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he need for telecommunica-
tion networks capable of pro-

viding diverse and emerging
communication services such as
data, voice, and video, motivated
the standardization of broadband
networks. The need for a flexible
design that can accommodate future
services and advances in technology
led International Consultative Com-
mittee for Telephone and Telegraph (CCITT) to adopt the
asynchronous transfer mode (ATM). The transfer mode is a
collection of mechanisms that are used to implement switch-
ing and multiplexing in the network.

The success of ATM networks depends on the develop-
ment of effective congestion control schemes. These schemes
are responsible for maintaining an acceptable quality of ser-
vice (QoS) level that is deliverable by the network. The con-
gestion control schemes will decide to accept or reject new
connections based on their traffic characteristics and available
network resources. The congestion control schemes will police
the existing connections to insure that they do not exceed
their negotiated traffic characteristic parameters.

Performance modeling techniques are needed to determine
which congestion control techniques should be used. Perfor-
mance modeling techniques include: analytical techniques,
computer simulation, and experimentation [1]. Performance
models require accurate traffic models which can capture the
statistical characteristics of actual traffic. If the traffic models
do not accurately represent actual traffic, one may overesti-
mate or underestimate network performance.

This article surveys traffic models in telecommunication net-
works. Traffic models can be stationary or nonstationary. Station-
ary traffic models can be classified in general into two classes:
short-range and long-range dependent. Short-range dependent
models include Markov processes and Regression models.
These traffic models have a correlation structure that is signif-

icant for relatively small lags. Long-
range dependent traffic models such as
Fractional Autoregressive Integrated
Moving Average (F-ARIMA) and
Fractional Brownian motion have sig-
nificant correlations even for large lags.

Traffic models are analyzed based
on goodness-of-fit, number of param-
eters needed to describe the model,
parameter estimation, and analytical

tractability. To evaluate goodness-of-fit, one needs to define met-
rics that determine how “close” the model is to the actual data [2].
These metrics have to be directly related to the performance
measures that are needed to be predicted from the model. The
goodness-of-fit used in this article is based on the ability of the
model to capture marginal distributions, auto-correlation struc-
ture, and ultimately predict delays and cell loss probabilities.

This article is organized as follows: The second and third sec-
tions cover traditional traffic models, Markov, and Regression
models. The fourth section discusses nontraditional traffic
models. It briefly reviews long-range dependence and discusses three
different long-range dependent traffic models, fractional Brownian
motion, F-ARIMA, and aggregation of high-variability ON-
OFF sources. Finally, the fifth section concludes the article.

MARKOV AND EMBEDDED MARKOV MODELS

In many situations, the activities of a source can be modeled
by a finite number of states. Figure 1 shows a widely used

finite state model in voice telephony. In this model, a voice
source is either idle or busy. When it is busy, it will only trans-
mit packets during speech activity. In general, increasing the
number of states results in a more accurate model at the
expense of increased computational complexity.

For a given state space S = {s1, s2, …, SM}, let Xn be a ran-
dom variable which defines the state at time n. The set of random
variables {Xn} will form a discrete Markov chain, if the proba-
bility of the next value Xn + 1 = sj depends only on the current
state. This is known as Markov property [3]. If state transitions
occur at integer values (0, 1, …, n, …), the Markov chain is dis-
crete time. Otherwise, the Markov chain will be continuous time.

Markov property implies that the future depends on the

Abdelnaser Adas

Georgia Institute of Technology

T

ABSTRACT
Traffic models are at the heart of any performance evaluation of telecommunications networks. An accurate estimation of network

performance is critical for the success of broadband networks. Such networks need to guarantee an acceptable quality of service (QoS)
level to the users. Therefore, traffic models need to be accurate and able to capture the statistical characteristics of the actual traffic. In

this article we survey and examine traffic models that are currently used in the literature. Traditional short-range and non-traditional
long-range dependent traffic models are presented. Number of parameters needed, parameter estimation, analytical tractability, and 

ability of traffic models to capture marginal distribution and auto-correlation structure of actual traffic are discussed.

■ Figure 1. Finite state model for voice.
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current state and not on previous states nor on the time
already spent in the current state. This restricts the random
variable, which describes the time spent in a state to a geo-
metric distribution in the discrete case and to an exponential
distribution in the continuous case [3].

A semi-Markov process is obtained by allowing the time
between state transitions to follow an arbitrary probability dis-
tribution. If the time distribution between transitions is
ignored, the sequence of states visited by the semi-Markov
process will be a discrete time Markov chain, and is referred
to as an embedded Markov chain.

In a simple Markov traffic model, each state transition rep-
resents a new arrival. Therefore, inter-arrival times are expo-
nentially distributed (for continuous time case), and their rates
depend on the state from which the transition occur [1]. The
rest of this section discusses various Markov and embedded
Markov models that have been used to model network traffic.

ON-OFF AND IPP MODELS
The ON-OFF source model shown in Fig. 2a is the most pop-
ular source model for voice [4, 5]. In this model, packets are
only generated during talk spurts (ON state) with fixed inter-
arrival time. The time spent in ON and OFF states is expo-
nentially distributed with mean α–1 and β–1, respectively.

The interrupted Poisson process (IPP) shown in Fig. 2b is
also a two-state process. Arrivals only occur in the active state
according to a Poisson distribution with rate λ . Hence, IPP
and ON-OFF models differ in interarrival time during the
active (ON) state.

ALTERNATING STATE RENEWAL PROCESS
The alternating state renewal process is a two state process
[6], s1 and s2, with no self transition. Therefore, the embedded
Markov chain is alternating between s1 and s2. The traffic
amplitude is 0 while in state s1 and 1 while in state s2. Let the
mean sojourn time in s1 and in s2 to be d1 and d2, respectively.
Then, the steady state probabilities for being in state s1 is Ps1
= d1/(d1 + d2), and for s2 is Ps2

= d2/(d1 + d2).
The superposition of identical independent alternating

state renewal processes has a binomial distribution [6].

MARKOV MODULATED POISSON PROCESS
A Markov modulated process, also called doubly stochastic

process, uses an auxiliary Markov process in which the current
state of the Markov process controls (modulate) the probabili-
ty distribution of the traffic.

