A Linear-time Algorithm for
Proper Interval Graph Recognition

Celina M. Herrera de Figueiredo* Jodo Meidanis’ Célia Picinin de Mellof

Abstract

Interval graphs are the intersection graphs of families of intervals in the real line. If
the intervals can be chosen so that no interval contains another, we obtain the subclass
of proper interval graphs. In this paper, we show how to recognize proper interval
graphs in linear time by constructing the clique partition from the output of a single
lexicographic breadth-first search.

KEYWORDS: design of algorithms, interval graphs, indifference graphs.

1 Introduction

Interval graphs, which are the intersection graphs of families of intervals in the real line,
have countless applications and have been extensively studied since their inception [4, 5].
If the intervals can be chosen so that no interval contains another, we obtain precisely the
class of interval graphs that do not admit K 3 as an induced subgraph [9]. Such graphs
are called accordingly proper interval graphs. The names unit interval graph, indifference
graph and time graph are also used in the literature as synonyms of proper interval graph
[4,7,9].

The first linear-time algorithm for interval graph recognition appeared in 1975 [1]. This
algorithm uses a lezicographic breadth-first search (lexBFS) to find in linear time the max-

imal cliques of the graph and then employs special structures called PQ-trees to find an

*Universidade Federal do Rio de Janeiro, Instituto de Matemadtica, Caixa Postal 68530, 21944 Rio de

Janeiro, RJ, Brasil. Partially supported by CNPq, grant 30 1160/91.0.
"Universidade Estadual de Campinas, Departamento de Ciéncia da Computacio, Caixa Postal 6065,

13081 Campinas, SP, Brasil. Partially supported by FAPESP and CNPq.

ordering of the maximal cliques that characterizes interval graphs. In 1989, Korte and
Mohring introduced MPQ-trees, a modified version of the original PQ-trees, and gave a
simpler, incremental algorithm for interval graph recognition, which still runs in linear time
[8]. In 1992, Hsu presented an alternate linear-time algorithm for interval graph recognition
[6]. This algorithm does not use PQ-trees: it builds a decomposition tree that finds all
interval representations for a given interval graph.

It is known that a single run of lexBF'S is enough to recognize triangulated graphs [11].
Recently, K. Simon presented an intriguing algorithm, in which four iterations of lexBF'S
suffice to recognize interval graphs [12]. This is a hint that lexBFS may in fact be a much
more powerful tool than previously thought.

None of the references cited above considers adapting an algorithm for interval graph
recognition to an algorithm for proper interval graph recognition. A linear-time algorithm
for proper interval graph recognition was recently given by Corneil et al. [2].

In this paper, we show how to recognize proper interval graphs by constructing the clique
partition from the output of a single lexBFS. The algorithm runs in linear time and does
not involve PQ-trees or MPQ-trees. Instead, we use a much simpler structure, similar to the
one used in the lexBFS itself: a doubly-linked list of classes of nodes. Our algorithm also
constructs a compact representation of all indifference orders for a proper interval graph.
This representation gives a solution to the isomorphism problem for this class.

The methods used in [2] and here are different. Corneil et al. use three passes through
the graph while we use only two passes. In addition, our algorithm gives as a by-product

the clique partition of the input graph.

2 The algorithm

In this paper, G denotes an undirected, finite, connected graph. V(G) and E(G) are the
vertex and edge sets of G, respectively. A clique is a set of vertices pairwise adjacent in G.
A mazimal clique of G is a clique not properly contained in any other clique. For each vertex
v of a graph G, Adj(v) denotes the set of vertices which are adjacent to v. In addition,
N (v) denotes the neighborhood of v, that is, N(v) = Adj(v) U {v}. We extend the domain
of N to subsets V' of V(G) by setting N (V') = Uyey' N (v).

A lezicographic breadth-first search (lexBFS) is a breadth-first search procedure with the

additional rule that vertices with earlier visited neighbors are preferred. Following Korte
and Mohring [8], we say that v, w € V(G) disagree on u € V(G) if exactly one of them is
adjacent to u. Thus, a lexBFS produces an ordering (vy,...,v,) of V(G) with the following
property: if there are ¢,7,k with 1 <1 < j < k < n such that v;, v disagree on v;, then
the leftmost vertex on which they disagree is adjacent to v;.

Interval graphs are precisely those which admit a linear order on the set of maximal
cliques such that the maximal cliques containing the same vertex are consecutive [3]. A
clique that can appear as the first (or the last) clique in such an order is called an outer
clique. A vertex v is simplicial when N (v) is a clique. In addition, for interval graphs, a
vertex v is external simplicial when N (v) is an outer clique. A lexBFS in a interval graph
always ends in an external simplicial vertex [8].

