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ognitionCelina M. Herrera de Figueiredo� Jo~ao Meidanisy C�elia Pi
inin de MelloyAbstra
tInterval graphs are the interse
tion graphs of families of intervals in the real line. Ifthe intervals 
an be 
hosen so that no interval 
ontains another, we obtain the sub
lassof proper interval graphs. In this paper, we show how to re
ognize proper intervalgraphs in linear time by 
onstru
ting the 
lique partition from the output of a singlelexi
ographi
 breadth-�rst sear
h.Keywords: design of algorithms, interval graphs, indi�eren
e graphs.1 Introdu
tionInterval graphs, whi
h are the interse
tion graphs of families of intervals in the real line,have 
ountless appli
ations and have been extensively studied sin
e their in
eption [4, 5℄.If the intervals 
an be 
hosen so that no interval 
ontains another, we obtain pre
isely the
lass of interval graphs that do not admit K1;3 as an indu
ed subgraph [9℄. Su
h graphsare 
alled a

ordingly proper interval graphs. The names unit interval graph, indi�eren
egraph and time graph are also used in the literature as synonyms of proper interval graph[4, 7, 9℄.The �rst linear-time algorithm for interval graph re
ognition appeared in 1975 [1℄. Thisalgorithm uses a lexi
ographi
 breadth-�rst sear
h (lexBFS) to �nd in linear time the max-imal 
liques of the graph and then employs spe
ial stru
tures 
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ordering of the maximal 
liques that 
hara
terizes interval graphs. In 1989, Korte andM�ohring introdu
ed MPQ-trees, a modi�ed version of the original PQ-trees, and gave asimpler, in
remental algorithm for interval graph re
ognition, whi
h still runs in linear time[8℄. In 1992, Hsu presented an alternate linear-time algorithm for interval graph re
ognition[6℄. This algorithm does not use PQ-trees: it builds a de
omposition tree that �nds allinterval representations for a given interval graph.It is known that a single run of lexBFS is enough to re
ognize triangulated graphs [11℄.Re
ently, K. Simon presented an intriguing algorithm, in whi
h four iterations of lexBFSsuÆ
e to re
ognize interval graphs [12℄. This is a hint that lexBFS may in fa
t be a mu
hmore powerful tool than previously thought.None of the referen
es 
ited above 
onsiders adapting an algorithm for interval graphre
ognition to an algorithm for proper interval graph re
ognition. A linear-time algorithmfor proper interval graph re
ognition was re
ently given by Corneil et al. [2℄.In this paper, we show how to re
ognize proper interval graphs by 
onstru
ting the 
liquepartition from the output of a single lexBFS. The algorithm runs in linear time and doesnot involve PQ-trees or MPQ-trees. Instead, we use a mu
h simpler stru
ture, similar to theone used in the lexBFS itself: a doubly-linked list of 
lasses of nodes. Our algorithm also
onstru
ts a 
ompa
t representation of all indi�eren
e orders for a proper interval graph.This representation gives a solution to the isomorphism problem for this 
lass.The methods used in [2℄ and here are di�erent. Corneil et al. use three passes throughthe graph while we use only two passes. In addition, our algorithm gives as a by-produ
tthe 
lique partition of the input graph.2 The algorithmIn this paper, G denotes an undire
ted, �nite, 
onne
ted graph. V (G) and E(G) are thevertex and edge sets of G, respe
tively. A 
lique is a set of verti
es pairwise adja
ent in G.A maximal 
lique of G is a 
lique not properly 
ontained in any other 
lique. For ea
h vertexv of a graph G, Adj(v) denotes the set of verti
es whi
h are adja
ent to v. In addition,N(v) denotes the neighborhood of v, that is, N(v) = Adj(v) [ fvg. We extend the domainof N to subsets V 0 of V (G) by setting N(V 0) = [v2V 0N(v).A lexi
ographi
 breadth-�rst sear
h (lexBFS) is a breadth-�rst sear
h pro
edure with the2