Markov modulated Poisson process (MMPP) uses Poisson
process as the modulated mechanism as shown in Fig. 3. In this
model, while in state sk, the arrivals occur according to a Pois-
son process with rate λk. The introduction of MMPP process
allows the modeling of time-varying sources while keeping the
analytical solution of related queuing performance tractable.

The MMPP parameters can be estimated easily from the
empirical data as follows: quantize the arrival rate into finite
number of rates which corresponds to the number of states. Each
rate corresponds to a state in the Markov chain. The transi-
tion rate from state i to state j, denoted by qij, is estimated by
quantizing the empirical data and by calculating the fraction
of times that the state (rate) i switched to state (rate) j. Note
that an MMPP process with M + 1 states can be obtained by
the superposition of M identical independent IPP sources.

MMPP can model a mixture of voice and data traffic. In this
case, the arrivals of voice packets while in state k is assumed to
be Poisson with rate λk. Data packets are also Poisson with rate λd.
The resulting rate of state sk will be λd + λk. The performance
measures such as queuing distribution and the moments of the
delay distribution are obtained using MMPP/G/1 queue analysis [4].

MARKOV MODULATED FLUID MODELS

Fluid models characterize the traffic as a continuous stream with
a parameterized flow rate (such as bits/sec). These models are
appropriate in the case where individual units of traffic (packets
or cells) have little impact on the performance of the network.

Fluid models are conceptually simple and their simulation
has an important advantage over other models. Consider for
example, an event simulation for an ATM multiplexer. All
models that distinguish between cells and consider the arrival
of each cell as a separate event, consume vast amount of
memory and CPU resources. In contrast, fluid models charac-
terize the incoming cells by a flow rate. An event is only trig-
gered when the flow rate changes. Since flow rate changes
happen much less frequently than cell arrivals, considerable
savings in computing and memory resources are achieved [1].

A fluid model that is typically used to model traffic is the
Markov modulated fluid model. In this model, the current
state of the underlying Markov chain determines the flow
(traffic) rate. While in state sk, traffic arrives at a constant
rate λk. This model is a Markov modulated constant rate
model and is used in [7, 8] to model VBR video sources.

In [7], the continuous bit rate is quantized into a finite set of
discrete levels and sampled at random Poisson points (i.e., inter-
sample time is exponentially distributed), as shown in Fig. 4. The
number of states in the Markov chain is equal to the number of
quantized levels. Since Markov processes have exponentially
decaying auto-covariance function , the auto-covariance of the
empirical data is approximated by C(τ) = Ce–aτ.

There are many Markov chains that satisfy the above auto-
covariance function and the average of the empirical data.
The birth-death Markov chain shown in Fig. 5 is used for its
simplicity in [8]. In this model, the bit rate while in state i is
constant and is given by iA, where A is the quantization step
size. The transition rates are chosen such that lower bit-rate-
states tend to jump to higher-bit-rate states and vice-versa.
This model captured approximately the first 10 lags of the
auto-correlation function of the empirical data. This is due to
a faster decay in the auto-correlation function of the model
than the auto-correlation function of the actual data. More-
over, jumps are only allowed to neighboring states in birth-
death Markov chain, so the model lacks the ability to capture
abrupt changes in the arrival rate between frames.

In order to capture scene changes in the above model, [7]
extended the model by allowing the rate to be integer multi-
ples of two basic levels: high level Ah, and low level Al. It uses
a two-dimensional Markov chain in which the state is defined
by two indices i and j, where 0 ≤ i ≤ M and 0 ≤ j ≤ N. While
in state (i, j), the flow rate is iAl + jAh, Fig. 6 illustrates the
case when M = 1 and N = Np.

■ Figure 2. a) ON-OFF model and b) IPP model.

■ Figure 3. MMPP process.
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The queuing performance of this model is still analytically
tractable and it has been considered in [8]. The model has
many parameters, and exponentially decaying auto-correlation
function. The complexity of analytical solution increases by
adding more activity levels.

REGRESSION MODELS

Regression models define explicitly the next random vari-
able in the sequence by previous ones within a specified

time window and a moving average of a white noise. In this
section several regression models are presented.

AUTOREGRESSIVE MODELS
The Autoregressive model of order p, denoted as AR(p), has
the following form:

Xt = φ1 Xt – 1 + φ2Xt – 2 + … + φpXt – p + εt, (1)

where εt is white noise, φj’s are real numbers, and Xt’s are pre-
scribed correlated random variables. If εt is a white Gaussian
noise with variance σεt

2, then Xt’s will be normally distributed
random variables. Let us define a lag operator B as Xt – 1 =
BXt, and let φ(B) be a polynomial in the operator B, defined
as follows: φ(B) = (1 – φ1B –…– φpBp). Then, the AR(p) pro-
cess can be represented as:

φ(B)Xt = εt. (2)

The process {Xt} is stationary if the roots of φ(B) lie outside
the unit circle [10]. The auto-correlation ρk can be computed
by multiplying Eq. (1) with Xt – k, taking the expectation, and
dividing by the variance γ0:

ρk = φ1ρk – 1 + ρ2ρk – 2 + … + φpρk – p; for k > 0. (3)

Thus, the general solution is

ρk = A1G1
k + A2G2

k + … + ApGp
p, (4)

where Gi
–1s are the roots of φ(B). Therefore, the auto-correla-

tion function of AR(p) process will consist, in general, of
damped exponentials, and/or damped sine waves depending
on whether the roots are real or imaginary.

Since successive video frames do not vary much visually,
AR models have been used to model the output bit rate of
VBR encoder [7, 11]. In [7], a video source is approximated
by a continuous fluid flow model. In the model, the output bit
rate within a frame period is constant and changes from frame
to frame according to the following AR(1) model:

λ[n] = φλ[n – 1] + bε[n], (5)

where λ[n] is the bit rate during frame n and ε[n] is a Gaus-
sian white noise. ε[n] is chosen such that the probability of
λ[n] being negative is very small. Since the number of bits in
frame n cannot be negative, the value of λ[n] in Eq. 5 is set to

zero, whenever λ[n] is negative. This model, cannot capture
abrupt changes in the frame bit rates that occur due to scene
changes or visual discontinuities. Therefore, one may model
the bit rate of frames within the scene as an AR process and
model the scene changes by an underlying Markov chain.