Indifference graphs too can be characterized by a linear order: their vertices can be
linearly ordered so that vertices contained in the same maximal clique are consecutive [10].
We call such an order an indifference order. Our algorithm works by trying to construct an
indifference order for the input graph.

Because a lexBFS in an indifference graph always ends in an external simplicial vertex [8],
a natural idea is to remove this last vertex (call it v), perform a recursive call with the
remaining graph, and then include v in the indifference order returned by the recursive call.
Since v is external simplicial, there are only two possibilities: v goes either in the beginning
or in the end of the returned order. If v is not adjacent to either extreme, or if the recursive
call rejects, then the algorithm rejects.

Furthermore, since a lexBFS ordering without its last vertex is still a lexBFS on the
graph without this vertex, a single lexBF'S run can be used throughout the whole process.

Unfortunately, this simple scheme does not work because there are, in general, many
indifference orders for a given graph. If the wrong one is returned, the algorithm will reject
a good graph. As an example, consider the graph G depicted in Figure 1 and the given
lexBFS ordering. Although there are only two indifference orders for G (one being the
reverse of the other), there are four indifference orders for G\ {v}. Only two of them permit
the placement of v beside its only neighbor y. In the other orders, y is “hidden” by the
other vertices; so, the algorithm will incorrectly report that G is not an indifference graph.

To overcome this problem, throughout the whole process we work with reduced graphs.

The starting point of our algorithm is the observation that for reduced indifference graphs

lexBFS ordering: v z y z v.

z indifference orders for G \ {v}:
uTzY.
UTY 2.
Y Z T U.
u z Yy v 2y T u.
G

Figure 1: The naive algorithm fails to recognize this indifference graph.

the indifference order is unique (except for its reverse) [10]. Two vertices v, w are twins
when N(v) = N(w). A graph is reduced if no two distinct vertices are twins. The reduced
graph G' of a graph G is the graph obtained from G by collapsing each set of twins into a
single vertex and removing parallel edges and loops. The “twin” relation is an equivalence
relation. The partition of V' (G) into classes of twin vertices is called the clique partition of
the graph.

Note that, by definition, an indifference order induces a total order on the sets of the
clique partition of an indifference graph G' and vice versa. This total order is an indifference
order for the reduced graph G’. We shall denote by P = (A1,...,4;) the corresponding

ordered clique partition. Remark that all vertices of a set A; are twins.

Indif(G)

let (v1,...,v,) be the order produced by a lexBFS on G
initialize: P < ({v1})
for ::=2ton do
if v; can be included in P then update P
else reject the graph
endif
endfor

accept the graph

Figure 2: Our lexBFS algorithm for indifference graph recognition.

The algorithm considers the vertices of G ordered according to a lexBF'S. Let (v1,...,vy)
be that order. By definition, the graph counsisting of vertex v is indifference. The algorithm
tries to add each vertex of G following the given lexBFS ordering. If the current vertex
can be included in the ordered clique partition of the current graph, then we continue.
Otherwise the input graph is rejected. The algorithm appears in Figure 2.

We proceed to show how we can decide whether a new vertex v can be included in the
current ordered clique partition P and how to update P. The following result shows that
in an indifference graph all neighbors of the last vertex in a lexBFS are packed toward one

end of an indifference order.

Theorem 1 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.
Suppose H = G\ {v} is an indifference graph and let P = (Ay,...,A;) be an ordered clique
partition for H. If G is an indifference graph, then one of the following holds:

1. Adj(v)NA; # (0. Moreover, there is an index j such that Ui;llAk C Adj(v) C Ui:y‘llw
Aj N Ad](v) 7é (Z), and Aj N N(Al) 7'5 @

2. Adj(v) N A; # 0. Moreover, there is an index j such that UfcszAk C Adj(v) C
Ugcszk, Aj N Adj(v) #0, and Aj NN(A4) #0.

Proof: In an interval graph the last vertex visited in a lexBF'S belongs to an outer clique [8].
If G is an indifference graph, this applies to G as well. Thus, v is an external simplicial vertex
of G and therefore Adj(v) is contained in an outer clique of H. Since H is an indifference
graph, there are just two outer cliques, N(A;) and N(A4;). Suppose Adj(v) C N(A;) and
Adj(v) N A = 0. Let w be any element of Adj(v). Since Adj(v) C N(A;), there exists
a; € A; such that w is adjacent to a;. Note that, because N(A;) is a clique, any a; € A;
will do. Note that by supposition, a; is not adjacent to v. Furthermore, Adj(w) € N(A;)
because w and a; are not twins. Now taking any element z € Adj(w) \ N(A;) we have that
Glw,v, a1, z] is isomorphic to K 3, contradicting the fact that G is an indifference graph.
Hence, Adj(v) must meet A; if Adj(v) C N(A;). Analogously, Adj(v) must meet A; if
Adj(v) C N(A).

