: Convert loops to repeat..until form.

; for i := 1 to 249 -

mov i, 1
iloop:

; for j := 1 to 254 -

7. This does not imply that coding this improved algorithm in C was easier. Most of the time on the assembly version was spent trying out several
different modifications to see if they actually improved performance. Many modifications did not, so they were removed from the code. The devel-
opment of the C version benefited from the past work on the assembly version. It was a straight-forward conversion from assembly to C.

Chapter 25

Page 1326

mov j, 1
jloop:

; Optimization. Unroll the innermost two loops:

mov bh, byte ptr i;i is always less than 256.
mov bl, byte ptr j;Computes i*256+j!

push ds
mov ax, InSeg ;Gain access to InSeg.
mov ds, ax

mov cx, 0 ;Compute sum here.
mov ah, ch
mov cl, ds:DataIn[bx-257];DataIn[i-1][j-1]
mov al, ds:DataIn[bx-256];DataIn[i-1][j]
add cx, ax
mov al, ds:DataIn[bx-255];DataIn[i-1][j+1]
add cx, ax
mov al, ds:DataIn[bx-1];DataIn[i][j-1]
add cx, ax
mov al, ds:DataIn[bx+1];DataIn[i][j+1]
add cx, ax
mov al, ds:DataIn[bx+255];DataIn[i+1][j-1]
add cx, ax
mov al, ds:DataIn[bx+256];DataIn[i+1][j]
add cx, ax
mov al, ds:DataIn[bx+257];DataIn[i+1][j+1]
add cx, ax

mov al, ds:DataIn[bx];DataIn[i][j]
shl ax, 3 ;DataIn[i][j]*8
add cx, ax
shr cx, 4 ;Divide by 16
mov ax, OutSeg
mov ds, ax
mov ds:DataOut[bx], cl
pop ds

inc j
cmp j, 254
jbe jloop

inc i
cmp i, 249
jbe iloop

inc h
mov ax, h
cmp ax, Iterations
jnbe Done
jmp hloop

Done: print
byte “Writing result”,cr,lf,0

; «More omitted code goes here, see the previous version»

The second version above still uses memory variables for most computations. The optimizations
applied to the original code were mainly language-independent optimizations. The next step was to begin
applying some assembly language specific optimizations to the code. The first optimization we need to do
is to move as many variables as possible into the 80x86’s register set. The following code provides this
optimization. Although this only improves the running time by 2 seconds, that is a 33% improvement (six
seconds down to four)!

; IMGPRCS.ASM
;
; An image processing program (Second optimization pass).

Optimizing Your Programs

Page 1327

;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
; Version #2: Three major optimizations. (1) used movsd instruction rather
; than a loop to copy data from DataOut back to DataIn.
; (2) Used repeat..until forms for all loops. (3) unrolled
; the innermost two loops (which is responsible for most of
; the performance improvement).
; Version #3: Used registers for all variables. Set up segment registers
; once and for all through the execution of the main loop so
; the code didn’t have to reload ds each time through. Computed
; index into each row only once (outside the j loop).
;
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of delete code goes here»

print
byte “Computing Result”,cr,lf,0

; Copy the input data to the output buffer.

hloop: mov ax, InSeg
mov es, ax
mov ax, OutSeg
mov ds, ax
lea si, DataOut
lea di, DataIn
mov cx, (251*256)/4

rep movsd

assume ds:InSeg, es:OutSeg
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254 ;# of times through loop.

jloop:
mov dx, 0 ;Compute sum here.
mov ah, dh
mov dl, DataIn[bx-257] ;DataIn[i-1][j-1]
mov al, DataIn[bx-256] ;DataIn[i-1][j]
add dx, ax
mov al, DataIn[bx-255] ;DataIn[i-1][j+1]
add dx, ax
mov al, DataIn[bx-1] ;DataIn[i][j-1]
add dx, ax
mov al, DataIn[bx+1] ;DataIn[i][j+1]
add dx, ax
mov al, DataIn[bx+255] ;DataIn[i+1][j-1]
add dx, ax
mov al, DataIn[bx+256] ;DataIn[i+1][j]
add dx, ax
mov al, DataIn[bx+257] ;DataIn[i+1][j+1]

Chapter 25

Page 1328

add dx, ax

mov al, DataIn[bx] ;DataIn[i][j]
shl ax, 3 ;DataIn[i][j]*8
add dx, ax
shr dx, 4 ;Divide by 16
mov DataOut[bx], dl

inc bx
dec ch
jne jloop

dec cl
jne iloop

dec bp
jne hloop

Done: print
byte “Writing result”,cr,lf,0

; «More deleted code goes here, see the original version»

Note that on each iteration, the code above still copies the output data back to the input data. That’s
almost six and a half megabytes of data movement for 100 iterations! The following version of the blurring
program unrolls the

hloop

 twice. The first occurrence copies the data from DataIn to DataOut while com-
puting the blur, the second instance copies the data from DataOut back to DataIn while blurring the
image. By using these two code sequences, the program save copying the data from one point to another.
This version also maintains some common computations between two adjacent cells to save a few instruc-
tions in the innermost loop. This version arranges instructions in the innermost loop to help avoid data
hazards on 80486 and later processors. The end result is almost 40% faster than the previous version
(down to 2.5 seconds from four seconds).

; IMGPRCS.ASM
;
; An image processing program (Third optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
; than a loop to copy data from DataOut back to DataIn.
; (2) Used repeat..until forms for all loops. (3) unrolled
; the innermost two loops (which is responsible for most of
; the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
; once and for all through the execution of the main loop so
; the code didn’t have to reload ds each time through. Computed
; index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
; Removed hazards. Maintained common subexpressions. Did some
; more loop unrolling.
;
;
; Performance comparisons (66 MHz 80486 DX/2 system, 100 iterations).
;
; This code- 2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of deleted code here, see the original version»

Optimizing Your Programs

Page 1329

print
byte “Computing Result”,cr,lf,0

assume ds:InSeg, es:OutSeg

mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; Copy the data once so we get the edges in both arrays.

mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut

rep movsd

; “hloop” repeats once for each iteration.

hloop:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; “iloop” processes the rows in the matrices.

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254/2 ;# of times through loop.
mov si, bx
mov dh, 0 ;Compute sum here.
mov bh, 0
mov ah, 0

; “jloop” processes the individual elements of the array.
; This loop has been unrolled once to allow the two portions to share
; some common computations.

jloop:

; The sum of DataIn [i-1][j] + DataIn[i-1][j+1] + DataIn[i+1][j] +
; DataIn [i+1][j+1] will be used in the second half of this computation.
; So save its value in a register (di) until we need it again.

mov dl, DataIn[si-256] ;[i-1,j]
mov al, DataIn[si-255] ;[i-1,j+1]
mov bl, DataIn[si+257] ;[i+1,j+1]
add dx, ax
mov al, DataIn[si+256] ;[I+1,j]
add dx, bx
mov bl, DataIn[si+1] ;[i,j+1]
add dx, ax
mov al, DataIn[si+255] ;[i+1,j-1]

mov di, dx ;Save partial result.

add dx, bx
mov bl, DataIn[si-1] ;[i,j-1]
add dx, ax
mov al, DataIn[si] ;[i,j]
add dx, bx
mov bl, DataIn[si-257] ;[i-1,j-1]
shl ax, 3 ;DataIn[i,j] * 8.
add dx, bx
add dx, ax
shr ax, 3 ;Restore DataIn[i,j].
shr dx, 4 ;Divide by 16.
add di, ax
mov DataOut[si], dl

Chapter 25

Page 1330

; Okay, process the next cell over. Note that we’ve got a partial sum
; sitting in DI already. Don’t forget, we haven’t bumped SI at this point,
; so the offsets are off by one. (This is the second half of the unrolled
; loop.)

mov dx, di ;Partial sum.
mov bl, DataIn[si-254] ;[i-1,j+1]
mov al, DataIn[si+2] ;[i,j+1]
add dx, bx
mov bl, DataIn[si+258] ;[i+1,j+1];
add dx, ax
mov al, DataIn[si+1] ;[i,j]
add dx, bx
shl ax, 3 ;DataIn[i][j]*8
add si, 2 ;Bump array index.
add dx, ax
mov ah, 0 ;Clear for next iter.
shr dx, 4 ;Divide by 16
dec ch
mov DataOut[si-1], dl
jne jloop

dec cl
jne iloop

dec bp
je Done

; Special case so we don’t have to move the data between the two arrays.
; This is an unrolled version of the hloop that swaps the input and output
; arrays so we don’t have to move data around in memory.

mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax
assume es:InSeg, ds:OutSeg

hloop2:

mov cl, 249
iloop2: mov bh, cl

mov bl, 1
mov ch, 254/2
mov si, bx
mov dh, 0
mov bh, 0
mov ah, 0

jloop2:
mov dl, DataOut[si-256]
mov al, DataOut[si-255]
mov bl, DataOut[si+257]
add dx, ax
mov al, DataOut[si+256]
add dx, bx
mov bl, DataOut[si+1]
add dx, ax
mov al, DataOut[si+255]

mov di, dx

add dx, bx
mov bl, DataOut[si-1]
add dx, ax
mov al, DataOut[si]
add dx, bx
mov bl, DataOut[si-257]
shl ax, 3
add dx, bx
add dx, ax
shr ax, 3
shr dx, 4
mov DataIn[si], dl

Optimizing Your Programs

Page 1331

mov dx, di
mov bl, DataOut[si-254]
add dx, ax
mov al, DataOut[si+2]
add dx, bx
mov bl, DataOut[si+258]
add dx, ax
mov al, DataOut[si+1]
add dx, bx
shl ax, 3
add si, 2
add dx, ax
mov ah, 0
shr dx, 4
dec ch
mov DataIn[si-1], dl
jne jloop2

dec cl
jne iloop2

dec bp
je Done2
jmp hloop

; Kludge to guarantee that the data always resides in the output segment.

Done2:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax
mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut

rep movsd

Done: print
byte “Writing result”,cr,lf,0

; «Lots of deleted code here, see the original program»

This code provides a good example of the kind of optimization that scares a lot of people. There is a
lot of cycle counting, instruction scheduling, and other crazy stuff that makes program very difficult to
read and understand. This is the kind of optimization for which assembly language programmers are
famous; the stuff that spawned the phrase “never optimize early.” You should never try this type of optimi-
zation until you feel you’ve exhausted all other possibilities. Once you write your code in this fashion, it is
going to be very difficult to make further changes to it. By the way, the above code took about 15 hours to
develop and debug (debugging took the most time). That works out to a 0.1 second improvement (for 100
iterations) for each hour of work. Although this code certainly isn’t optimal yet, it is difficult to justify more
time attempting to improve this code by mechanical means (e.g., moving instructions around, etc.)
because the performance gains would be so little.

In the four steps above, we’ve reduced the running time of the assembly code from 36 seconds down
to 2.5 seconds. Quite an impressive feat. However, you shouldn’t get the idea that this was easy or even
that there were only four steps involved. During the actual development of this example, there were many
attempts that did not improve performance (in fact, some modifications wound up reducing performance)
and others did not improve performance enough to justify their inclusion. Just to demonstrate this last
point, the following code included a major change in the way the program organized data. The main loop
operates on 16 bit objects in memory rather than eight bit objects. On some machines with large external
caches (256K or better) this algorithm provides a slight improvement in performance (2.4 seconds, down
from 2.5). However, on other machines it runs slower. Therefore, this code was not chosen as the final
implementation:

Chapter 25

Page 1332

; IMGPRCS.ASM
;
; An image processing program (Fourth optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
; than a loop to copy data from DataOut back to DataIn.
; (2) Used repeat..until forms for all loops. (3) unrolled
; the innermost two loops (which is responsible for most of
; the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
; once and for all through the execution of the main loop so
; the code didn’t have to reload ds each time through. Computed
; index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
; Removed hazards. Maintained common subexpressions. Did some
; more loop unrolling.
;
; Version #5: Converted data arrays to words rather than bytes and operated
; on 16-bit values. Yielded minimal speedup.
;
; Performance comparisons (66 MHz 80486 DX/2 system).
;
; This code- 2.4 seconds.
; 3rd optimization pass- 2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

.xlist
include stdlib.a
includelib stdlib.lib
.list
.386
option segment:use16

dseg segment para public ‘data’

ImgData byte 251 dup (256 dup (?))

InName byte “roller1.raw”,0
OutName byte “roller2.raw”,0
Iterations word 0

dseg ends

; This code makes the naughty assumption that the following
; segments are loaded contiguously in memory! Also, because these
; segments are paragraph aligned, this code assumes that these segments
; will contain a full 65,536 bytes. You cannot declare a segment with
; exactly 65,536 bytes in MASM. However, the paragraph alignment option
; ensures that the extra byte of padding is added to the end of each
; segment.

DataSeg1 segment para public ‘ds1’
Data1a byte 65535 dup (?)
DataSeg1 ends

DataSeg2 segment para public ‘ds2’
Data1b byte 65535 dup (?)
DataSeg2 ends

Optimizing Your Programs

Page 1333

DataSeg3 segment para public ‘ds3’
Data2a byte 65535 dup (?)
DataSeg3 ends

DataSeg4 segment para public ‘ds4’
Data2b byte 65535 dup (?)
DataSeg4 ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
meminit

mov ax, 3d00h ;Open input file for reading.
lea dx, InName
int 21h
jnc GoodOpen
print
byte “Could not open input file.”,cr,lf,0
jmp Quit

GoodOpen: mov bx, ax ;File handle.
lea dx, ImgData
mov cx, 256*251 ;Size of data file to read.
mov ah, 3Fh
int 21h
cmp ax, 256*251 ;See if we read the data.
je GoodRead
print
byte “Did not read the file properly”,cr,lf,0
jmp Quit

GoodRead: print
byte “Enter number of iterations: “,0
getsm
atoi
free
mov Iterations, ax
cmp ax, 0
jle Quit

printf
byte “Computing Result for %d iterations”,cr,lf,0
dword Iterations

; Copy the data and expand it from eight bits to sixteen bits.
; The first loop handles the first 32,768 bytes, the second loop
; handles the remaining bytes.

mov ax, DataSeg1
mov es, ax
mov ax, DataSeg3
mov fs, ax

mov ah, 0
mov cx, 32768
lea si, ImgData
xor di, di ;Output data is at ofs zero.

CopyLoop: lodsb ;Read a byte
mov fs:[di], ax ;Store a word in DataSeg3
stosw ;Store a word in DataSeg1
dec cx
jne CopyLoop

mov di, DataSeg2

Chapter 25

Page 1334

mov es, di
mov di, DataSeg4
mov fs, di
mov cx, (251*256) - 32768
xor di, di

CopyLoop1: lodsb ;Read a byte
mov fs:[di], ax ;Store a word in DataSeg4
stosw ;Store a word in DataSeg2
dec cx
jne CopyLoop1

; hloop completes one iteration on the data moving it from Data1a/Data1b
; to Data2a/Data2b

hloop: mov ax, DataSeg1
mov ds, ax
mov ax, DataSeg3
mov es, ax

; Process the first 127 rows (65,024 bytes) of the array):

mov cl, 127
lea si, Data1a+202h ;Start at [1,1]

iloop0: mov ch, 254/2 ;# of times through loop.
jloop0: mov dx, [si] ;[i,j]

mov bx, [si-200h] ;[i-1,j]
mov ax, dx
shl dx, 3 ;[i,j] * 8
add bx, [si-1feh] ;[i-1,j+1]
mov bp, [si+2] ;[i,j+1]
add bx, [si+200h] ;[i+1,j]
add dx, bp
add bx, [si+202h] ;[i+1,j+1]
add dx, [si-202h] ;[i-1,j-1]
mov di, [si-1fch] ;[i-1,j+2]
add dx, [si-2] ;[i,j-1]
add di, [si+4] ;[i,j+2]
add dx, [si+1feh] ;[i+1,j-1]
add di, [si+204h] ;[i+1,j+2]
shl bp, 3 ;[i,j+1] * 8
add dx, bx
add bp, ax
shr dx, 4 ;Divide by 16.
add bp, bx
mov es:[si], dx ;Store [i,j] entry.
add bp, di
add si, 4 ;Affects next store operation!
shr bp, 4 ;Divide by 16.
dec ch
mov es:[si-2], bp ;Store [i,j+1] entry.
jne jloop0

add si, 4 ;Skip to start of next row.

dec cl
jne iloop0

; Process the last 124 rows of the array). This requires that we switch from
; one segment to the next. Note that the segments overlap.

mov ax, DataSeg2
sub ax, 40h ;Back up to last 2 rows in DS2
mov ds, ax
mov ax, DataSeg4
sub ax, 40h ;Back up to last 2 rows in DS4
mov es, ax

mov cl, 251-127-1 ;Remaining rows to process.
mov si, 202h ;Continue with next row.

iloop1: mov ch, 254/2 ;# of times through loop.
jloop1: mov dx, [si] ;[i,j]

mov bx, [si-200h] ;[i-1,j]
mov ax, dx
shl dx, 3 ;[i,j] * 8

Optimizing Your Programs

Page 1335

add bx, [si-1feh] ;[i-1,j+1]
mov bp, [si+2] ;[i,j+1]
add bx, [si+200h] ;[i+1,j]
add dx, bp
add bx, [si+202h] ;[i+1,j+1]
add dx, [si-202h] ;[i-1,j-1]
mov di, [si-1fch] ;[i-1,j+2]
add dx, [si-2] ;[i,j-1]
add di, [si+4] ;[i,j+2]
add dx, [si+1feh] ;[i+1,j-1]
add di, [si+204h] ;[i+1,j+2]
shl bp, 3 ;[i,j+1] * 8
add dx, bx
add bp, ax
shr dx, 4 ;Divide by 16
add bp, bx
mov es:[si], dx ;Store [i,j] entry.
add bp, di
add si, 4 ;Affects next store operation!
shr bp, 4
dec ch
mov es:[si-2], bp ;Store [i,j+1] entry.
jne jloop1

add si, 4 ;Skip to start of next row.

dec cl
jne iloop1

mov ax, dseg
mov ds, ax
assume ds:dseg

dec Iterations
je Done0

; Unroll the iterations loop so we can move the data from DataSeg2/4 back
; to DataSeg1/3 without wasting extra time. Other than the direction of the
; data movement, this code is virtually identical to the above.

mov ax, DataSeg3
mov ds, ax
mov ax, DataSeg1
mov es, ax

mov cl, 127
lea si, Data1a+202h

iloop2: mov ch, 254/2
jloop2: mov dx, [si]

mov bx, [si-200h]
mov ax, dx
shl dx, 3
add bx, [si-1feh]
mov bp, [si+2]
add bx, [si+200h]
add dx, bp
add bx, [si+202h]
add dx, [si-202h]
mov di, [si-1fch]
add dx, [si-2]
add di, [si+4]
add dx, [si+1feh]
add di, [si+204h]
shl bp, 3
add dx, bx
add bp, ax
shr dx, 4
add bp, bx
mov es:[si], dx
add bp, di
add si, 4
shr bp, 4
dec ch
mov es:[si-2], bp

Chapter 25

Page 1336

jne jloop2

add si, 4

dec cl
jne iloop2

mov ax, DataSeg4
sub ax, 40h
mov ds, ax
mov ax, DataSeg2
sub ax, 40h
mov es, ax

mov cl, 251-127-1
mov si, 202h

iloop3: mov ch, 254/2
jloop3: mov dx, [si]

mov bx, [si-200h]
mov ax, dx
shl dx, 3
add bx, [si-1feh]
mov bp, [si+2]
add bx, [si+200h]
add dx, bp
add bx, [si+202h]
add dx, [si-202h]
mov di, [si-1fch]
add dx, [si-2]
add di, [si+4]
add dx, [si+1feh]
add di, [si+204h]
shl bp, 3
add dx, bx
add bp, ax
shr dx, 4
add bp, bx
mov es:[si], dx
add bp, di
add si, 4
shr bp, 4
dec ch
mov es:[si-2], bp
jne jloop3

add si, 4

dec cl
jne iloop3

mov ax, dseg
mov ds, ax
assume ds:dseg

dec Iterations
je Done2
jmp hloop

Done2: mov ax, DataSeg1
mov bx, DataSeg2
jmp Finish

Done0: mov ax, DataSeg3
mov bx, DataSeg4

Finish: mov ds, ax
print
byte “Writing result”,cr,lf,0

; Convert data back to byte form and write to the output file:

mov ax, dseg
mov es, ax

Optimizing Your Programs

Page 1337

mov cx, 32768
lea di, ImgData
xor si, si ;Output data is at offset zero.

CopyLoop3: lodsw ;Read a word from final array.
stosb ;Write a byte to output array.
dec cx
jne CopyLoop3

mov ds, bx
mov cx, (251*256) - 32768
xor si, si

CopyLoop4: lodsw ;Read final data word.
stosb ;Write data byte to output array.
dec cx
jne CopyLoop4

; Okay, write the data to the output file:

mov ah, 3ch ;Create output file.
mov cx, 0 ;Normal file attributes.
mov dx, dseg
mov ds, dx
lea dx, OutName
int 21h
jnc GoodCreate
print
byte “Could not create output file.”,cr,lf,0
jmp Quit

GoodCreate: mov bx, ax ;File handle.
push bx
mov dx, dseg ;Where the data can be found.
mov ds, dx
lea dx, ImgData
mov cx, 256*251 ;Size of data file to write.
mov ah, 40h ;Write operation.
int 21h
pop bx ;Retrieve handle for close.
cmp ax, 256*251 ;See if we wrote the data.
je GoodWrite
print
byte “Did not write the file properly”,cr,lf,0
jmp Quit

GoodWrite: mov ah, 3eh ;Close operation.
int 21h

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

Of course, the absolute best way to improve the performance of any piece of code is with a better
algorithm. All of the above assembly language versions were limited by a single requirement – they all
must produce the same output file as the original Pascal program. Often, programmers lose sight of what it
is that they are trying to accomplish and get so caught up in the computations they are performing that
they fail to see other possibilities. The optimization example above is a perfect example. The assembly
code faithfully preserves the semantics of the original Pascal program; it computes the weighted average

Chapter 25

Page 1338

of all interior pixels as the sum of the eight neighbors around a pixel plus eight times the current pixel’s
value, with the entire sum divided by 16. Now this is a

good

 blurring function, but it is not the

only

 blur-
ring function. A Photoshop (or other image processing program) user doesn’t care about algorithms or
such. When that user selects “blur image” they want it to go out of focus. Exactly how much out of focus is
generally immaterial. In fact, the less the better because the user can always run the blur algorithm again
(or specify some number of iterations). The following assembly language program shows how to get bet-
ter performance by modifying the blurring algorithm to reduce the number of instructions it needs to exe-
cute in the innermost loops. It computes blurring by averaging a pixel with the four neighbors above,
below, to the left, and to the right of the current pixel. This modification yields a program that runs 100
iterations in 2.2 seconds, a 12% improvement over the previous version:

; IMGPRCS.ASM
;
; An image processing program (Fifth optimization pass).
;
; This program blurs an eight-bit grayscale image by averaging a pixel
; in the image with the eight pixels around it. The average is computed
; by (CurCell*8 + other 8 cells)/16, weighting the current cell by 50%.
;
; Because of the size of the image (almost 64K), the input and output
; matrices are in different segments.
;
; Version #1: Straight-forward translation from Pascal to Assembly.
;
; Version #2: Three major optimizations. (1) used movsd instruction rather
; than a loop to copy data from DataOut back to DataIn.
; (2) Used repeat..until forms for all loops. (3) unrolled
; the innermost two loops (which is responsible for most of
; the performance improvement).
;
; Version #3: Used registers for all variables. Set up segment registers
; once and for all through the execution of the main loop so
; the code didn’t have to reload ds each time through. Computed
; index into each row only once (outside the j loop).
;
; Version #4: Eliminated copying data from DataOut to DataIn on each pass.
; Removed hazards. Maintained common subexpressions. Did some
; more loop unrolling.
;
; Version #6: Changed the blurring algorithm to use fewer computations.
; This version does *NOT* produce the same data as the other
; programs.
;
;
; Performance comparisons (66 MHz 80486 DX/2 system, 100 iterations).
;
; This code- 2.2 seconds.
; 3rd optmization pass- 2.5 seconds.
; 2nd optimization pass- 4 seconds.
; 1st optimization pass- 6 seconds.
; Original ASM code- 36 seconds.