In [11], VBR video traffic is modeled as Xn = Yn + Zn +
VnCn. Yn and Zn are two independent AR(1) processes. These
two AR processes are used to get a better fit of the auto-cor-
relation function of the empirical data than using only one
AR(1) process. The last term, VnCn, is the product of a 3-state
Markov chain and an independent normal random variable. It
is designed to capture sample path spikes due to video scene
changes. This may work for encoding techniques in which only
the difference between the frames and a reference frame is
encoded and transmitted. Reference frames are transmitted
when the difference is greater than a certain threshold. They,
in general, indicate a scene change. Reference frames have
higher bit rates than the other surrounding frames and they
cause the spikes in the sample path of the bit rate of the video
stream. In MPEG, a scene change detection is not trivial due
to periodically transmitting a reference frame (I frame).

Although it is easy to estimate the AR model parameters
and to generate the sequence recursively, the exponential
decay of the auto-correlation function makes the model
unable to capture auto-correlation functions that decay at a
slower rate than the exponential. AR is approximated in [7]
by a Markov modulated fluid model, in order to obtain analyt-
ical queuing performance results. AR processes with Gaussian
distribution cannot capture VBR video traffic probability dis-
tribution. Since VBR video traffic distribution exhibits a heav-
ier tail behavior than the Gaussian.

DISCRETE AUTOREGRESSIVE MODELS
A Discrete Autoregressive model of order p, denoted as
DAR(p), generates a stationary sequence of discrete random
variables with an arbitrary probability distribution and with an
auto-correlation structure similar to that of an AR(p).

DAR(1) is a special case of DAR(p) process and it is
defined as follows: let {Vn} and {Yn} be two sequences of
independent random variables. The random variable Vn can
take two values 0 and 1, with probabilities, 1 – ρ and ρ,
respectively. The random variable Yn has a discrete state
space S and P{Yn = i} = π(i). The sequence of random vari-
ables {Xn} which is formed according to the linear model:

Xn = VnXn – 1 + (1 – Vn)Yn.

is a DAR(1) process. DAR(1) process is a Markov chain with
discrete state space S and a transition matrix:

P = ρI + (1 – ρ)Q,

where I is the identity matrix and Q is a matrix with for Qij =
π(j) for i, j ∈ S. DAR(1) has a correlation structure of a first-
order autoregressive process with ρk = ρk and has the probability
distribution function of π. In [12–14] the number of cells per
frame of teleconferencing VBR video is modeled by DAR(1)
with negative binomial distribution. The rows of the Q matrix
consist of the negative-binomial probabilities (f0, f1, … fk, FK

c),
where FK

c = Σk > K fk, and K is the peak rate. Therefore, only
mean, variance, peak rate, and the first auto-correlation coef-
ficient are needed to be estimated from the data.

■ Figure 4. Approximation of continuous source rate λ(t) using
Poisson sampling and quantization by modulated fluid flow–
λ(t).

■ Figure 5. State transition diagram for birth-death Markov
chain.
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DAR(1) has far less number of parameters than
the general Markov chains. The parameter estima-
tion is simple. The distribution of the resulting pro-
cess is arbitrary. Moreover, the analytical queuing
performance is tractable. On the other hand, the
auto-correlation function decays exponentially and
hence it cannot be used to model traffic with a slower
auto-correlation decay.

AUTOREGRESSIVE MOVING AVERAGE MODELS
An Autoregressive Moving Average model of order
(p, q), denoted as ARMA(p, q), has the form

Xt = φ1Xt–1 + φ2Xt–2+ … + φpXt–p
+ εt – θ1εt–1 – θ2εt–2 –… – θqεt–q, (6)

which can be equivalently represented as:

φ(B)Xt = θ(B)εt. (7)

where B and φ(B) are as defined previously, and φ(B) = (1 –
θ1B – … – θqBq).

This is equivalent to filtering a white noise process εt by a
causal linear shift time invariant filter having a rational system
function with p poles and q zeros [15]; that is,

(8)

The auto-covariance γk of the ARMA (p, q) process can be
obtained by multiplying Eq. 6 with Xt – k, taking the expecta-
tion, and finding the cross-correlation between εt and Xt

γk = φ1γk–1 + … + φpγk–p
– σε

2(θkh0 + θk + 1h1 + … + θqhq–k) (9)

where ht is the impulse response of the ARMA(p, q) filter H(z).
Note that θk = 0 for k > q, therefore, the auto-correlation

of the process for k > q

ρk = φ1ρk – 1 + φ2ρk – 2 + … + φpρk – p; for k > q, (10)

which is the same difference equation as Eq. 3, therefore, the
auto-correlation of the ARMA(p, q) decays exponentially.

An ARMA model is used in [16] to model VBR traffic.
The duration of a video frame is equally divided into m time
intervals. The number of cells in the nth time interval is mod-
eled by the following ARMA process:

Since video data will correlate at each frame due to temporal
correlation, the auto-correlation function has peaks at all lags
which are integer multiples of m. In the above model, the AR
part is used to model the recorrelation effect and the θk’s are
used to fit the correlation at other lags.

The parameter estimation of ARMA models are more
involved than that of AR models, the estimation of the θk’s
require solving a set of non-linear equations or using spectral
factorization techniques [15]. The analytical solutions are also
difficult to obtain.

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS
The Autoregressive Integrated Moving Average model of
order (p, d, q), denoted as ARIMA(p, d, q), is an extension to
the ARMA(p, q). It is obtained by allowing the polynomial
φ(B) to have d roots equal to unity. The rest of the roots lie
outside the unit circle. The ARIMA(p, d, q) has the form:

ϕ(B)∇ dXt = θ(B)εt. (11)

where ∇ is a difference operator, defined as (Xt – Xt – 1) = ∇ Xt,

and ϕ(B) is a polynomial in B. Notice that ∇ Xt = (1 – B)Xt.
The ARIMA(p, d, q) is used to model homogeneous nonstation-
ary time series. For example, a time series that exhibits nonsta-
tionarity in level, or in level and slope, can be modeled by using
ARIMA(p, 1, q) and ARIMA(p, 2, q), respectively [17].