So we may assume Adj(v) N A; # (0. Let j be the minimum index such that Adj(v) C
Uf;zlAk. This guarantees that A; N Adj(v) # 0. Because v is a simplicial vertex we have
A; NN (A1) # 0 and we shall now show that Ui;llAk C Adj(v).

If 7 = 1, this is immediate, since the left-hand side is empty. For 7 > 1, assume for a
moment that the inclusion does not hold, and take a; € Adj(v) NA; and y € (A, U---U
A;_1) \ Adj(v). Notice that a; is adjacent to y, because both belong to the clique N(A;).
However, being in distinct classes, they are not twins in H. It follows that there is either
an element adjacent to y but not to a;, or an element adjacent to a; but not to y. The
first case must be excluded since such an element would necessarily be in a class to the
left of y in the indifference order, and a; meets all classes down to A;. Hence, there is

z € Adj(a;) \ Adj(y). But then Glaj,v,y, 2] is isomorphic to K 3, a contradiction. m

The following theorem shows how to update the clique partition. We note that this result
also says that given any indifference graph, our algorithms always ends by constructing
an indifference order. This implies the correctness of our algorithmm because a graph is

indifference if and only if it admits an indifference order.

Theorem 2 Let G be a graph and v be the last vertex visited in a lexBFS ordering on G.
Suppose H = G\ {v} is an indifference graph, and let P = (A4, ..., A;) be an ordered clique
partition for H. Suppose further that Adj(v) N Ay # 0, and that there is an index j such
that Ui;llAk C Adj(v) C UizlAk, A;NAdj(v) # 0, and AjN N (A1) # 0. Then an ordered
clique partition P’ of G can be obtained as follows:

P = (A U{v},...,A)), if there is w in Ay with

1. If Adj(v) = UL_, Ay, then N(w) = N(v).
P = ({v}, Ay,..., A)), otherwise.

2. If Adj(v) # UizlAk, then P' = ({v},A1,...,4;21,B,C,Ajq1,...,A;), where B =
A;NAdj(v) and C = A; \ Adj(v).

No other case is possible, and G is an indifference graph.

Proof: We shall prove the following: If the vertex v can be included in P, then P’ is an
indifference order for reduced graph G’, i.e., G itself admits an indifference order and hence
G is an indifference graph. Let P = (Ay,..., 4;) be the indifference order for reduced graph
of H. Suppose Adj(v)NA; # () and let j be as in the statement of the theorem. We examine
two cases.

Case 1: Adj(v) = UizlAk. This implies that two vertices x,y distinct from v are twins
in H if and only if they are twins in G. Hence, there will be no changes in the current

classes, except for the possible inclusion of v in one of them.

If there exists w € A; such that N(w) = N(v), then v and w are twins in G. Hence,
P = (A U{v}, Ag,...,4) is an indifference order for G'.

If v is not twin with vertices of A1, then it is not twin with any other vertex. Indeed, while
Adj(v) € N(A,), all vertices outside A; have neighbors outside N(A;). For this reason, v
must start a new class by itself, which should be placed near A; to satisfy the consecutive
requirement for the maximal clique {v} UA; U---UA; of G. Hence, P! = ({v}, A1,..., 4))
is an indifference order for G'.

Case 2: Adj(v) # Uf;zlAk. In this case, class A; must be split. Its elements will no
longer be all twins in G, since some of them meet v while others don’t. Let B = A;N Adj(v)
and C = A; \ Adj(v). By hypothesis, both are nonempty. Thus Adj(v) = A; U--- U
A; 1 UB and {v} UA; U---UB is a maximal clique of G. The new classes B and C
will replace A; in the order, with B closer to A; because of v’s maximal clique. Hence,

P'= ({v},Ar,...,B,C,Aj1,..., Ay is an indifference order for G'. =

3 Linear-time implementation

Let n and m be the number of vertices and the number of edges of the input graph G,
respectively. The algorithm proposed above basically counsists of a lexBFS followed by a
loop whose body is executed at most n — 1 times.

It is well-known that a lexBFS can be performed in O(n+m) time [11]. Thus, it remains
to show how to implement the loop so that the same time bound applies. This will be done
by showing that, if the input graph is an indifference graph, then each iteration consumes
O(]Adj(v)]), where v is the vertex tentatively added in this iteration. If the input graph is
not an indifference graph, the last iteration may take O(n) time. In any case, adding up
for all iterations, this gives time O(n + m).