additional rule that verti
es with earlier visited neighbors are preferred. Following Korteand M�ohring [8℄, we say that v; w 2 V (G) disagree on u 2 V (G) if exa
tly one of them isadja
ent to u. Thus, a lexBFS produ
es an ordering (v1; : : : ; vn) of V (G) with the followingproperty: if there are i; j; k with 1 � i < j < k � n su
h that vj; vk disagree on vi, thenthe leftmost vertex on whi
h they disagree is adja
ent to vj.Interval graphs are pre
isely those whi
h admit a linear order on the set of maximal
liques su
h that the maximal 
liques 
ontaining the same vertex are 
onse
utive [3℄. A
lique that 
an appear as the �rst (or the last) 
lique in su
h an order is 
alled an outer
lique. A vertex v is simpli
ial when N(v) is a 
lique. In addition, for interval graphs, avertex v is external simpli
ial when N(v) is an outer 
lique. A lexBFS in a interval graphalways ends in an external simpli
ial vertex [8℄.Indi�eren
e graphs too 
an be 
hara
terized by a linear order: their verti
es 
an belinearly ordered so that verti
es 
ontained in the same maximal 
lique are 
onse
utive [10℄.We 
all su
h an order an indi�eren
e order. Our algorithm works by trying to 
onstru
t anindi�eren
e order for the input graph.Be
ause a lexBFS in an indi�eren
e graph always ends in an external simpli
ial vertex [8℄,a natural idea is to remove this last vertex (
all it v), perform a re
ursive 
all with theremaining graph, and then in
lude v in the indi�eren
e order returned by the re
ursive 
all.Sin
e v is external simpli
ial, there are only two possibilities: v goes either in the beginningor in the end of the returned order. If v is not adja
ent to either extreme, or if the re
ursive
all reje
ts, then the algorithm reje
ts.Furthermore, sin
e a lexBFS ordering without its last vertex is still a lexBFS on thegraph without this vertex, a single lexBFS run 
an be used throughout the whole pro
ess.Unfortunately, this simple s
heme does not work be
ause there are, in general, manyindi�eren
e orders for a given graph. If the wrong one is returned, the algorithm will reje
ta good graph. As an example, 
onsider the graph G depi
ted in Figure 1 and the givenlexBFS ordering. Although there are only two indi�eren
e orders for G (one being thereverse of the other), there are four indi�eren
e orders for Gnfvg. Only two of them permitthe pla
ement of v beside its only neighbor y. In the other orders, y is \hidden" by theother verti
es; so, the algorithm will in
orre
tly report that G is not an indi�eren
e graph.To over
ome this problem, throughout the whole pro
ess we work with redu
ed graphs.The starting point of our algorithm is the observation that for redu
ed indi�eren
e graphs3
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 JJJszu x y vG indi�eren
e orders for G n fvg:lexBFS ordering: u x y z v.u x z y.u x y z.y z x u.z y x u.Figure 1: The na��ve algorithm fails to re
ognize this indi�eren
e graph.the indi�eren
e order is unique (ex
ept for its reverse) [10℄. Two verti
es v, w are twinswhen N(v) = N(w). A graph is redu
ed if no two distin
t verti
es are twins. The redu
edgraph G0 of a graph G is the graph obtained from G by 
ollapsing ea
h set of twins into asingle vertex and removing parallel edges and loops. The \twin" relation is an equivalen
erelation. The partition of V (G) into 
lasses of twin verti
es is 
alled the 
lique partition ofthe graph.Note that, by de�nition, an indi�eren
e order indu
es a total order on the sets of the
lique partition of an indi�eren
e graph G and vi
e versa. This total order is an indi�eren
eorder for the redu
ed graph G0. We shall denote by P = (A1; : : : ; Al) the 
orrespondingordered 
lique partition. Remark that all verti
es of a set Ai are twins.Indif(G)let (v1; : : : ; vn) be the order produ
ed by a lexBFS on Ginitialize: P  (fv1g)for i := 2 to n doif vi 
an be in
luded in P then update Pelse reje
t the graphendifendfora