TES MODELS

Transform-expand-sample (TES) models are non-linear regres-
sion models with modulo-1 arithmetic. They aim to capture both
auto-correlation and marginal distribution of empirical data.

TES models consist of two major TES processes [1, 18, 19]:
TES+ and TES–. TES+ produces a sequence which has posi-
tive correlation at lag 1, while TES– produces a negative cor-
relation at lag 1.

Before describing TES+ or TES–, we need to introduce a few
definitions and notations. The modulo-1 of a real number x,
denoted as <x>, is defined as <x> = x –  x , where  x is the
maximum integer less than x. Therefore, <x> is always non-nega-
tive. If the interval [0,1) is viewed as a circle that is obtained by
joining the points 0 and 1, one can define a circular interval
C[a, b), where a and b ∈ [0,1), as all the points on the circular
unit interval going clockwise from point a to point b. Therefore:

TES+ and TES– — TES+(L, R) is introduced in [19] and is
characterized by two parameters, L and R. The sequence
{Un

+} is generated recursively as follows: initialize U0
+ = U0,

where U0 is uniform in the interval (0,1). Then Un
+ is a uni-

formly sampled random variable on the circular interval CUn+

= [ <U n–1
+ – L>, <U n–1

+ + R>).
In the TES–(L, R), the sequence is generated as in TES+

with Un
– is uniform random variable over the circular interval:

TES+ and TES– can also be characterized by α = L + R, and
φ = (R – L)/α. Note that α represents the length of the circu-
lar interval. The sample path realizations generated by simula-
tion using TES+ and TES– have shown discontinuity due to the
crossing of the 0 point on the unit circular interval from both
directions. For example, crossing clockwise will result in a jump
from small values to large values. It was shown in [19] that a
continuous sample path realization can be obtained by using a
simple piece wise transformation Tξ called stitching, where:

Autocorrelation of TES+ and TES– — The lag-1 auto-cor-
relation for TES processes is derived in [19] and is given by:

Tξ =

x
ξ

,  x ∈ [0,ξ )

1 − x

1 −ξ
,  x ∈ [ξ ,1)









C
Un−1

− [a,b) =
[< 1−Un−1

− − L >,<1 −Un −1
− + R >),  n even

[< 1−Un−1
− − R >,<1 −Un−1

− + L >),  n odd





C[a,b) =
[a,b),                  if a ≤ b

[0,1)−[b,a),       if a > b




Xn = φXn−m + θkεn−k
k=0

m −1

∑

H(z) =
Bq (z)

Ap (z)
=

1− θkz −k
k=0
q∑

1− φpz −k
k=1
p∑

.

■ Figure 6. Fluid flow model for two level of activity VBR sources.
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(12)

(13)

The auto-correlation for higher-order lags is simulated in [19]
and its computation is presented in [18]. The value of α affects
the magnitude of the correlation, while the value of φ affects
the oscillating behavior of the auto-correlation. The larger the
α, the smaller the magnitude. If φ = 0, there will be no oscil-
lation. For φ ≠ 0, the larger the φ, the faster the oscillation.

In [18], the definitions in [19] are generalized. The recur-
sive construction of the underlying TES processes is defined
as follows:

Here, {Vn} is a sequence of independent identically distribut-
ed random variables independent from U0. The resulting
sequences {Un

+} and {Un
–} are uniformly distributed in [0, 1)

no matter what the density function of Vn, denoted as fV[1,
18]. The choice of fV will result in a different correlation
structure of the resulting process.

The targeted sequences {Xn
+} and {Xn

–} are then obtained
by using the inversions {Xn

+} = D(Un
+) and, {Xn

–} = D(Un
–),

where D = F–1 and F is the marginal distribution of the
desired sequence (the empirical data). The fitting of the auto-
correlation is done by a heuristic search for a pair (ξ, fv) [1].
A combination of TES processes can also be used to better fit
the auto-correlation. The empirical distribution is matched
using the distribution inversion methods. The auto-correlation
function of TES processes decays exponentially.

LONG-RANGE DEPENDENT TRAFFIC MODELS

Stationary traffic models presented in the second and third
sections have a correlation structure that is characterized

by an exponential decay. A recent analysis of traffic measure-
ments of Ethernet LAN traffic [20] and NSFNET [21], has
suggested that the auto-correlation decays to zero at a slower
rate than exponential. This slow decay in correlation has been
observed before in other statistical applications, e.g., hydrolo-
gy [22]. Mathematical models have been developed to capture
this behavior [23, 24].

BACKGROUND ON LONG-RANGE DEPENDENCE
Let {Xt}, t = 0, 1, 2, … be a wide-sense stationary stochas-

tic process, i.e., a process with a stationary mean µ = E[Xt], a
stationary and finite variance v = E[(Xt – µ)2], and a stationary
auto-covariance function γk = E[(Xt – µ)(Xt + k – µ)], that
depends only on k and not on t. Observe that v = γ0. Let the
auto-correlation of {Xt} at lag k be denoted as ρk, where by
definition, ρk = γk/γ0.

For each m, let {Xj
(m)} denote a new time series obtained

by averaging the original series {Xt} over non-overlapping
blocks of size m, i.e.,

(14)

Observe that Xj
(m) is the sample mean of Sjm – m + 1 + …

+ Xjm. Let vm, denote the variance of {Xj
(m)} and it is given

by [17, 25]:

(15)

(16)

(17)

Hence, if the process is white noise, Xjm – m + 1, … , Xjm will
be mutually uncorrelated, i.e., ρk = 0 for k > 0, and vm = vm–1.

