
A Linear-time Algorithm forProper Interval Graph Re
ognitionCelina M. Herrera de Figueiredo� Jo~ao Meidanisy C�elia Pi
inin de MelloyAbstra
tInterval graphs are the interse
tion graphs of families of intervals in the real line. Ifthe intervals
an be
hosen so that no interval
ontains another, we obtain the sub
lassof proper interval graphs. In this paper, we show how to re
ognize proper intervalgraphs in linear time by
onstru
ting the
lique partition from the output of a singlelexi
ographi
 breadth-�rst sear
h.Keywords: design of algorithms, interval graphs, indi�eren
e graphs.1 Introdu
tionInterval graphs, whi
h are the interse
tion graphs of families of intervals in the real line,have
ountless appli
ations and have been extensively studied sin
e their in
eption [4, 5℄.If the intervals
an be
hosen so that no interval
ontains another, we obtain pre
isely the
lass of interval graphs that do not admit K1;3 as an indu
ed subgraph [9℄. Su
h graphsare
alled a

ordingly proper interval graphs. The names unit interval graph, indi�eren
egraph and time graph are also used in the literature as synonyms of proper interval graph[4, 7, 9℄.The �rst linear-time algorithm for interval graph re
ognition appeared in 1975 [1℄. Thisalgorithm uses a lexi
ographi
 breadth-�rst sear
h (lexBFS) to �nd in linear time the max-imal
liques of the graph and then employs spe
ial stru
tures
alled PQ-trees to �nd an�Universidade Federal do Rio de Janeiro, Instituto de Matem�ati
a, Caixa Postal 68530, 21944 Rio deJaneiro, RJ, Brasil. Partially supported by CNPq, grant 30 1160/91.0.yUniversidade Estadual de Campinas, Departamento de Ciên
ia da Computa�
~ao, Caixa Postal 6065,13081 Campinas, SP, Brasil. Partially supported by FAPESP and CNPq.1

ordering of the maximal
liques that
hara
terizes interval graphs. In 1989, Korte andM�ohring introdu
ed MPQ-trees, a modi�ed version of the original PQ-trees, and gave asimpler, in
remental algorithm for interval graph re
ognition, whi
h still runs in linear time[8℄. In 1992, Hsu presented an alternate linear-time algorithm for interval graph re
ognition[6℄. This algorithm does not use PQ-trees: it builds a de
omposition tree that �nds allinterval representations for a given interval graph.It is known that a single run of lexBFS is enough to re
ognize triangulated graphs [11℄.Re
ently, K. Simon presented an intriguing algorithm, in whi
h four iterations of lexBFSsuÆ
e to re
ognize interval graphs [12℄. This is a hint that lexBFS may in fa
t be a mu
hmore powerful tool than previously thought.None of the referen
es
ited above
onsiders adapting an algorithm for interval graphre
ognition to an algorithm for proper interval graph re
ognition. A linear-time algorithmfor proper interval graph re
ognition was re
ently given by Corneil et al. [2℄.In this paper, we show how to re
ognize proper interval graphs by
onstru
ting the
liquepartition from the output of a single lexBFS. The algorithm runs in linear time and doesnot involve PQ-trees or MPQ-trees. Instead, we use a mu
h simpler stru
ture, similar to theone used in the lexBFS itself: a doubly-linked list of
lasses of nodes. Our algorithm also
onstru
ts a
ompa
t representation of all indi�eren
e orders for a proper interval graph.This representation gives a solution to the isomorphism problem for this
lass.The methods used in [2℄ and here are di�erent. Corneil et al. use three passes throughthe graph while we use only two passes. In addition, our algorithm gives as a by-produ
tthe
lique partition of the input graph.2 The algorithmIn this paper, G denotes an undire
ted, �nite,
onne
ted graph. V (G) and E(G) are thevertex and edge sets of G, respe
tively. A
lique is a set of verti
es pairwise adja
ent in G.A maximal
lique of G is a
lique not properly
ontained in any other
lique. For ea
h vertexv of a graph G, Adj(v) denotes the set of verti
es whi
h are adja
ent to v. In addition,N(v) denotes the neighborhood of v, that is, N(v) = Adj(v) [fvg. We extend the domainof N to subsets V 0 of V (G) by setting N(V 0) = [v2V 0N(v).A lexi
ographi
 breadth-�rst sear
h (lexBFS) is a breadth-�rst sear
h pro
edure with the2