; «Lots of deleted code here, see the original program»

print
byte “Computing Result”,cr,lf,0

assume ds:InSeg, es:OutSeg

mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; Copy the data once so we get the edges in both arrays.

mov cx, (251*256)/4
lea si, DataIn

Optimizing Your Programs

Page 1339

lea di, DataOut
rep movsd

; “hloop” repeats once for each iteration.

hloop:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax

; “iloop” processes the rows in the matrices.

mov cl, 249
iloop: mov bh, cl ;i*256

mov bl, 1 ;Start at j=1.
mov ch, 254/2 ;# of times through loop.
mov si, bx
mov dh, 0 ;Compute sum here.
mov bh, 0
mov ah, 0

; “jloop” processes the individual elements of the array.
; This loop has been unrolled once to allow the two portions to share
; some common computations.

jloop:

; The sum of DataIn [i-1][j] + DataIn[i-1][j+1] + DataIn[i+1][j] +
; DataIn [i+1][j+1] will be used in the second half of this computation.
; So save its value in a register (di) until we need it again.

mov dl, DataIn[si] ;[i,j]
mov al, DataIn[si-256] ;[I-1,j]
shl dx, 2 ;[i,j]*4
mov bl, DataIn[si-1] ;[i,j-1]
add dx, ax
mov al, DataIn[si+1] ;[i,j+1]
add dx, bx
mov bl, DataIn[si+256] ;[i+1,j]
add dx, ax
shl ax, 2 ;[i,j+1]*4
add dx, bx
mov bl, DataIn[si-255] ;[i-1,j+1]
shr dx, 3 ;Divide by 8.
add ax, bx
mov DataOut[si], dl
mov bl, DataIn[si+2] ;[i,j+2]
mov dl, DataIn[si+257] ;[i+1,j+1]
add ax, bx
mov bl, DataIn[si] ;[i,j]
add ax, dx
add ax, bx
shr ax, 3
dec ch
mov DataOut[si+1], al
jne jloop

dec cl
jne iloop

dec bp
je Done

; Special case so we don’t have to move the data between the two arrays.
; This is an unrolled version of the hloop that swaps the input and output
; arrays so we don’t have to move data around in memory.

mov ax, OutSeg
mov ds, ax
mov ax, InSeg
mov es, ax

Chapter 25

Page 1340

assume es:InSeg, ds:OutSeg

hloop2:

mov cl, 249
iloop2: mov bh, cl

mov bl, 1
mov ch, 254/2
mov si, bx
mov dh, 0
mov bh, 0
mov ah, 0

jloop2:
mov dl, DataOut[si-256]
mov al, DataOut[si-255]
mov bl, DataOut[si+257]
add dx, ax
mov al, DataOut[si+256]
add dx, bx
mov bl, DataOut[si+1]
add dx, ax
mov al, DataOut[si+255]

mov di, dx

add dx, bx
mov bl, DataOut[si-1]
add dx, ax
mov al, DataOut[si]
add dx, bx
mov bl, DataOut[si-257]
shl ax, 3
add dx, bx
add dx, ax
shr ax, 3
shr dx, 4
mov DataIn[si], dl

mov dx, di
mov bl, DataOut[si-254]
add dx, ax
mov al, DataOut[si+2]
add dx, bx
mov bl, DataOut[si+258]
add dx, ax
mov al, DataOut[si+1]
add dx, bx
shl ax, 3
add si, 2
add dx, ax
mov ah, 0
shr dx, 4
dec ch
mov DataIn[si-1], dl
jne jloop2

dec cl
jne iloop2

dec bp
je Done2
jmp hloop

; Kludge to guarantee that the data always resides in the output segment.

Done2:
mov ax, InSeg
mov ds, ax
mov ax, OutSeg
mov es, ax
mov cx, (251*256)/4
lea si, DataIn
lea di, DataOut

Optimizing Your Programs

Page 1341

rep movsd

Done: print
byte “Writing result”,cr,lf,0

; «Lots of delete code here, see the original program»

One very important thing to keep in mind about the codein this section is that we’ve optimized it for
100 iterations. While it turns out that these optimizations apply equally well to more iterations, this isn’t
necessarily true for fewer iterations. In particular, if we run only one iteration, any copying of data at the
end of the operation will easily consume a large part of the time we save by the optimizations. Since it is
very rare for a user to blur an image 100 times in a row, our optimizations may not be as good as we could
make them. However, this section does provide a good example of the steps you must go through in order
to optimize a given program. One hundred iterations was a good choice for this example because it was
easy to measure the running time of all versions of the program. However, you must keep in mind that
you should optimize your programs for the expected case, not an arbitrary case.

25.6 Summary

Computer software often runs significantly slower than the task requires. The process of increasing
the speed of a program is known as

optimization

. Unfortunately, optimization is a difficult and time-con-
suming task, something not to be taken lightly. Many programmers often optimize their programs before
they’ve determined that there is a need to do so, or (worse yet) they optimize a portion of a program only
to find that they have to rewrite that code after they’ve optimized it. Others, out of ignorance, often wind
up optimizing the wrong sections of their programs. Since optimization is a slow and difficult process, you
want to try and make sure you only optimize your code

once

. This suggests that optimization should be
your last task when writing a program.

One school of thought that completely embraces this philosophy is the

Optimize Late

 group. Their
arguement is that program optimization often destroys the readability and maintanability of a program.
Therefore, one should only take this step when absolutely necessary and only at the end of the program
development stage.

The

Optimize Early

 crowd knows, from experience, that programs that are not written to be fast
often need to be completely rewritten to make them fast. Therefore, they often take the attitude that opti-
mization should take place along with normal program development. Generally, the optimize early
group’s view of optimization is typically far different from the optimize late group. The optimize early
group claims that the extra time spent optimizing a program during development requires less time than
developing a program and then optimizing it. For all the details on this

religious

 battle, see

• “When to Optimize, When Not to Optimize” on page 1311

After you’ve written a program and determine that it runs too slowly, the next step is to locate the
code that runs too slow. After identifying the slow sections of your program, you can work on speeding up
your programs. Locating that 10% of the code that requires 90% of the execution time is not always an easy
task. The four common techniques people use are trial and error, optimize everything, program analysis,
and experimental analysis (i.e., use a profiler). Finding the “hot spots” in a program is the first optimization
step. To learn about these four techniques, see

• “How Do You Find the Slow Code in Your Programs?” on page 1313

A convincing arguement the optimize late folks use is that machines are so fast that optimization is
rarely necessary. While this arguement is often overstated, it is often true that many unoptimized programs
run fast enough and do not require any optimization for satisfactory performance. On the other hand, pro-
grams that run fine by themselves may be too slow when running concurrently with other software. To see
the strengths and weaknesses of this arguement, see

Chapter 25

Page 1342

• “Is Optimization Necessary?” on page 1314

There are three forms of optimization you can use to improve the performance of a program: choose
a better algorithm, choose a better implementation of an algorithm, or “count cycles.” Many people (espe-
cially the optimize late crowd) only consider this last case “optimization.” This is a shame, because the last
case often produces the smallest incremental improvement in performance. To understand these three
forms of optimization, see

• “The Three Types of Optimization” on page 1315

Optimization is not something you can learn from a book. It takes lots of experience and practice.
Unfortunately, those with little practical experience find that their efforts rarely pay off well and generally
assume that optimization is not worth the trouble. The truth is, they do not have sufficient experience to
write truly optimal code and their frustration prevents them from gaining such experience. The latter part
of this chapter devotes itself to demonstrating what one can achieve when optimizing a program. Always
keep this example in mind when you feel frustrated and are beginning to believe you cannot improve the
performance of your program. For details on this example, see

• “Improving the Implementation of an Algorithm” on page 1317

Page 1347

Appendix B: Annotated Bibliography

There are a wide variety of texts available for those who are interested in learning more about assem-
bly language or other topics this text covers. The following is a partial list of texts that may be of interest to
you. Many of these texts are now out of print. Please consult your local library if you cannot find a particu-
lar text at a bookstore.

Microprocessor Programming for Computer Hobbyists
Neill Graham
TAB books
ISBN 0-8306-6952-3
1977
This book provides a gentle introduction to data structures for computer hobbyists. Although it uses the
PL/M programming language, many of the concepts apply directly to assembly language programs.

IBM Assembler Language and Programming
Peter Able
Prentice-Hall
ISBN 0-13-448143-7
1987
A college text book on assembly language. Contains good sections on DOS and disk formats for earlier
versions of DOS.

MS-DOS Developer’s Guide
John Angermeyer and Keven Jaeger
Howard W. Sams & Co.
ISBN 0-672-22409-7
An excellent reference book on programming MS-DOS.

Compilers: Principles, Techniques, and Tools
Alfred Aho, Ravi Sethi, and Jeffrey Ullman
Addison Wesley
ISBN 0-201-10088-6
1986
The standard text on compiler design and implementation. Contains lots of material on pattern matching
and other related subjects.

C Programmer’s Guide to Serial Communications
Joe Campbell
Howard W. Sams & Co.
ISBN 0-672-22584-0
An indispensible guide to serial communications. Although written specifically for C programmers, the
material applies equally well to assembly language programmers.

The MS-DOS Encyclopedia
Ray Duncan, General Editor & various authors
Microsoft Press
ISBN 1-55615-049-0
An excellent description of MS-DOS programming. Contains especially good sections on resident pro-
grams and device drivers. Quite expensive, but well worth it.

Thi d t t d ith F M k 4 0 2

Appendix B

Page 1348

Zen of Assembly Language
Michael Abrash
Scott Foresman
ISBN 0-673-38602-3
1990
The first really great book on 80x86 code optimization. There are only two things wrong with this book.
(1) It is out of print. (2) The optimization techniques apply mostly to the 8088 and 80286 processors, they
do not apply as well to the 80386 and later processors. That’s okay, see the next entry below.

Zen of Code Optimization
Michael Abrash
Coriolis Group Books
ISBN 1-883577-03-9
1994
Here is Michael Abrash’s book updated for the 80386, 80486, and Pentium processors. An absolute must-
have for 80x86 assembly language programmers.

Assembler Inside & Out
Harley Hahn
McGraw-Hill
ISBN 0-07-881842-7
1992
A reasonable 80x86 assembly language text. This one is notable because Microsoft ships this text with
every copy of MASM.

Assembly Language Subroutines for MS-DOS (2nd Edition)
Leo J. Scanlon
Windcrest
ISBN 0-8306-7649-X
This book is full of little code examples. The routines themselves are not earth-shaking, but it does provide
lots of good code examples for those individuals who learn by example.

Advanced Assembly Language
Steven Holzner
Brady/Peter Norton
ISBN 0-13-658774-7
1991
This book provides a basic introduction to programming many of the PC’s hardware devices in assembly
language. Despite its name, it is not truly an

advanced

 assembly language programming text.

Assembly Language. For Real Programmers Only.
Marcus Johnson
Sams Publishing
ISBN 0-672-48470
A comprehensive book (over 1,300 pages) with lots of example code.

The Revolutionary Guide to Assembly Language
Vitaly Maljugin, Jacov Izrailevich, Semyon Lavin, and Alksandr Sopin
Wrox Press
ISBN 1-874416-12-5
1993
Another comprehensive text on assembly language. This one spends considerable time discussing the
PC’s hardware. This text also includes sections on how to interface assembly language with the Clipper
(dBase compiler) programming language.

Appendices

Page 1349

The Waite Group’s Microsoft Macro Assembler Bible
Nabajyoti Barkakati and Randall Hyde
Sams
ISBN 0-672-30155-5
1992
A comprehensive reference manual to MASM 6.x and the 8088 through the 80486.

Computer Organization & Design: The Hardware/Software Interface
David Patterson and John Hennessy
Morgan Kaufmann Publishers
ISBN 1-55860-223-2
1993
An excellent text on machine organization, one of the best in the field.

Computer Architecture, A Quantitative Approach
John Hennessy and David Patternson
Morgan Kaufmann Publishers
ISBN 1-55860-069-8
1990
One of the standard texts on computer architecture. Although it emphasizes RISC processors over CISC,
many of the topics discussed apply to superscalar and pipelined CISC processors as well.

IBM Microcomputers: A Programmer’s Handbook
Julio Sanchez and Maria P. Canton
McGraw Hill
ISBN 0-07--54594-4
1990
One of the best reference manuals covering the PC’s hardware. An absolute must-have book for those
interested in programming peripheral devices on the PC.

The Undocumented PC
Frank Van Gilluwe
Addison Wesley
ISBN 0-201-62277-7
1994
Another excellent text that covers the PC’s hardware and how to program peripheral devices.

The Indispensible PC Hardware Book
Hans-Peter Messmer
Addison Wesley
ISBN 0-201-62424-9
Yet another great PC hardware book. This one even describes the low-level operation of various silicon
devices in a way even beginners can understand. It also provides an excellent hardware reference guide to
the 80386 and 80486 microprocessor chips.

Programmer’s Technical Reference: The Processor and Coprocessor
Robert L. Hummel
Ziff-Davis Press
ISBN 1-56276-016-5
1992
One of the premier references on the 80x86 family from the 8088 through the 80486 chips. Also provides
an excellent discussion of the 8087, 80287, 80387, and 487 math coprocessors.

Appendix B

Page 1350

Microsoft MS-DOS Programmer’s Reference
Written by Microsoft Corporation
Microsoft Press
ISBN 1-55615-329-5
1991
The official guide to programming MS-DOS, directly from Microsoft.

Undocumented DOS. A Programmer’s Guide to Reserved MS-DOS Functions and Data Structures
Andrew Schulman, Raymond Michels, Jim Kyle, Tim Patterson, David Maxey, and Ralf Brown
Addison Wesley
ISBN 0-201-57064-5
1990
This book describes lots of features available to MS-DOS that Microsoft never bothered to document. This
text contains vital information to TSR and protected mode programmers.

Introduction to Automata Theory, Languages, and Computation
John Hopcroft and Jeffrey Ullman
Addison Wesley
1979
ISBN 0-201-02988-X
Very concise, but one of the standard texts on automata theory, pattern matching, and computability.

The Art of Computer Programming,
Vol 1: Fundamental Algorithms
Vol 2: Seminumerical Algorithms
Vol 3: Sorting and Searching
Donald Knuth
Addison Wesley
1973
One of the finest sets of text on data structures and algorithms available for assembly language program-
mers. Donald Knuth uses a hypothetical assembly language,

MIX

, to present most algorithms. Code in
these texts is very easy to convert to 80x86 assembly language.

Page 1351

Appendix C: Keyboard Scan Codes

Table 90: PC Keyboard Scan Codes (in hex)

Key Down Up Key Down Up Key Down Up Key Down Up

Esc 1 81 [{ 1A 9A , < 33 B3

center

4C CC

1 ! 2 82] } 1B 9B . > 34 B4

right

4D CD

2 @ 3 83 Enter 1C 9C / ? 35 B5

+

4E CE

3 # 4 84 Ctrl 1D 9D R shift 36 B6

end

4F CF

4 $ 5 85 A 1E 9E * PrtSc 37 B7

down

50 D0

5 % 6 86 S 1F 9F alt 38 B8

pgdn

51 D1

6 ^ 7 87 D 20 A0 space 39 B9

ins

52 D2

7 & 8 88 F 21 A1 CAPS 3A BA

del

53 D3

8 * 9 89 G 22 A2 F1 3B BB

/

E0 35 B5

9 (0A 8A H 23 A3 F2 3C BC

enter

E0 1C 9C

0) 0B 8B J 24 A4 F3 3D BD F11 57 D7

- _ 0C 8C K 25 A5 F4 3E BE F12 58 D8

= + 0D 8D L 26 A6 F5 3F BF ins E0 52 D2

Bksp 0E 8E ; : 27 A7 F6 40 C0 del E0 53 D3

Tab 0F 8F ‘ “ 28 A8 F7 41 C1 home E0 47 C7

Q 10 90 ` ~ 29 A9 F8 42 C2 end E0 4F CF

W 11 91 L shift 2A AA F9 43 C3 pgup E0 49 C9

E 12 92 \ | 2B AB F10 44 C4 pgdn E0 51 D1

R 13 93 Z 2C AC NUM 45 C5 left E0 4B CB

T 14 94 X 2D AD SCRL 46 C6 right E0 4D CD

Y 15 95 C 2E AE

home

47 C7 up E0 48 C8

U 16 96 V 2F AF

up

48 C8 down E0 50 D0

I 17 97 B 30 B0

pgup

49 C9 R alt E0 38 B8

O 18 98 N 31 B1

-

4A CA R ctrl E0 1D 9D

P 19 99 M 32 B2

left

4B CB Pause E1 1D
45 E1
9D C5

-

Thi d t t d ith F M k 4 0 2

Appendix C

Page 1352

Table 91: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift Caps Shift Num

Esc 01 1B 1B 1B 1B 1B 1B 1B

1 ! 02 31 21

7800

31 31 31 31

2 @ 03 32 40

0300 7900

32 32 32 32

3 # 04 33 23

7A00

33 33 33 33

4 $ 05 34 24

7B00

34 34 34 34

5 % 06 35 25

7C00

35 35 35 35

6 ^ 07 36 5E 1E

7D00

36 36 36 36

7 & 08 37 26

7E00

37 37 37 37

8 * 09 38 2A

7F00

38 38 38 38

9 (0A 39 28

8000

39 39 39 39

0) 0B 30 29

8100

30 30 30 30

- _ 0C 2D 5F 1F

8200

2D 2D 5F 5F

= + 0D 3D 2B

8300

3D 3D 2B 2B

Bksp 0E 08 08 7F 08 08 08 08

Tab 0F 09

0F00

09 09

0F00 0F00

Q 10 71 51 11

1000

71 51 71 51

W 11 77 57 17

1100

77 57 77 57

E 12 65 45 05

1200

65 45 65 45

R 13 72 52 12

1300

72 52 72 52

T 14 74 54 14

1400

74 54 74 54

Y 15 79 59 19

1500

79 59 79 59

U 16 75 55 15

1600

75 55 75 55

I 17 69 49 09

1700

69 49 69 49

O 18 6F 4F 0F

1800

6F 4F 6F 4F

P 19 70 50 10

1900

70 50 70 50

[{ 1A 5B 7B 1B 5B 5B 7B 7B

] } 1B 5D 7D 1D 5D 5D 7D 7D

enter 1C 0D 0D 0A 0D 0D 0A 0A

ctrl 1D

A 1E 61 41 01

1E00

61 41 61 41

S 1F 73 53 13

1F00

73 53 73 53

D 20 64 44 04

2000

64 44 64 44

F 21 66 46 06

2100

66 46 66 46

G 22 67 47 07

2200

67 47 67 47

H 23 68 48 08

2300

68 48 68 48

J 24 6A 4A 0A

2400

6A 4A 6A 4A

K 25 6B 4B 0B

2500

6B 4B 6B 4B

L 26 6C 4C 0C

2600

6C 4C 6C 4C

; : 27 3B 3A 3B 3B 3A 3A

‘ “ 28 27 22 27 27 22 22

` ~ 29 60 7E 60 60 7E 7E

Lshift 2A

\ | 2B 5C 7C 1C 5C 5C 7C 7C

Z 2C 7A 5A 1A

2C00

7A 5A 7A 5A

X 2D 78 58 18

2D00

78 58 78 58

C 2E 63 43 03

2E00

63 43 63 43

V 2F 76 56 16

2F00

76 56 76 56

B 30 62 42 02

3000

62 42 62 42

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift Caps Shift Num

Appendices

Page 1353

a. For the alphabetic characters, if capslock is active then see the shift-capslock column.
b. Pressing the PrtSc key does not produce a scan code. Instead, BIOS executes an int 5 instruction which
should print the screen.
c. This is the control-P character that will activate the printer under MS-DOS.
d. This is the minus key on the keypad.
e. This is the plus key on the keypad.

N 31 6E 4E 0E

3100

6E 4E 6E 4E

M 32 6D 4D 0D

3200

6D 4D 6D 4D

, < 33 2C 3C 2C 2C 3C 3C

. > 34 2E 3E 2E 2E 3E 3E

/ ? 35 2F 3F 2F 2F 3F 3F

Rshift 36

* PrtSc 37 2A INT 5

b

10

c

2A 2A INT 5 INT 5

alt 38

space 39 20 20 20 20 20 20 20

caps 3A

F1 3B

3B00 5400 5E00 6800 3B00 3B00 5400 5400

F2 3C

3C00 5500 5F00 6900 3C00 3C00 5500 5500

F3 3D

3D00 5600 6000 6A00 3D00 3D00 5600 5600

F4 3E

3E00 5700 6100 6B00 3E00 3E00 5700 5700

F5 3F

3F00 5800 6200 6C00 3F00 3F00 5800 5800

F6 40

4000 5900 6300 6D00 4000 4000 5900 5900

F7 41

4100 5A00 6400 6E00 4100 4100 5A00 5A00

F8 42

4200 5B00 6500 6F00 4200 4200 5B00 5B00

F9 43

4300 5C00 6600 7000 4300 4300 5C00 5C00

F10 44

4400 5D00 6700 7100 4400 4400 5D00 5D00

num 45

scrl 46

home 47

4700

37

7700

37 4700 37 4700

up 48

4800

38 38 4800 38 4800

pgup 49

4900

39

8400

39 4900 39 4900

-

d

4A 2D 2D 2D 2D 2D 2D

left 4B

4B00

34

7300

34 4B00 34 4B00

center 4C

4C00

35 35 4C00 35 4C00

right 4D

4D00

36

7400

36 4D00 36 4D00

+

e

4E 2B 2B 2B 2B 2B 2B

end 4F

4F00

31

7500

31 4F00 31 4F00

down 50

5000

32 32 5000 32 5000

pgdn 51

5100

33

7600

33 5100 33 5100

ins 52

5200

30 30 5200 30 5200

del 53

5300

2E 2E 5300 2E 5300

Table 91: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift Caps Shift Num

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift Caps Shift Num

Appendix C

Page 1354

a. Addresses are all given in hexadecimal

Table 92: Keyboard Related BIOS Variables

Name Address

a

Size Description

KbdFlags1
(modifier
flags)

40:17 Byte This byte maintains the current status of the modifier
keys on the keyboard. The bits have the following mean-
ings:
bit 7: Insert mode toggle
bit 6: Capslock toggle (1=capslock on)
bit 5: Numlock toggle (1=numlock on)
bit 4: Scroll lock toggle (1=scroll lock on)
bit 3: Alt key (1=alt is down)
bit 2: Ctrl key (1=ctrl is down)
bit 1: Left shift key (1=left shift is down)
bit 0: Right shift key (1=right shift is down)

KbdFlags2
(Toggle
keys down)

40:18 Byte Specifies if a toggle key is currently down.
bit 7: Insert key (currently down if 1)
bit 6: Capslock key (currently down if 1)
bit 5: Numlock key (currently down if 1)
bit 4: Scroll lock key (currently down if 1)
bit 3: Pause state locked (ctrl-Numlock) if one
bit 2: SysReq key (currently down if 1)
bit 1: Left alt key (currently down if 1)
bit 0: Left ctrl key (currently down if 1)

AltKpd 40:19 Byte BIOS uses this to compute the ASCII code for an alt-Key-
pad sequence.

BufStart 40:80 Word Offset of start of keyboard buffer (1Eh). Note: this vari-
able is not supported on many systems, be careful if you
use it.

BufEnd 40:82 Word Offset of end of keyboard buffer (3Eh). See the note
above.

KbdFlags3 40:96 Byte Miscellaneous keyboard flags.
bit 7: Read of keyboard ID in progress
bit 6: Last char is first kbd ID character
bit 5: Force numlock on reset
bit 4: 1 if 101-key kbd, 0 if 83/84 key kbd.
bit 3: Right alt key pressed if 1
bit 2: Right ctrl key pressed if 1
bit 1: Last scan code was E0h
bit 0: Last scan code was E1h

KbdFlags4 40:97 Byte More miscellaneous keyboard flags.
bit 7: Keyboard transmit error
bit 6: Mode indicator update
bit 5: Resend receive flag
bit 4: Acknowledge received
bit 3: Must always be zero
bit 2: Capslock LED (1=on)
bit 1: Numlock LED (1=on)
bit 0: Scroll lock LED (1=on)

Appendices

Page 1355

Table 93: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

20 Transmit keyboard controller’s command byte to system as a scan code at port 60h.

60 The next byte written to port 60h will be stored in the keyboard controller’s command
byte.

A4 Test if a password is installed (PS/2 only). Result comes back in port 60h. 0FAh means a
password is installed, 0F1h means no password.

A5 Transmit password (PS/2 only). Starts receipt of password. The next sequence of scan
codes written to port 60h, ending with a zero byte, are the new password.

A6 Password match. Characters from the keyboard are compared to password until a match
occurs.

A7 Disable mouse device (PS/2 only). Identical to setting bit five of the command byte.

A8 Enable mouse device (PS/2 only). Identical to clearing bit five of the command byte.

A9 Test mouse device. Returns 0 if okay, 1 or 2 if there is a stuck clock, 3 or 4 if there is a stuck
data line. Results come back in port 60h.

AA Initiates self-test. Returns 55h in port 60h if successful.

AB Keyboard interface test. Tests the keyboard interface. Returns 0 if okay, 1 or 2 if there is a
stuck clock, 3 or 4 if there is a stuck data line. Results come back in port 60h.

AC Diagnostic. Returns 16 bytes from the keyboard’s microcontroller chip. Not available on
PS/2 systems.

AD Disable keyboard. Same operation as setting bit four of the command register.

AE Enable keyboard. Same operation as clearing bit four of the command register.

C0 Read keyboard input port to port 60h. This input port contains the following values:
bit 7: Keyboard inhibit keyswitch (0 = inhibit, 1 = enabled).
bit 6: Display switch (0=color, 1=mono).
bit 5: Manufacturing jumper.
bit 4: System board RAM (always 1).
bits 0-3: undefined.

C1 Copy input port (above) bits 0-3 to status bits 4-7. (PS/2 only)

C2 Copy input pot (above) bits 4-7 to status port bits 4-7. (PS/2 only).

D0 Copy microcontroller output port value to port 60h (see definition below).

D1 Write the next data byte written to port 60h to the microcontroller output port. This port
has the following definition:
bit 7: Keyboard data.
bit 6: Keyboard clock.
bit 5: Input buffer empty flag.
bit 4: Output buffer full flag.
bit 3: Undefined.
bit 2: Undefined.
bit 1: Gate A20 line.
bit 0: System reset (if zero).

Note: writing a zero to bit zero will reset the machine.
Writing a one to bit one combines address lines 19 and 20 on the PC’s address bus.

Appendix C

Page 1356

D2 Write keyboard buffer. The keyboard controller returns the next value sent to port 60h as
though a keypress produced that value. (PS/2 only).

D3 Write mouse buffer. The keyboard controller returns the next value sent to port 60h as
though a mouse operation produced that value. (PS/2 only).

D4 Writes the next data byte (60h) to the mouse (auxiliary) device. (PS/2 only).

E0 Read test inputs. Returns in port 60h the status of the keyboard serial lines. Bit zero con-
tains the keyboard clock input, bit one contains the keyboard data input.

F

x

Pulse output port (see definition for D1). Bits 0-3 of the keyboard controller command byte
are pulsed onto the output port. Resets the system if bit zero is a zero.

Table 94: Keyboard to System Transmissions

Value (hex) Description

00 Data overrun. System sends a zero byte as the last value when the keyboard controller’s
internal buffer overflows.

1..58
81..D8

Scan codes for key presses. The positive values are down codes, the negative values (H.O.
bit set) are up codes.

