
A Linear-time Algorithm forProper Interval Graph ReognitionCelina M. Herrera de Figueiredo� Jo~ao Meidanisy C�elia Piinin de MelloyAbstratInterval graphs are the intersetion graphs of families of intervals in the real line. Ifthe intervals an be hosen so that no interval ontains another, we obtain the sublassof proper interval graphs. In this paper, we show how to reognize proper intervalgraphs in linear time by onstruting the lique partition from the output of a singlelexiographi breadth-�rst searh.Keywords: design of algorithms, interval graphs, indi�erene graphs.1 IntrodutionInterval graphs, whih are the intersetion graphs of families of intervals in the real line,have ountless appliations and have been extensively studied sine their ineption [4, 5℄.If the intervals an be hosen so that no interval ontains another, we obtain preisely thelass of interval graphs that do not admit K1;3 as an indued subgraph [9℄. Suh graphsare alled aordingly proper interval graphs. The names unit interval graph, indi�erenegraph and time graph are also used in the literature as synonyms of proper interval graph[4, 7, 9℄.The �rst linear-time algorithm for interval graph reognition appeared in 1975 [1℄. Thisalgorithm uses a lexiographi breadth-�rst searh (lexBFS) to �nd in linear time the max-imal liques of the graph and then employs speial strutures alled PQ-trees to �nd an�Universidade Federal do Rio de Janeiro, Instituto de Matem�atia, Caixa Postal 68530, 21944 Rio deJaneiro, RJ, Brasil. Partially supported by CNPq, grant 30 1160/91.0.yUniversidade Estadual de Campinas, Departamento de Ciênia da Computa�~ao, Caixa Postal 6065,13081 Campinas, SP, Brasil. Partially supported by FAPESP and CNPq.1



ordering of the maximal liques that haraterizes interval graphs. In 1989, Korte andM�ohring introdued MPQ-trees, a modi�ed version of the original PQ-trees, and gave asimpler, inremental algorithm for interval graph reognition, whih still runs in linear time[8℄. In 1992, Hsu presented an alternate linear-time algorithm for interval graph reognition[6℄. This algorithm does not use PQ-trees: it builds a deomposition tree that �nds allinterval representations for a given interval graph.It is known that a single run of lexBFS is enough to reognize triangulated graphs [11℄.Reently, K. Simon presented an intriguing algorithm, in whih four iterations of lexBFSsuÆe to reognize interval graphs [12℄. This is a hint that lexBFS may in fat be a muhmore powerful tool than previously thought.None of the referenes ited above onsiders adapting an algorithm for interval graphreognition to an algorithm for proper interval graph reognition. A linear-time algorithmfor proper interval graph reognition was reently given by Corneil et al. [2℄.In this paper, we show how to reognize proper interval graphs by onstruting the liquepartition from the output of a single lexBFS. The algorithm runs in linear time and doesnot involve PQ-trees or MPQ-trees. Instead, we use a muh simpler struture, similar to theone used in the lexBFS itself: a doubly-linked list of lasses of nodes. Our algorithm alsoonstruts a ompat representation of all indi�erene orders for a proper interval graph.This representation gives a solution to the isomorphism problem for this lass.The methods used in [2℄ and here are di�erent. Corneil et al. use three passes throughthe graph while we use only two passes. In addition, our algorithm gives as a by-produtthe lique partition of the input graph.2 The algorithmIn this paper, G denotes an undireted, �nite, onneted graph. V (G) and E(G) are thevertex and edge sets of G, respetively. A lique is a set of verties pairwise adjaent in G.A maximal lique of G is a lique not properly ontained in any other lique. For eah vertexv of a graph G, Adj(v) denotes the set of verties whih are adjaent to v. In addition,N(v) denotes the neighborhood of v, that is, N(v) = Adj(v) [ fvg. We extend the domainof N to subsets V 0 of V (G) by setting N(V 0) = [v2V 0N(v).A lexiographi breadth-�rst searh (lexBFS) is a breadth-�rst searh proedure with the2