additional rule that verti
es with earlier visited neighbors are preferred. Following Korteand M�ohring [8℄, we say that v; w 2 V (G) disagree on u 2 V (G) if exa
tly one of them isadja
ent to u. Thus, a lexBFS produ
es an ordering (v1; : : : ; vn) of V (G) with the followingproperty: if there are i; j; k with 1 � i < j < k � n su
h that vj; vk disagree on vi, thenthe leftmost vertex on whi
h they disagree is adja
ent to vj.Interval graphs are pre
isely those whi
h admit a linear order on the set of maximal
liques su
h that the maximal
liques
ontaining the same vertex are
onse
utive [3℄. A
lique that
an appear as the �rst (or the last)
lique in su
h an order is
alled an outer
lique. A vertex v is simpli
ial when N(v) is a
lique. In addition, for interval graphs, avertex v is external simpli
ial when N(v) is an outer
lique. A lexBFS in a interval graphalways ends in an external simpli
ial vertex [8℄.Indi�eren
e graphs too
an be
hara
terized by a linear order: their verti
es
an belinearly ordered so that verti
es
ontained in the same maximal
lique are
onse
utive [10℄.We
all su
h an order an indi�eren
e order. Our algorithm works by trying to
onstru
t anindi�eren
e order for the input graph.Be
ause a lexBFS in an indi�eren
e graph always ends in an external simpli
ial vertex [8℄,a natural idea is to remove this last vertex (
all it v), perform a re
ursive
all with theremaining graph, and then in
lude v in the indi�eren
e order returned by the re
ursive
all.Sin
e v is external simpli
ial, there are only two possibilities: v goes either in the beginningor in the end of the returned order. If v is not adja
ent to either extreme, or if the re
ursive
all reje
ts, then the algorithm reje
ts.Furthermore, sin
e a lexBFS ordering without its last vertex is still a lexBFS on thegraph without this vertex, a single lexBFS run
an be used throughout the whole pro
ess.Unfortunately, this simple s
heme does not work be
ause there are, in general, manyindi�eren
e orders for a given graph. If the wrong one is returned, the algorithm will reje
ta good graph. As an example,
onsider the graph G depi
ted in Figure 1 and the givenlexBFS ordering. Although there are only two indi�eren
e orders for G (one being thereverse of the other), there are four indi�eren
e orders for Gnfvg. Only two of them permitthe pla
ement of v beside its only neighbor y. In the other orders, y is \hidden" by theother verti
es; so, the algorithm will in
orre
tly report that G is not an indi�eren
e graph.To over
ome this problem, throughout the whole pro
ess we work with redu
ed graphs.The starting point of our algorithm is the observation that for redu
ed indi�eren
e graphs3

ssss

 JJJszu x y vG indi�eren
e orders for G n fvg:lexBFS ordering: u x y z v.u x z y.u x y z.y z x u.z y x u.Figure 1: The na��ve algorithm fails to re
ognize this indi�eren
e graph.the indi�eren
e order is unique (ex
ept for its reverse) [10℄. Two verti
es v, w are twinswhen N(v) = N(w). A graph is redu
ed if no two distin
t verti
es are twins. The redu
edgraph G0 of a graph G is the graph obtained from G by
ollapsing ea
h set of twins into asingle vertex and removing parallel edges and loops. The \twin" relation is an equivalen
erelation. The partition of V (G) into
lasses of twin verti
es is
alled the
lique partition ofthe graph.Note that, by de�nition, an indi�eren
e order indu
es a total order on the sets of the
lique partition of an indi�eren
e graph G and vi
e versa. This total order is an indi�eren
eorder for the redu
ed graph G0. We shall denote by P = (A1; : : : ; Al) the
orrespondingordered
lique partition. Remark that all verti
es of a set Ai are twins.Indif(G)let (v1; : : : ; vn) be the order produ
ed by a lexBFS on Ginitialize: P (fv1g)for i := 2 to n doif vi
an be in
luded in P then update Pelse reje
t the graphendifendfora