For large m Eq. 17 can be approximated by:

(18)

Consider the case in which ρk ≠ 0 and Σ∞
k=-∞ ρk < ∞ . The

variance of the sample mean will asymptotically decay to zero
proportional to m–1, i.e.,

vm ≈ vcρm–1, (19)

where cρ is constant. Time series models such as ARMA and
Markov processes have a sample mean variance that decays
asymptotically according to Eq. 19.

Recently, several traffic measurements (see, e.g., [20, 21,
26]) have shown that the sample mean variance, vm, decays at
a slower rate than m–1. One simple approach to model this
decay explicitly, is to have vm decay proportional to m–α for
some α ∈ (0, 1). This requires that Σk=1

m to be proportional to
m1 – α, that is,

Since α < 1, this implies

.
Thus, the auto-correlation decays slowly in a way that it is not
summable. An example of such an auto-correlation function is

ρk ≈ Cρ|k|–α, for large k. (21)

Short-Range and Long-Range Dependence — The process
{Xt} is said to have a short-range dependence, if Σkρk < ∞ .
Equivalently, vm decays asymptotically proportional to m–1, the
power spectral density has a finite value at zero, and the averaged
process {Xt

(m)}, tends to second order pure noise as m → ∞ . Pro-
cesses that have auto-correlation functions that decay exponen-
tially, are short-range dependent processes. a) shows an example
of an auto-correlation of a short-range dependent process.

The process {Xt} is said to have long-range dependence, if
Σkρk → ∞ [17]. Since the power spectral density function is
defined as Σkρke–jωk. Therefore, the power spectral density
function is singular near zero, that is, it increases without a
limit as the frequency tends to zero. The variance of the sam-
ple mean vm decays at a slower rate than m–1. For example,
processes in which ρk ~ Ck–α (for large k), where α ∈ (0, 1)
are long-range dependent and their vm decay proportional to
m–α. Figure 7b shows an auto-correlation function of a long-
range dependent process.

It is important to note that the definition of long-memory
dependence is an asymptotic definition [25]. It only describes
the behavior of the auto-correlation at large lags. It does not
specify the auto-correlation for any fixed finite lag.

Self-Similarity — The process {Xt} is said to be exactly (sec-
ond-order) self-similar if ρk

(m) for all m and k i.e., the correla-

ρk → ∞k=−∞
∞∑

ρk ≈ Cm
1−α .

k =1

m

∑

v m = v 2 ρk
k=1

m

∑






m

−1.

= v 1+ 2 (1−
k
m

)ρk
k=1

m

∑






m

−1

=
v
m

+
2

m2 (m −k )γk ,
k =1

m

∑

v m = E
1
m

(X jm −m +1 +L+ X jm )





2

 − E
1

m
(X jm −m +1 +L+ Xjm )





2

,

X j
(m) =

1
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tion structure is preserved across different time scales. The
process {Xt} is said to be asymptotically self similar, if ρk

(m) →
ρk, for m and k large [27].

Stochastic self-similar processes retain the same statistics
over a range of scales, and they satisfy the following relation:

{Xat} =
D

aH{Xt},

where =
D

denotes equality in distribution and H is called the
Hurst parameter [28]. Therefore, the sample paths appear to
be qualitatively the same, irrespective of the time scale. This
does not mean that the same picture repeats itself exactly as
in deterministic self-similarity. It is the general impression
“odds” that remains the same [25].

If {Xt} has stationary increments, then the increment pro-
cess Yt = Xt – Xt – 1 has an auto-correlation of the form:

ρk → H(2H – 1)k2H – 2, as k → ∞ (22)

This can be verified by using the self-similarity definition {Xt}
=
D

tH{X1}, defining σ2 = E(Xt – Xt – 1)2 = E(X1
2) the variance

of the increment process {Yt}, and finding the covariance of
the increment process {Yt}[25]. By comparing Eq. 22 to Eq.
21, then H = 1 – α /2. Note that for H ∈ (0, 1) and H ≠ 1/2,
Σkρk → ∞ . Fractional Gaussian noise is an example of an
exactly self-similar process and Fractional ARIMA is an
example of an asymptotically self-similar process.

FRACTIONAL ARIMA
The fractional Autoregressive Integrated Moving Average
process, F-ARIMA(p, d, q) with 0 < d < 1/2, is an example of
a stationary process with long-range dependence. It is an
extension to ARIMA(p, d, q) and defined as:

φ(B)∇ dXt = θ(B)εt, (23)

where d can take values between 0 and 1/2. The operator ∇ d

= (1 – B)d can be expressed using the binomial expansion [25]

(24)

(25)
where Γ(x) denotes the gamma function. Note that for all pos-
itive integers, only the first d + 1 terms are non-zero in Eq.
25. That is because the gamma function has poles for negative
integers and hence the binomial coefficients are zero if k > d
and d is an integer. The representation in Eq. 25 for ∇ d is
equivalent to an infinite order autoregressive process (all pole
filter with an infinite order). F-ARIMA(0, d, 0) process with 0
< d < 1/2, is stationary and long-range dependent, with an
auto-correlation function [29]

(26)

Observe that for 0 < d < 1/2, the hyperbolic decay will pro-
duce persistence. By comparing Eq. 26 to Eq. 21, d = (1 –
α)/2 = H – 0.5. F-ARIMA processes can model short-range
and long-range dependence. If Gaussian white noise is used,
then the F-ARIMA has a Gaussian distribution. This limits
the ability of F-ARIMA to model processes which have an
approximately Gaussian distributions. The Gaussian white
noise is used because the sum of two Gaussian random vari-
ables is a Gaussian random variable. This is also true for a
class of random variables called Stable random variables that
include Gaussian random variables [28].

One way to estimate d is the variance-time-plot method. In this
method, the Var({X(m)}) = vm is plotted versus the aggregation
level m (on log-log scale). The asymptotic slope –α is then, esti-

mated and the value of d = (1 – α)/2 is obtained. F-ARIMA
was used to model VBR video traffic [ 26, 30] and the queuing
performance of F-ARIMA(1, d, 0) was analyzed through sim-
ulation for a first come first served (FCFS) queue in [31].