ept the graphFigure 2: Our lexBFS algorithm for indi�eren
e graph re
ognition.4



The algorithm 
onsiders the verti
es of G ordered a

ording to a lexBFS. Let (v1; : : : ; vn)be that order. By de�nition, the graph 
onsisting of vertex v1 is indi�eren
e. The algorithmtries to add ea
h vertex of G following the given lexBFS ordering. If the 
urrent vertex
an be in
luded in the ordered 
lique partition of the 
urrent graph, then we 
ontinue.Otherwise the input graph is reje
ted. The algorithm appears in Figure 2.We pro
eed to show how we 
an de
ide whether a new vertex v 
an be in
luded in the
urrent ordered 
lique partition P and how to update P . The following result shows thatin an indi�eren
e graph all neighbors of the last vertex in a lexBFS are pa
ked toward oneend of an indi�eren
e order.Theorem 1 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = G n fvg is an indi�eren
e graph and let P = (A1; : : : ; Al) be an ordered 
liquepartition for H. If G is an indi�eren
e graph, then one of the following holds:1. Adj(v)\A1 6= ;. Moreover, there is an index j su
h that [j�1k=1Ak � Adj(v) � [jk=1Ak,Aj \Adj(v) 6= ;, and Aj \N(A1) 6= ;.2. Adj(v) \ Al 6= ;. Moreover, there is an index j su
h that [lk=j+1Ak � Adj(v) �[lk=jAk, Aj \Adj(v) 6= ;, and Aj \N(Al) 6= ;.Proof: In an interval graph the last vertex visited in a lexBFS belongs to an outer 
lique [8℄.IfG is an indi�eren
e graph, this applies to G as well. Thus, v is an external simpli
ial vertexof G and therefore Adj(v) is 
ontained in an outer 
lique of H. Sin
e H is an indi�eren
egraph, there are just two outer 
liques, N(A1) and N(Al). Suppose Adj(v) � N(A1) andAdj(v) \ A1 = ;. Let w be any element of Adj(v). Sin
e Adj(v) � N(A1), there existsa1 2 A1 su
h that w is adja
ent to a1. Note that, be
ause N(A1) is a 
lique, any a1 2 A1will do. Note that by supposition, a1 is not adja
ent to v. Furthermore, Adj(w) 6� N(A1)be
ause w and a1 are not twins. Now taking any element z 2 Adj(w) nN(A1) we have thatG[w; v; a1; z℄ is isomorphi
 to K1;3, 
ontradi
ting the fa
t that G is an indi�eren
e graph.Hen
e, Adj(v) must meet A1 if Adj(v) � N(A1). Analogously, Adj(v) must meet Al ifAdj(v) � N(Al).So we may assume Adj(v) \ A1 6= ;. Let j be the minimum index su
h that Adj(v) �[jk=1Ak. This guarantees that Aj \ Adj(v) 6= ;. Be
ause v is a simpli
ial vertex we haveAj \N(A1) 6= ; and we shall now show that [j�1k=1Ak � Adj(v).5