additional rule that verties with earlier visited neighbors are preferred. Following Korteand M�ohring [8℄, we say that v; w 2 V (G) disagree on u 2 V (G) if exatly one of them isadjaent to u. Thus, a lexBFS produes an ordering (v1; : : : ; vn) of V (G) with the followingproperty: if there are i; j; k with 1 � i < j < k � n suh that vj; vk disagree on vi, thenthe leftmost vertex on whih they disagree is adjaent to vj.Interval graphs are preisely those whih admit a linear order on the set of maximalliques suh that the maximal liques ontaining the same vertex are onseutive [3℄. Alique that an appear as the �rst (or the last) lique in suh an order is alled an outerlique. A vertex v is simpliial when N(v) is a lique. In addition, for interval graphs, avertex v is external simpliial when N(v) is an outer lique. A lexBFS in a interval graphalways ends in an external simpliial vertex [8℄.Indi�erene graphs too an be haraterized by a linear order: their verties an belinearly ordered so that verties ontained in the same maximal lique are onseutive [10℄.We all suh an order an indi�erene order. Our algorithm works by trying to onstrut anindi�erene order for the input graph.Beause a lexBFS in an indi�erene graph always ends in an external simpliial vertex [8℄,a natural idea is to remove this last vertex (all it v), perform a reursive all with theremaining graph, and then inlude v in the indi�erene order returned by the reursive all.Sine v is external simpliial, there are only two possibilities: v goes either in the beginningor in the end of the returned order. If v is not adjaent to either extreme, or if the reursiveall rejets, then the algorithm rejets.Furthermore, sine a lexBFS ordering without its last vertex is still a lexBFS on thegraph without this vertex, a single lexBFS run an be used throughout the whole proess.Unfortunately, this simple sheme does not work beause there are, in general, manyindi�erene orders for a given graph. If the wrong one is returned, the algorithm will rejeta good graph. As an example, onsider the graph G depited in Figure 1 and the givenlexBFS ordering. Although there are only two indi�erene orders for G (one being thereverse of the other), there are four indi�erene orders for Gnfvg. Only two of them permitthe plaement of v beside its only neighbor y. In the other orders, y is \hidden" by theother verties; so, the algorithm will inorretly report that G is not an indi�erene graph.To overome this problem, throughout the whole proess we work with redued graphs.The starting point of our algorithm is the observation that for redued indi�erene graphs3
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 JJJszu x y vG indi�erene orders for G n fvg:lexBFS ordering: u x y z v.u x z y.u x y z.y z x u.z y x u.Figure 1: The na��ve algorithm fails to reognize this indi�erene graph.the indi�erene order is unique (exept for its reverse) [10℄. Two verties v, w are twinswhen N(v) = N(w). A graph is redued if no two distint verties are twins. The reduedgraph G0 of a graph G is the graph obtained from G by ollapsing eah set of twins into asingle vertex and removing parallel edges and loops. The \twin" relation is an equivalenerelation. The partition of V (G) into lasses of twin verties is alled the lique partition ofthe graph.Note that, by de�nition, an indi�erene order indues a total order on the sets of thelique partition of an indi�erene graph G and vie versa. This total order is an indi�ereneorder for the redued graph G0. We shall denote by P = (A1; : : : ; Al) the orrespondingordered lique partition. Remark that all verties of a set Ai are twins.Indif(G)let (v1; : : : ; vn) be the order produed by a lexBFS on Ginitialize: P  (fv1g)for i := 2 to n doif vi an be inluded in P then update Pelse rejet the graphendifendforaept the graphFigure 2: Our lexBFS algorithm for indi�erene graph reognition.4



The algorithm onsiders the verties of G ordered aording to a lexBFS. Let (v1; : : : ; vn)be that order. By de�nition, the graph onsisting of vertex v1 is indi�erene. The algorithmtries to add eah vertex of G following the given lexBFS ordering. If the urrent vertexan be inluded in the ordered lique partition of the urrent graph, then we ontinue.Otherwise the input graph is rejeted. The algorithm appears in Figure 2.We proeed to show how we an deide whether a new vertex v an be inluded in theurrent ordered lique partition P and how to update P . The following result shows thatin an indi�erene graph all neighbors of the last vertex in a lexBFS are paked toward oneend of an indi�erene order.Theorem 1 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = G n fvg is an indi�erene graph and let P = (A1; : : : ; Al) be an ordered liquepartition for H. If G is an indi�erene graph, then one of the following holds:1. Adj(v)\A1 6= ;. Moreover, there is an index j suh that [j�1k=1Ak � Adj(v) � [jk=1Ak,Aj \Adj(v) 6= ;, and Aj \N(A1) 6= ;.2. Adj(v) \ Al 6= ;. Moreover, there is an index j suh that [lk=j+1Ak � Adj(v) �[lk=jAk, Aj \Adj(v) 6= ;, and Aj \N(Al) 6= ;.Proof: In an interval graph the last vertex visited in a lexBFS belongs to an outer lique [8℄.IfG is an indi�erene graph, this applies to G as well. Thus, v is an external simpliial vertexof G and therefore Adj(v) is ontained in an outer lique of H. Sine H is an indi�erenegraph, there are just two outer liques, N(A1) and N(Al). Suppose Adj(v) � N(A1) andAdj(v) \ A1 = ;. Let w be any element of Adj(v). Sine Adj(v) � N(A1), there existsa1 2 A1 suh that w is adjaent to a1. Note that, beause N(A1) is a lique, any a1 2 A1will do. Note that by supposition, a1 is not adjaent to v. Furthermore, Adj(w) 6� N(A1)beause w and a1 are not twins. Now taking any element z 2 Adj(w) nN(A1) we have thatG[w; v; a1; z℄ is isomorphi to K1;3, ontraditing the fat that G is an indi�erene graph.Hene, Adj(v) must meet A1 if Adj(v) � N(A1). Analogously, Adj(v) must meet Al ifAdj(v) � N(Al).So we may assume Adj(v) \ A1 6= ;. Let j be the minimum index suh that Adj(v) �[jk=1Ak. This guarantees that Aj \ Adj(v) 6= ;. Beause v is a simpliial vertex we haveAj \N(A1) 6= ; and we shall now show that [j�1k=1Ak � Adj(v).5



If j = 1, this is immediate, sine the left-hand side is empty. For j > 1, assume for amoment that the inlusion does not hold, and take aj 2 Adj(v) \ Aj and y 2 (A1 [ � � � [Aj�1) n Adj(v). Notie that aj is adjaent to y, beause both belong to the lique N(A1).However, being in distint lasses, they are not twins in H. It follows that there is eitheran element adjaent to y but not to aj , or an element adjaent to aj but not to y. The�rst ase must be exluded sine suh an element would neessarily be in a lass to theleft of y in the indi�erene order, and aj meets all lasses down to A1. Hene, there isz 2 Adj(aj) n Adj(y). But then G[aj ; v; y; z℄ is isomorphi to K1;3, a ontradition.The following theorem shows how to update the lique partition. We note that this resultalso says that given any indi�erene graph, our algorithms always ends by onstrutingan indi�erene order. This implies the orretness of our algorithm beause a graph isindi�erene if and only if it admits an indi�erene order.Theorem 2 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = Gnfvg is an indi�erene graph, and let P = (A1; : : : ; Al) be an ordered liquepartition for H. Suppose further that Adj(v) \ A1 6= ;, and that there is an index j suhthat [j�1k=1Ak � Adj(v) � [jk=1Ak; Aj \ Adj(v) 6= ;, and Aj \N(A1) 6= ;. Then an orderedlique partition P 0 of G an be obtained as follows:1. If Adj(v) = [jk=1Ak, then 8>>><>>>: P 0 = (A1 [ fvg; : : : ; Al); if there is w in A1 withN(w) = N(v):P 0 = (fvg; A1; : : : ; Al); otherwise:2. If Adj(v) 6= [jk=1Ak, then P 0 = (fvg; A1; : : : ; Aj�1; B;C;Aj+1; : : : ; Al), where B =Aj \Adj(v) and C = Aj nAdj(v).No other ase is possible, and G is an indi�erene graph.Proof: We shall prove the following: If the vertex v an be inluded in P , then P 0 is anindi�erene order for redued graph G0, i.e., G itself admits an indi�erene order and heneG is an indi�erene graph. Let P = (A1; : : : ; Al) be the indi�erene order for redued graphof H. Suppose Adj(v)\A1 6= ; and let j be as in the statement of the theorem. We examinetwo ases.Case 1: Adj(v) = [jk=1Ak. This implies that two verties x; y distint from v are twinsin H if and only if they are twins in G. Hene, there will be no hanges in the urrentlasses, exept for the possible inlusion of v in one of them.6