FRACTIONAL BROWNIAN MOTION
Brownian motion is a stochastic process, denoted, {Bt}, for t
≥ 0. It is characterized by the following properties [32]:
• The increments Bt + t0 – Bt0 are normally distributed with

mean 0 and variance σ2t. 
• The increments in non-overlapping time intervals [t1, t2]

and [t3, t4], i.e., Bt4
– Bt3

and Bt2 – Bt1 are independent
random variables.

• B0 = 0 and Bt is continuous at t = 0.
The fractional Brownian motion {fBt} is a Gaussian self-

similar process with self-similarity parameter H ∈ [0.5, 1) [33].
Fractional Brownian motion differs from the Brownian
motion by having increments with variance σ2t2H. Define σ2 =
E{(fBt – fBt – 1)2} = E{(fB1 – fB0)2} = E{fB1

2} the variance of
the increment process (Note that fB0 = 0). Then:

E{(fBt2 – fBt1)2} = E{(fB2 – t1 – fB0)2} = σ2(t2 – t1)2H.

Also:
E{(fBt2 – fBt1)

2} = E{(fBt2
2} + E{(fBt1

2} –2E{fBt2 fBt1}
= σ2t22H + σ2t22H – 2γ(fBt1, fBt2),

γ(fBt1, fBt2) = 1/2σ2(t22H – (t2 – t1)2H +t12H).

Hence, the covariance of increments in two nonoverlapping
intervals is given by:

γ(fBt4 – fBt3, fBt2 – fBt1) =
γ(fBt4, fBt2) – γ(fBt4, fBt1) – γ(fBt3, fBt2)

+ γ(fBt3, fBt1), (27)

= σ2/2(t4 – t1)2H – (t3 – t1)2H

+ (t3 – t2)2H – (t4 – t2)2H.

ρk =
Γ (1 −d )Γ(k + d)
Γ (d)Γ (k +1 − d)

~
Γ(1− d)

Γ (d)
k

2d−1  as k →∞.

d

k






=
d!

k!(d − k)!
=

Γ (d +1)
Γ (k +1)Γ (d −k +1)

(1− B)d =
d

k
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∞
∑ (−1) k
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■ Figure 7. Examples of auto-correlation structures of a) short-
range dependent process, b) long-range dependent process.
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The fractional Brownian motion {fBt} can be deduced from
Brownian motion {Bt} [24, 25] by forming the integral:

As Eq. 28 shows, the interdependence between the increments
of the fractional Brownian motion can said to be infinite.

In the discrete case [25], the auto-correlation of the incre-
ment sequence is obtained by replacing t1, t2, t3, and t4 in Eq. 27
by n, n + 1, n + k, and n + k + 1 respectively, and dividing by σ2:

ρk = 1/2[(k + 1)2H – 2k2H + (k – 1)2H].

The increment sequence is called fractional Gaussian noise.
The auto-correlation in Eq. 29 exhibits long-range dependence,
since ρk ~ k2H – 2 as k → ∞ (follows by Taylor expansion). The
use of fractional Brownian motion to model traffic is present-
ed in [33]. The analytical solution for the distribution of the
buffer occupancy is difficult [33]. Therefore, an approximation
for the tail behavior is obtained. Results show that for large
H, increasing the utilization requires a significant amount of
storage space. The probability of cell loss decreases algebraical-
ly with buffer size and not exponentially as Markovian and
ARMA models do. The Hurst parameter, H, can be estimated
using the variance-time-plot with H = 1 – α/2, where α is the
slope of the plot. For generating fBm processes see [24, 34].

SUPERPOSITION OF HIGH VARIABILITY ON-OFF SOURCES
The traditional ON-OFF source models assume finite vari-
ance distributions for the sojourn time in ON and OFF peri-
ods. As a result, the aggregation of large number of such
sources will not have significant correlation, except possibly in
the short range [35].

An extension to such traditional ON-OFF models was first
introduced by [36, 37] (as cited in [35]) by allowing the ON
and OFF periods to have infinite variance (high variability or
Noah Effect). The superposition of many such sources pro-
duces aggregate traffic that exhibits long-range dependence
(also called the Joseph Effect [35, 38]).

The source model used in [38] can be described as follows:
• Denote yt

(i) the cell generation rate for source i at time t.
• Source i will transmit cells with rate R if it is in the ON

period and will not transmit while in the OFF period.
• The time spent in the ON periods is an independent

identically distributed random variables, denoted τi, and
the distribution is a Pareto-type with finite mean aτ and
infinite variance, i.e.,

Pr{τ > t} ~ t–β, t → ∞ , 1 < β < 2. (30)

• The OFF periods are identically distributed random vari-
ables with a generic distribution θ(i) with finite mean aθ.

Let Yt the total cell rate generated by M independent ON-
OFF sources be:

To avoid an infinite traffic intensity when M → ∞ , aθ is
increased in such a way that λ = M/(aτ + aθ) is constant.
Hence, in the limit as M → ∞ , E{Yt} = Rλaτ.

It can be shown [38] that the aggregate process is long-
range dependent and asymptotically self-similar with Hurst
parameter H = (3 – β)/2 > 0.5, the auto-correlation ρk ~ k1–β

for large k, and the limit as m → ∞ , ρk
(m) ~1/2[(k + 1)3–β –

2k3 – β + (k – 1)3 – β].
Analytical results for the queue length distribution of

number of sources in the queue is obtained using M/G/1

queuing model. The probability of cell loss for large buffer
sizes is given by (No proof was presented):

(31)

where L is the buffer size. Notice that the loss probability
decreases with L algebraically and not exponentially as tradi-
tional Markovian traffic models do.

In [35], long-range dependent traffic (fractional Gaussian
noise) with H = (3 – β)/2 is obtained by the aggregate of a
large number of ON-OFF sources in which the ON and OFF
periods have a Pareto type distribution with infinite variance.
The analysis of two sets of high time-resolution traffic mea-
surements from two Ethernet LAN’s shows that the data at
the source level have high variability (Noah Effect).