If j = 1, this is immediate, sin
e the left-hand side is empty. For j > 1, assume for amoment that the in
lusion does not hold, and take aj 2 Adj(v) \ Aj and y 2 (A1 [ � � � [Aj�1) n Adj(v). Noti
e that aj is adja
ent to y, be
ause both belong to the 
lique N(A1).However, being in distin
t 
lasses, they are not twins in H. It follows that there is eitheran element adja
ent to y but not to aj , or an element adja
ent to aj but not to y. The�rst 
ase must be ex
luded sin
e su
h an element would ne
essarily be in a 
lass to theleft of y in the indi�eren
e order, and aj meets all 
lasses down to A1. Hen
e, there isz 2 Adj(aj) n Adj(y). But then G[aj ; v; y; z℄ is isomorphi
 to K1;3, a 
ontradi
tion.The following theorem shows how to update the 
lique partition. We note that this resultalso says that given any indi�eren
e graph, our algorithms always ends by 
onstru
tingan indi�eren
e order. This implies the 
orre
tness of our algorithm be
ause a graph isindi�eren
e if and only if it admits an indi�eren
e order.Theorem 2 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = Gnfvg is an indi�eren
e graph, and let P = (A1; : : : ; Al) be an ordered 
liquepartition for H. Suppose further that Adj(v) \ A1 6= ;, and that there is an index j su
hthat [j�1k=1Ak � Adj(v) � [jk=1Ak; Aj \ Adj(v) 6= ;, and Aj \N(A1) 6= ;. Then an ordered
lique partition P 0 of G 
an be obtained as follows:1. If Adj(v) = [jk=1Ak, then 8>>><>>>: P 0 = (A1 [ fvg; : : : ; Al); if there is w in A1 withN(w) = N(v):P 0 = (fvg; A1; : : : ; Al); otherwise:2. If Adj(v) 6= [jk=1Ak, then P 0 = (fvg; A1; : : : ; Aj�1; B;C;Aj+1; : : : ; Al), where B =Aj \Adj(v) and C = Aj nAdj(v).No other 
ase is possible, and G is an indi�eren
e graph.Proof: We shall prove the following: If the vertex v 
an be in
luded in P , then P 0 is anindi�eren
e order for redu
ed graph G0, i.e., G itself admits an indi�eren
e order and hen
eG is an indi�eren
e graph. Let P = (A1; : : : ; Al) be the indi�eren
e order for redu
ed graphof H. Suppose Adj(v)\A1 6= ; and let j be as in the statement of the theorem. We examinetwo 
ases.Case 1: Adj(v) = [jk=1Ak. This implies that two verti
es x; y distin
t from v are twinsin H if and only if they are twins in G. Hen
e, there will be no 
hanges in the 
urrent
lasses, ex
ept for the possible in
lusion of v in one of them.6



If there exists w 2 A1 su
h that N(w) = N(v), then v and w are twins in G. Hen
e,P 0 = (A1 [ fvg; A2; : : : ; Al) is an indi�eren
e order for G0.If v is not twin with verti
es ofA1, then it is not twin with any other vertex. Indeed, whileAdj(v) � N(A1), all verti
es outside A1 have neighbors outside N(A1). For this reason, vmust start a new 
lass by itself, whi
h should be pla
ed near A1 to satisfy the 
onse
utiverequirement for the maximal 
lique fvg [A1 [ � � � [Aj of G. Hen
e, P 0 = (fvg; A1; : : : ; Al)is an indi�eren
e order for G0.Case 2: Adj(v) 6= [jk=1Ak. In this 
ase, 
lass Aj must be split. Its elements will nolonger be all twins in G, sin
e some of them meet v while others don't. Let B = Aj\Adj(v)and C = Aj n Adj(v). By hypothesis, both are nonempty. Thus Adj(v) = A1 [ � � � [Aj�1 [ B and fvg [ A1 [ � � � [ B is a maximal 
lique of G. The new 
lasses B and Cwill repla
e Aj in the order, with B 
loser to A1 be
ause of v's maximal 
lique. Hen
e,P 0 = (fvg; A1; : : : ; B;C;Aj+1; : : : ; Al) is an indi�eren
e order for G0.3 Linear-time implementationLet n and m be the number of verti
es and the number of edges of the input graph G,respe
tively. The algorithm proposed above basi
ally 
onsists of a lexBFS followed by aloop whose body is exe
uted at most n� 1 times.It is well-known that a lexBFS 
an be performed in O(n+m) time [11℄. Thus, it remainsto show how to implement the loop so that the same time bound applies. This will be doneby showing that, if the input graph is an indi�eren
e graph, then ea
h iteration 
onsumesO(jAdj(v)j), where v is the vertex tentatively added in this iteration. If the input graph isnot an indi�eren
e graph, the last iteration may take O(n) time. In any 
ase, adding upfor all iterations, this gives time O(n+m).We begin with the des
ription of the stru
ture used to represent the partition P . Ea
hset Ar is represented by a doubly linked list of the verti
es it 
ontains, in arbitrary order.The Ar's themselves are kept in a doubly-linked list in indi�eren
e order. This is similar tothe arrangement used in a lexBFS [11℄. For ea
h 
lass Ar, a variable 
r is used to keep tra
kof the 
ardinality of that 
lass. In addition, the number of 
lasses 
ontained in ea
h one ofthe two outer 
liques is maintained. To a