83AB Keyboard ID code returned in response to the F2 command (PS/2 only).

AA Returned during basic assurance test after reset. Also the up code for the left shift key.

EE Returned by the ECHO command.

F0 Prefix to certain up codes (N/A on PS/2).

FA Keyboard acknowledge to keyboard commands other than resend or ECHO.

FC Basic assurance test failed (PS/2 only).

FD Diagnostic failure (not available on PS/2).

FE Resend. Keyboard requests the system to resend the last command.

FF Key error (PS/2 only).

Table 93: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

Appendices

Page 1357

Table 95: Keyboard Microcontroller Commands (Port 60h)

Value (hex) Description

ED Send LED bits. The next byte written to port 60h updates the LEDs on the keyboard. The
parameter (next) byte contains:
bits 3-7: Must be zero.
bit 2: Capslock LED (1 = on, 0 = off).
bit 1: Numlock LED (1 = on, 0 = off).
bit 0: Scroll lock LED (1 = on, 0 = off).

EE Echo commands. Returns 0EEh in port 60h as a diagnostic aid.

F0 Select alternate scan code set (PS/2 only). The next byte written to port 60h selects one of
the following options:
00: Report current scan code set in use (next value read from port 60h).
01: Select scan code set #1 (standard PC/AT scan code set).
02: Select scan code set #2.
03: Select scan code set #3.

F2 Send two-byte keyboard ID code as the next two bytes read from port 60h (PS/2 only).

F3 Set Autorepeat delay and repeat rate. Next byte written to port 60h determines rate:
bit 7: must be zero
bits 5,6: Delay. 00-

1

/

4

 sec, 01-

1

/

2

 sec, 10-

3

/

4

 sec, 11- 1 sec.
bits 0-4: Repeat rate. 0- approx 30 chars/sec to 1Fh- approx 2 chars/sec.

F4 Enable keyboard.

F5 Reset to power on condition and wait for enable command.

F6 Reset to power on condition and begin scanning keyboard.

F7 Make all keys autorepeat (PS/2 only).

F8 Set all keys to generate an up code and a down code (PS/2 only).

F9 Set all keys to generate an up code only (PS/2 only).

FA Set all keys to autorepeat and generate up and down codes (PS/2 only).

FB Set an individual key to autorepeat. Next byte contains the scan code of the desired key.
(PS/2 only).

FC Set an individual key to generate up and down codes. Next byte contains the scan code of
the desired key. (PS/2 only).

FD Set an individual key to generate only down codes. Next byte contains the scan code of the
desired key. (PS/2 only).

FE Resend last result. Use this command if there is an error receiving data.

FF Reset keyboard to power on state and start the self-test.

Appendix C

Page 1358

Table 96: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

0

al

- ASCII character

ah

- scan code
Read character. Reads next available character from the sys-
tem’s type ahead buffer. Wait for a keystroke if the buffer is
empty.

1 ZF- Set if no key.
ZF- Clear if key avail-
able.

al

- ASCII code

ah

- scan code

Checks to see if a character is available in the type ahead
buffer. Sets the zero flag if not key is available, clears the
zero flag if a key is available. If there is an available key, this
function returns the ASCII and scan code value in

ax

. The
value in

ax

 is undefined if no key is available.

2 al- shift flags Returns the current status of the shift flags in al. The shift
flags are defined as follows:

bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Alt key is down
bit 2: Ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

3

al

 = 5

bh

 = 0, 1, 2, 3 for 1/4,
1/2, 3/4, or 1 second
delay

bl

= 0..1Fh for 30/sec
to 2/sec.

Set auto repeat rate. The

bh

 register contains the amount of
time to wait before starting the autorepeat operation, the

bl

register contains the autorepeat rate.

5

ch

 = scan code

cl

 = ASCII code
Store keycode in buffer. This function stores the value in the

cx

 register at the end of the type ahead buffer. Note that the
scan code in

ch

 doesn’t have to correspond to the ASCII
code appearing in

cl

. This routine will simply insert the data
you provide into the system type ahead buffer.

10h

al

- ASCII character

ah

- scan code
Read extended character. Like

ah

=0 call, except this one
passes all key codes, the

ah

=0 call throws away codes that
are not PC/XT compatible.

11h ZF- Set if no key.
ZF- Clear if key avail-
able.
al- ASCII code
ah- scan code

Like the ah=01h call except this one does not throw away
keycodes that are not PC/XT compatible (i.e., the extra keys
found on the 101 key keyboard).

Appendices

Page 1359

12h al- shift flags
ah- extended shift
flags

Returns the current status of the shift flags in ax. The shift
flags are defined as follows:

bit 15: SysReq key pressed
bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down
bit 10:Right ctrl key is down
bit 9: Left alt key is down
bit 8: Left ctrl key is down
bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Either alt key is down (some machines, left only)
bit 2: Either ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

Table 96: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

Appendix C

Page 1360

Page 1361

Appendix D: Instruction Set Reference

This section provides encodings and approximate cycle times for all instructions that you would nor-
mally execute in

real

 mode on an Intel processor. Missing are the special instructions on the 80286 and
later processors that manipulate page tables, segment descriptors, and other instructions that only an oper-
ating system should use. The cycle times are approximate. To determine exact execution times, you will
need to run an experiment. The cycle times are given for comparison purposes only.

Key to special bits in encodings:

x: Don’t care. Can be zero or one.
s: Sign extension bit for immediate operands. If zero, immediate operand is 16 or 32 bits depend-

ing on destination operand size. If s bit is one, then the immediate operand is eight bits and the
CPU sign extends to 16 or 32 bits, as appropriate.

rrr: Same as reg field in [mod-reg-r/m] byte.

Other Notes:

[disp] This field can be zero, one, two, or four bytes long as required by the instruction.
[imm] This field is one byte long if the operand is an eight bit operand or if the

s

 bit in the instruction
opcode is one. It is two or four bytes long if the

s

 bit contains zero and the destination operand
is 16 or 32 bits, respectively.

[mod-reg-r/m]: Instructions that have a mod-reg-r/m byte may have a scaled index byte (sib) and a zero, one,
two, or four byte displacement. See Appendix E for details concerning the encoding of this por-
tion of the instruction.

reg,reg Many instructions allow two operands using a [mod-reg-r/m] byte. A single

direction

bit in the
opcode determines whether the instruction treats the

reg

 operand as the destination or the mod-
r/m operand as the destination (e.g., mov reg,mem vs. mov mem,reg). Such instructions also
allow two register operands. It turns out there are two encodings for each such reg-reg instruc-
tion. That is, you can encode an instruction like mov ax, bx with ax encoded in the reg field and
bx encoded in the mod-r/m field, or you can encode it with bx encoded in the reg field and ax
encoded in the mod-r/m field. Such instructions always have an

x

 bit in the opcode. If the

x

 bit
is zero, the destination is the register specified by the mod-r/m field. If the

x

 bit is one, the desti-
nation is the register specified by the reg field. Other types of instructions support multiple
encodings for similar reasons.

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

aaa 0011 0111 8 8 3 4 3 3

aad 1101 0101
0000 1010

60 60 14 19 14 10

aam 1101 0100
0000 1010

83 83 16 17 15 18

aas 0011 1111 8 8 3 4 3 3

adc reg8, reg8 0001 00x0
[11-reg-r/m]

3 ‘3 2 2 1 1

adc reg16, reg16 0001 00x1
[11-reg-r/m]

3 3 2 2 1 1

Thi d t t d ith F M k 4 0 2

Appendix D

Page 1362

adc reg32, reg32 0110 0110
0001 00x1
[11-reg-r/m]

3 3 2 2 1 1

adc reg8, mem8 0001 0010
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

adc reg16, mem16 0001 0011
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

adc reg32, mem32 0110 0110
0001 0011
[mod-reg-r/m]

- - - 6 2 2

adc mem8, reg8 0001 0000
[mod-reg-r/m]

16+EA 16+EA 7 7 3 3

adc mem16, reg16 0001 0001
[mod-reg-r/m]

24+EA 16+EA 7 7 3 3

adc mem32, reg32 0110 0110
0001 0001
[mod-reg-r/m]

- - - 7 3 3

adc reg8, imm8 1000 00x0
[11-010-r/m]
[imm]

4 4 3 2 1 1

adc reg16, imm16 1000 00s0
[11-010-r/m]
[imm]

4 4 3 2 1 1

adc reg32, imm32 0110 0110
1000 00s0
[11-010-r/m]
[imm]

4 4 3 2 1 1

adc mem8, imm8 1000 00x0
[mod-010-r/m]
[imm]

17+EA 17+EA 7 7 3 3

adc mem16, imm16 1000 00s1
[mod-010-r/m]
[imm]

23+EA 17+EA 7 7 3 3

adc mem32, imm32 0110 0110
1000 00s1
[mod-010-r/m]
[imm]

- - - 7 3 3

adc al, imm 0001 0100
[imm]

4 4 3 2 1 1

adc ax, imm 0001 0101
[imm]

4 4 3 2 1 1

adc eax, imm 0110 0110
0001 0101
[imm]

- - - 2 1 1

add reg8, reg8 0000 00x0
[11-reg-r/m]

3 ‘3 2 2 1 1

add reg16, reg16 0000 00x1
[11-reg-r/m]

3 3 2 2 1 1

add reg32, reg32 0110 0110
0000 00x1
[11-reg-r/m]

3 3 2 2 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1363

add reg8, mem8 0000 0010
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

add reg16, mem16 0000 0011
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

add reg32, mem32 0110 0110
0000 0011
[mod-reg-r/m]

- - - 6 2 2

add mem8, reg8 0000 0000
[mod-reg-r/m]

16+EA 16+EA 7 7 3 3

add mem16, reg16 0000 0001
[mod-reg-r/m]

24+EA 16+EA 7 7 3 3

add mem32, reg32 0110 0110
0000 0001
[mod-reg-r/m]

- - - 7 3 3

add reg8, imm8 1000 00x0
[11-000-r/m]
[imm]

4 4 3 2 1 1

add reg16, imm16 1000 00s0
[11-000-r/m]
[imm]

4 4 3 2 1 1

add reg32, imm32 0110 0110
1000 00s0
[11-000-r/m]
[imm]

4 4 3 2 1 1

add mem8, imm8 1000 00x0
[mod-000-r/m]
[imm]

17+EA 17+EA 7 7 3 3

add mem16, imm16 1000 00s1
[mod-000-r/m]
[imm]

23+EA 17+EA 7 7 3 3

add mem32, imm32 0110 0110
1000 00s1
[mod-000-r/m]
[imm]

- - - 7 3 3

add al, imm 0000 0100
[imm]

4 4 3 2 1 1

add ax, imm 0000 0101
[imm]

4 4 3 2 1 1

add eax, imm 0110 0110
0000 0101
[imm]

- - - 2 1 1

and reg8, reg8 0010 00x0
[11-reg-r/m]

3 ‘3 2 2 1 1

and reg16, reg16 0010 00x1
[11-reg-r/m]

3 3 2 2 1 1

and reg32, reg32 0110 0110
0010 00x1
[11-reg-/rm]

3 3 2 2 1 1

and reg8, mem8 0010 0010
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1364

and reg16, mem16 0010 0011
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

and reg32, mem32 0110 0110
0010 0011
[mod-reg-r/m]

- - - 6 2 2

and mem8, reg8 0010 0000
[mod-reg-r/m]

16+EA 16+EA 7 7 3 3

and mem16, reg16 0010 0001
[mod-reg-r/m]

24+EA 16+EA 7 7 3 3

and mem32, reg32 0110 0110
0010 0001
[mod-reg-r/m]

- - - 7 3 3

and reg8, imm8 1000 00x0
[11-100-r/m]
[imm]

4 4 3 2 1 1

and reg16, imm16 1000 00s1
[11-100-r/m]
[imm]

4 4 3 2 1 1

and reg32, imm32 0110 0110
1000 00s1
[11-100-r/m]
[imm]

4 4 3 2 1 1

and mem8, imm8 1000 00x0
[mod-100-r/m]
[imm]

17+EA 17+EA 7 7 3 3

and mem16, imm16 1000 00s1
[mod-100-r/m]
[imm]

23+EA 17+EA 7 7 3 3

and mem32, imm32 0110 0110
1000 00s1
[mod-100-r/m]
[imm]

- - - 7 3 3

and al, imm 0010 0100
[imm]

4 4 3 2 1 1

and ax, imm 0010 0101
[imm]

4 4 3 2 1 1

and eax, imm 0110 0110
0010 0101
[imm]

- - - 2 1 1

bound reg16, mem32 0110 0010
[mod-reg-r/m]

13
(values
within
range)

10 7 8

bound reg32, mem64 0110 0110
0110 0010
[mod-reg-r/m]

10
(values
within
range)

7 8

bsf reg16, reg16 0000 1111
1011 1100
[11-reg-r/m]

10+3*n
n= first set

bit.

6-42 6-34

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1365

bsf reg32, reg32 0110 0110
0000 1111
1011 1100
[11-reg-r/m]

10+3*n
n= first set

bit.

6-42 6-42

bsf reg16, mem16 0000 1111
1011 1100
[mod-reg-r/m]

10+3*n
n= first set

bit.

7-43 6-35

bsf reg32, mem32 0110 0110
0000 1111
1011 1100
[mod-reg-r/m]

10+3*n
n= first set

bit.

7-43 6-43

bsr reg16, reg16 0000 1111
1011 1101
[11-reg-r/m]

10+3*n
n= first set

bit.

7-100 7-39

bsr reg32, reg32 0110 0110
0000 1111
1011 1101
[11-reg-r/m]

10+3*n
n= first set

bit.

8-100 7-71

bsr reg16, mem16 0000 1111
1011 1101
[mod-reg-r/m]

10+3*n
n= first set

bit.

7-101 7-40

bsr reg32, mem32 0110 0110
0000 1111
1011 1101
[mod-reg-r/m]

10+3*n
n= first set

bit.

8-101 7-72

bswap reg32 0000 1111
11001rrr

1 1

bt reg16, reg16 0000 1111
1010 0011
[11-reg-r/m]

3 3 4

bt reg32, reg32 0110 0110
0000 1111
1010 0011
[11-reg-r/m]

3 3 4

bt mem16, reg16 0000 1111
1010 0011
[mod-reg-r/m]

12 8 9

bt mem32, reg32 0110 0110
0000 1111
1010 0011
[mod-reg-r/m]

12 8 9

bt reg16, imm 0000 1111
1011 1010
[11-100-r/m]
[imm8]

3 3 4

bt reg32, imm 0110 0110
0000 1111
1011 1010
[11-100-r/m]
[imm8]

3 3 4

bt mem16, imm 0000 1111
1011 1010
[mod-100-r/m]

6 3 4

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1366

bt mem32, imm 0110 0110
0000 1111
1011 1010
[mod-100-r/m]

6 3 4

btc reg16, reg16 0000 1111
1011 1011
[11-reg-r/m]

6 6 7

btc reg32, reg32 0110 0110
0000 1111
1011 1011
[11-reg-r/m]

6 6 7

btc mem16, reg16 0000 1111
1011 1011
[mod-reg-r/m]

13 13 13

btc mem32, reg32 0110 0110
0000 1111
1011 1011
[mod-reg-r/m]

13 13 13

btc reg16, imm 0000 1111
1011 1010
[11-111-r/m]
[imm8]

6 6 7

btc reg32, imm 0110 0110
0000 1111
1011 1010
[11-111-r/m]
[imm8]

6 6 7

btc mem16, imm 0000 1111
1011 1010
[mod-111-r/m]
[imm8]

8 8 8

btc mem32, imm 0110 0110
0000 1111
1011 1010
[mod-111-r/m]
[imm8]

8 8 8

btr reg16, reg16 0000 1111
1011 0011
[11-reg-r/m]

6 6 7

btr reg32, reg32 0110 0110
0000 1111
1011 0011
[11-reg-r/m]

6 6 7

btr mem16, reg16 0000 1111
1011 0011
[mod-reg-r/m]

13 13 13

btr mem32, reg32 0110 0110
0000 1111
1011 0011
[mod-reg-r/m]

13 13 13

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1367

btr reg16, imm 0000 1111
1011 1010
[11-110-r/m]
[imm8]

6 6 7

btr reg32, imm 0110 0110
0000 1111
1011 1010
[11-110-r/m]
[imm8]

6 6 7

btr mem16, imm 0000 1111
1011 1010
[mod-110-r/m]
[imm8]

8 8 8

btr mem32, imm 0110 0110
0000 1111
1011 1010
[mod-110-r/m]
[imm8]

8 8 8

bts reg16, reg16 0000 1111
1010 1011
[11-reg-r/m]

6 6 7

bts reg32, reg32 0110 0110
0000 1111
1010 1011
[11-reg-r/m]

6 6 7

bts mem16, reg16 0000 1111
1010 1011
[mod-reg-r/m]

13 13 13

bts mem32, reg32 0110 0110
0000 1111
1010 1011
[mod-reg-r/m]

13 13 13

bts reg16, imm 0000 1111
1011 1010
[11-101-r/m]
[imm8]

6 6 7

bts reg32, imm 0110 0110
0000 1111
1011 1010
[11-101-r/m]
[imm8]

6 6 7

bts mem16, imm 0000 1111
1011 1010
[mod-101-r/m]
[imm8]

8 8 8

bts mem32, imm 0110 0110
0000 1111
1011 1010
[mod-101-r/m]
[imm8]

8 8 8

call near 1110 1000
[disp16]

23 19 7-10 7-10 3 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1368

call far 1001 1010
[offset]
[segment]

36 28 13-16 17-20 18 4

call reg16 1111 1111
[11-010-r/m]

20 16 7-10 7-10 5 2

call mem16 1111 1111
[mod-010-r/m]

29+EA 21+EA 11-14 10-13 5 2

call mem32 1111 1111
[mod-011-r/m]

53+EA 37+EA 16-19 22-25 17 5

cbw 1001 1000 2 2 2 3 3 3

cdq 0110 0110
1001 1001

2 2 2

clc 1111 1000 2 2 2 2 2 2

cld 1111 1100 2 2 2 2 2 2

cli 1111 1010 2 2 3 5 7

cmc 1111 0101 2 2 2 2 2 2

cmp reg8, reg8 0011 10x0
[11-reg-r/m]

3 ‘3 2 2 1 1

cmp reg16, reg16 0011 10x1
[11-reg-r/m]

3 3 2 2 1 1

cmp reg32, reg32 0110 0110
0011 10x1
[11-reg-/rm]

3 3 2 2 1 1

cmp reg8, mem8 0011 1010
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

cmp reg16, mem16 0011 1011
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

cmp reg32, mem32 0110 0110
0011 1011
[mod-reg-r/m]

- - - 6 2 2

cmp mem8, reg8 0011 1000
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

cmp mem16, reg16 0011 1001
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

cmp mem32, reg32 0110 0110
0011 1001
[mod-reg-r/m]

- - - 6 2 2

cmp reg8, imm8 1000 00x0
[11-111-r/m]
[imm]

4 4 3 2 1 1

cmp reg16, imm16 1000 00s0
[11-111-r/m]
[imm]

4 4 3 2 1 1

cmp reg32, imm32 0110 0110
1000 00s0
[11-111-r/m]
[imm]

4 4 3 2 1 1

cmp mem8, imm8 1000 00x0
[mod-111-r/m]
[imm]

10+EA 10+EA 6 5 2 2

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1369

cmp mem16, imm16 1000 00s1
[mod-111-r/m]
[imm]

14+EA 10+EA 6 5 2 2

cmp mem32, imm32 0110 0110
1000 00s1
[mod-111-r/m]
[imm]

- - - 5 2 2

cmp al, imm 0011 1100
[imm]

4 4 3 2 1 1

cmp ax, imm 0011 1101
[imm]

4 4 3 2 1 1

cmp eax, imm 0110 0110
0011 1101
[imm]

- - - 2 1 1

cmpsb 1010 0110 30 22 8 10 8 5

cmpsw 1010 0111 30 22 8 10 8 5

cmpsd 0110 0110
1010 0111

- - - 10 8 5

repe cmpsb 1111 0011
1010 0110

9+17*cx
cx = # of

repetitions

9+17*cx 5+9*cx 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

repne cmpsb 1111 0010
1010 0110

9+17*cx 9+17*cx 5+9*cx 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

repe cmpsw 1111 0011
1010 0111

9+25*cx 9+17*cx 5+9*cx 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

repne cmpsw 1111 0010
1010 0111

9+25*cx 9+17*cx 5+9*cx 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

repe cmpsd 0110 0110
1111 0011
1010 0111

- - - 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

repne cmpsd 0110 0110
1111 0010
1010 0111

- - - 5+9*cx 7+7*cx
5 if cx=0

9+4*cx
7 if cx=0

cmpxchg reg8, reg8 0000 1111
1011 0000
[11-reg-r/m]
Note: r/m is
first register
operand.

- - - - 6 6

cmpxchg reg16, reg16 0000 1111
1011 0001
[11-reg-r/m]

- - - - 6 6

cmpxchg reg32, reg32 0110 0110
0000 1111
1011 0001
[11-reg-r/m]

- - - - 6 6

cmpxchg mem8, reg8 0000 1111
1011 0000
[mod-reg-r/m]

- - - - 7 if equal,
10 if not

equal

6

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1370

cmpxchg mem16, reg16 0000 1111
1011 0001
[mod-reg-r/m]

- - - - 7 if equal,
10 if not

equal

6

cmpxchg mem32, reg32 0110 0110
0000 1111
1011 0001
[mod-reg-r/m]

- - - - 7 if equal,
10 if not

equal

6

cmpxchg8b mem64 0000 1111
1100 0111
[mod-001-r/m]

- - - - - 10

cpuid 0000 1111
1010 0010

- - - - - 14

cwd 1001 1001 5 5 2 2 3 2

cwde 0110 0110
1001 1000

3 3 3

daa 0010 0111 4 4 3 4 2 3

das 0010 1111 4 4 3 4 2 3

dec reg8 1111 1110
[11-001-r/m]

3 3 2 2 1 1

dec reg16 0100 1rrr 3 3 2 2 1 1

dec reg16
(alternate encoding)

1111 1111
[11-001-r/m]

3 3 2 2 1 1

dec reg32 0110 0110
0100 1rrr

3 3 2 2 1 1

dec reg32
(alternate encoding)

0110 0110
1111 1111
[11-001-r/m]

3 3 2 2 1 1

dec mem8 1111 1110
[mod-001-r/m]

15+EA 15+EA 7 6 3 3

dec mem16 1111 1111
[mod-001-r/m]

23+EA 15+EA 7 6 3 3

dec mem32 0110 0110
1111 1111
[mod-001-r/m]

- - - 6 3 3

div reg8 1111 0110
[11-110-r/m]

80-90 80-90 14 14 16 17

div reg16 1111 0111
[11-110-r/m]

144-162 144-162 22 22 24 25

div reg32 0110 0110
1111 0111
[11-110-r/m]

- - - 38 40 41

div mem8 1111 0110
[mod-110-r/m]

(86-96) +
EA

(86-96) +
EA

17 17 16 17

div mem16 1111 0111
[mod-110-r/m]

(158-176) +
EA

(150-168) +
EA

25 25 24 25

div mem32 0110 0110
1111 0111
[mod-110-r/m]

- - - 41 40 41

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1371

enter local, 0 1100 1000
[locals-imm16]
0000 0000

11 10 14 11

enter local, 1 1100 1000
[locals-imm16]
0000 0001

15 12 17 15

enter local, lex 1100 1000
[locals:imm16]
[lex:imm8]

12
 +

4 * (lex-1)

15 +
4 * (lex-1)

17 + 3*lex 15 + 2*lex

hlt 1111 0100 2+

d

2+ 2+ 5+ 4+ 12+

idiv reg8 1111 0110
[11-111-r/m]

101-112 101-112 17 19 19 22

idiv reg16 1111 0111
[11-111-r/m]

165-184 165-184 25 27 27 30

idiv reg32 0110 0110
1111 0111
[11-111-r/m]

- - - 43 43 46

idiv mem8 1111 0110
[mod-111-r/m]

(107-118) +
EA

(107-118) +
EA

20 22 20 30

idiv mem16 1111 0111
[mod-111-r/m]
[disp]

(175-194) +
EA

(171-190) +
EA

28 30 28 30

idiv mem32 0110 0110
1111 0111
[mod-111-r/m]

- - - 46 44 46

imul reg8 1111 0110
[11-101-r/m]

80-98 80-98 13 9-14 13-18 11

imul reg16 1111 0111
[11-101-r/m]

128-154 128-154 21 9-22 13-26 11

imul reg32 0110 0110
1111 0111
[11-101-r/m]

- - - 9-38 13-42 11

imul mem8 1111 0110
[mod-101-r/m]

(86-104) +
EA

(107-118) +
EA

16 12-17 13-18 11

imul mem16 1111 0111
[mod-101-r/m]

(134-164) +
EA

(134-160) +
EA

24 15-25 13-26 11

imul mem32 0110 0110
1111 0111
[mod-101-r/m]

- - - 12-41 13-42 11

imul reg16, reg16, imm8
imul reg16, imm8
(Second form assumes reg
and r/m are the same,
instruction sign extends
eight bit immediate oper-
and to 16 bits)

0110 1011
[11-reg-r/m]
[imm8]
(1st reg operand
is specified by
reg field, 2nd
reg operand is
specified by r/m
field)

- - 21 13-26 13-26 10

imul reg16, reg16, imm
imul reg16, imm

0110 1001
[11-reg-r/m]
[imm16]

- - 21 9-22 13-26 10

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1372

imul reg32, reg32, imm8
imul reg32, imm8

0110 0110
0110 1011
[11-reg-r/m]
[imm8]

- - 13-42 13-42 10

imul reg32, reg32, imm
imul reg32, imm

0110 0110
0110 1001
[11-reg-r/m]
[imm32]