ept the graphFigure 2: Our lexBFS algorithm for indi�eren
e graph re
ognition.4

The algorithm
onsiders the verti
es of G ordered a

ording to a lexBFS. Let (v1; : : : ; vn)be that order. By de�nition, the graph
onsisting of vertex v1 is indi�eren
e. The algorithmtries to add ea
h vertex of G following the given lexBFS ordering. If the
urrent vertex
an be in
luded in the ordered
lique partition of the
urrent graph, then we
ontinue.Otherwise the input graph is reje
ted. The algorithm appears in Figure 2.We pro
eed to show how we
an de
ide whether a new vertex v
an be in
luded in the
urrent ordered
lique partition P and how to update P . The following result shows thatin an indi�eren
e graph all neighbors of the last vertex in a lexBFS are pa
ked toward oneend of an indi�eren
e order.Theorem 1 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = G n fvg is an indi�eren
e graph and let P = (A1; : : : ; Al) be an ordered
liquepartition for H. If G is an indi�eren
e graph, then one of the following holds:1. Adj(v)\A1 6= ;. Moreover, there is an index j su
h that [j�1k=1Ak � Adj(v) � [jk=1Ak,Aj \Adj(v) 6= ;, and Aj \N(A1) 6= ;.2. Adj(v) \ Al 6= ;. Moreover, there is an index j su
h that [lk=j+1Ak � Adj(v) �[lk=jAk, Aj \Adj(v) 6= ;, and Aj \N(Al) 6= ;.Proof: In an interval graph the last vertex visited in a lexBFS belongs to an outer
lique [8℄.IfG is an indi�eren
e graph, this applies to G as well. Thus, v is an external simpli
ial vertexof G and therefore Adj(v) is
ontained in an outer
lique of H. Sin
e H is an indi�eren
egraph, there are just two outer
liques, N(A1) and N(Al). Suppose Adj(v) � N(A1) andAdj(v) \ A1 = ;. Let w be any element of Adj(v). Sin
e Adj(v) � N(A1), there existsa1 2 A1 su
h that w is adja
ent to a1. Note that, be
ause N(A1) is a
lique, any a1 2 A1will do. Note that by supposition, a1 is not adja
ent to v. Furthermore, Adj(w) 6� N(A1)be
ause w and a1 are not twins. Now taking any element z 2 Adj(w) nN(A1) we have thatG[w; v; a1; z℄ is isomorphi
 to K1;3,
ontradi
ting the fa
t that G is an indi�eren
e graph.Hen
e, Adj(v) must meet A1 if Adj(v) � N(A1). Analogously, Adj(v) must meet Al ifAdj(v) � N(Al).So we may assume Adj(v) \ A1 6= ;. Let j be the minimum index su
h that Adj(v) �[jk=1Ak. This guarantees that Aj \ Adj(v) 6= ;. Be
ause v is a simpli
ial vertex we haveAj \N(A1) 6= ; and we shall now show that [j�1k=1Ak � Adj(v).5

If j = 1, this is immediate, sin
e the left-hand side is empty. For j > 1, assume for amoment that the in
lusion does not hold, and take aj 2 Adj(v) \ Aj and y 2 (A1 [� � � [Aj�1) n Adj(v). Noti
e that aj is adja
ent to y, be
ause both belong to the
lique N(A1).However, being in distin
t
lasses, they are not twins in H. It follows that there is eitheran element adja
ent to y but not to aj , or an element adja
ent to aj but not to y. The�rst
ase must be ex
luded sin
e su
h an element would ne
essarily be in a
lass to theleft of y in the indi�eren
e order, and aj meets all
lasses down to A1. Hen
e, there isz 2 Adj(aj) n Adj(y). But then G[aj ; v; y; z℄ is isomorphi
 to K1;3, a
ontradi
tion.The following theorem shows how to update the
lique partition. We note that this resultalso says that given any indi�eren
e graph, our algorithms always ends by
onstru
tingan indi�eren
e order. This implies the
orre
tness of our algorithm be
ause a graph isindi�eren
e if and only if it admits an indi�eren
e order.Theorem 2 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.Suppose H = Gnfvg is an indi�eren
e graph, and let P = (A1; : : : ; Al) be an ordered
liquepartition for H. Suppose further that Adj(v) \ A1 6= ;, and that there is an index j su
hthat [j�1k=1Ak � Adj(v) � [jk=1Ak; Aj \ Adj(v) 6= ;, and Aj \N(A1) 6= ;. Then an ordered
lique partition P 0 of G
an be obtained as follows:1. If Adj(v) = [jk=1Ak, then 8>>><>>>: P 0 = (A1 [fvg; : : : ; Al); if there is w in A1 withN(w) = N(v):P 0 = (fvg; A1; : : : ; Al); otherwise:2. If Adj(v) 6= [jk=1Ak, then P 0 = (fvg; A1; : : : ; Aj�1; B;C;Aj+1; : : : ; Al), where B =Aj \Adj(v) and C = Aj nAdj(v).No other
ase is possible, and G is an indi�eren
e graph.Proof: We shall prove the following: If the vertex v
an be in
luded in P , then P 0 is anindi�eren
e order for redu
ed graph G0, i.e., G itself admits an indi�eren
e order and hen
eG is an indi�eren
e graph. Let P = (A1; : : : ; Al) be the indi�eren
e order for redu
ed graphof H. Suppose Adj(v)\A1 6= ; and let j be as in the statement of the theorem. We examinetwo
ases.Case 1: Adj(v) = [jk=1Ak. This implies that two verti
es x; y distin
t from v are twinsin H if and only if they are twins in G. Hen
e, there will be no
hanges in the
urrent
lasses, ex
ept for the possible in
lusion of v in one of them.6

