
R6. Is it possible for an application to enjoy reliable data transfer even when the 
application runs over UDP? If so, how? 
 
R7. Suppose a process in Host C has a UDP socket with port number 6789. Suppose 
both Host A and Host B each send a UDP segment to Host C with destination 
port number 6789. Will both of these segments be directed to the same 
socket at Host C? If so, how will the process at Host C know that these two 
segments originated from two different hosts? 
 
 
R8. Suppose that a Web server runs in Host C on port 80. Suppose this Web 
server uses persistent connections, and is currently receiving requests from 
two different Hosts, A and B. Are all of the requests being sent through the 
same socket at Host C? If they are being passed through different sockets, do 
both of the sockets have port 80? Discuss and explain. 

 

P3. UDP and TCP use 1s complement for their checksums. Suppose you have the 
following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s 
complement of the sum of these 8-bit bytes? (Note that although UDP and 
TCP use 16-bit words in computing the checksum, for this problem you are 
being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes 
the 1s complement of the sum; that is, why not just use the sum? With the 1s 
complement scheme, how does the receiver detect errors? Is it possible that a 
1-bit error will go undetected? How about a 2-bit error? 

 

P5. Suppose that the UDP receiver computes the Internet checksum for the received 
UDP segment and finds that it matches the value carried in the checksum field. 
Can the receiver be absolutely certain that no bit errors have occurred? Explain. 

 

P7. In protocol rdt3.0, the ACK packets flowing from the receiver to the 
sender do not have sequence numbers (although they do have an ACK field 
that contains the sequence number of the packet they are acknowledging). 
Why is it that our ACK packets do not require sequence numbers? 

P17. Consider two network entities, A and B, which are connected by a perfect bidirectional 
channel (i.e., any message sent will be received correctly; the 
channel will not corrupt, lose, or re-order packets). A and B are to deliver 
data messages to each other in an alternating manner: First, A must deliver a 
message to B, then B must deliver a message to A, then A must deliver a message 
to B and so on. If an entity is in a state where it should not attempt to 
deliver a message to the other side, and there is an event like 
rdt_send(data) call from above that attempts to pass data down for 
transmission to the other side, this call from above can simply be ignored 
with a call to rdt_unable_to_send(data), which informs the higher 
layer that it is currently not able to send data. [Note: This simplifying 
assumption is made so you don’t have to worry about buffering data.] 
Draw a FSM specification for this protocol (one FSM for A, and one FSM for 
B!). Note that you do not have to worry about a reliability mechanism here; 
the main point of this question is to create a FSM specification that reflects 
the synchronized behavior of the two entities. You should use the following 
events and actions that have the same meaning as protocol rdt1.0 in 
Figure 3.9: rdt_send(data), packet = make_pkt(data), 
udt_send(packet), rdt_rcv(packet), extract 
(packet,data), deliver_data(data). Make sure your protocol 
reflects the strict alternation of sending between A and B. Also, make sure to 
indicate the initial states for A and B in your FSM descriptions. 



P22. Consider the GBN protocol with a sender window size of 4 and a sequence 
number range of 1,024. Suppose that at time t, the next in-order packet that the 
receiver is expecting has a sequence number of k. Assume that the medium 
does not reorder messages. Answer the following questions: 
a. What are the possible sets of sequence numbers inside the sender’s window 
at time t? Justify your answer. 
b. What are all possible values of the ACK field in all possible messages currently 
propagating back to the sender at time t? Justify your answer. 

 

P25. We have said that an application may choose UDP for a transport protocol 
because UDP offers finer application control (than TCP) of what data is sent 
in a segment and when. 
a. Why does an application have more control of what data is sent in a segment? 
b. Why does an application have more control on when the segment is sent? 

 

P28. Host Aand B are directly connected with a 100 Mbps link. There is one TCP 
connection between the two hosts, and Host Ais sending to Host B an enormous 
file over this connection. Host Acan send its application data into its TCP 
socket at a rate as high as 120 Mbps but Host B can read out of its TCP receive 
buffer at a maximum rate of 50 Mbps. Describe the effect of TCP flow control. 

 

P37. Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout 
values for all three protocols are sufficiently long such that 5 consecutive data 
segments and their corresponding ACKs can be received (if not lost in the 
channel) by the receiving host (Host B) and the sending host (Host A) respectively. 
Suppose Host A sends 5 data segments to Host B, and the 2nd segment 
(sent from A) is lost. In the end, all 5 data segments have been correctly 
received by Host B. 
a. How many segments has Host A sent in total and how many ACKs has 
Host B sent in total? What are their sequence numbers? Answer this question 
for all three protocols. 
b. If the timeout values for all three protocol are much longer than 5 RTT, 
then which protocol successfully delivers all five data segments in shortest 
time interval? 

 

P46. Consider that only a single TCP (Reno) connection uses one 10Mbps link 
which does not buffer any data. Suppose that this link is the only congested 
link between the sending and receiving hosts. Assume that the TCP sender 
has a huge file to send to the receiver, and the receiver’s receive buffer is 
much larger than the congestion window. We also make the following 
assumptions: each TCP segment size is 1,500 bytes; the two-way propagation 
delay of this connection is 150 msec; and this TCP connection is always in 
congestion avoidance phase, that is, ignore slow start. 
a. What is the maximum window size (in segments) that this TCP connection 
can achieve? 
b. What is the average window size (in segments) and average throughput (in 
bps) of this TCP connection? 
c. How long would it take for this TCP connection to reach its maximum 
window again after recovering from a packet loss? 

 

 

 



 

 