- - - 9-38 13-42 10

imul reg16,mem16,imm8 0110 1011
[11-reg-r/m]
[imm8]

- - 24 14-27 13-26 10

imul reg16,mem16,imm 0110 1001
[11-reg-r/m]
[imm16]

- - 24 12-25 13-26 10

imul reg32, mem32, imm8 0110 0110
0110 1011
[11-reg-r/m]
[imm8]

- - - 14-43 13-42 10

imul reg32, mem32, imm 0110 0110
0110 1001
[11-reg-r/m]
[imm32]

- - - 12-41 13-42 10

imul reg16, reg16 0000 1111
1010 1111
[11-reg-r/m]
(reg is dest
operand)

- - - 12-25 13-26 10

imul reg32, reg32 0110 0110
0000 1111
1010 1111
[11-reg-r/m]
(reg is dest
operand)

- - - 12-41 12-42 10

imul reg16, mem16 0000 1111
1010 1111
[mod-reg-r/m]

- - - 15-28 13-26 10

imul reg32, mem32 0110 0110
0000 1111
1010 1111
[mod-reg-r/m]

- - - 14-44 13-42 10

in al, port 1110 0100
[port8]

10 10 5 12 14 7

in ax, port 1110 0101
[port8]

14 10 5 12 14 7

in eax, port 0110 0110
1110 0101
[port8]

- - - 12 14 7

in al, dx 1110 1100 8 8 5 13 14 7

in ax, dx 1110 1101 12 8 5 13 14 7

in eax, dx 0110 0110
1110 1101

12 8 5 13 14 7

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1373

inc reg8 1111 1110
[11-000-r/m]

3 2 2 2 1 1

inc reg16 0100 0rrr 3 3 2 2 1 1

inc reg16
(alternate encoding)

1111 1111
[11-000-r/m]

3 3 2 2 1 1

inc reg32 0110 0110
0100 0rrr

- - - 2 1 1

inc reg32
(alternate encoding)

0110 0110
1111 1111
[11-000-r/m]

- - - 2 1 1

inc mem8 1111 1110
[mod-000-r/m]

15+EA 15+EA 7 6 3 3

inc mem16 1111 1110
[mod-000-r/m]
[disp]

23+EA 15+EA 7 6 3 3

inc mem32 0110 0110
1111 1110
[mod-000-r/m]

- - - 6 3 3

insb 1010 1010 - - 5 15 17 9

insw 1010 1011 - - 5 15 17 9

insd 0110 0110
1010 1011

- - - 15 17 9

rep insb 1111 0010
1010 1010

- - 5 + 4*cx 14 + 6*cx 16+8*cx 11 + 3*cx

rep insw 1111 0010
1010 1011

- - 5 + 4*cx 14 + 6*cx 16+8*cx 11 + 3*cx

rep insd 0110 0110
1111 0010
1010 1011

- - - 14 + 6*cx 16+8*cx 11 + 3*cx

int nn 1100 1101
[imm8]

71 51 23-26 37 30 16

int 03 1100 1100 72 52 23-26 33 26 13

into 1100 1110 73 (if ovr)
4 (no ovr)

53
4

24-27
3

35
3

28
3

13
3

iret 1100 1111 44 32 17-20 22 15 8

iretd 0110 0110
1100 1111

22 15 10

ja short 0111 0111
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

ja near 0000 1111
1000 0111
[disp16]

- - - 7-10
3

3
1

1

jae short 0111 0011
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jae near 0000 1111
1000 0011
[disp16]

- - - 7-10
3

3
1

1

jb short 0111 0010
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1374

jb near 0000 1111
1000 0010
[disp16]

- - - 7-10
3

3
1

1

jbe short 0111 0110
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jbe near 0000 1111
1000 0110
[disp16]

- - - 7-10
3

3
1

1

jc short 0111 0010
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jc near 0000 1111
1000 0010
[disp16]

- - - 7-10
3

3
1

1

je short 0111 0100
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

je near 0000 1111
1000 0100
[disp16]

- - - 7-10
3

3
1

1

jg short 0111 1111
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jg near 0000 1111
1000 1111
[disp16]

- - - 7-10
3

3
1

1

jge short 0111 1101
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jge near 0000 1111
1000 1101
[disp16]

- - - 7-10
3

3
1

1

jl short 0111 1100
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jl near 0000 1111
1000 1100
[disp16]

- - - 7-10
3

3
1

1

jle short 0111 1110
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jle near 0000 1111
1000 1110
[disp16]

- - - 7-10
3

3
1

1

jna short 0111 0110
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jna near 0000 1111
1000 0110
[disp16]

- - - 7-10
3

3
1

1

jnae short 0111 0010
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnae near 0000 1111
1000 0010
[disp16]

- - - 7-10
3

3
1

1

jnb short 0111 0011
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1375

jnb near 0000 1111
1000 0011
[disp16]

- - - 7-10
3

3
1

1

jnbe short 0111 0111
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnbe near 0000 1111
1000 0111
[disp16]

- - - 7-10
3

3
1

1

jnc short 0111 0011
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnc near 0000 1111
1000 0011
[disp16]

- - - 7-10
3

3
1

1

jne short 0111 0101
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jne near 0000 1111
1000 0101
[disp16]

- - - 7-10
3

3
1

1

jng short 0111 1110
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jng near 0000 1111
1000 1110
[disp16]

- - - 7-10
3

3
1

1

jnge short 0111 1100
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnge near 0000 1111
1000 1100
[disp16]

- - - 7-10
3

3
1

1

jnl short 0111 1101
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnl near 0000 1111
1000 1101
[disp16]

- - - 7-10
3

3
1

1

jnle short 0111 1111
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnle near 0000 1111
1000 1111
[disp16]

- - - 7-10
3

3
1

1

jno short 0111 0001
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jno near 0000 1111
1000 0001
[disp16]

- - - 7-10
3

3
1

1

jnp short 0111 1011
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnp near 0000 1111
1000 1011
[disp16]

- - - 7-10
3

3
1

1

jns short 0111 1001
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1376

jns near 0000 1111
1000 1001
[disp16]

- - - 7-10
3

3
1

1

jnz short 0111 0101
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jnz near 0000 1111
1000 0101
[disp16]

- - - 7-10
3

3
1

1

jo short 0111 0000
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jo near 0000 1111
1000 0000
[disp16]

- - - 7-10
3

3
1

1

jp short 0111 1010
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jp near 0000 1111
1000 1010
[disp16]

- - - 7-10
3

3
1

1

jpe short 0111 1010
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jpe near 0000 1111
1000 1010
[disp16]

- - - 7-10
3

3
1

1

jpo short 0111 1011
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jpo near 0000 1111
1000 1011
[disp16]

- - - 7-10
3

3
1

1

js short 0111 1000
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

js near 0000 1111
1000 1000
[disp16]

- - - 7-10
3

3
1

1

jz short 0111 0100
[disp8]

16
4 (not taken)

16
4

7-10
3

7-10
3

3
1

1

jz near 0000 1111
1000 0100
[disp16]

- - - 7-10
3

3
1

1

jcxz short 1110 0011
[disp8]

18
6 (not taken)

18
6

8-11
4

9-12
5

8
5

6
5

jecxz short 0110 0110
1110 0011
[disp8]

9-12
5

8
5

6
5

jmp short 1110 1011
[disp8]

15 15 7-10 7-10 3 1

jmp near 1110 1001
[disp16]

15 15 7-10 7-10 3 1

jmp reg16 1111 1111
[11-100-r/m]

11 11 7-10 7-10 5 2

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1377

jmp mem16 1111 1111
[mod-100-r/m]

18+EA 18+EA 11-14 10-13 5 2

jmp far 1110 1010
[offset16]
[segment16]

15 15 11-14 12-15 17 3

jmp mem32 1111 1111
[mod-101-r/m]

24+EA 24+EA 15-18 43-46 13 2

lahf 1001 1111 4 4 2 2 3 2

lds reg, mem32 1100 0101
[mod-reg-r/m]

24+EA 16+EA 7 7 6 4

lea reg, mem 1000 1101
[mod-101-r/m]

2+EA 2+EA 3 2 1 1

leave 1100 1001 - - 5 4 5 3

les reg, mem32 1100 0100
[mod-reg-r/m]

24+EA 16+EA 7 7 6 4

lfs reg, mem32 0000 1111
1011 0100
[mod-reg-r/m]

- - - 7 6 4

lgs reg, mem32 0000 1111
1011 0101
[mod-reg-r/m]

- - - 7 6 4

lodsb 1010 1100 12 12 5 5 5 2

lodsw 1010 1101 16 12 5 5 5 2

loadsd 0110 0110
1010 1101

- - - 5 5 2

loop short 1110 0010
[disp8]

17
5 (not taken)

17
5

8-11
4

11-14 7
6

5

loope short
loopz short

1110 0001
[disp8]

18
6 (not taken)

18
6

8-11
4

11-14 9
6

7

loopne short
loopnz short

1110 0000
[disp8]

19
5(not taken)

19
5

8-11
4

11-14 9
6

7

lss reg, mem32 0000 1111
1011 0010
[mod-reg-r/m]

- - - 7 6 4

mov reg8, reg8 1000 1000
[11-reg-r/m]
(r/m specifies
destination reg)

2 2 2 2 1 1

mov reg8, reg8
(alternate encoding)

1000 1010
[11-reg-r/m]
(reg specifies
destination reg)

2 2 2 2 1 1

mov reg16, reg16 1000 1001
[11-reg-r/m]
(r/m specifies
destination reg)

2 2 2 2 1 1

mov reg16, reg16
(alternate encoding)

1000 1011
[11-reg-r/m]
(reg specifies
destination reg)

2 2 2 2 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1378

mov reg32, reg32 0110 0110
1000 1001
[11-reg-r/m]
(r/m specifies
destination reg)

- - - 2 1 1

mov reg32, reg32
(alternate encoding)

0110 0110
1000 1011
[11-reg-r/m]
(reg specifies
destination reg)

- - - 2 1 1

mov mem, reg8 1000 1000
[mod-reg-r/m]

9+EA 9+EA 3 2 1 1

mov reg8, mem 1000 1010
[mod-reg-r/m]

8+EA 8+EA 5 4 1 1

mov mem, reg16 1000 1001
[mod-reg-r/m]

13+EA 9+EA 3 2 1 1

mov reg16, mem 1000 1011
[mod-reg-r/m]

12+EA 8+EA 5 4 1 1

mov mem, reg32 0110 0110
1000 1001
[mod-reg-r/m]

- - - 2 1 1

mov reg16, mem 0110 0110
1000 1011
[mod-reg-r/m]

- - - 4 1 1

mov reg8, imm 1011 0rrr
[imm8]

4 4 2 2 1 1

mov reg8, imm
(alternate encoding)

1100 0110
[11-000-r/m]
[imm8]

10 10 2 2 1 1

mov reg16, imm 1011 1rrr
[imm16]

4 4 2 2 1 1

mov reg16, imm
(alternate encoding)

1100 0111
[11-000-r/m]
[imm16]

10 10 2 2 1 1

mov reg32, imm 0110 0110
1011 1rrr
[imm32]

- - - 2 1 1

mov reg32, imm
(alternate encoding)

0110 0110
1100 0111
[11-000-r/m]
[imm32]

- - - 2 1 1

mov mem8, imm 1100 0110
[mod-000-r/m]
[imm8]

10+EA 10+EA 3 2 1 1

mov mem16, imm 1100 0111
[mod-000-r/m]
[imm16]

14+EA 10+EA 3 2 1 1

mov mem32, imm 1100 0111
[mod-000-r/m]
[imm32]

- - - 2 1 1

mov al, disp 1010 0000
[disp]

10 10 5 4 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1379

mov ax, disp 1010 0001
[disp]

14 10 5 4 1 1

mov eax, disp 0110 0110
1010 0001
[disp]

- - - 4 1 1

mov disp, al 1010 0010
[disp]

10 10 3 2 1 1

mov disp, ax 1010 0011
[disp]

14 10 3 2 1 1

mov disp, eax 0110 0110
1010 0011
[disp]

- - - 2 1 1

mov segreg, reg16 1000 1110
[11-sreg-r/m]

2 2 2 2 3 2-3

mov segreg, mem 1000 1110
[mod-reg-r/m]

12+EA 8+EA 5 5 3 2-3

mov reg16, segreg 1000 1100
[11-sreg-r/m]

2 2 2 2 3 1

mov mem, segreg 1000 1100
[mod-reg-r/m]

13+EA 9+EA 3 2 3 1

movsb 1010 0100 18 18 5 8 7 4

movsw 1010 0101 26 18 5 8 7 4

movsd 0110 0110
1010 0101

- - - 8 7 4

rep movsb 1111 0010
1010 0100

9 + 17 * cx 9 + 17*cx 5 + 4*cx 8 + 4*cx 12 + 3*cx
5 if cx=0
13 if cx=1

4 + 3*cx

rep movsw 1111 0010
1010 0101

9 + 25 * cx 9 + 17*cx 5 + 4*cx 8 + 4*cx 12 + 3*cx
5 if cx=0
13 if cx=1

4 + 3*cx

rep movsd 0110 0110
1111 0010
1010 0101

- - - 8 + 4*cx 12 + 3*cx
5 if cx=0
13 if cx=1

4 + 3*cx

movsx reg16, reg8 0000 1111
1011 1110
[11-reg-r/m]
(dest is reg
operand)

3 3 3

movsx reg32, reg8 0110 0110
0000 1111
1011 1110
[11-reg-r/m]

3 3 3

movsx reg32, reg16 0110 0110
0000 1111
1011 1111
[11-reg-r/m]

3 3 3

movsx reg16, mem8 0000 1111
1011 1110
[mod-reg-r/m]

6 3 3

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1380

movsx reg32, mem8 0110 0110
0000 1111
1011 1110
[mod-reg-r/m]

6 3 3

movsx reg32, mem16 0110 0110
0000 1111
1011 1111
[mod-reg-r/m]

6 3 3

movzx reg16, reg8 0000 1111
1011 0110
[11-reg-r/m]
(dest is reg
operand)

3 3 3

movzx reg32, reg8 0110 0110
0000 1111
1011 0110
[11-reg-r/m]

3 3 3

movzx reg32, reg16 0110 0110
0000 1111
1011 0111
[11-reg-r/m]

3 3 3

movzx reg16, mem8 0000 1111
1011 0110
[mod-reg-r/m]

6 3 3

movzx reg32, mem8 0110 0110
0000 1111
1011 0110
[mod-reg-r/m]

6 3 3

movzx reg32, mem16 0110 0110
0000 1111
1011 0111
[mod-reg-r/m]

6 3 3

mul reg8 1111 0110
[11-100-r/m]

70-77 70-77 13 9-14 13-18 11

mul reg16 1111 0111
[11-100-r/m]

118-133 118-133 21 9-22 13-26 11

mul reg32 0110 0110
1111 0111
[11-100-r/m]

- - - 9-38 13-42 10

mul mem8 1111 0110
[mod-100-r/m]

(76-83) +
EA

(76-83) +
EA

16 12-17 13-18 11

mul mem16 1111 0111
[mod-100-r/m]

(124-139) +
EA

(124-139) +
EA

24 12-25 13-26 11

mul mem32 0110 0110
1111 0111
[mod-100-r/m]

- - - 12-41 13-42 10

neg reg8 1111 0110
[11-011-r/m]

3 3 2 2 1 1

neg reg16 1111 0111
[11-011-r/m]

3 3 2 2 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1381

neg reg32 0110 0110
1111 0111
[11-011-r/m]

3 3 2 2 1 1

neg mem8 1111 0110
[mod-011-r/m]

16+EA 16+EA 7 6 3 3

neg mem16 1111 0111
[mod-011-r/m]

24+EA 16+EA 7 6 3 3

neg mem32 0110 0110
1111 0111
[mod-011-r/m]

- - - 6 3 3

nop
(same as xchg ax, ax)

1001 0000 3 3 3 3 1 1

not reg8 1111 0110
[11-010-r/m]

3 3 2 2 1 1

not reg16 1111 0111
[11-010-r/m]

3 3 2 2 1 1

not reg32 0110 0110
1111 0111
[11-010-r/m]

3 3 2 2 1 1

not mem8 1111 0110
[mod-010-r/m]

16+EA 16+EA 7 6 3 3

not mem16 1111 0111
[mod-010-r/m]

24+EA 16+EA 7 6 3 3

not mem32 0110 0110
1111 0111
[mod-010-r/m]

- - - 6 3 3

or reg8, reg8 0000 10x0
[11-reg-r/m]

3 ‘3 2 2 1 1

or reg16, reg16 0000 10x1
[11-reg-r/m]

3 3 2 2 1 1

or reg32, reg32 0110 0110
0000 10x1
[11-reg-r/m]

3 3 2 2 1 1

or reg8, mem8 0000 1010
[mod-reg-r/m]

9+EA 9+EA 7 6 2 2

or reg16, mem16 0000 1011
[mod-reg-r/m]

13+EA 9+EA 7 6 2 2

or reg32, mem32 0110 0110
0000 1011
[mod-reg-r/m]

- - - 6 2 2

or mem8, reg8 0000 1000
[mod-reg-r/m]

16+EA 16+EA 7 7 3 3

or mem16, reg16 0000 1001
[mod-reg-r/m]

24+EA 16+EA 7 7 3 3

or mem32, reg32 0110 0110
0000 1001
[mod-reg-r/m]

- - - 7 3 3

or reg8, imm8 1000 00x0
[11-001-r/m]
[imm]

4 4 3 2 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1382

or reg16, imm16 1000 00s0
[11-001-r/m]
[imm]

4 4 3 2 1 1

or reg32, imm32 0110 0110
1000 00s0
[11-001-r/m]
[imm]

4 4 3 2 1 1

or mem8, imm8 1000 00x0
[mod-001-r/m]
[imm]

17+EA 17+EA 7 7 3 3

or mem16, imm16 1000 00s1
[mod-001-r/m]
[imm]

25+EA 17+EA 7 7 3 3

or mem32, imm32 0110 0110
1000 00s1
[mod-001-r/m]
[imm]

- - - 7 3 3

or al, imm 0000 1100
[imm]

4 4 3 2 1 1

or ax, imm 0000 10101
[imm]

4 4 3 2 1 1

or eax, imm 0110 0110
0000 1101
[imm]

- - - 2 1 1

out port, al 1110 0110
[port8]

14 10 3 10 16 12

out port, ax 1110 0111
[port8]

14 10 3 10 16 12

out port, eax 0110 0110
1110 0111
[port8]

- - - 10 16 12

out dx, al 1110 1110 8 8 3 11 16 12

out dx, ax 1110 1111 12 8 3 11 16 12

out dx, eax 0110 0110
1110 1111

- - - 11 16 12

outsb 1010 1010 - - 5 14 17 13

outsw 1010 1011 - - 5 14 17 13

outsd 0110 0110
1010 1011

- - - 14 17 13

rep outsb 1111 0010
1010 1010

- - 5 + 4*cx 12 + 5*cx 17+5*cx 13 + 4*cx

rep outsw 1111 0010
1010 1011

- - 5 + 4*cx 12 + 5*cx 17+5*cx 13 + 4*cx

rep outsd 0110 0110
1111 0010
1010 1011

- - - 12 + 5*cx 17+5*cx 13 + 4*cx

pop reg16 0101 1rrr 12 8 5 4 1 1

pop reg16
(alternate encoding)

1000 1111
[11-000-r/m]

12 8 5 4 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1383

pop reg32 0110 0110
0101 1rrr

- - - 4 1 1

pop reg32
(alternate encoding)

0110 0110
1000 1111
[11-000-r/m]

- - - 5 4 3

pop mem16 1000 1111
[mod-000-r/m]

25+EA 17+EA 5 5 6 3

pop mem32 1000 1111
[mod-000-r/m]

- - - 5 6 3

pop es 0000 0111 12 8 5 7 3 3

pop ss 0001 0111 12 8 5 7 3 3

pop ds 0001 1111 12 8 5 7 3 3

pop fs 0000 1111
1010 0001

- - - 7 3 3

pop gs 0000 1111
1010 1001

- - - 7 3 3

popa 0110 0001 - - 19 24 9 5

popad 0110 0110
0110 0001

- - - 24 9 5

popf 1001 1101 12 8 5 5 9 6

popfd 0110 0110
1001 1101

- - - 5 9 6

push reg16 0101 0rrr 15 11 3 2 1 1

push reg16
(alternate encoding)

1111 1111
[11-110-r/m]

15 11 3 2 1 1

push reg32 0110 0110
0101 0rrr

- - - 2 1 1

push reg32
(alternate encoding)

0110 0110
1111 1111
[11-110-r/m]

- - - 2 1 1

push mem16 1111 1111
[mod-110-r/m]

24+EA 16+EA 5 5 4 2

push mem32 1111 1111
[mod-110-r/m]

- - - 5 4 2

push cs 0000 1110 14 10 3 2 3 1

push ds 0001 1110 14 10 3 2 3 1

push es 0000 0110 14 10 3 2 3 1

push ss 0001 0110 14 10 3 2 3 1

push fs 0000 1111
1010 0000

- - - 2 3 1

push gs 0000 1111
1010 1000

- - - 2 3 1

push imm8->16 0110 1000
[imm8]
(sign extends
value to 16 bits)

- - 3 2 1 1

push imm16 0110 1010
[imm16]

- - 3 2 1 1

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1384

push imm32 0110 0110
0110 1010
[imm32]

- - - 2 1 1

pusha 0110 0000 - - 17 18 11 5

pushad 0110 0110
0110 0000

- - - 18 11 5

pushf 1001 1100 14 10 3 4 4 4

pushfd 0110 0110
1001 1100

- - - 4 4 4

rcl reg8, 1 1101 0000
[11-010-r/m]

2 2 2 9 3 1

rcl reg16, 1 1101 0001
[11-010-r/m]

2 2 2 9 3 1

rcl reg32, 1 0110 0110
1101 0001
[11-010-r/m]

- - - 9 3 1

rcl mem8, 1 1101 0000
[mod-010-r/m]

15+EA 15+EA 7 10 4 3

rcl mem16, 1 1101 0001
[mod-010-r/m]

23+EA 15+EA 7 10 4 3

rcl mem32, 1 0110 0110
1101 0001
[mod-010-r/m]

- - - 10 4 3

rcl reg8, cl 1101 0010
[11-010-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 9 8-30 7-24

rcl reg16, cl 1101 0011
[11-010-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 9 8-30 7-24

rcl reg32, cl 0110 0110
1101 0011
[11-010-r/m]

- - - 9 8-30 7-24

rcl mem8, cl 1101 0010
[mod-010-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 10 9-31 9-26

rcl mem16, cl 1101 0011
[mod-010-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 10 9-31 9-26

rcl mem32, cl 0110 0110
1101 0011
[mod-010-r/m]

- - - 10 9-31 9-26

rcl reg8, imm8 1100 0000
[11-010-r/m]
[imm8]

- - 5+imm8 9 8-30 8-25

rcl reg16, imm8 1100 0001
[11-010-r/m]
[imm8]

- - 5+imm8 9 8-30 8-25

rcl reg32, imm8 0110 0110
1100 0001
[11-010-r/m]
[imm8]

- - - 9 8-30 8-25

rcl mem8, imm8 1100 0000
[mod-010-r/m]
[imm8]

- - 8+imm8 10 9-31 10-27

Table 97: 80x86 Instruction Set Reference

a

Instruction
Encoding

(bin)

b

Execution Time in Cycles

c

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1385

rcl mem16, imm8 1100 0001
[mod-010-r/m]
[imm8]

- - 8+imm8 10 9-31 10-27

rcl mem32, imm8 0110 0110
1100 0001
[mod-010-r/m]
[imm8]

- - - 10 9-31 10-27

rcr reg8, 1 1101 0000
[11-011-r/m]

2 2 2 9 3 1

rcr reg16, 1 1101 0001
[11-011-r/m]

2 2 2 9 3 1

rcr reg32, 1 0110 0110
1101 0001
[11-011-r/m]

- - - 9 3 1

rcr mem8, 1 1101 0000
[mod-011-r/m]

15+EA 15+EA 7 10 4 3

rcr mem16, 1 1101 0001
[mod-011-r/m]

23+EA 15+EA 7 10 4 3

rcr mem32, 1 0110 0110
1101 0001
[mod-011-r/m]

- - - 10 4 3

rcr reg8, cl 1101 0010
[11-011-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 9 8-30 7-24

rcr reg16, cl 1101 0011
[11-011-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 9 8-30 7-24

rcr reg32, cl 0110 0110
1101 0011
[11-011-r/m]

- - - 9 8-30 7-24

rcr mem8, cl 1101 0010
[mod-011-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 10 9-31 9-26

rcr mem16, cl 1101 0011
[mod-011-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 10 9-31 9-26

rcr mem32, cl 0110 0110
1101 0011
[mod-011-r/m]

- - - 10 9-31 9-26

rcr reg8, imm8 1100 0000
[11-011-r/m]
[imm8]

- - 5+imm8 9 8-30 8-25

rcr reg16, imm8 1100 0001
[11-011-r/m]
[imm8]

- - 5+imm8 9 8-30 8-25

rcr reg32, imm8 0110 0110
1100 0001
[11-011-r/m]
[imm8]

- - - 9 8-30 8-25

rcr mem8, imm8 1100 0000
[mod-011-r/m]
[imm8]

- - 8+imm8 10 9-31 10-27

rcr mem16, imm8 1100 0001
[mod-011-r/m]
[imm8]

- - 8+imm8 10 9-31 10-27

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1386

rcr mem32, imm8 0110 0110
1100 0001
[mod-011-r/m]
[imm8]

- - - 10 9-31 10-27

ret
retn

1100 0011 20 16 11-14 10-13 5 2

ret imm16
retn imm16

1100 0010
[imm16]

24 20 11-14 10-13 5 3

ret
retf

1100 1011 34 26 15-18 18-21 13 4

ret imm16
retf imm16

1100 1010
[imm16]