If there exists w 2 A1 su
h that N(w) = N(v), then v and w are twins in G. Hen
e,P 0 = (A1 [fvg; A2; : : : ; Al) is an indi�eren
e order for G0.If v is not twin with verti
es ofA1, then it is not twin with any other vertex. Indeed, whileAdj(v) � N(A1), all verti
es outside A1 have neighbors outside N(A1). For this reason, vmust start a new
lass by itself, whi
h should be pla
ed near A1 to satisfy the
onse
utiverequirement for the maximal
lique fvg [A1 [� � � [Aj of G. Hen
e, P 0 = (fvg; A1; : : : ; Al)is an indi�eren
e order for G0.Case 2: Adj(v) 6= [jk=1Ak. In this
ase,
lass Aj must be split. Its elements will nolonger be all twins in G, sin
e some of them meet v while others don't. Let B = Aj\Adj(v)and C = Aj n Adj(v). By hypothesis, both are nonempty. Thus Adj(v) = A1 [� � � [Aj�1 [B and fvg [A1 [� � � [B is a maximal
lique of G. The new
lasses B and Cwill repla
e Aj in the order, with B
loser to A1 be
ause of v's maximal
lique. Hen
e,P 0 = (fvg; A1; : : : ; B;C;Aj+1; : : : ; Al) is an indi�eren
e order for G0.3 Linear-time implementationLet n and m be the number of verti
es and the number of edges of the input graph G,respe
tively. The algorithm proposed above basi
ally
onsists of a lexBFS followed by aloop whose body is exe
uted at most n� 1 times.It is well-known that a lexBFS
an be performed in O(n+m) time [11℄. Thus, it remainsto show how to implement the loop so that the same time bound applies. This will be doneby showing that, if the input graph is an indi�eren
e graph, then ea
h iteration
onsumesO(jAdj(v)j), where v is the vertex tentatively added in this iteration. If the input graph isnot an indi�eren
e graph, the last iteration may take O(n) time. In any
ase, adding upfor all iterations, this gives time O(n+m).We begin with the des
ription of the stru
ture used to represent the partition P . Ea
hset Ar is represented by a doubly linked list of the verti
es it
ontains, in arbitrary order.The Ar's themselves are kept in a doubly-linked list in indi�eren
e order. This is similar tothe arrangement used in a lexBFS [11℄. For ea
h
lass Ar, a variable
r is used to keep tra
kof the
ardinality of that
lass. In addition, the number of
lasses
ontained in ea
h one ofthe two outer
liques is maintained. To a

omplish that, we use a variable b (for beginning)indi
ating that A1 [A2 [: : : [Ab = N(A1), the outer
lique
ontaining A1, and a variable7

e (for end) indi
ating that Ae [: : : [Al�1 [Al = N(Al), the outer
lique
ontaining Al.We are now ready to show how to implement the i-th iteration, whi
h pro
esses vertexv = vi+1. Initially, all neighbors of v already in the stru
ture are marked. This takesO(jAdj(v)j) time. When a vertex is marked, a
ounter for marked verti
es in its
lass isin
remented. These
ounters must start with zero for ea
h iteration. We will denote by mrthe value of this
ounter for
lass Ar.All tests needed in an iteration, a