If there exists w 2 A1 suh that N(w) = N(v), then v and w are twins in G. Hene,P 0 = (A1 [ fvg; A2; : : : ; Al) is an indi�erene order for G0.If v is not twin with verties ofA1, then it is not twin with any other vertex. Indeed, whileAdj(v) � N(A1), all verties outside A1 have neighbors outside N(A1). For this reason, vmust start a new lass by itself, whih should be plaed near A1 to satisfy the onseutiverequirement for the maximal lique fvg [A1 [ � � � [Aj of G. Hene, P 0 = (fvg; A1; : : : ; Al)is an indi�erene order for G0.Case 2: Adj(v) 6= [jk=1Ak. In this ase, lass Aj must be split. Its elements will nolonger be all twins in G, sine some of them meet v while others don't. Let B = Aj\Adj(v)and C = Aj n Adj(v). By hypothesis, both are nonempty. Thus Adj(v) = A1 [ � � � [Aj�1 [ B and fvg [ A1 [ � � � [ B is a maximal lique of G. The new lasses B and Cwill replae Aj in the order, with B loser to A1 beause of v's maximal lique. Hene,P 0 = (fvg; A1; : : : ; B;C;Aj+1; : : : ; Al) is an indi�erene order for G0.3 Linear-time implementationLet n and m be the number of verties and the number of edges of the input graph G,respetively. The algorithm proposed above basially onsists of a lexBFS followed by aloop whose body is exeuted at most n� 1 times.It is well-known that a lexBFS an be performed in O(n+m) time [11℄. Thus, it remainsto show how to implement the loop so that the same time bound applies. This will be doneby showing that, if the input graph is an indi�erene graph, then eah iteration onsumesO(jAdj(v)j), where v is the vertex tentatively added in this iteration. If the input graph isnot an indi�erene graph, the last iteration may take O(n) time. In any ase, adding upfor all iterations, this gives time O(n+m).We begin with the desription of the struture used to represent the partition P . Eahset Ar is represented by a doubly linked list of the verties it ontains, in arbitrary order.The Ar's themselves are kept in a doubly-linked list in indi�erene order. This is similar tothe arrangement used in a lexBFS [11℄. For eah lass Ar, a variable r is used to keep trakof the ardinality of that lass. In addition, the number of lasses ontained in eah one ofthe two outer liques is maintained. To aomplish that, we use a variable b (for beginning)indiating that A1 [A2 [ : : : [Ab = N(A1), the outer lique ontaining A1, and a variable7



e (for end) indiating that Ae [ : : : [Al�1 [Al = N(Al), the outer lique ontaining Al.We are now ready to show how to implement the i-th iteration, whih proesses vertexv = vi+1. Initially, all neighbors of v already in the struture are marked. This takesO(jAdj(v)j) time. When a vertex is marked, a ounter for marked verties in its lass isinremented. These ounters must start with zero for eah iteration. We will denote by mrthe value of this ounter for lass Ar.All tests needed in an iteration, aording to theorems 1 and 2, an be performed usingthe ounters r and mr. The test Adj(v)\A1 6= ; is equivalent to m1 6= 0, and an be donein onstant time. For the remaining onditions, we assume that m1 6= 0. Otherwise, wehek the opposite end of the struture in an analogous manner.The index j is the maximum index for whih mj 6= 0. If the graph is an indi�erenegraph, then we have j � jAdj(v)j, sine all neighbors of v are paked toward one end. Inany ase, j � n. Thus, j is the minimum index suh that �jk=1mk = jAdj(v)j. Hene, thisargument guarantees O(n+m) time overall.The ondition Aj \N(A1) = ; is equivalent to b < j. The ondition [j�1k=1Ak � Adj(v)onsists in verifying whether mr = r for r = 1; : : : ; j � 1. The test Adj(v) = [jk=1Ak isequivalent to mj = j . If this is true, the test \there exists w 2 A1 with N(v) = N(w)" isequivalent to j = b.After all these tests have been performed, it is neessary to set mr  0, for r = 1; : : : ; j,preparing for the next iteration. If v is added suessfully, these are the only ountersmodi�ed in this iteration. Otherwise, the loop will stop and the graph will be rejetedanyway; so, we don't have to worry about future iterations.Finally, we need to speify how the struture is updated when v is added. Adding avertex to a lass or reating a new singleton lass are easily aomplished in onstant time,as well as updating the ardinality ounters r. The potential problem here is splittinga mixed lass in two, one ontaining the marked and the other the unmarked verties.However, this an be done with the following trik. Eah time a vertex is marked, it istransferred to the beginning of the list for its lass. This way, when we need to split a lassAr, we know that the �rst mr elements are the ones adjaent to v. This is a onvenientway of marking verties without using an extra bit �eld. It also obviates the need to learthe marks: zeroing mr automatially does this.A last remark onerns updating the outer lique indiator b. If v is added to A1, then8
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