33 25 15-18 18-21 14 4

rol reg8, 1 1101 0000
[11-000-r/m]

2 2 2 3 3 1

rol reg16, 1 1101 0001
[11-000-r/m]

2 2 2 3 3 1

rol reg32, 1 0110 0110
1101 0001
[11-000-r/m]

- - - 3 3 1

rol mem8, 1 1101 0000
[mod-000-r/m]

15+EA 15+EA 7 7 4 3

rol mem16, 1 1101 0001
[mod-000-r/m]

23+EA 15+EA 7 7 4 3

rol mem32, 1 0110 0110
1101 0001
[mod-000-r/m]

- - - 7 4 3

rol reg8, cl 1101 0010
[11-000-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

rol reg16, cl 1101 0011
[11-000-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

rol reg32, cl 0110 0110
1101 0011
[11-000-r/m]

- - - 3 3 4

rol mem8, cl 1101 0010
[mod-000-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

rol mem16, cl 1101 0011
[mod-000-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

rol mem32, cl 0110 0110
1101 0011
[mod-000-r/m]

- - - 7 4 4

rol reg8, imm8 1100 0000
[11-000-r/m]
[imm8]

- - 5+imm8 3 2 1

rol reg16, imm8 1100 0001
[11-000-r/m]
[imm8]

- - 5+imm8 3 2 1

rol reg32, imm8 0110 0110
1100 0001
[11-000-r/m]
[imm8]

- - - 3 2 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1387

rol mem8, imm8 1100 0000
[mod-000-r/m]
[imm8]

- - 8+imm8 7 4 3

rol mem16, imm8 1100 0001
[mod-000-r/m]
[imm8]

- - 8+imm8 7 4 3

rol mem32, imm8 0110 0110
1100 0001
[mod-000-r/m]
[imm8]

- - - 7 4 3

ror reg8, 1 1101 0000
[11-001-r/m]

2 2 2 3 3 1

ror reg16, 1 1101 0001
[11-001-r/m]

2 2 2 3 3 1

ror reg32, 1 0110 0110
1101 0001
[11-001-r/m]

- - - 3 3 1

ror mem8, 1 1101 0000
[mod-001-r/m]

15+EA 15+EA 7 7 4 3

ror mem16, 1 1101 0001
[mod-001-r/m]

23+EA 15+EA 7 7 4 3

ror mem32, 1 0110 0110
1101 0001
[mod-001-r/m]

- - - 7 4 3

ror reg8, cl 1101 0010
[11-001-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

ror reg16, cl 1101 0011
[11-001-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

ror reg32, cl 0110 0110
1101 0011
[11-001-r/m]

- - - 3 3 4

ror mem8, cl 1101 0010
[mod-001-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

ror mem16, cl 1101 0011
[mod-001-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

ror mem32, cl 0110 0110
1101 0011
[mod-001-r/m]

- - - 7 4 4

ror reg8, imm8 1100 0000
[11-001-r/m]
[imm8]

- - 5+imm8 3 2 1

ror reg16, imm8 1100 0001
[11-001-r/m]
[imm8]

- - 5+imm8 3 2 1

ror reg32, imm8 0110 0110
1100 0001
[11-001-r/m]
[imm8]

- - - 3 2 1

ror mem8, imm8 1100 0000
[mod-001-r/m]
[imm8]

- - 8+imm8 7 4 3

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1388

ror mem16, imm8 1100 0001
[mod-001-r/m]
[imm8]

- - 8+imm8 7 4 3

ror mem32, imm8 0110 0110
1100 0001
[mod-001-r/m]
[imm8]

- - - 7 4 3

sahf 1001 1110 4 4 2 3 2 2

sal reg8, 1
(Same instruction as shl)

1101 0000
[11-100-r/m]

2 2 2 3 3 1

sal reg16, 1 1101 0001
[11-100-r/m]

2 2 2 3 3 1

sal reg32, 1 0110 0110
1101 0001
[11-100-r/m]

- - - 3 3 1

sal mem8, 1 1101 0000
[mod-100-r/m]

15+EA 15+EA 7 7 4 3

sal mem16, 1 1101 0001
[mod-100-r/m]

23+EA 15+EA 7 7 4 3

sal mem32, 1 0110 0110
1101 0001
[mod-100-r/m]

- - - 7 4 3

sal reg8, cl 1101 0010
[11-100-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

sal reg16, cl 1101 0011
[11-100-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

sal reg32, cl 0110 0110
1101 0011
[11-100-r/m]

- - - 3 3 4

sal mem8, cl 1101 0010
[mod-100-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

sal mem16, cl 1101 0011
[mod-100-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

sal mem32, cl 0110 0110
1101 0011
[mod-100-r/m]

- - - 7 4 4

sal reg8, imm8 1100 0000
[11-100-r/m]
[imm8]

- - 5+imm8 3 2 1

sal reg16, imm8 1100 0001
[11-100-r/m]
[imm8]

- - 5+imm8 3 2 1

sal reg32, imm8 0110 0110
1100 0001
[11-100-r/m]
[imm8]

- - - 3 2 1

sal mem8, imm8 1100 0000
[mod-100-r/m]
[imm8]

- - 8+imm8 7 4 3

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1389

sal mem16, imm8 1100 0001
[mod-100-r/m]
[imm8]

- - 8+imm8 7 4 3

sal mem32, imm8 0110 0110
1100 0001
[mod-100-r/m]
[imm8]

- - - 7 4 3

sar reg8, 1 1101 0000
[11-111-r/m]

2 2 2 3 3 1

sar reg16, 1 1101 0001
[11-111-r/m]

2 2 2 3 3 1

sar reg32, 1 0110 0110
1101 0001
[11-111-r/m]

- - - 3 3 1

sar mem8, 1 1101 0000
[mod-111-r/m]

15+EA 15+EA 7 7 4 3

sar mem16, 1 1101 0001
[mod-111-r/m]

23+EA 15+EA 7 7 4 3

sar mem32, 1 0110 0110
1101 0001
[mod-111-r/m]

- - - 7 4 3

sar reg8, cl 1101 0010
[11-111-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

sar reg16, cl 1101 0011
[11-111-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

sar reg32, cl 0110 0110
1101 0011
[11-111-r/m]

- - - 3 3 4

sar mem8, cl 1101 0010
[mod-111-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

sar mem16, cl
1101 0011
[mod-111-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

sar mem32, cl 0110 0110
1101 0011
[mod-111-r/m]

- - - 7 4 4

sar reg8, imm8 1100 0000
[11-111-r/m]
[imm8]

- - 5+imm8 3 2 1

sar reg16, imm8 1100 0001
[11-111-r/m]
[imm8]

- - 5+imm8 3 2 1

sar reg32, imm8 0110 0110
1100 0001
[11-111-r/m]
[imm8]

- - - 3 2 1

sar mem8, imm8 1100 0000
[mod-111-r/m]
[imm8]

- - 8+imm8 7 4 3

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1390

sar mem16, imm8 1100 0001
[mod-111-r/m]
[imm8]

- - 8+imm8 7 4 3

sar mem32, imm8 0110 0110
1100 0001
[mod-111-r/m]
[imm8]

- - - 7 4 3

sbb reg8, reg8 0001 10x0
[11-reg-r/m]

3 ‘3 2 2 1 1

sbb reg16, reg16 0001 10x1
[11-reg-r/m]

3 3 2 2 1 1

sbb reg32, reg32 0110 0110
0001 10x1
[11-reg-r/m]

3 3 2 2 1 1

sbb reg8, mem8 0001 1010
[mod-reg-r/m]

9+EA 9+EA 7 7 2 2

sbb reg16, mem16 0001 1011
[mod-reg-r/m]

13+EA 9+EA 7 7 2 2

sbb reg32, mem32 0110 0110
0001 1011
[mod-reg-r/m]

- - - 7 2 2

sbb mem8, reg8 0001 1000
[mod-reg-r/m]

16+EA 16+EA 7 6 3 3

sbb mem16, reg16 0001 1001
[mod-reg-r/m]

24+EA 16+EA 7 6 3 3

sbb mem32, reg32 0110 0110
0001 1001
[mod-reg-r/m]

- - - 6 3 3

sbb reg8, imm8 1000 00x0
[11-011-r/m]
[imm]

4 4 3 2 1 1

sbb reg16, imm16 1000 00s1
[11-011-r/m]
[imm]

4 4 3 2 1 1

sbb reg32, imm32 0110 0110
1000 00s1
[11-011-r/m]
[imm]

4 4 3 2 1 1

sbb mem8, imm8 1000 00x0
[mod-011-r/m]
[imm]

17+EA 17+EA 7 7 3 3

sbb mem16, imm16 1000 00s1
[mod-011-r/m]
[imm]

25+EA 17+EA 7 7 3 3

sbb mem32, imm32 0110 0110
1000 00s1
[mod-011-r/m]
[imm]

- - - 7 3 3

sbb al, imm 0001 1100
[imm]

4 4 3 2 1 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1391

sbb ax, imm 0001 1101
[imm]

4 4 3 2 1 1

sbb eax, imm 0110 0110
0001 1101
[imm]

- - - 2 1 1

scasb 1010 0100 15 15 7 8 6 4

scasw 1010 0101 19 15 7 8 6 4

scasd 0110 0110
1010 0101

- - - 8 6 4

rep scasb 1111 0010
1010 0100

9 + 15 * cx 9 + 15*cx 5 + 8*cx 5 + 8*cx 7 + 5*cx
5 if cx=0

9 + 4*cx
7 if cx=0

rep scasw 1111 0010
1010 0101

9 + 19 * cx 9 + 15*cx 5 + 8*cx 5 + 8*cx 7 + 5*cx
5 if cx=0

9 + 4*cx
7 if cx=0

rep scasd 0110 0110
1111 0010
1010 0101

- - - 5 + 8*cx 7 + 5*cx
5 if cx=0

9 + 4*cx
7 if cx=0

seta reg8 0000 1111
1001 0111
[11-000-r/m]e

- - - 4 4 if set
3 if clear

1

seta mem8 0000 1111
1001 0011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setae reg8 0000 1111
1001 0011
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setae mem8 0000 1111
1001 0011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setb reg8 0000 1111
1001 0010
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setb mem8 0000 1111
1001 0010
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setbe reg8 0000 1111
1001 0110
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setbe mem8 0000 1111
1001 0110
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setc reg8 0000 1111
1001 0010
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setc mem8 0000 1111
1001 0010
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

sete reg8 0000 1111
1001 0100
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1392

sete mem8 0000 1111
1001 0100
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setg reg8 0000 1111
1001 1111
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setg mem8 0000 1111
1001 1111
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setge reg8 0000 1111
1001 1101
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setge mem8 0000 1111
1001 1101
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setl reg8 0000 1111
1001 1100
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setl mem8 0000 1111
1001 1100
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setle reg8 0000 1111
1001 1110
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setle mem8 0000 1111
1001 1110
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setna reg8 0000 1111
1001 0110
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setna mem8 0000 1111
1001 0110
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnae reg8 0000 1111
1001 0010
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnae mem8 0000 1111
1001 0010
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnb reg8 0000 1111
1001 0011
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnb mem8 0000 1111
1001 0011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnbe reg8 0000 1111
1001 0111
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnbe mem8 0000 1111
1001 0111
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1393

setnc reg8 0000 1111
1001 0011
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnc mem8 0000 1111
1001 0011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setne reg8 0000 1111
1001 0101
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setne mem8 0000 1111
1001 0101
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setng reg8 0000 1111
1001 1110
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setng mem8 0000 1111
1001 1110
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnge reg8 0000 1111
1001 1100
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnge mem8 0000 1111
1001 1100
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnl reg8 0000 1111
1001 1101
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnl mem8 0000 1111
1001 1101
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnle reg8 0000 1111
1001 1111
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnle mem8 0000 1111
1001 1111
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setno reg8 0000 1111
1001 0001
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setno mem8 0000 1111
1001 0001
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnp reg8 0000 1111
1001 1011
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnp mem8 0000 1111
1001 1011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setns reg8 0000 1111
1001 1001
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1394

setns mem8 0000 1111
1001 1001
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setnz reg8 0000 1111
1001 0101
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setnz mem8 0000 1111
1001 0101
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

seto reg8 0000 1111
1001 0000
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

seto mem8 0000 1111
1001 0000
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setp reg8 0000 1111
1001 1010
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setp mem8 0000 1111
1001 1010
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setpe reg8 0000 1111
1001 1010
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setpe mem8 0000 1111
1001 1010
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setpo reg8 0000 1111
1001 1011
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setpo mem8 0000 1111
1001 1011
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

sets reg8 0000 1111
1001 1000
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

sets mem8 0000 1111
1001 1000
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

setz reg8 0000 1111
1001 0100
[11-000-r/m]

- - - 4 4 if set
3 if clear

1

setz mem8 0000 1111
1001 0100
[mod-000-r/m]

- - - 5 3 if set
4 if clear

2

shl reg8, 1 1101 0000
[11-100-r/m]

2 2 2 3 3 1

shl reg16, 1 1101 0001
[11-100-r/m]

2 2 2 3 3 1

shl reg32, 1 0110 0110
1101 0001
[11-100-r/m]

- - - 3 3 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1395

shl mem8, 1 1101 0000
[mod-100-r/m]

15+EA 15+EA 7 7 4 3

shl mem16, 1 1101 0001
[mod-100-r/m]

23+EA 15+EA 7 7 4 3

shl mem32, 1 0110 0110
1101 0001
[mod-100-r/m]

- - - 7 4 3

shl reg8, cl 1101 0010
[11-100-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

shl reg16, cl 1101 0011
[11-100-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

shl reg32, cl 0110 0110
1101 0011
[11-100-r/m]

- - - 3 3 4

shl mem8, cl 1101 0010
[mod-100-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

shl mem16, cl 1101 0011
[mod-100-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

shl mem32, cl 0110 0110
1101 0011
[mod-100-r/m]

- - - 7 4 4

shl reg8, imm8 1100 0000
[11-100-r/m]
[imm8]

- - 5+imm8 3 2 1

shl reg16, imm8 1100 0001
[11-100-r/m]
[imm8]

- - 5+imm8 3 2 1

shl reg32, imm8 0110 0110
1100 0001
[11-100-r/m]
[imm8]

- - - 3 2 1

shl mem8, imm8 1100 0000
[mod-100-r/m]
[imm8]

- - 8+imm8 7 4 3

shl mem16, imm8 1100 0001
[mod-100-r/m]
[imm8]

- - 8+imm8 7 4 3

shl mem32, imm8 0110 0110
1100 0001
[mod-100-r/m]
[imm8]

- - - 7 4 3

shld reg16, reg16, imm8

r/m is 1st operand,
reg is second operand.

0000 1111
1010 0100
[11-reg-r/m]
[imm8]

- - - 3 2 4

shld reg32, reg32, imm8

r/m is 1st operand,
reg is second operand.

0110 0110
0000 1111
1010 0100
[11-reg-r/m]
[imm8]

- - - 3 2 4

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1396

shld mem16, reg16, imm8 0000 1111
1010 0100
[mod-reg-r/m]
[imm8]

- - - 7 3 4

shld mem32, reg32, imm8 0110 0110
0000 1111
1010 0100
[mod-reg-r/m]
[imm8]

- - - 7 3 4

shld reg16, reg16, cl

r/m is 1st operand,
reg is second operand.

0000 1111
1010 0101
[11-reg-r/m]

- - - 3 3 4

shld reg32, reg32, cl

r/m is 1st operand,
reg is second operand.

0110 0110
0000 1111
1010 0101
[11-reg-r/m]

- - - 3 3 4

shld mem16, reg16, cl 0000 1111
1010 0101
[mod-reg-r/m]

- - - 7 4 5

shld mem32, reg32, cl 0110 0110
0000 1111
1010 0101
[mod-reg-r/m]

- - - 7 4 5

shr reg8, 1 1101 0000
[11-101-r/m]

2 2 2 3 3 1

shr reg16, 1 1101 0001
[11-101-r/m]

2 2 2 3 3 1

shr reg32, 1 0110 0110
1101 0001
[11-101-r/m]

- - - 3 3 1

shr mem8, 1 1101 0000
[mod-101-r/m]

15+EA 15+EA 7 7 4 3

shr mem16, 1 1101 0001
[mod-101-r/m]

23+EA 15+EA 7 7 4 3

shr mem32, 1 0110 0110
1101 0001
[mod-101-r/m]

- - - 7 4 3

shr reg8, cl 1101 0010
[11-101-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

shr reg16, cl 1101 0011
[11-101-r/m]

8 + 4*cl 8 + 4*cl 5 + cl 3 3 4

shr reg32, cl 0110 0110
1101 0011
[11-101-r/m]

- - - 3 3 4

shr mem8, cl 1101 0010
[mod-101-r/m]

20+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

shr mem16, cl 1101 0011
[mod-101-r/m]

28+EA+4*cl 20+EA+4*cl 8 + cl 7 4 4

shr mem32, cl 0110 0110
1101 0011
[mod-101-r/m]

- - - 7 4 4

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1397

shr reg8, imm8 1100 0000
[11-101-r/m]
[imm8]

- - 5+imm8 3 2 1

shr reg16, imm8 1100 0001
[11-101-r/m]
[imm8]

- - 5+imm8 3 2 1

shr reg32, imm8 0110 0110
1100 0001
[11-101-r/m]
[imm8]

- - - 3 2 1

shr mem8, imm8 1100 0000
[mod-101-r/m]
[imm8]

- - 8+imm8 7 4 3

shr mem16, imm8 1100 0001
[mod-101-r/m]
[imm8]

- - 8+imm8 7 4 3

shr mem32, imm8 0110 0110
1100 0001
[mod-101-r/m]
[imm8]

- - - 7 4 3

shrd reg16, reg16, imm8

r/m is 1st operand,
reg is second operand.

0000 1111
1010 1100
[11-reg-r/m]
[imm8]

- - - 3 2 4

shrd reg32, reg32, imm8

r/m is 1st operand,
reg is second operand.

0110 0110
0000 1111
1010 1100
[11-reg-r/m]
[imm8]

- - - 3 2 4

shrd mem16, reg16, imm8 0000 1111
1010 1100
[mod-reg-r/m]
[imm8]

- - - 7 3 4

shrd mem32, reg32, imm8 0110 0110
0000 1111
1010 1100
[mod-reg-r/m]
[imm8]

- - - 7 3 4

shrd reg16, reg16, cl

r/m is 1st operand,
reg is second operand.

0000 1111
1010 1101
[11-reg-r/m]

- - - 3 3 4

shrd reg32, reg32, cl

r/m is 1st operand,
reg is second operand.

0110 0110
0000 1111
1010 1101
[11-reg-r/m]

- - - 3 3 4

shrd mem16, reg16, cl 0000 1111
1010 1101
[disp]

- - - 7 4 5

shld mem32, reg32, cl 0110 0110
0000 1111
1010 1101
[mod-reg-r/m]

- - - 7 4 5

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1398

stc 1111 1001 2 2 2 2 2 2

std 1111 1101 2 2 2 2 2 2

sti 1111 1011 2 2 2 3 5 7

stosb 1010 1010 11 11 3 4 5 3

stosw 1010 1011 15 11 3 4 5 3

stosd 0110 0110
1010 1011

- - - 4 5 3

rep stosb 1111 0010
1010 1010

9 + 10 * cx 9 + 10*cx 4 + 3*cx 5 + 5*cx 7 + 5*cx
5 if cx=0

9 + 3*cx
6 if cx=0

rep stosw 1111 0010
1010 1011

9 + 14 * cx 9 + 10*cx 4 + 3*cx 5 + 5*cx 7 + 5*cx
5 if cx=0

9 + 3*cx
6 if cx=0

rep stosd 0110 0110
1111 0010
1010 1011

- - - 5 + 5*cx 7 + 5*cx
5 if cx=0

9 + 3*cx
6 if cx=0

sub reg8, reg8 0010 10x0
[11-reg-r/m]

3 ‘3 2 2 1 1

sub reg16, reg16 0010 10x1
[11-reg-r/m]

3 3 2 2 1 1

sub reg32, reg32 0110 0110
0010 10x1
[11-reg-r/m]

3 3 2 2 1 1

sub reg8, mem8 0010 1010
[mod-reg-r/m]

9+EA 9+EA 7 7 2 2

sub reg16, mem16 0010 1011
[mod-reg-r/m]

13+EA 9+EA 7 7 2 2

sub reg32, mem32 0110 0110
0010 1011
[mod-reg-r/m]

- - - 7 2 2

sub mem8, reg8 0010 1000
[mod-reg-r/m]

16+EA 16+EA 7 6 3 3

sub mem16, reg16 0010 1001
[mod-reg-r/m]

24+EA 16+EA 7 6 3 3

sub mem32, reg32 0110 0110
0010 1001
[mod-reg-r/m]

- - - 6 3 3

sub reg8, imm8 1000 00x0
[11-101-r/m]
[imm]

4 4 3 2 1 1

sub reg16, imm16 1000 00s1
[11-101-r/m]
[imm]

4 4 3 2 1 1

sub reg32, imm32 0110 0110
1000 00s1
[11-101-r/m]
[imm]

4 4 3 2 1 1

sub mem8, imm8 1000 00x0
[mod-101-r/m]
[imm]

17+EA 17+EA 7 7 3 3

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1399

sub mem16, imm16 1000 00s1
[mod-101-r/m]
[imm]

25+EA 17+EA 7 7 3 3

sub mem32, imm32 0110 0110
1000 00s1
[mod-101-r/m]
[imm]

- - - 7 3 3

sub al, imm 0010 1100
[imm]

4 4 3 2 1 1

sub ax, imm 0010 1101
[imm]

4 4 3 2 1 1

sub eax, imm 0110 0110
0010 1101
[imm]

- - - 2 1 1

test reg8, reg8 1000 0100
[11-reg-r/m]

3 ‘3 2 2 1 1

test reg16, reg16 1000 0101
[11-reg-r/m]

3 3 2 2 1 1

test reg32, reg32 0110 0110
1000 0101
[11-reg-r/m]

3 3 2 2 1 1

test reg8, mem8 1000 0110
[mod-reg-r/m]

9+EA 9+EA 6 5 2 2

test reg16, mem16 1000 0111
[mod-reg-r/m]

13+EA 9+EA 6 5 2 2

test reg32, mem32 0110 0110
1000 0111
[mod-reg-r/m]

- - - 5 2 2

test reg8, imm8 1111 0110
[11-000-r/m]
[imm]

4 4 3 2 1 1

test reg16, imm16 1111 0111
[11-000-r/m]
[imm]

4 4 3 2 1 1

test reg32, imm32 0110 0110
1111 0111
[11-000-r/m]
[imm]

4 4 3 2 1 1

test mem8, imm8 1111 0110
[mod-000-r/m]
[imm]

9+EA 9+EA 6 5 2 2

test mem16, imm16 1111 0111
[mod-000-r/m]
[imm]

13+EA 9+EA 6 5 2 2

test mem32, imm32 0110 0110
1111 0111
[mod-000-r/m]
[imm]

- - - 5 2 2

test al, imm 1010 1000
[imm]

4 4 3 2 1 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1400

test ax, imm 1010 1001
[imm]

4 4 3 2 1 1

test eax, imm 0110 0110
1010 1001
[imm]

- - - 2 1 1

xadd reg8, reg8

r/m is first operand,
reg is second operand.

0000 1111
1100 0000
[11-reg-r/m]

- - - - 3 3

xadd reg16, reg16 0000 1111
1100 0001
[11-reg-r/m]

- - - - 3 3

xadd reg32, reg32 0110 0110
0000 1111
1100 0001
[11-reg-r/m]

- - - - 3 3

xadd mem8, reg8 0000 1111
1100 0000
[mod-reg-r/m]

- - - - 4 4

xadd mem16, reg16 0000 1111
1100 0001
[mod-reg-r/m]

- - - - 4 4

xadd mem32, reg32 0110 0110
0000 1111
1100 0001
[mod-reg-r/m]

- - - - 4 4

xchg reg8, reg8 1000 0110
[11-reg-r/m]

4 4 3 3 3 3

xchg reg16, reg16 1000 0111
[11-reg-r/m]

4 4 3 3 3 3

xchg reg32, reg32 0110 0110
1000 0111
[11-reg-r/m]

- - - 3 3 3

xchg mem8, reg8f 1000 0110
[11-reg-r/m]

17 + EA 17 + EA 5 5 5 3

xchg mem16, reg16 1000 0111
[11-reg-r/m]

25 + EA 17 + EA 5 5 5 3

xchg mem32, reg32 0110 0110
1000 0111
[11-reg-r/m]

- - - 5 5 3

xchg ax, reg16 1001 0rrr 3 3 3 3 3
1 if reg=ax

2
1 if reg=ax

xchg ax, reg32 0110 0110
1001 0rrr

3 3 3 3 3 2

xlat 1101 0111 11 11 5 5 4 4

xor reg8, reg8 0011 00x0
[11-reg-r/m]

3 ‘3 2 2 1 1

xor reg16, reg16 0011 00x1
[11-reg-r/m]

3 3 2 2 1 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendices

Page 1401

a. Real mode, 16-bit segments.
b. Instructions with a 66h or 67h prefix are available only on 80386 and later processors.
c. Timings are all optimistic and do not include the cost of prefix bytes, hazards, fetching, misaligned oper-
ands, etc.
d. Cycle timings for HLT instruction are above and beyond the time spent waiting for an interrupt to occur.

xor reg32, reg32 0110 0110
0011 00x1
[11-reg-r/m]

3 3 2 2 1 1

xor reg8, mem8 0011 0010
[mod-reg-r/m]

9+EA 9+EA 7 7 2 2

xor reg16, mem16 0011 0011
[mod-reg-r/m]

13+EA 9+EA 7 7 2 2

xor reg32, mem32 0110 0110
0011 0011
[mod-reg-r/m]

- - - 7 2 2

xor mem8, reg8 0011 0000
[mod-reg-r/m]

16+EA 16+EA 7 6 3 3

xor mem16, reg16 0011 0001
[mod-reg-r/m]

24+EA 16+EA 7 6 3 3

xor mem32, reg32 0110 0110
0011 0001
[mod-reg-r/m]

- - - 6 3 3

xor reg8, imm8 1000 00x0
[11-110-r/m]
[imm]

4 4 3 2 1 1

xor reg16, imm16 1000 00s1
[11-110-r/m]
[imm]

4 4 3 2 1 1

xor reg32, imm32 0110 0110
1000 00s1
[11-110-r/m]
[imm]

4 4 3 2 1 1

xor mem8, imm8 1000 00x0
[mod-110-r/m]
[imm]

17+EA 17+EA 7 7 3 3

xor mem16, imm16 1000 00s1
[mod-110-r/m]
[imm]

25+EA 17+EA 7 7 3 3

xor mem32, imm32 0110 0110
1000 00s1
[mod-110-r/m]
[imm]

- - - 7 3 3

xor al, imm 0011 0100
[imm]

4 4 3 2 1 1

xor ax, imm 0011 0101
[imm]

4 4 3 2 1 1

xor eax, imm 0110 0110
0011 0101
[imm]

- - - 2 1 1

Table 97: 80x86 Instruction Set Referencea

Instruction
Encoding

(bin)b

Execution Time in Cyclesc

8088 8086 80286 80386 80486 Pentium

Appendix D

Page 1402

e. On the 80386 and most versions of later processors, the processor ignores the reg field’s value for the Scc
instruction; the reg field, however, should contain zero.
f. Most assemblers accept “xchg reg,mem” and encode it as “xchg mem,reg” which does the same thing.