ording to theorems 1 and 2,
an be performed usingthe
ounters
r and mr. The test Adj(v)\A1 6= ; is equivalent to m1 6= 0, and
an be donein
onstant time. For the remaining
onditions, we assume that m1 6= 0. Otherwise, we
he
k the opposite end of the stru
ture in an analogous manner.The index j is the maximum index for whi
h mj 6= 0. If the graph is an indi�eren
egraph, then we have j � jAdj(v)j, sin
e all neighbors of v are pa
ked toward one end. Inany
ase, j � n. Thus, j is the minimum index su
h that �jk=1mk = jAdj(v)j. Hen
e, thisargument guarantees O(n+m) time overall.The
ondition Aj \N(A1) = ; is equivalent to b < j. The
ondition [j�1k=1Ak � Adj(v)
onsists in verifying whether mr =
r for r = 1; : : : ; j � 1. The test Adj(v) = [jk=1Ak isequivalent to mj =
j . If this is true, the test \there exists w 2 A1 with N(v) = N(w)" isequivalent to j = b.After all these tests have been performed, it is ne
essary to set mr 0, for r = 1; : : : ; j,preparing for the next iteration. If v is added su

essfully, these are the only
ountersmodi�ed in this iteration. Otherwise, the loop will stop and the graph will be reje
tedanyway; so, we don't have to worry about future iterations.Finally, we need to spe
ify how the stru
ture is updated when v is added. Adding avertex to a
lass or
reating a new singleton
lass are easily a

omplished in
onstant time,as well as updating the
ardinality
ounters
r. The potential problem here is splittinga mixed
lass in two, one
ontaining the marked and the other the unmarked verti
es.However, this
an be done with the following tri
k. Ea
h time a vertex is marked, it istransferred to the beginning of the list for its
lass. This way, when we need to split a
lassAr, we know that the �rst mr elements are the ones adja
ent to v. This is a
onvenientway of marking verti
es without using an extra bit �eld. It also obviates the need to
learthe marks: zeroing mr automati
ally does this.A last remark
on
erns updating the outer
lique indi
ator b. If v is added to A1, then8

b remains the same. In all other
ases, b re
eives the value j+1, re
e
ting the fa
t that thenew outer
lique
ontains the �rst j + 1
lasses.Referen
es[1℄ K. S. Booth and G. S. Lueker, Testing for the
onse
utive ones property, interval graphs,and planarity using PQ-tree algorithms, J. Comput. System S
i. 13 (1976) 335{379.[2℄ D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, A. P. Sprague, Simple linear timere
ognition of unit interval graphs, to appear in Inf. Pro
. Letters (1995).[3℄ P. C. Gilmore and A. J. Ho�man, A
hara
terization of
omparability graphs and in-terval graphs, Canad. J. Math. 16 (1964) 539{548.[4℄ M. C. Golumbi
, Algorithmi
 Graph Theory and Perfe
t Graphs, A
ademi
 Press, NewYork, N.Y., 1980.[5℄ G. Haj�os, �Uber eine Art von Graphen, Internationale mathematis
he na
hri
hten 11(1957) problem 65.[6℄ W. L. Hsu, A simple test for interval graphs, Graph-Theoreti
 Con
epts in ComputerS
ien
e, International Workshop WG (1992).[7℄ B. Hedman, Clique graphs of time graphs, J. Comb. Theory B 37 (1984) 270{278.[8℄ N. Korte and H. M�ohring, An in
remental linear-time algorithm for re
ognizing intervalgraphs, SIAM J. Comput. 18 (1989) 68{81.[9℄ F. S. Roberts, Indi�eren
e graphs, A
hara
terization of
omparability graphs and ofinterval graphs, in: F. Harary (ed.), Proof Te
hniques in Graph Theory, 139{146, (A
a-demi
 Press, New York, 1969).[10℄ F. S. Roberts, On the
ompatibility between a graph and a simple order, J. Comb.Theory B 11 (1971) 28{38.[11℄ D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmi
 aspe
ts of vertex eliminationon graphs, SIAM J. Comput. 5 (1976) 266{283.9

[12℄ K. Simon, A new simple linear algorithm to re
ognize interval graphs, ComputationalGeometry{Methods, Algorithms and Appli
ations, International Workshop on Compu-tational Geometry CG '91 - LNCS 553 (1991) 289{308.

10