omplish that, we use a variable b (for beginning)indi
ating that A1 [A2 [ : : : [Ab = N(A1), the outer 
lique 
ontaining A1, and a variable7



e (for end) indi
ating that Ae [ : : : [Al�1 [Al = N(Al), the outer 
lique 
ontaining Al.We are now ready to show how to implement the i-th iteration, whi
h pro
esses vertexv = vi+1. Initially, all neighbors of v already in the stru
ture are marked. This takesO(jAdj(v)j) time. When a vertex is marked, a 
ounter for marked verti
es in its 
lass isin
remented. These 
ounters must start with zero for ea
h iteration. We will denote by mrthe value of this 
ounter for 
lass Ar.All tests needed in an iteration, a

ording to theorems 1 and 2, 
an be performed usingthe 
ounters 
r and mr. The test Adj(v)\A1 6= ; is equivalent to m1 6= 0, and 
an be donein 
onstant time. For the remaining 
onditions, we assume that m1 6= 0. Otherwise, we
he
k the opposite end of the stru
ture in an analogous manner.The index j is the maximum index for whi
h mj 6= 0. If the graph is an indi�eren
egraph, then we have j � jAdj(v)j, sin
e all neighbors of v are pa
ked toward one end. Inany 
ase, j � n. Thus, j is the minimum index su
h that �jk=1mk = jAdj(v)j. Hen
e, thisargument guarantees O(n+m) time overall.The 
ondition Aj \N(A1) = ; is equivalent to b < j. The 
ondition [j�1k=1Ak � Adj(v)
onsists in verifying whether mr = 
r for r = 1; : : : ; j � 1. The test Adj(v) = [jk=1Ak isequivalent to mj = 
j . If this is true, the test \there exists w 2 A1 with N(v) = N(w)" isequivalent to j = b.After all these tests have been performed, it is ne
essary to set mr  0, for r = 1; : : : ; j,preparing for the next iteration. If v is added su

essfully, these are the only 
ountersmodi�ed in this iteration. Otherwise, the loop will stop and the graph will be reje
tedanyway; so, we don't have to worry about future iterations.Finally, we need to spe
ify how the stru
ture is updated when v is added. Adding avertex to a 
lass or 
reating a new singleton 
lass are easily a

omplished in 
onstant time,as well as updating the 
ardinality 
ounters 
r. The potential problem here is splittinga mixed 
lass in two, one 
ontaining the marked and the other the unmarked verti
es.However, this 
an be done with the following tri
k. Ea
h time a vertex is marked, it istransferred to the beginning of the list for its 
lass. This way, when we need to split a 
lassAr, we know that the �rst mr elements are the ones adja
ent to v. This is a 
onvenientway of marking verti
es without using an extra bit �eld. It also obviates the need to 
learthe marks: zeroing mr automati
ally does this.A last remark 
on
erns updating the outer 
lique indi
ator b. If v is added to A1, then8



b remains the same. In all other 
ases, b re
eives the value j+1, re
e
ting the fa
t that thenew outer 
lique 
ontains the �rst j + 1 
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