Index

Page 1403

%OUT directive

424

(

146

)

149

.LIST directive

425

.NOLIST directive

425

.RADIX

360

.XLIST directive

425

= Directive

362

16450/16550 serial communications chips

1223

80286 registers

148

80386 registers

149

8042 microcontroller chip

1154

80486 registers

149

80x86 registers

146

8250 registers

1224

8250 Serial Communications Chip

1223

8259A programmable interrupt controller

1005

8286 processor

99

,

110

8486 processor

99

,

116

8686 processor

99

,

123

886 Processor

99

,

110

90/10 rule

1311

90/10 rule, problems with using it

1312

A

AAA instruction

256

,

258

AAD instruction

267

AAM instruction

264

,

266

AAS instruction

259

Aborts

995

Absolute value (floating point)

796

Accepting states

887

Accessing a word in byte addressable memory

87

Accessing an element of a single dimension array

207

Accessing data with a 16-bit bus

89

Accessing double words in memory

91

Accessing elements of 3 & 4 dimensional arrays

213

Accessing elements of a two-dimensional array

212

Accessing elements of an array

209

Accessing elements of multidimensional arrays

217

Accessing fields of a structure

219

Accessing words at odd addresses

90

Accop routine (UCR Std Lib)

778

Accumulator register

99

,

146

Acknowledge line

1200

Active modifiers

1155

Active TSRs

1029

ADC instruction

256

ADD instruction

195

,

256

Add instruction sequence (x86)

108

Adders

61

Addition (extended precision)

470

Address binding

641

,

642

Address bus

86

Address expressions

387

Address spaces

87

Addressable memory

86

Addressing modes

155

,

387

Addressing modes (80x86)

162

Addressing modes (x86)

103

Adventure games

963

AH register

146

AL register

146

ALGOL

565

Algorithm

566

Algorithm implementation (optimizing)

1315

Alignment check flag

149

Allocating storage for arrays

216

Alt key status

293

,

1168

,

1358

AND

467

AND instruction

269

AND operation 20, 44
Anycset routine (UCR Std Lib) 915
APL 565
ARB routine (UCR Standard Library) 919
ARBNUM routine (UCR Std Lib) 920
Arccosecant 806
Arccosine 806
Arccotangent 806
Architecture 83
Arcsine 805
Arctangent 800
Arithmetic and logical unit (ALU) 100
Arithmetic expressions 460, 948
Arithmetic instructions 243, 255
Arithmetic logical systems 468
Arithmetic operations 459
Arithmetic operators in address expressions 388
Arithmetic shift right 27
Array access 207
Array implementation 207
Array initialization 208
Array variables 207
Arrays 206, 285
Arrays as structure fields 220
Arrays of arrays 213
Arrays of structures 220
Arrays of two or more dimensions 210
ASCII character set 15
Assembler directives 355
Assembler for the x86 processors 953
Assembling without linking 428
Assembly language header files 429
Assembly language statements 355
Assigning a constant to a variable 460
Assigning one variable to another 460
Assignments 460
Associativity 44, 463, 464

Thi d t t d ith F M k 4 0 2

Page 1404

ASSUME directive 377
Asynchronous interrupts 997
AT (SEGMENT operand) 373
Atof (UCR Std Lib) 780
ATOH (UCR Std Lib) 341
ATOI (UCR Std Lib) 341
ATOU (UCR Std Lib) 341
Automata theory 883
Automaton 883
Autorepeat rate 293, 1168, 1358
Auxiliary flag 245
AX register 99, 146

B

Backtracking 890
Base (numbering system) specification 360
Base address (of an array) 207
Base address of a structure 219
Base pointer register 146
Base register 158
Base register (80386 & later) 164
Base(d) addressing mode 158
Based index plus displacement addressing (80386 & later) 164
Based indexed addressing (80386 & later) 164
Based indexed addressing mode 160
Based indexed plus displacment addressing mode 160
Basic System Components 83
Baud rate 1234
Baud rate (serial chip) 1225
BCD numbers 14
BH register 146
Biased (excess) exponents 775
Bidirectional parallel port 1199
Bidirectional parallel port data direction bit 1202
Bidrectional data transmission 1200
Big endian data format 254
binary 11
Binary coded decimal numbers 14
Binary constants 360
binary data types 14
Binary Formats 13
Binary Numbering System 12
Binary operator 43
Binding an address to a variable 642
BIOS keyboard support functions 1168
BIOS keyboard variables 1158
BIOS reentrancy problems 1033
Bit fields and packed data 28
Bit instructions 243, 269, 279
Bits 14
Bits per second (bps) 1225
BL register 146
Blurring a gray scale image 1317
Boolean Algebra 43
Boolean algebra 43
Boolean algebra theorems 44

Boolean expression canonical form 49
Boolean expressions 467
Boolean function equivalence to electronic circuits 59
Boolean function names 47
Boolean function numbers 47
Boolean function simplification 52
Boolean functions 45
Boolean functions of n variables 46
Boolean logical systems 468
Boolean map simplification 53
Boolean term 49
Boolean values 14
Boolean values represented as program states 469
BOUND instruction 292
Bounds exception 1001
BP register 146, 158
Branch out of range 297, 298
Break interrupt (serial chip) 1230
Break signal (serial chip) 1228
Breakpoint exception 1001
Brkcset routine (UCR Std Lib) 915
BSF instruction 279
BSR instruction 279
BSWAP instruction 252, 254
BT instruction 279
BTC instruction 279
BTR instruction 279
Bugs in macros 420
Bus contention 118
Bus interface unit (BIU) 100
Busy line (parallel port) 1200
BX register 146, 158
Byte 14
Byte addressable memory array 88
Byte directive 384
Byte enable lines 87, 91
BYTE pseudo-opcode 199
BYTE PTR operator 390
Byte strings 819
Byte variables 198
BYTE variables, initialized 200
Bytes 13

C

C strings 831
C/C++ 565
Cache and its effects on performance 119
Cache hit 97
Cache hit ratio 98
Cache memory 96
Cache miss 97
Cache, two level 98
Calculator application 948
CALL instruction 289, 566
Callee register preservation 573
Caller register preservation 573

Index

Page 1405

Canonical forms 49
Capslock 1155
Capslock key status 293, 1168, 1358
Carry flag 244, 302
Case labels (non-contiguous) 527
Case Statement 525
Case statement 522
CBW instruction 252
CDQ instruction 252
Central Processing Unit 83
CH register 146
Chaining interrupt service routines 1010
Change sign (floating point) 797
Changing the type of a symbol 390
Character constants 361
Character set 854
Character string functions 835
Choosing better algorithms 1315
Church's hypothesis 883
CISC 166
CL register 146
CLASS type (SEGMENT operand) 374
Classifying characters for a DFA/state machine 897
CLC instruction 302
CLD instruction 302
Clear to send (CTS) signal on the serial port 1230
Clearing the FPU exception bits 801
CLI instruction 302
Clock 92
Clock frequency 93
Clock period 93
Clocked logic 62
Closure 43
Closure of an operator 43
CMC instruction 302
CMP instruction 263
CMPS 819, 826
CMPS instruction 284
CMPXCHG instruction 263
Code stream parameters 574
Codeview support for floating point variables 202
Codeview support for SWORD/WORD 201
Coercion 390, 472
Column major ordering 211, 215
COM port addresses 1223
COM1

, COM2

, COM3

, and COM4

ports 1223
ComBaud routine (Standard Library) 1231
Combinatorial circuits 60
Combine type (SEGMENT operand) 373
ComDisIntr routine (Standard Library) 1232
ComGetIER routine (Standard Library) 1232
ComGetIIR routine (Standard Library) 1232
ComGetLCR routine (Standard Library) 1232
ComGetLSR routine (Standard Library) 1232

ComGetMCR routine (Standard Library) 1232
ComGetMSR routine (Standard Library) 1232
ComIn routine (Standard Library) 1232
ComInitIntr routine (Standard Library) 1232
Comment field 356
COMMON (SEGMENT operand) 373
Commutative operators 466
Commutativity 43
ComOut routine (Standard Library) 1232
Compare strings 819
Comparing floating point numbers 773
Comparing floating point values 780
Comparing pointers 154
Comparing strings 848
Comparison of strings 834
ComParity routine (Standard Library) 1231
Compile-only assembly 428
Complex expressions 462
Complex string functions 830
Composite data types 206
Computer Architecture 83
Computing 10**x 807
Computing 2**x 795, 799, 807
Computing LN(x) 808
Computing LOG(x) (base 10) 808
Computing Y**X 808
ComRead routine (Standard Library) 1231
ComSetIER routine (Standard Library) 1232
ComSetLCR routine (Standard Library) 1232
ComSetMCR routine (Standard Library) 1232
ComSize routine (Standard Library) 1231
ComStop routine (Standard Library) 1231
ComTstIn routine (Standard Library) 1232
ComTstOut routine (Standard Library) 1232
ComWrite routine (Standard Library) 1232
Concatenation 847
Concatenation (string function) 844
Condition codes 244
Conditional assembly 397
Conditional jump aliases 298
Conditional jump instructions 296
Conditional jump out of range 297
Conditional jumps (x86) 106
Constants 359
Constructing a truth map 53
Constructing logic functions using only NAND operations 59
Constructing patterns for the match routine (UCR Std Lib) 933
Constructing truth tables from the canonical form 49
Contention (for the bus) 118
Context free grammar 900
Context free languages 900
context free languages 884
Control bus 86
Control characters 29
Control key status 293, 1168, 1358
Control register (parallel port) 1201
Control Structures 521
Control unit (CU) 100

Page 1406

Conversion instructions 252
Conversions 243
Converting a DFA to assembly language 895
Converting a string to upper or lower case 852
Converting BCD to floating point 792
Converting between canonical forms 52
Converting binary to hex 18
Converting CFGs to assembly language 905
Converting CFGs to Std Lib patterns 933
Converting dates in English to integers 941
Converting hex to binary 18
Converting integers to floating point 791
Converting numbers in English to integers 935
Converting REs to CFGs 905
Coprocessor unavailable exception 1004
Copying strings 849
Cosecant 805
Cosine 799
Cotangent 805
Count (string elements) 820
Counters 64
CPU 83
CPU Registers 99
Critical region/section 1013
CS register 155
CWD instruction 252
CWDE instruction 252
Cycle counting 1315

D

D (data) flip-flop 63
DAA instruction 256, 258
DAS instruction 259
Data available on the serial chip 1229
Data bus 84
Data carrier detect (DCD) signal on the serial chip 1231
Data direction bit (bidirectional parallel port) 1202
Data movement instructions 243
Data register (parallel port) 1201
Data register (serial chip) 1224
Data set ready (DSR) signal on the serial chip 1230
Data terminal ready (DTR) signal on the serial port 1228
Dates (DOS) 718
DB directive 384
DB pseudo-opcode 199
DD directive 384
DD pseudo-opcode 201
Deactivating ctrl-alt-del 1184
Debug resume flag 149
Debugging code with IFDEF 399
Debugging registers 149, 1001
DEC instruction 259
decimal 11
Decimal constants 360
Decision 521
Declaring arrays 207

Declaring byte variables 198
Declaring variables 196
Declaring your own types 203
Decoding an instruction 107
Default numeric base 360
Default segment for memory addressing mode (80x86) 168
Default segment in addressing mode (80386) 165
Defining a macro 400
Delay Loops 544
Delete (string function) 843
Deleting characters from a string 850
Deleting leading spaces 846
Deleting trailing spaces from a string 855
Denormalized exception (FPU) 784
Denormalized values 777
Derivation 902
Destination index 820
Destination index register 158
Deterministic finite state automata 884, 893
DH register 146
DI register 158
Direct addressing mode 156
Direct memory access 124
Direction flag 244, 285, 820, 821
Disabling interrupts 1006
Disassembly 130
Disk drive interrupt 1009
Disk transfer area 1040
Displacement only addressing mode 156
Displacement only MOD-REG-R/M byte encoding 168
Display (lexical nesting data structure) 639
Distributive law 44
DIV instruction 267
Divide error exception 1000
Divide errors 268
Division instructions 267
DL register 146
DMA 124
Domain conditioning 496
Domain of a function 494
DOS Idle interrupt 1033
DOS reentrancy problems 1032
DOS' free memory pointer 1025
Dot operator 219
Double precision floating point format 776
Double precision shift instructions 270, 274
Double word storage in byte addressable memory 87
Double word strings 819
Double words 16
Down key code 1153
DQ directive 384
DS register 155
DT directive 384
Duality 45
DUP operator 207
Duplicating strings 849
DW directive 384
DW pseudo-opcode 200

Index

Page 1407

DWORD directive 384
DWORD pseudo-opcode 201
DWORD PTR operator 390
Dynamic link 643, 666
Dynamically allocated strings 831
Dynamically assigning TSR identifiers 1035

E

Early optimization 1311
EAX register 149
EBP register 149
EBX register 149
ECHO directive 424
ECX register 149
EDI register 149
EDX register 149
Effective address 162, 249
Efficency of macros 419
EFLAGS register 149
Eight-bit register 146
EIP register 149
Electronic circuit equivalence to boolean functions 59
Eliminating left recursion 903
ELSE 522
ELSE directive 398
Enabling interrupts 1006
Enabling interrupts on the 8250 serial chip 1229
Encoding for the displacement only addressing mode 168
End of file 334
End of interrupt signal (8259) 1006
ENDIF directive 398
ENDP directive 566
Enter instruction 249
EOS routine (UCR Std Lib) 919
EQU directive 362
Equates 362
ES register 155
ESI register 149
ESP register 149
Etoa (UCR Std Lib) 780
Evaluating arithmetic expressions 948
Even parity 1228
Exception flags (FPU) 785
Exception masks (FPU) 784
Exceptions 995, 1000
Exclusive-or 20
Exclusive-OR operation 47
Exclusive-or operation 21
Execution units 123
EXITM directive 406
Exp(x) (e**x) 807
Exponent 772
Expressions 460
Expressions and temporary values 466
Extended addressing 151
Extended error global data (DOS) 1041

Extended keyboard codes 1155
Extended keyboard status 294, 1169, 1359
Extended precision addition 470
Extended precision floating point format 776
EXTERN types 427
EXTERN/EXTRN directives 427
EXTERNDEF directive 428
Extracting substrings from matched patterns 925

F

F2XM1 instruction 799
FABS instruction 796
Fadd (UCR Std Lib) 780
FADD/FADDP instructions 792
Failure state 894
Falling edge of a clock 93
False (representation) 467
Far calls 391
Far jump instructions 287
Far pointers 205
Far procedures 365, 568
FAR PTR operator 390
Far return 569
Faults 995
FBLD/FBSTP instructions 792
FCHS instruction 797
FCLEX/FNCLEX instructions 801
Fcmp (UCR Std Lib) 780
FCOM/FCOMP/FCOMPP instructions 797
FCOS instruction 799
FDECSTP instruction 803
Fdiv (UCR Std Lib) 780
FDIV/FDIVP/FDIVR/FDIVRP instructions 794
Fetching an opcode 107
FFREE instruction 803
FIADD instruction 803
FICOM instruction 803
FICOMP instruction 803
FIDIV instruction 803
FIDIVR instruction 803
FILD instruction 791
FIMUL instruction 803
Final states 887
FINCSTP instruction 803
FINIT/FNINIT instructions 800
FIST/FISTP instructions 791
FISUB instruction 803
FISUBR instruction 803
Flags 244
Flags (and CMP) 261
Flags register 148
Flat addressing 151
FLD instruction 789
FLD1 instruction (load 1.0) 798
FLDCW instruction 801
FLDENV instruction 801

Page 1408

FLDL2E instruction (load lg(e)) 798
FLDL2T instruction (load lg(10)) 798
FLDLG2 instruction (load log(2)) 798
FLDLN2 instruction (load ln(2)) 798
FLDPI instruction (load pi) 798
FLDZ instruction (load 0.0) 798
Flip-flops 62
Floating point - integer conversions 779
Floating point arithmetic 771
Floating point comparisons 252, 773, 797
Floating point constants 202
Floating point control register 782
Floating point coprocessors 781
Floating point routines (UCR Std Lib) 777
Floating point values 17
Floating point variables 202
Floppy disk interrupt 1009
Flushing the pipeline 119
Fmul (UCR Std Lib) 780
FMUL/FMULP instructions 794
FNOP instruction 803
FOR directive 420
For loops 533
FORC directive 420
Forcing bits to one 22
Forcing bits to zero 22
Formal language theory 883
FORTH 565
FORTRAN 565
FPATAN instruction 800
FPREM/FPREM1 instructions 795
FPTAN instruction 799
FPU busy bit 788
FPU condition code bits 785
FPU control word 801
FPU environment record 801
FPU exception bits 801
FPU exception flags 785
FPU exception masks 784
FPU interrupt 1009
FPU interrupt enable mask 784
FPU precision control 784
FPU stack fault flag 785
FPU Stack pointer 803
FPU Status register 803
FPU status register 785
FPU top of stack pointer 788
FPUs 781
Framing errors (serial chip) 1230
Free (UCR Std Lib) 334
Free memory pointer 1025
Frequency of interrupts 1015
FRNDINT instruction 796
FRSTOR instruction 802
FS register 155
FSAVE/FNSAVE instructions 802
FSCALE instruction 795
FSIN instruction 799

FSINCOS instruction 799
FSQRT instruction 795
FST/FSTP instructions 790
FSTCW instruction 801
FSTENV/FNSTENV instructions 801
FSTSW/FNSTSW instructions 803
Fsub (UCR Std Lib) 780
FSUB/FSUBP/FSUBR/FSUBRP instructions 793
Ftoa (UCR Std Lib) 780
Ftoi (UCR Std Lib) 779
Ftol (UCR Std Lib) 779
Ftou (UCR Std Lib) 779
Ftoul (UCR Std Lib) 779
FTST instruction 798
FUCOM/FUCOMP/FUCOMPP instructions 798
Full adders 61
Function instance 642
Function numbers 47
Function results 600
Functional units 110
Functions 565, 572
FWAIT instruction 801
FWORD pseudo-opcode 202
FXCH instruction 790
FXTRACT instruction 796
FYL2X instruction 800
FYL2XP1 instruction 800

G

Games 963
Garbage collection 831
General purpose registers 146
Generating tables 497
Generic MOV instruction 166
Get date (DOS) 718
Get interrupt vector call (DOS) 998
Get time (DOS) 718
GETC (UCR Std Lib) 334
GETS (UCR Std Lib) 334
GETSM (UCR Std Lib) 334
Global memory locations as parameters 574
GotoPos routine (UCR Std Lib) 921
GS register 155
Guard digits/bits 772

H

H.O. 13
Half adder 61
Handling reentrancy in DOS 1032
Handshaking 1200
Handshaking (serial chip) 1228
Hardware interrupts 995, 1004
Hardware stack operation 251
Harvard architecture 120
Hazards 122

Index

Page 1409

Header files 429
Heap 334
Hertz (Hz) 93
Hexadecimal 14
hexadecimal 11
Hexadecimal Calculators 19
Hexadecimal calculators 19
Hexadecimal constants 360
Hexadecimal numbering system 17
HIGH operator 392
High order bit 13, 14
High order byte 16
High order nibble 15
High order word 16
HIGHWORD operator 392
HLT instruction 302
Hot keys 1184
Hot spots in code 1313
HTOA (UCR Std Lib) 341

I

I/O 124
I/O address bus 87
I/O instructions 243, 284
I/O mapped input/output 124
I/O port 124
I/O ports 284
I/O subsystem 92
ICON 565
Identity element for boolean operations 44
Identity elements 44
IDIV instruction 267
Idle interrupt 1033
IEEE floating point standard (754 & 854) 774
IF directive 398
IF..THEN..ELSE 521, 522
IFB directive 399
IFDEF directive 399
IFDIF directive 400
IFDIFI directive 400
IFE directive 399
IFIDN directive 400
IFIDNI directive 400
IFNB directive 399
IFNDEF directive 399
Implementing an algorithm better 1315
IMUL instruction 264
IMUL/MUL differences 266
IN instruction 284
INC instruction 256, 258
INCLUDE directive 426
Index (string function) 838
Index register 158
Index register (80386 & later) 164
Indexed addressing (80386 & later) 164
Indexed addressing (scaled) 165

Indexed addressing mode 158, 159
Indexed addressing mode (x86) 104
Indirect addressing mode 104
Indirect jump 531
Indirect jump instructions 287
Indirect jumps 522
InDOS flag 1032
Induction variables 540
Infinite precision arithmetic 771
Inhibition operation 47
Initializing a string 819
Initializing array variables 208
Initializing BYTE variables 200
Initializing fields of a structure 220
Initializing interrupt vector table entries 997
Initializing strings and arrays 829
Input conditioning 496
INS instruction 284
Insert (string function) 841
Insert key status 293, 1168, 1358
Inserting characters into a string 851
Inserting characters into the typeahead buffer 293, 1168, 1358
Installing a TSR 1035
Instance 642
Instruction encodings 245
Instruction pointer (IP) 148
Instruction pointer register 102
Instruction pointer register (IP) 99
Instruction prefixes 830
Instruction set 243
INT 0Bh 1008
INT 0Ch 1008
INT 0Dh 1008
INT 0Eh 1009
INT 0Fh 1008
INT 16h keyboard service routine 1169
INT 1Ch 1007
INT 75h 1009
INT 76h 1009
INT 8 1007
INT 9 1008
Int 9 (patching the keyboard interrupt) 1184
Int 9 interrupt service routine 1174
INT instruction 292
INT operation 295
Integer - floating point conversion 779
Integer constants 360
Integer division by two 27
Interrupt 995
Interrupt chaining 1010
Interrupt driven serial I/O 1239
Interrupt enable mask (FPU) 784
Interrupt enable on the 8250 serial chip 1229
Interrupt enable register (serial chip) 1224
Interrupt flag 244, 302
Interrupt frequency 1015
Interrupt identification register (serial chip) 1224
Interrupt in-service register (8259) 1007

Page 1410

Interrupt latency 1016
Interrupt latency consistency 1020
Interrupt mask register (8259) 1006
Interrupt priorities 1020
Interrupt request register (8259) 1007
Interrupt service routine 127, 995
Interrupt service routine (x86) 107
Interrupt service time 1015
Interrupt sources on the serial chip 1226
Interrupt vector 127
Interrupt vector table 996
Interrupts 126
Interrupts and reentrancy 1012
Intersegment jump instruction 286
INTO instruction 292
Intrasegment jump instructions 286
Invalid opcode exception 1004
Invalid operation exception (FPU) 784
Invariant computations 538
Inverse element 44
Inverse element for boolean operations 44
Inverting bits 22
Invoking a macro 401
IRET instruction 292
IRP directive 420
IRPC directive 420
ISR 127
ITOA (UCR Std Lib) 341
Itof (UCR Std Lib) 779

J

JA instruction 297
JAE instruction 297
JB instruction 297
JBE instruction 297
JC instruction 296
Jcc instructions 296
Jcc out of range 297
JCXZ instruction 299
JE instruction 297
JECXZ instruction 299
JG instruction 297
JGE instruction 297
JL instruction 297
JLE instruction 297
JMP instruction 286
JNA instruction 297
JNAE instruction 297
JNB instruction 297
JNBE instruction 297
JNC instruction 296
JNE instruction 297
JNG instruction 297
JNGE instruction 297
JNL instruction 297
JNLE instruction 297

JNO instruction 296
JNP instruction 296
JNS instruction 296
JNZ instruction 296
JO instruction 296
JP instruction 296
JPE instruction 296
JPO instruction 296
JS instruction 296
JZ instruction 296

K

Keyboard 1153
Keyboard controller command byte 1162
Keyboard interrupt service routine 1174
Keyboard interrupts 1008
Keyboard LEDs 1163
Keyboard microcontroller command set 1160
Keyboard microcontroller commands 1162
Keyboard microcontroller status 1160
Keyboard modifiers 1154
Keyboard scan code 1153
Keyboard scan codes 1156, 1351
Keyboard to system commands 1167
Keybounce 1153
Kleene Plus 886
Kleene Star 885
Kost significant bit 14