CONCLUSIONS

T raffic models are used in traffic engineering to predict net-
work performance and to evaluate congestion control

schemes. Traffic models vary in their ability to model various
correlation structures and marginal distributions. Models that
do not capture the statistical characteristics of the actual traf-
fic result in poor network performance because they either
over estimate, or under estimate the network performance.
Traffic models must have a manageable number of parame-
ters and the estimation of these parameters needs to be sim-
ple. Traffic models which are not analytically tractable can
only be used to generate traffic traces. These traffic traces can
be used in simulations.

Traffic models can be stationary or nonstationary. Station-
ary traffic models can be classified into two classes: short-
range and long-range dependent. Short-range dependent
models include traditional traffic models such as Markov pro-
cesses and regression models. These traffic models are dis-
cussed in the second and third sections. The second section
described Markov chains, semi-Markov chains, and Markov
modulated processes. The third section described AR, ARMA,
ARIMA, TES, and DAR regression models. Traditional traf-
fic models are characterized by an auto-correlation structure
that decays exponentially so that Σkρk < ∞ . This results in the
variance of the sample mean, vm, to decay as m–1 for large m,
or equivalently, they tend to white noise for large m.

Long-range dependent traffic models, such as fractional
ARIMA and fractional Brownian motion, are characterized by
an auto-correlation structure that decays at a slower rate such
that Σkρk → ∞ . This results in the variance of the sample
mean, vm, to decay at a slower rate than m–1 even for large m.

Markovian and regression traffic models are short-range
dependent traffic models. The queuing performance of the
Markovian models is analytically tractable, while, in general,
that of regression models is not. The computational complexi-
ty of the analytical solution of Markovian models increases as
the number of states in the model increases. Since a small
number of states is used to model voice sources, Markovian
models are widely used in telephony. On the other hand, it is
non-trivial to capture arbitrary probability distribution in
Markovian models. Moreover, they can not be used to model
traffic that exhibits long-range dependence.

Regression models are simple to generate. Therefore, they
are used in simulations. Queuing of regression models is usual-
ly intractable. Therefore, regression models are often approxi-
mated by Markovian models in order to get approximate
analytical solution. Regression models define the next random
variable in the sequence by an explicit function of previous
random variables. Hence, they are used to model sequences
that do not vary much between successive observations, e.g.,

PL =
c

β(β+1)
λB(Raτ )1+β

L
1−β ,

Yt = yt
i

i =1

M

∑

E{Yt } = MR
aτ

aτ +aθ
.

fBt = (t − u) H −0.5
dB(u).

0

t
∫
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number of bits/frame of teleconferencing VBR video. AR,
ARMA, DAR, and TES regression processes can only model
stationary processes, while ARIMA regression process can
model both stationary and some non-stationary processes.

In general, AR, ARMA, and ARIMA processes use Gaussian
white noise because the sum of Gaussian random variables is a
Gaussian. Therefore, in order to model an arbitrary distribution,
a two-step transformation is needed to transform the resulting
process from the Gaussian to the desired distribution. This trans-
formation does not guarantee that the transformed process will
have the same correlation structure as the original one.

DAR(p) and TES models have arbitrary distributions.
DAR models have auto-correlation structures similar to that
of AR(p) processes. They also enjoy analytical tractability by
using their equivalent Markov chain models. TES models are
non-linear regression models that use modulo-1 arithmetic.
They can generate processes with different correlation struc-
tures with uniform probability distributions. TES models use a
heuristic search to find the best TES process that can capture
both auto-correlation structure and distribution of the empiri-
cal data. Recently, an automated solution was presented [39].

Examples of long-range dependent traffic models are given
in (the fourth section). These include fractional Brownian
motion, aggregate of ON-OFF high variability sources, and F-
ARIMA. Fractional Brownian motion has only one parameter
controlling the auto-correlation function. Therefore, there is
no flexibility in modeling short-range dependence. The aggre-
gation of large numbers of ON-OFF sources with infinite vari-
ance for the ON and OFF periods exhibits long-range
dependence, and can be used to capture the asymptotic
behavior of long-range dependent traffic. However, it is not
clear how it will model the short-range behavior. F-ARIMA
models have three parameters p, d, and q that control the
auto-correlation structure. Therefore, they can capture both
short-range and long-range dependence. The parameter d deter-
mines the long term behavior, (H = d + 1/2), whereas p and q
allow for more flexibility in modeling the short-range proper-
ties [25]. Fractional Brownian motion (fractional Gaussian
noise) and the Gaussian F-ARIMA have a Gaussian distribution
and cannot match arbitrary empirical distributions. Hence,
inversion methods need to be used. These methods, in gener-
al, affect the correlation structure of the original process.

It appears that a model that can capture short-range
dependence, long-range dependence, and an arbitrary distri-
bution is needed. A systematic and simple method that can
decouple the estimation of long-range and short-range param-
eters in the model needs to be developed.

Finally, analytical performance solutions for nontraditional
traffic models need to be investigated for a single node, as
well as for an end-to-end network model.

ACKNOWLEDGMENT
Special thanks to Amarnath Mukherjee for his ideas, supervi-
sion, and fruitful discussions throughout the development of
this work.

REFERENCES
[1] V. Frost and B. Melamed, “Traffic Modeling for Telecommunications

Networks,” IEEE Commun. Mag., Mar. 1994.
[2] D. Lucantoni, M. Neuts, and A. Reibman, “Methods for Performance

Evaluation of VBR Video Traffic Models,” IEEE/ACM Trans. Networking,
vol. 2, Apr. 1994, pp. 176–80.

[3] L. Kleinrock, Queueing Systems, vol. 1, John Wiley and Sons, 1975.
[4] H. Heffes and D. Lucantoni, “A Markov Modulated Characterization of

Packetized Voice and Data Traffic and Related Statistical Multiplexer
Performance,” IEEE JSAC, Sept. 1986, pp. 856–68.

[5] I. Nikolaidis and I. Akyildiz, “Source Characterization and Statistical Multi-
plexing in ATM Networks,” Tech. Rep. GIT-CC 92-24, Georgia Tech., 1992.

[6] J. Hui, Switching and Traffic Theory for Integrated Broadband Networks,
Kluwer Academic, 1990.