We begin with the description of the structure used to represent the partition P. Each
set A, is represented by a doubly linked list of the vertices it contains, in arbitrary order.
The A,’s themselves are kept in a doubly-linked list in indifference order. This is similar to
the arrangement used in a lexBFS [11]. For each class A,, a variable ¢, is used to keep track
of the cardinality of that class. In addition, the number of classes contained in each one of
the two outer cliques is maintained. To accomplish that, we use a variable b (for beginning)

indicating that A; U Ao U...U Ay = N(A1), the outer clique containing Ay, and a variable

e (for end) indicating that A, U... U A;_1 U A; = N(4;), the outer clique containing A;.

We are now ready to show how to implement the i-th iteration, which processes vertex
v = v;41. Initially, all neighbors of v already in the structure are marked. This takes
O(]Adj(v)|) time. When a vertex is marked, a counter for marked vertices in its class is
incremented. These counters must start with zero for each iteration. We will denote by m,
the value of this counter for class A,.

All tests needed in an iteration, according to theorems 1 and 2, can be performed using
the counters ¢, and m,. The test Adj(v) N A; # 0 is equivalent to m; # 0, and can be done
in constant time. For the remaining conditions, we assume that m; # 0. Otherwise, we
check the opposite end of the structure in an analogous manner.

The index j is the maximum index for which m; # 0. If the graph is an indifference
graph, then we have j < |Adj(v)|, since all neighbors of v are packed toward one end. In
any case, 7 < mn. Thus, j is the minimum index such that Zizlmk = |Adj(v)|. Hence, this
argument guarantees O(n + m) time overall.

The condition A; N N(A;) = 0 is equivalent to b < j. The condition Ui;llAk C Adj(v)
consists in verifying whether m, = ¢, for r = 1,...,5 — 1. The test Adj(v) = UizlAk is
equivalent to m; = ¢;. If this is true, the test “there exists w € A; with N(v) = N(w)” is
equivalent to j = b.

After all these tests have been performed, it is necessary to set m, < 0, forr =1,...,7,
preparing for the next iteration. If v is added successfully, these are the only counters
modified in this iteration. Otherwise, the loop will stop and the graph will be rejected
anyway; so, we don’t have to worry about future iterations.

Finally, we need to specify how the structure is updated when v is added. Adding a
vertex to a class or creating a new singleton class are easily accomplished in constant time,
as well as updating the cardinality counters c,. The potential problem here is splitting
a mixed class in two, one containing the marked and the other the unmarked vertices.
However, this can be done with the following trick. Each time a vertex is marked, it is
transferred to the beginning of the list for its class. This way, when we need to split a class
A, we know that the first m, elements are the ones adjacent to v. This is a convenient
way of marking vertices without using an extra bit field. It also obviates the need to clear
the marks: zeroing m, automatically does this.

A last remark concerns updating the outer clique indicator b. If v is added to A;, then

b remains the same. In all other cases, b receives the value j + 1, reflecting the fact that the

new outer clique contains the first 5 + 1 classes.

References

[1]

2]

3]

[4]

[5]

[6]

7]
8]

[9]

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976) 335-379.

D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, A. P. Sprague, Simple linear time

recognition of unit interval graphs, to appear in Inf. Proc. Letters (1995).

P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and in-

terval graphs, Canad. J. Math. 16 (1964) 539-548.

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, N.Y., 1980.

G. Hajos, Uber eine Art von Graphen, Internationale mathematische nachrichten 11

(1957) problem 65.

W. L. Hsu, A simple test for interval graphs, Graph-Theoretic Concepts in Computer
Science, International Workshop WG (1992).

B. Hedman, Clique graphs of time graphs, J. Comb. Theory B 37 (1984) 270-278.

N. Korte and H. Mohring, An incremental linear-time algorithm for recognizing interval

graphs, SIAM J. Comput. 18 (1989) 68-81.

F. S. Roberts, Indifference graphs, A characterization of comparability graphs and of
interval graphs, in: F. Harary (ed.), Proof Techniques in Graph Theory, 139-146, (Aca-
demic Press, New York, 1969).

[10] F. S. Roberts, On the compatibility between a graph and a simple order, J. Comb.

Theory B 11 (1971) 28-38.

[11] D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimination

on graphs, SIAM J. Comput. 5 (1976) 266-283.

[12] K. Simon, A new simple linear algorithm to recognize interval graphs, Computational
Geometry—Methods, Algorithms and Applications, International Workshop on Compu-
tational Geometry CG 91 - LNCS 553 (1991) 289-308.

10