L

L.O. 13
Label field 355
Label format 358
Label types 385
Label values 386
Labels 358
LAHF instruction 252
Laplink 1209
Laplink parallel cable connections 1209
Large programs 425
Late optimization 1311
Latency (interrupts) 1016
Latency consistency 1020
Lazy evaluation 574
Ldfpa routine (UCR Std Lib) 778
Ldfpo routine (UCR Std Lib) 779
LDS instruction 248
LEA instruction 162, 195, 248
Leading spaces in a string 846
Least significant bit 14
Leave instruction 249
Lefpa routine (UCR Std Lib) 778
Lefpal routine (UCR Std Lib) 779
Lefpo routine (UCR Std Lib) 779
Lefpol routine (UCR Std Lib) 779

Index

Page 1411

Left associative operators 464
Left factoring 903
Left recursive grammars 903
Left shift 26
Length of a string 852
LENGTH operator 392
Length prefixed strings 831
LENGTHOF operator 392
LES instruction 195, 248
Lexical Nesting 639
Lexicographical ordering 826
LFS instruction 248
LGS instruction 248
Lifetime of a variable 642
Line continuation symbol 395
Line control register (serial chip) 1224
Line status register (serial chip) 1224
Linear addressing 151
LISP 565
LIST (.LIST) directive 425
Listing directives 424
Literal constants 359
Literals (boolean) 49
Little endian data format 254
LN(x) 808
Load effective address instruction 248
Load instruction operation (x86) 107
Loading and storing floating point values 778
LOCAL directive (for macros) 406
Local variables 604
Locality of reference 96
Location counter 357, 367
LOCK prefix instruction 303
LODS 819, 829, 830
LODS instruction 284
LOG(x) (base 10) 808
Logarithms (base 2) 800
Logical addresses 152
Logical AND 44
Logical AND operation 20
Logical complement 44
Logical exclusive-OR 47
Logical exclusive-or operation 20, 21
Logical expressions 467
Logical inhibition 47
Logical instructions 243, 269
Logical NAND 47
Logical NOR 47
Logical NOT 47
Logical NOT operation 20, 22
Logical operations 459
Logical Operations on Binary Numbers 22
Logical Operations on Bits 20
Logical operators in address expressions 388
Logical OR 44
Logical OR operation 20, 21
Logical parallel port addresses 1202
Logical shift right 27

Logical to physical address translation (protected mode) 153
Logical to physical address translation (real mode) 152
Logical XOR operation 20
Loop 521
Loop control variables 532
LOOP instruction 534
Loop instruction 300
Loop invariant computations 538
Loop register usage 534
Loop termination 535
Loop termination test 532
Loop unraveling 539
Loop..Endloop 533
Loopback mode (serial chip) 1228
LOOPE/LOOPZ instruction 300
LOOPNE/LOOPNZ instruction 300
Loops 531
LOW operator 392
Low order bit 13, 14
Low order byte 16
Low order nibble 15
Low order word 16
Lower case conversion 852
LOWWORD operator 392
LPT1

, LPT2

, LPT3

ports 1199
Lsfpa routine (UCR Std Lib) 778
Lsfpo routine (UCR Std Lib) 779
LSS instruction 248
Ltof (UCR Std Lib) 779

M

Machine state, saving the 572
Macro operators 407
Macro parameter expansion 407
Macros 400, 404
Macros vs. procedures 404
Madventure 963
Make files 429
MALLOC (UCR Std Lib) 334
Managing large programs 425
Manifest constants 360, 362
Mantissa 772
Map method for boolean function simplification 53
Masking 23
Masking out 14
Masks 490
MASM reserved words 358
Matchchar routine (UCR Std Lib) 917
Matchchars routine (UCR Std Lib) 918
Matchistr routine (UCR Std Lib) 916
Matchstr routine (UCR Std Lib) 916
Matchtochar routine (UCR Std Lib) 918
Matchtopat routine (UCR Std Lib) 918

Page 1412

Matchtostr routine (UCR Std Lib) 917
Maximum addressable memory 86
Megahertz (Mhz) 93
MEMINIT (UCR Std Lib) 334
MEMORY (SEGMENT operand) 373
Memory access 93
Memory access time 93
Memory addressing modes (80386 & later) 163
Memory addressing, default segment 165
Memory banks 89
Memory cells 62
Memory management 151
Memory organization 150
Memory subsystem 87
Memory to memory moves 169
Memory usage under DOS 1025
Memory-mapped I/O 124
Merging source files during assembly 426
Metaware Professional Pascal 665
Microprocessor clock 92
Miscellaneous instructions 243
Mnemonic field 356
MOD field encodings in MOD-REG-R/M byte 167
Modem control register (serial chip) 1224
Modem status register (serial chip) 1224
Modifier key status 293, 1168, 1358
Modifier keys 1154
Modifying the FPU stack pointer 803
MOD-REG-R/M byte 166
MOD-REG-R/M encoding for R/M field 168
MOD-REG-R/M Reg field encodings 167
Modular design 565
Modules 565
Modulo (floating point remainder) 795
MOV instruction 156, 166, 246
MOV instruction encoding 166
Move strings 819
Moving data from one segment register to another 156
MOVS 819, 822
MOVS instruction 284
MOVSX instruction 252
MOVZX instruction 252
MUL instruction 195, 264
MUL/IMUL differences 266
Multidimensional arrays 210
Multiplex interrupt 1034
Multiplication instructions 264
Multiprecision addition 470
Multi-precision integers 859
Multitasking 1025

N

Names of boolean functions 47
NAND gates 59
NAND operation 47
Near jump instructions 287

Near pointers 204
Near procedures 365, 568
NEAR PTR operator 390
Near return 569
Near symbols 385
Nectored interrupts 996
NEG instruction 263
Negation 462
Negation (floating point) 797
Nested procedures 569
Nested statements and loops 542
Nested task flag 148
Newline 336
Nibble 14
Nibbles 13
Nmake.exe program 429
NOLIST (.NOLIST) directive 425
Nondeterministic Finite State Automata 887
Nondeterministic finite state automata 884
Nonmaskable Interrupts 1009
Nonvectored interrupts 996
NOP instruction 302
NOR operation 47
Normalized addresses 154
Normalized values 777
NOT 467
NOT instruction 269
NOT operation 20, 22, 44, 47
Notanycset routine (UCR Std Lib) 916
NOTHING (ASSUME operand) 378
Number of boolean functions 46
Numlock 1155
Numlock key status 293, 1168, 1358

O

Odd parity 1227
OFFSET operator 392
Offset portion of an address 151
Offsets, 16-bits 152
Offsets, 32-bits 152
OPATTR operator 392
Opcodes 102
Operand field 356
Operation codes 102
Operator precedence 396, 463
Opposite jumps 298
Optimal algorithms 1315
Optimization 1311
Optimization – three forms 1315
Optimization via cycle counting 1315
Optimization vs. fast hardware 1315
OR 20, 467
OR instruction 269
OR Operation 21
OR operation 44
OTHERWISE (in CASE) 526

Index

Page 1413

OUT (%OUT) directive 424
OUT instruction 284
OUTS instruction 284
Overflow exception 1001
Overflow exception (FPU) 784
Overflow flag 244
Overlapping blocks (string operations) 823

P

Packed data 28
PAGE directive 424
Paragraph 369
Paragraph addresses 16
Parallel (printer) ports 1199
Parallel data transmission 1199
Parallel port acknowledge line 1200
Parallel port base address 1202
Parallel port data communications 1209
Parallel port data direction bit 1202
Parallel port data, status, and control registers 1201
Parallel port handshaking 1200
Parallel port interrupt 1008
Parallel port IRQ enable 1202
Parallel port signals 1201
Parallel port strobe line 1200
Parameters 291, 574
Parameters, variable length 592
Parity errors 1231, 1236
Parity errors (serial chip) 1230
Parity errors and the serial port 1227
Partial remainder 795
Pascal strings 831
Pass by lazy evaluation 574, 654
Pass by name 654
Pass by name parameters 574
Pass by reference 653
Pass by reference parameters 574
Pass by result 653
Pass by value 652
Pass by value parameters 574
Pass by value/returned 575
Pass by value/returned parameters 574
Pass by value-result 653
Passing control from one ISR to another 1010
Passing parameters by lazy-evaluation in a block structured lan-

guage 654
Passing parameters by name 576
Passing parameters by name in a block structured language 654
Passing parameters by reference in a block structured language 653
Passing parameters by result 576
Passing parameters by Result in a block structured language 653
Passing parameters by value in a block structured language 652
Passing parameters by value-result in a block structured language

653
Passing parameters from one procedure as parameters to another

655

Passing parameters in a parameter block 574, 598
Passing parameters in global memory locations 574
Passing parameters in global variables 580
Passing parameters in registers 574, 578
Passing parameters in the code stream 574, 590
Passing parameters on the stack 574, 581
Passing variables from different lex levels as parameters 652
Passive TSRs 1029
Patch panel programming 101
Patching an application 1055
Patching the keyboard interrupt (int 9) 1184
Patgrab routine (UCR Std Lib) 926
Pattern data structure (UCR Std Lib) 913
Pattern matching 883
Pattern matching functions 922
Performance improvements for loops 535
Physical addresses 152
PIC 1005
Pipeline flush 119
Pipeline stalls 118
Pipelining 116
Pixel 1318
PL/I 565
Pointers 203
Pointers to structures 221
Polled I/O 126
Polling 1014
Polling the serial port 1236
POP instruction 249
POPA/POPAD instruction 249
POPF instruction 249
Pop-up programs 1029
Port 124
Port addresses 284
Pos routine (UCR Std Lib) 921
Precedence 396, 463
Precision exception (FPU) 784
Prefetch queue 112
Prefetch queue and effects on performance 119
Prefixes 830
Preserving registers 572
Principle of duality 45
PRINT (UCR Std Lib) 336
Printer device BIOS variables 1203
Printer time-out variables 1203
PRINTF (UCR Std Lib) 336
Printff (UCR Std Lib) 780
Printing a character 1203
Prioritized interrupts 1020
Problems with the 90/10 rule 1312
PROC directive 566
Procedural languages 565
Procedural macros 400
Procedure instance 642
Procedure invocation 566
Procedure standard entry code 582
Procedure standard exit code 582
Procedures 365, 565

Page 1414

Procedures vs. macros 404
Processor size 85
Processor status register 244
Product of maxterms representation 49
Professional Pascal 665
Profiler program 1313
Program analysis for optimization 1314
Program flow instructions 243, 286
Program memory usage under DOS 1025
Program unit 644
Programmable interrupt controller 1005
Programming in the large 426
PROLOG 565
Protected mode 152, 153
Protected mode instructions 303
PrtSc key and INT 5 1004
Pseudo opcodes 355
PSP 1040
PTR operator 390, 392
PUBLIC (SEGMENT operand) 373
PUBLIC directive 427
push down automata 884
PUSH instruction 249
PUSHA/PUSHAD instruction 249
Pushdown automata 902
PUSHF instruction 249
PUTC (UCR Std Lib) 336
PUTCR (UCR Std Lib) 336
PUTH (UCR Std Lib) 336
PUTI (UCR Std Lib) 336
Putisize routine (std lib) 336
PUTS (UCR Std Lib) 336
Putusize routine (std lib) 336

Q

Quicksort 607
QWORD directive 384
QWORD pseudo-opcode 202

R

radix 17
RADIX specification 360
Range of a function 494
RCL instruction 276, 277
RCR instruction 276, 277
Read control line 87
Reading a character from the keyboard 293, 1168, 1358
Reading characters from the keyboard (DOS) 1167
Reading data from the serial port 1231
Reading from memory 87
Real addresses 150
Real mode 150, 153
REAL10 pseudo-opcode 202
REAL4 pseudo-opcode 202
REAL8 pseudo-opcode 202

Recognizers 884
Records 218
Recursion 606
Reducing the size of a DFA/state machine table 897
Redundant instructions on 80x86 168
Reentrancy 1032
Reentrancy problems with the BIOS 1033
Reentrant programs 1012
REG field encoding of MOD-REG-R/M byte 168
REG field encodings in MOD-REG-R/M byte 167
Register addressing modes 156
Register addressing modes (80386 & later) 163
Register indirect addressing (80386 & later) 163
Register indirect addressing mode 158
Register preservation 572
Register usage in loops 534
Registers 146
Registers (electronic implementation) 63
Registers as procedure parameters 574, 578
Regular Expressions 885
regular languages 884
Relational operators in address expressions 388
Relocatable expressions 389
Remainder (floating point) 795
Removing a TSR 1037
Removing trailing spaces from a string 855
REP/REPE/REPZ/REPNE/REPNZ instructions 284
Repeat (string function) 840
REPEAT directive 420
Repeat Until loop 532
Repeating a character throughout a string 853
REPT directive 420
Request to send (RTS) on the serial port 1228
Reserved words 358
Reset (ctrl-alt-del) deactivation 1184
Resetting interrupt conditions on the serial chip 1226
Resident portion of a TSR 1026
Resident programs 999
Resume flag 149
Resume frame (for iterators) 666
RET instruction 289, 566
RETF instruction 569
RETN instruction 569
Reversing the characters in a string 853
RGotoPos routine (UCR Std Lib) 922
Right associative operators 464
Right shift 26
Ring indicator (RI) signal on the serial chip 1230
Rising edge of a clock 93
ROL instruction 276, 278
ROR instruction 276, 278
Rotate instructions 243, 269, 276
Rotate left 27
Rotate right 27
Rounding a floating point value to an integer 796
Rounding control (FPU) 783
Row major ordering 211
RPos routine (UCR Std Lib) 921

Index

Page 1415

S

SAHF instruction 252
SAL instruction 270, 271
SAR instruction 270, 272
Saving FPU state 802
Saving the machine state 572
SBB instruction 259
Sbyte directive 384
SBYTE pseudo-opcode 199
Scalar variables 197
Scaled indexed addressing mode 165
Scan code 1153
SCAS 819, 828
SCAS instruction 284
SCC (serial communications chip) 1223
Schematic symbols 59
Scope 363, 639
Scroll lock 1155
Scroll lock key status 293, 1168, 1358
SDWORD directive 384
SDWORD pseudo-opcode 201
Search for a single character within a string 848
Searching for data within a string 819
Searching for one string within another 855
Secant 805
SEG operator 392
Segment loading order 368, 375
Segment names 367
Segment override prefix 157
Segment portion of an address 151
Segment prefixes 377
Segment registers 155
SEGMENT statement operands 369
Segmentation as a two-dimensional access 152
Segmented address 16
Segmented addresses 152
Segments 366
Segments on the 80x86 151
Self-modifying code 136
Semantic action 929
Semantic rule 929
Semaphores 263
Semiresident programs 1055
Sending a character to the printer via BIOS 1203
Sending a character to the printer via DOS 1203
Separate assembly 425
Separate compilation 425
Sequential logic 62
Serial chip input, testing for data available 1229
Serial data transmission 1199
Serial port I/O 1231
Serial port I/O addresses 1224
Serial port interrupt 1008
Serial port interrupt handlers 1239
Serial port loopback mode 1228
Serial port parity options 1231
Serial port, polled I/O 1236

Serial ports 1223
Set date (DOS) 718
Set interrupt vector call (DOS) 997
Set time (DOS) 718
SETcc instructions 281
SETL 565
Setting the autorepeat rate 293, 1168, 1358
Setting the baud rate on the serial chip 1225
Setting the number of serial port stop bits 1231
Setting the serial communications data size 1235
Setting the serial port baud rate 1231, 1234
Setting the serial port data size 1231
Seven segment decoder 61
Sharing interrupt vectors between ISRs 1010
SHELL.ASM 170
Shift instructions 243, 269, 270
Shift key status 293, 1168, 1358
Shift registers 64
SHL instruction 270, 271
SHLD instruction 270, 274
Short circuit evaluation 470
SHORT operator 392
SHR instruction 270, 273
SHRD instruction 270, 274
SI register 158
Side effects 602
Side effects in macros 419
Sign bit 23
Sign extension 25, 252, 268
Sign flag 244
Signed 23
Signed and unsigned numbers 23
Signed comparisons 282
Signed division 268
Signed integer variables 200
Significant digits 772
Simplification of boolean functions 52
Simulating keystrokes 1186
Sine 799
Single precision floating point format 775
Single step exception 1000
Sixteen-bit bus data access 89
Size of a processor 85
SIZE operator 392
SIZEOF operator 392
Skip routine (UCR Std Lib) 920
Sl_match2 routine (UCR Std Lib) 922
SNOBOL4 565
Software interrupts 995
Source index 820
Source index register 158
Spaghetti code 531
Spancset routine (UCR Std Lib) 914
Spanning strings 854
Spatial locality of reference 96
Special purpose registers 148
Square root 795
SR (set/reset) flip flop 62

Page 1416

SS register 155
STACK (SEGMENT operand) 373
Stack fault flag (FPU) 785
Stack frame 666
Stack-based parameters for procedures 574
Stalls 118
Standard entry code 582
Standard exit code 582
Start bits (serial chip) 1227
starting state 887
State machine 529
State machines 896
State variable 529
Static link 643
Statically allocated strings 831
Status register (FPU) 785
Status register (parallel port) 1201
STC instruction 302
STD instruction 302
STI instruction 302
Stop bits 1235
Stop bits (serial chip) 1227
Store instruction sequence (x86) 108
Stored program computer systems 101
Storing double words in byte addressable memory 87
Storing words in byte addressable memory 87
STOS 819, 828, 830
STOS instruction 284
StrBDel, StrBDelm string functions 846
Strcat, strcatl, strcatm strcatml functions 847
Strchr function 848
Strcmp, strcmpl functions 848
Strcpy, strcpyl functions 849
Strcspan, strcspanl functions 854
Strdel, strdelm functions 850
Strdup, strdupl functions 849
Stricmp, stricmpl functions 848
String assignment 832, 849
String comparison 834
String comparisons 848
String concatenation 844, 847
String constants 361
String deletion 850
String functions 835
String insertion functions 851
String instructions 243, 284, 819
String length 852
String length computation using SCAS 834
String primitives 819
String reversal 853
Strings 285, 819
Strins, strinsl, strinsm, strinsml functions 851
Strlen function 852
Strlwr, strlwrm functions 852
Strobe line (parallel port) 1200
Strongly type assembler 385
Strrev, strrevm functions 853
Strset, strsetm functions 853

Strspan, strspanl functions 854
Strstr, strstrl functions 855
Strtrim, strtrimm functions 855
STRUCT assembler directive 218
Structure initial values 220
Structure, accessing fields of... 219
Structures 218
Structures as structure fields 220
Strupr, struprm functions 852
Stuck parity 1228
Stuffing keys into the system keyboard buffer 1186
SUB instruction 259
Sub instruction sequence (x86) 108
Subroutine instance 642
Subroutines 289, 290
Substr (substring) 835
Substrings in patterns 925
Subtraction instructions 259
SUBTTL directive 424
Sum of minterms representation 49
Superscalar CPUs 123
Sword directive 384
SWORD pseudo-opcode 200
Symbol format 358
Symbol type 385
Symbol types 387
Symbol values 386
Symbolic addresses 358
Symbolic constants 360
Symbols 358
Synchronizing the FPU 801
Synthesizing a While loop 532
System bus 84
System clock 92
System clock frequency 93
System clock period 93
System timing 92

T

Table 493
Table generation 497
Tangent 799
Task switching with an FPU 802
TBYTE directive 384
TBYTE pseudo-opcode 202
TBYTE PTR operator 390
Temporal locality of reference 96
Temporary values in an expression 466
Term (boolean) 49
Terminate and stay resident programs 1025
Termination test (for loops) 532
Termination test for loops 535
Test for zero (floating point) 798
TEST instruction 279
Testing for an available key at the keyboard 293, 1168, 1358
Text constants 362

Index

Page 1417

TEXTEQU directive 362
Theorems of boolean algebra 44
THIS operator 392
Three types of optimization 1315
Thunk 577
Timer interrupt 1007
Times (DOS) 718
Timing Delay Loops 544
TITLE directive 424
Toggle modifiers 1155
Trace exception 1000
Trace flag 245, 1186
Transient applications 1025
Transmitter empty flag (serial chip) 1230
Transmitting data between two computers 1209
Traps 995, 999
True (representation) 467
Truth maps 53
truth table 20
Truth tables 45
TSR 19
TSR identification 1035
TSR Installation 1035
TSR removal 1037
TSRs 1025
TTL logic levels 84
Turing machine 912
Two dimensional array model of segmentation 152
Two level caching system 98
Two’s complement 16
Two’s complement representation 23
Type ahead buffer 1008, 1158
Type ahead buffer (scan code insertion) 293, 1168, 1358
Type checking on BYTE values 199
Type conflicts 386
TYPE operator 392
Type operator 396
Type operators 392
TYPEDEF assembler directive 203
Types 385
Types of character strings 831

U

UCR Standard Library 333
UCR Standard Library floating point routines 777
UCR Standard Library string functions 845
Ultof (UCR Std Lib) 779
Unconditional JMP instructions 286
Underflow exception (FPU) 784
Unidirectional parallel port 1199
Unique boolean functions 46
Unit activation 642
Universal boolean function (NAND) 59
Universal boolean functions (NOR) 60
Unraveling loops 539
Unsigned comparisons 282

Unsigned division 267
unsigned multiplication 265
Unsigned numbers 23
Up code 1154
Upper case conversion 852
UTOA (UCR Std Lib) 341
Utof (UCR Std Lib) 779

V

Variable length parameters 592
Variable lifetime 641, 642
Variables 196, 384
Variables, byte 198
Variables, BYTE, initialized 200
Variables, double word 201
Variables, word 200
Virtual 8086 mode 149
VM (virtual machine) flag 149
Von Neumann, John 83

W

Wait states 95
While loop 532
Wildcard characters 883
Word access in byte addressable memory 87
Word directive 384
WORD pseudo-opcode 200
WORD PTR operator 390
Word ptr operator 472
Word strings 819
Word variables 200
Words 13, 15
Words stored at odd addresses 90
Wrappers (for nonreentrant code) 1033
Write control line 87
Writing data to the serial port 1232
Writing to memory 87
WTOA (UCR Std Lib) 341

X

x86 conditional jumps 106
x86 CPU registers 99
x86 instruction set 102
X86 mini-assembler 953
Xaccop routine (UCR Std Lib) 778
XADD instruction 256, 258
XLAT instruction 252, 255
XLIST (.XLIST) directive 425
XOR 467
XOR instruction 269
XOR operation 20, 21

Page 1418

Z

Zero divide exception (FPU) 784
Zero extension 252, 268
Zero flag 244
Zero terminated strings 831

	Brief TOC
	Full TOC
	Why Would Anyone Learn This Stuff?
	WhatÌs Wrong With Assembly Language
	WhatÌs Right With Assembly Language?
	Organization of This Text and Pedagogical Concerns
	Obtaining Program Source Listings and Other Materials in This Text

	1. Data Representation
	Chapter Overview
	Numbering Systems
	A Review of the Decimal System
	The Binary Numbering System
	Binary Formats
	Data Organization
	Bits
	Nibbles
	Bytes
	Words
	Double Words
	The Hexadecimal Numbering System
	Arithmetic Operations on Binary and Hexadecimal Numbers
	Logical Operations on Bits
	Logical Operations on Binary Numbers and Bit Strings
	Signed and Unsigned Numbers
	Sign and Zero Extension
	Shifts and Rotates
	Bit Fields and Packed Data
	The ASCII Character Set
	Summary
	Laboratory Exercises
	Installing the Software
	Data Conversion Exercises
	Logical Operations Exercises
	Sign and Zero Extension Exercises
	Packed Data Exercises
	Questions
	Programming Projects

	2. Boolean Algebra
	Chapter Overview
	Boolean Algebra
	Boolean Functions and Truth Tables
	Algebraic Manipulation of Boolean Expressions
	Canonical Forms
	Simplification of Boolean Functions
	What Does This Have To Do With Computers, Anyway?
	Correspondence Between Electronic Circuits and Boolean Functions
	Combinatorial Circuits
	Sequential and Clocked Logic
	Okay, What Does It Have To Do With Programming, Then?
	Generic Boolean Functions
	Laboratory Exercises
	Truth Tables and Logic Equations Exercises
	Canonical Logic Equations Exercises
	Optimization Exercises
	Logic Evaluation Exercises
	Programming Projects
	Summary
	Questions

	3. System Organization
	Chapter Overview
	The Basic System Components
	The System Bus
	The Data Bus
	The Address Bus
	The Control Bus
	The Memory Subsystem
	The I/O Subsystem
	System Timing
	The System Clock
	Memory Access and the System Clock
	Wait States
	Cache Memory
	The 886, 8286, 8486, and 8686 ÏHypotheticalÓ Processors
	CPU Registers
	The Arithmetic & Logical Unit
	The Bus Interface Unit
	The Control Unit and Instruction Sets
	The x86 Instruction Set
	Addressing Modes on the x86
	Encoding x86 Instructions
	Step-by-Step Instruction Execution
	The Differences Between the x86 Processors
	The 886 Processor
	The 8286 Processor
	The 8486 Processor
	The 8486 Pipeline
	Stalls in a Pipeline
	Cache, the Prefetch Queue, and the 8486
	Hazards on the 8486
	The 8686 Processor
	I/O (Input/Output)
	Interrupts and Polled I/O
	Laboratory Exercises
	The SIMx86 Program Ò Some Simple x86 Programs
	Simple I/O-Mapped Input/Output Operations
	Memory Mapped I/O
	DMA Exercises
	Interrupt Driven I/O Exercises
	Machine Language Programming & Instruction Encoding Exercises
	Self Modifying Code Exercises
	Programming Projects
	Summary
	Questions