[7] B. Maglaris et al., “Performance Models of Statistical Multiplexing in
Packet Video Communications,” IEEE Trans. Commun., vol. 36, July 1988.

[8] P. Sen et al., “Models for Packet Switching of Variable-Bit-Rate Video
Sources,” IEEE JSAC, vol. 7, no. 5, 1989.

[9] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed., McGraw Hill, 1991.

[10] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis, 3rd ed., Pren-
tice Hall, 1994.

[11] C. Shim et al., “Modeling and Call Admission Control Algorithm of Vari-
able Bit Rate Video in ATM Networks,” IEEE JSAC, vol. 12, Feb. 1994.

[12] D. Cohen and D. Heyman, “Performance Modeling of Video Teleconfer-
encing in ATM Networks,” IEEE Trans. Circuits and Sys. for Video Tech.,
vol. 3, Dec. 1993, pp. 408–20.

[13] D. Heyman et al., “Modeling Teleconference Traffic from VBR Video
Coders,” Proc. ICC, IEEE, 1994, pp. 1744–48.

[14] D. Heyman, A. Tabatabai, and T. Lakshman, “Statistical Analysis and Sim-
ulation Study of Video Teleconference Traffic in ATM Networks,” IEEE
Trans. Circuits and Sys. for Video Tech., vol. 2, Mar. 1992, pp. 49–59.

[15] M. Hayes, Statistical Digital Signal Processing and Modeling, John
Wiley, 1996.

[16] R. Grunenfelder et al., “Characterization of Video Codecs as Autore-
gressive Moving Average Processes and Related Queuing System Perfor-
mance,” IEEE JSAC, vol. 9, Apr. 1991, pp. 284–93.

[17] D. R. Cox, “Long-Range Dependence: A Review,” Statistics: An
Appraisal, 1984, Iowa State Univ. Press, pp. 55–74.

[18] D. Jagerman and B. Melamed, “The Transition and Autocorrelation
Structure of TES Processes,” Commun. Stat.-Stochastic Models, 1992.

[19] B. Melamed, “TES: A Class of Methods for Generating Autocorrelated
Uniform Variates,” ORSA J. Comp., vol. 3, no. 4, pp. 317–29, 1991.

[20] W. Leland et al., “On the Self-Similar Nature of Ethernet Traffic
(Extended Version),” IEEE/ACM Trans. Networking, Feb. 1994, pp. 1–15.

[21] S. Klivanski, A. Mukherjee, and C. Song, “On Long-Range Dependence
in NSFNET Traffic,” Tech. Rep. GIT-CC-94-61, Georgia Tech., 1994.

[22] B. B. Mandelbrot and J. R. Wallis, “Some Long-Run Properties of Geo-
physical Records,” Water Resources Res., vol. 5, 1969, pp. 321–40.

[23] J. Hosking, “Modeling Persistence in Hydrological Time Series Using Frac-
tional Differencing,” Water Resources Res., vol. 20, Dec. 1984, pp.
1898–1908.

[24] B. Mandelbrot and J. Wallis, “Computer Experiments with Fractional
Gaussian Noises,” Water Resources Res., vol. 5, Feb. 1969, pp. 228–67.

[25] J. Beran, Statistics for Long-Memory Processes, Chapman and Hall, 1994.
[26] J. Beran et al., “Long-Range Dependence in Variable-Bit-Rate Video

Traffic,” IEEE Trans. Commun., 1995, pp. 1566–79.
[27] W. Willinger, “When Traffic Measurements Defy Traditional Traffic

Models (and Vice Versa): Traffic Modeling for High-Speed Networks,”
Presentation at Georgia Tech, 1994.

[28] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Pro-
cesses, Chapman and Hall, 1994.

[29] J. Hosking, “Fractional Differencing,” Biometrica, 1981, pp. 165–76.
[30] C. H. and M. Devetsikiotis, I. Lambadaris, and A. Kaye, “Self-Similar

Modeling of Variable Bit Rate Compressed Video: A Unified Approach,”
Proc. ACM SIGCOM ’95, 1995.

[31] A. Adas and A. Mukherjee, “On Resource Management and QoS Guaran-
tees for Long Range Dependent Traffic,” Proc. IEEE INFOCOM ’95, 1995.

[32] S. Karlin and H. Taylor, A First Course in Stochastic Processes, Academ-
ic, 2 ed., 1975.

[33] I. Norros, “On the Use of Fractional Brownian Motion in the Theory of
Connectionless Traffic,” IEEE JSAC, Aug. 1995, pp. 953–62.

[34] S. Kogon and D. Manolakis, “Efficient Generation of Long-Memory Sig-
nals Using Lattice Structure,” preprint, 1995.

[35] W. Willinger et al., “Self-Similarity through High Variability: Statistical
Analysis of Ethernet LAN Taffic at the Source Level,” Proc. ACM SIG-
COMM ’95, 1995, pp. 100–13.

[36] B. Mandelbrot, “Long-Run Linearity, Locally Gaussian Processes, H-Spec-
tra and Infinite Variance,” Int’l. Economic Rev., vol. 10, 1969, pp. 82–113.

[37] M. Taqqu and J. Levy, “Using Renewal Processes to Generate Long-
Range Dependence and High Variability,” Dependence in Probability
and Statistics, Boston, MA, 1986, pp. 73–89.

[38] N. Likhanov, B. Tsybakov, and N. Georganas, “Analysis of an ATM Buffer
with Self-Similar (Fractal) Input Traffic,” Proc. IEEE INFOCOM ’95, Apr. 1995.

[39] B. Melamed and P. Jelenkovic, “Automated TES Modeling of Com-
pressed Video,” Proc. IEEE INFOCOM ’95, 1995, pp. 746–52.

BIOGRAPHY
ABDELNASER ADAS received a B.Sc. in electrical engineering from University of
Jordan in 1988, an M.Sc. in electrical engineering from New Jersey Institute
of Technology in 1993, and a Ph.D. from the Georgia Institute of Technolo-
gy Electrical and Computer Engineering Department. Research interests are
in network resource management, statistical performance analysis, traffic
modeling, multimedia applications, and network services to the home.