	4. Memory Layout and Access
	Chapter Overview
	The 80x86 CPUs:A ProgrammerÌs View
	8086 General Purpose Registers
	8086 Segment Registers
	8086 Special Purpose Registers
	80286 Registers
	80386/80486 Registers
	80x86 Physical Memory Organization
	Segments on the 80x86
	Normalized Addresses on the 80x86
	Segment Registers on the 80x86
	The 80x86 Addressing Modes
	8086 Register Addressing Modes
	8086 Memory Addressing Modes
	The Displacement Only Addressing Mode
	The Register Indirect Addressing Modes
	Indexed Addressing Modes
	Based Indexed Addressing Modes
	Based Indexed Plus Displacement Addressing Mode
	An Easy Way to Remember the 8086 Memory Addressing Modes
	Some Final Comments About 8086 Addressing Modes
	80386 Register Addressing Modes
	80386 Memory Addressing Modes
	Register Indirect Addressing Modes
	80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing Modes
	80386 Scaled Indexed Addressing Modes
	Some Final Notes About the 80386 Memory Addressing Modes
	The 80x86 MOV Instruction
	Some Final Comments on the MOV Instructions
	Laboratory Exercises
	The UCR Standard Library for 80x86 Assembly Language Programmers
	Editing Your Source Files
	The SHELL.ASM File
	Assembling Your Code with MASM
	Debuggers and CodeViewë
	A Quick Look at CodeView
	The Source Window
	The Memory Window
	The Register Window
	The Command Window
	The Output Menu Item
	The CodeView Command Window
	The Radix Command (N)
	The Assemble Command
	The Compare Memory Command
	The Dump Memory Command
	The Enter Command
	The Fill Memory Command
	The Move Memory Command
	The Input Command
	The Output Command
	The Quit Command
	The Register Command
	The Unassemble Command
	CodeView Function Keys
	Some Comments on CodeView Addresses
	A Wrap on CodeView
	Laboratory Tasks
	Programming Projects
	Summary
	Questions

	5. Variables and Data Structures
	Chapter Overview
	Some Additional Instructions: LEA, LES, ADD, and MUL
	Declaring Variables in an Assembly Language Program
	Declaring and Accessing Scalar Variables
	Declaring and using BYTE Variables
	Declaring and using WORD Variables
	Declaring and using DWORD Variables
	Declaring and using FWORD, QWORD, and TBYTE Variables
	Declaring Floating Point Variables with REAL4, REAL8, and REAL10
	Creating Your Own Type Names with TYPEDEF
	Pointer Data Types
	Composite Data Types
	Arrays
	Declaring Arrays in Your Data Segment
	Accessing Elements of a Single Dimension Array
	Multidimensional Arrays
	Row Major Ordering
	Column Major Ordering
	Allocating Storage for Multidimensional Arrays
	Accessing Multidimensional Array Elements in Assembly Language
	Structures
	Arrays of Structures and Arrays/Structures as Structure Fields
	Pointers to Structures
	Sample Programs
	Simple Variable Declarations
	Using Pointer Variables
	Single Dimension Array Access
	Multidimensional Array Access
	Simple Structure Access
	Arrays of Structures
	Structures and Arrays as Fields of Another Structure
	Pointers to Structures and Arrays of Structures
	Laboratory Exercises
	Programming Projects
	Summary
	Questions

	6. The 80x86 Instruction Set
	Chapter Overview
	The Processor Status Register (Flags)
	Instruction Encodings
	Data Movement Instructions
	The MOV Instruction
	The XCHG Instruction
	The LDS, LES, LFS, LGS, and LSS Instructions
	The LEA Instruction
	The PUSH and POP Instructions
	The LAHF and SAHF Instructions
	Conversions
	The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions
	The BSWAP Instruction
	The XLAT Instruction
	Arithmetic Instructions
	The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA
	The ADD and ADC Instructions
	The INC Instruction
	The XADD Instruction
	The AAA and DAA Instructions
	The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS
	The CMP Instruction
	The CMPXCHG, and CMPXCHG8B Instructions
	The NEG Instruction
	The Multiplication Instructions: MUL, IMUL, and AAM
	The Division Instructions: DIV, IDIV, and AAD
	Logical, Shift, Rotate and Bit Instructions
	The Logical Instructions: AND, OR, XOR, and NOT
	The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD
	SHL/SAL
	SAR
	SHR
	The SHLD and SHRD Instructions
	The Rotate Instructions: RCL, RCR, ROL, and ROR
	RCL
	RCR
	ROL
	ROR
	The Bit Operations
	TEST
	The Bit Test Instructions: BT, BTS, BTR, and BTC
	Bit Scanning: BSF and BSR
	The ÏSet on ConditionÓ Instructions
	I/O Instructions
	String Instructions
	Program Flow Control Instructions
	Unconditional Jumps
	The CALL and RET Instructions
	The INT, INTO, BOUND, and IRET Instructions
	The Conditional Jump Instructions
	The JCXZ/JECXZ Instructions
	The LOOP Instruction
	The LOOPE/LOOPZ Instruction
	The LOOPNE/LOOPNZ Instruction
	Miscellaneous Instructions
	Sample Programs
	Simple Arithmetic I
	Simple Arithmetic II
	Logical Operations
	Shift and Rotate Operations
	Bit Operations and SETcc Instructions
	String Operations
	Conditional Jumps
	CALL and INT Instructions
	Conditional Jumps I
	Conditional Jump Instructions II
	Laboratory Exercises
	The IBM/L System
	IBM/L Exercises
	Programming Projects
	Summary
	Questions

	7. The UCR Standard Library
	Chapter Overview
	An Introduction to the UCR Standard Library
	Memory Management Routines: MEMINIT, MALLOC, and FREE
	The Standard Input Routines: GETC, GETS, GETSM
	The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT, and PRINTF
	Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize
	Output Field Size Routines: Isize, Usize, and Lsize
	Conversion Routines: ATOx, and xTOA
	Routines that Test Characters for Set Membership
	Character Conversion Routines: ToUpper, ToLower
	Random Number Generation: Random, Randomize
	Constants, Macros, and other Miscellany
	Plus more!
	Sample Programs
	Stripped SHELL.ASM File
	Numeric I/O
	Laboratory Exercises
	Obtaining the UCR Standard Library
	Unpacking the Standard Library
	Using the Standard Library
	The Standard Library Documentation Files
	Programming Projects
	Summary
	Questions

	8. MASM: Directives & Pseudo-Opcodes
	Chapter Overview
	Assembly Language Statements
	The Location Counter
	Symbols
	Literal Constants
	Integer Constants
	String Constants
	Real Constants
	Text Constants
	Declaring Manifest Constants Using Equates
	Processor Directives
	Procedures
	Segments
	Segment Names
	Segment Loading Order
	Segment Operands
	The ALIGN Type
	The COMBINE Type
	The CLASS Type
	The Read-only Operand
	The USE16, USE32, and FLAT Options
	Typical Segment Definitions
	Why You Would Want to Control the Loading Order
	Segment Prefixes
	Controlling Segments with the ASSUME Directive
	Combining Segments: The GROUP Directive
	Why Even Bother With Segments?
	The END Directive
	Variables
	Label Types
	How to Give a Symbol a Particular Type
	Label Values
	Type Conflicts
	Address Expressions
	Symbol Types and Addressing Modes
	Arithmetic and Logical Operators
	Coercion
	Type Operators
	Operator Precedence
	Conditional Assembly
	IF Directive
	IFE directive
	IFDEF and IFNDEF
	IFB, IFNB
	IFIDN, IFDIF, IFIDNI, and IFDIFI
	Macros
	Procedural Macros
	Macros vs. 80x86 Procedures
	The LOCAL Directive
	The EXITM Directive
	Macro Parameter Expansion and Macro Operators
	A Sample Macro to Implement For Loops
	Macro Functions
	Predefined Macros, Macro Functions, and Symbols
	Macros vs. Text Equates
	Macros: Good and Bad News
	Repeat Operations
	The FOR and FORC Macro Operations
	The WHILE Macro Operation
	Macro Parameters
	Controlling the Listing
	The ECHO and %OUT Directives
	The TITLE Directive
	The SUBTTL Directive
	The PAGE Directive
	The .LIST, .NOLIST, and .XLIST Directives
	Other Listing Directives
	Managing Large Programs
	The INCLUDE Directive
	The PUBLIC, EXTERN, and EXTRN Directives
	The EXTERNDEF Directive
	Make Files
	Sample Program
	EX8.MAK
	Matrix.A
	EX8.ASM
	GETI.ASM
	GetArray.ASM
	XProduct.ASM
	Laboratory Exercises
	Near vs. Far Procedures
	Data Alignment Exercises
	Equate Exercise
	IFDEF Exercise
	Make File Exercise
	Programming Projects
	Summary
	Questions

	9. Arithmetic and Logical Operations
	Chapter Overview
	Arithmetic Expressions
	Simple Assignments
	Simple Expressions
	Complex Expressions
	Commutative Operators
	Logical (Boolean) Expressions
	Multiprecision Operations
	Multiprecision Addition Operations
	Multiprecision Subtraction Operations
	Extended Precision Comparisons
	Extended Precision Multiplication
	Extended Precision Division
	Extended Precision NEG Operations
	Extended Precision AND Operations
	Extended Precision OR Operations
	Extended Precision XOR Operations
	Extended Precision NOT Operations
	Extended Precision Shift Operations
	Extended Precision Rotate Operations
	Operating on Different Sized Operands
	Machine and Arithmetic Idioms
	Multiplying Without MUL and IMUL
	Division Without DIV and IDIV
	Using AND to Compute Remainders
	Implementing Modulo-n Counters with AND
	Testing an Extended Precision Value for 0FFFF..FFh
	TEST Operations
	Testing Signs with the XOR Instruction
	Masking Operations
	Masking Operations with the AND Instruction
	Masking Operations with the OR Instruction
	Packing and Unpacking Data Types
	Tables
	Function Computation via Table Look Up
	Domain Conditioning
	Generating Tables
	Sample Programs
	Converting Arithmetic Expressions to Assembly Language
	Boolean Operations Example
	64-bit Integer I/O
	Packing and Unpacking Date Data Types
	Laboratory Exercises
	Debugging Programs with CodeView
	Debugging Strategies
	Locating Infinite Loops
	Incorrect Computations
	Illegal Instructions/Infinite Loops Part II
	Debug Exercise I: Using CodeView to Find Bugs in a Calculation
	Software Delay Loop Exercises
	Programming Projects 9.12 Summary
	Questions

	10. Control Structures
	Chapter Overview
	Introduction to Decisions
	IF..THEN..ELSE Sequences
	CASE Statements
	State Machines and Indirect Jumps
	Spaghetti Code
	Loops
	While Loops
	Repeat..Until Loops
	LOOP..ENDLOOP Loops
	FOR Loops
	Register Usage and Loops
	Performance Improvements
	Moving the Termination Condition to the End of a Loop
	Executing the Loop Backwards
	Loop Invariant Computations
	Unraveling Loops
	Induction Variables
	Other Performance Improvements
	Nested Statements
	Timing Delay Loops
	Sample Program
	Laboratory Exercises
	The Physics of Sound
	The Fundamentals of Music
	The Physics of Music
	The 8253/8254 Timer Chip
	Programming the Timer Chip to Produce Musical Tones
	Putting it All Together
	Amazing Grace Exercise
	Programming Projects
	Summary
	Questions

	11. Procedures and Functions
	Chapter Overview
	Procedures
	Near and Far Procedures
	Forcing NEAR or FAR CALLs and Returns
	Nested Procedures
	Functions
	Saving the State of the Machine
	Parameters
	Pass by Value
	Pass by Reference
	Pass by Value-Returned
	Pass by Result
	Pass by Name
	Pass by Lazy-Evaluation
	Passing Parameters in Registers
	Passing Parameters in Global Variables
	Passing Parameters on the Stack
	Passing Parameters in the Code Stream
	Passing Parameters via a Parameter Block
	Function Results
	Returning Function Results in a Register
	Returning Function Results on the Stack
	Returning Function Results in Memory Locations
	Side Effects
	Local Variable Storage
	Recursion
	Sample Program
	Laboratory Exercises
	Ex11_1.cpp
	Ex11_1.asm
	EX11_1a.asm
	Programming Projects
	Summary
	Questions

	12. Procedures: Advanced Topics
	Chapter Overview
	Lexical Nesting, Static Links, and Displays
	Scope
	Unit Activation, Address Binding, and Variable Lifetime
	Static Links
	Accessing Non-Local Variables Using Static Links
	The Display
	The 80286 ENTER and LEAVE Instructions
	Passing Variables at Different Lex Levels as Parameters.
	Passing Parameters by Value in a Block Structured Language
	Passing Parameters by Reference, Result, and Value-Result in a Block Structured Language
	Passing Parameters by Name and Lazy-Evaluation in a Block Structured Language
	Passing Parameters as Parameters to Another Procedure
	Passing Reference Parameters to Other Procedures
	Passing Value-Result and Result Parameters as Parameters
	Passing Name Parameters to Other Procedures
	Passing Lazy Evaluation Parameters as Parameters
	Parameter Passing Summary
	Passing Procedures as Parameters
	Iterators
	Implementing Iterators Using In-Line Expansion
	Implementing Iterators with Resume Frames
	Sample Programs
	An Example of an Iterator
	Another Iterator Example
	Laboratory Exercises
	Iterator Exercise
	The 80x86 Enter and Leave Instructions
	Parameter Passing Exercises
	Programming Projects
	Summary
	Questions

	13. MS-DOS, PC-BIOS, and File I/O
	Chapter Overview
	The IBM PC BIOS
	An Introduction to the BIOSÌ Services
	INT 5- Print Screen
	INT 10h - Video Services
	INT 11h - Equipment Installed
	INT 12h - Memory Available
	INT 13h - Low Level Disk Services
	INT 14h - Serial I/O
	AH=0: Serial Port Initialization
	AH=1: Transmit a Character to the Serial Port
	AH=2: Receive a Character from the Serial Port
	AH=3: Serial Port Status
	INT 15h - Miscellaneous Services
	INT 16h - Keyboard Services
	AH=0: Read a Key From the Keyboard
	AH=1: See if a Key is Available at the Keyboard
	AH=2: Return Keyboard Shift Key Status
	INT 17h - Printer Services
	AH=0: Print a Character
	AH=1: Initialize Printer
	AH=2: Return Printer Status
	INT 18h - Run BASIC
	INT 19h - Reboot Computer
	INT 1Ah - Real Time Clock
	AH=0: Read the Real Time Clock
	AH=1: Setting the Real Time Clock
	An Introduction to MS-DOSë
	MS-DOS Calling Sequence
	MS-DOS Character Oriented Functions
	MS-DOS Drive Commands
	MS-DOS ÏObsoleteÓ Filing Calls
	MS-DOS Date and Time Functions
	MS-DOS Memory Management Functions
	Allocate Memory
	Deallocate Memory
	Modify Memory Allocation
	Advanced Memory Management Functions
	MS-DOS Process Control Functions
	Terminate Program Execution
	Terminate, but Stay Resident
	Execute a Program
	MS-DOS ÏNewÓ Filing Calls
	Open File
	Create File
	Close File
	Read From a File
	Write to a File
	Seek (Move File Pointer)
	Set Disk Transfer Address (DTA)
	Find First File
	Find Next File
	Delete File
	Rename File
	Change/Get File Attributes
	Get/Set File Date and Time
	Other DOS Calls
	File I/O Examples
	Example #1: A Hex Dump Utility
	Example #2: Upper Case Conversion
	Blocked File I/O
	The Program Segment Prefix (PSP)
	Accessing Command Line Parameters
	ARGC and ARGV
	UCR Standard Library File I/O Routines
	Fopen
	Fcreate
	Fclose
	Fflush
	Fgetc
	Fread
	Fputc
	Fwrite
	Redirecting I/O Through the StdLib File I/O Routines
	A File I/O Example
	Sample Program
	Laboratory Exercises
	Programming Projects
	Summary
	Questions

	14. Floating Point Arithmetic
	Chapter Overview
	The Mathematics of Floating Point Arithmetic
	IEEE Floating Point Formats
	The UCR Standard Library Floating Point Routines
	Load and Store Routines
	Integer/Floating Point Conversion
	Floating Point Arithmetic
	Float/Text Conversion and Printff
	The 80x87 Floating Point Coprocessors
	FPU Registers
	The FPU Data Registers
	The FPU Control Register
	The FPU Status Register
	FPU Data Types
	The FPU Instruction Set
	FPU Data Movement Instructions
	The FLD Instruction
	The FST and FSTP Instructions
	The FXCH Instruction
	Conversions
	The FILD Instruction
	The FIST and FISTP Instructions
	The FBLD and FBSTP Instructions
	Arithmetic Instructions
	The FADD and FADDP Instructions
	The FSUB, FSUBP, FSUBR, and FSUBRP Instructions
	The FMUL and FMULP Instructions
	The FDIV, FDIVP, FDIVR, and FDIVRP Instructions
	The FSQRT Instruction
	The FSCALE Instruction
	The FPREM and FPREM1 Instructions
	The FRNDINT Instruction
	The FXTRACT Instruction
	The FABS Instruction
	The FCHS Instruction
	Comparison Instructions
	The FCOM, FCOMP, and FCOMPP Instructions
	The FUCOM, FUCOMP, and FUCOMPP Instructions
	The FTST Instruction
	The FXAM Instruction
	Constant Instructions
	Transcendental Instructions
	The F2XM1 Instruction
	The FSIN, FCOS, and FSINCOS Instructions
	The FPTAN Instruction
	The FPATAN Instruction
	The FYL2X and FYL2XP1 Instructions
	Miscellaneous instructions
	The FINIT and FNINIT Instructions
	The FWAIT Instruction
	The FLDCW and FSTCW Instructions
	The FCLEX and FNCLEX Instructions
	The FLDENV, FSTENV, and FNSTENV Instructions
	The FSAVE, FNSAVE, and FRSTOR Instructions
	The FSTSW and FNSTSW Instructions
	The FINCSTP and FDECSTP Instructions
	The FNOP Instruction
	The FFREE Instruction
	Integer Operations
	Sample Program: Additional Trigonometric Functions
	Laboratory Exercises
	FPU vs StdLib Accuracy
	Programming Projects 14.8 Summary
	Questions

	15. Strings and Character Sets
	Chapter Overview
	The 80x86 String Instructions
	How the String Instructions Operate
	The REP/REPE/REPZ and REPNZ/REPNE Prefixes
	The Direction Flag
	The MOVS Instruction
	The CMPS Instruction
	The SCAS Instruction
	The STOS Instruction
	The LODS Instruction
	Building Complex String Functions from LODS and STOS
	Prefixes and the String Instructions
	Character Strings
	Types of Strings
	String Assignment
	String Comparison
	Character String Functions
	Substr
	Index
	Repeat
	Insert
	Delete
	Concatenation
	String Functions in the UCR Standard Library
	StrBDel, StrBDelm
	Strcat, Strcatl, Strcatm, Strcatml
	Strchr
	Strcmp, Strcmpl, Stricmp, Stricmpl
	Strcpy, Strcpyl, Strdup, Strdupl
	Strdel, Strdelm
	Strins, Strinsl, Strinsm, Strinsml
	Strlen
	Strlwr, Strlwrm, Strupr, Struprm
	Strrev, Strrevm
	Strset, Strsetm
	Strspan, Strspanl, Strcspan, Strcspanl
	Strstr, Strstrl
	Strtrim, Strtrimm
	Other String Routines in the UCR Standard Library
	The Character Set Routines in the UCR Standard Library
	Using the String Instructions on Other Data Types
	Multi-precision Integer Strings
	Dealing with Whole Arrays and Records
	Sample Programs
	Find.asm
	StrDemo.asm
	Fcmp.asm
	Laboratory Exercises
	MOVS Performance Exercise #1
	MOVS Performance Exercise #2
	Memory Performance Exercise
	The Performance of Length-Prefixed vs. Zero-Terminated Strings
	Programming Projects
	Summary
	Questions

	16. Pattern Matching
	An Introduction to Formal Language (Automata) Theory
	Machines vs. Languages
	Regular Languages
	Regular Expressions
	Nondeterministic Finite State Automata (NFAs)
	Converting Regular Expressions to NFAs
	Converting an NFA to Assembly Language
	Deterministic Finite State Automata (DFAs)
	Converting a DFA to Assembly Language
	Context Free Languages
	Eliminating Left Recursion and Left Factoring CFGs
	Converting REs to CFGs
	Converting CFGs to Assembly Language
	Some Final Comments on CFGs
	Beyond Context Free Languages
	The UCR Standard Library Pattern Matching Routines
	The Standard Library Pattern Matching Functions
	Spancset
	Brkcset
	Anycset
	Notanycset
	MatchStr
	MatchiStr
	MatchToStr
	MatchChar
	MatchToChar
	MatchChars
	MatchToPat
	EOS
	ARB
	ARBNUM
	Skip
	Pos
	RPos
	GotoPos
	RGotoPos
	SL_Match2
	Designing Your Own Pattern Matching Routines
	Extracting Substrings from Matched Patterns
	Semantic Rules and Actions
	Constructing Patterns for the MATCH Routine
	Some Sample Pattern Matching Applications
	Converting Written Numbers to Integers
	Processing Dates
	Evaluating Arithmetic Expressions
	A Tiny Assembler
	The ÏMADVENTUREÓ Game
	Laboratory Exercises
	Checking for Stack Overflow (Infinite Loops)
	Printing Diagnostic Messages from a Pattern
	Programming Projects
	Summary
	Questions

	17. Interrupts, Traps, and Exceptions
	80x86 Interrupt Structure and Interrupt Service Routines (ISRs)
	Traps
	Exceptions
	Divide Error Exception (INT 0)
	Single Step (Trace) Exception (INT 1)
	Breakpoint Exception (INT 3)
	Overflow Exception (INT 4/INTO)
	Bounds Exception (INT 5/BOUND)
	Invalid Opcode Exception (INT 6)
	Coprocessor Not Available (INT 7)
	Hardware Interrupts
	The 8259A Programmable Interrupt Controller (PIC)
	The Timer Interrupt (INT 8)
	The Keyboard Interrupt (INT 9)
	The Serial Port Interrupts (INT 0Bh and INT 0Ch)
	The Parallel Port Interrupts (INT 0Dh and INT 0Fh)
	The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h)
	The Real-Time Clock Interrupt (INT 70h)
	The FPU Interrupt (INT 75h)
	Nonmaskable Interrupts (INT 2)
	Other Interrupts
	Chaining Interrupt Service Routines
	Reentrancy Problems
	The Efficiency of an Interrupt Driven System
	Interrupt Driven I/O vs. Polling
	Interrupt Service Time
	Interrupt Latency
	Prioritized Interrupts
	Debugging ISRs
	Summary

	18. Resident Programs
	DOS Memory Usage and TSRs
	Active vs. Passive TSRs
	Reentrancy
	Reentrancy Problems with DOS
	Reentrancy Problems with BIOS
	Reentrancy Problems with Other Code
	The Multiplex Interrupt (INT 2Fh)
	Installing a TSR
	Removing a TSR
	Other DOS Related Issues
	A Keyboard Monitor TSR
	Semiresident Programs
	Summary

	19. Processes, Coroutines, and Concurrency
	DOS Processes
	Child Processes in DOS
	Load and Execute
	Load Program
	Loading Overlays
	Terminating a Process
	Obtaining the Child Process Return Code
	Exception Handling in DOS: The Break Handler
	Exception Handling in DOS: The Critical Error Handler
	Exception Handling in DOS: Traps
	Redirection of I/O for Child Processes
	Shared Memory
	Static Shared Memory
	Dynamic Shared Memory
	Coroutines
	Multitasking
	Lightweight and HeavyWeight Processes
	The UCR Standard Library Processes Package
	Problems with Multitasking
	A Sample Program with Threads
	Synchronization
	Atomic Operations, Test & Set, and Busy-Waiting
	Semaphores
	The UCR Standard Library Semaphore Support
	Using Semaphores to Protect Critical Regions
	Using Semaphores for Barrier Synchronization
	Deadlock
	Summary

	20. The PC Keyboard
	Keyboard Basics
	The Keyboard Hardware Interface
	The Keyboard DOS Interface
	The Keyboard BIOS Interface
	The Keyboard Interrupt Service Routine
	Patching into the INT 9 Interrupt Service Routine
	Simulating Keystrokes
	Stuffing Characters in the Type Ahead Buffer
	Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions
	Using the 8042 Microcontroller to Simulate Keystrokes
	Summary

	21. The PC Parallel Ports
	Basic Parallel Port Information
	The Parallel Port Hardware
	Controlling a Printer Through the Parallel Port
	Printing via DOS
	Printing via BIOS
	An INT 17h Interrupt Service Routine
	Inter-Computer Communications on the Parallel Port
	Summary

	22. The PC Serial Ports
	The 8250 Serial Communications Chip
	The Data Register (Transmit/Receive Register)
	The Interrupt Enable Register (IER)
	The Baud Rate Divisor
	The Interrupt Identification Register (IIR)
	The Line Control Register
	The Modem Control Register
	The Line Status Register (LSR)
	The Modem Status Register (MSR)
	The Auxiliary Input Register
	The UCR Standard Library Serial Communications Support Routines
	Programming the 8250 (Examples from the Standard Library)
	Summary

	23. The PC Video Display
	Memory Mapped Video
	The Video Attribute Byte
	Programming the Text Display
	Summary

	24. The PC Game Adapter
	Typical Game Devices
	The Game Adapter Hardware
	Using BIOSÌ Game I/O Functions
	Writing Your Own Game I/O Routines
	The Standard Game Device Interface (SGDI)
	Application ProgrammerÌs Interface (API)
	Read4Sw
	Read4Pots:
	ReadPot
	Read4:
	CalibratePot
	TestPotCalibration
	ReadRaw
	ReadSwitch
	Read16Sw
	Remove
	TestPresence
	An SGDI Driver for the Standard Game Adapter Card
	An SGDI Driver for the CH ProductsÌ Flight Stick Proë
	Patching Existing Games
	Summary

	25. Optimizing Your Programs
	Chapter Overview 25.1 When to Optimize, When Not to Optimize
	How Do You Find the Slow Code in Your Programs?
	Is Optimization Necessary?
	The Three Types of Optimization
	Improving the Implementation of an Algorithm
	Summary

	Appendix B: Annotated Bibliography
	Appendix C: Keyboard Scan Codes
	Appendix D: Instruction Set Reference

