
Edge Coloring of Cyle Powers is EasyJo~ao MeidanisMarh 12, 1998AbstratIn this note we solve the edge-oloring problem for yle powers Ckn.It is well-known that the edges o Cn an be olored with two olors if andonly if n is even. We generalize this resut showing that the edges of Cknan be olored with �(Ckn) = 2k olors if and only if n is even, for all kwith 0 � k � n=2. Coupled with the fat that Ckn is overfull if n is odd,this solves the edge-oloring problem for this lass of graphs.1 IntrodutionIn this note we are onerned with optimal valid olorings for yle powers (seeSetion 2 for preise de�nitions). In general, edge-oloring is a diÆult problem.Although Vizing's theorem [4℄ guarantees that the optimal oloring of a simplegraph G uses either � or � + 1 olors, where � is the maximum degree, it isNP-omplete to deide between these two possibilities. We all a graph lass 1if its edges an be olored with � olors, and lass 2 otherwise. Cai and Ellis[1℄ reviewed the status of this problem for several lasses of graphs.Classial results in this area state that yles and omplete graphs are lass1 when they have an even number of verties, and lass 2 otherwise. Beauseyles and omplete graphs are speial ases of yle powers, it is natural toonsider the question for yle powers in general. This note extends the lassialresults to all yle powers, that is, we prove that a yle power is lass 1 if andonly if it has an even number of verties.The rest of this paper is organized as follows. Setion 2 ontains the preisede�nitions of onepts we use in the text. Setion 3 treats the ase of an oddnumber of verties, and Setion 4 solves the other ase. Finally, our onlusionsand onsiderations about future work appear in Setion 5.2 De�nitionsWe assume the reader is familiar with basi graph theory. Given a graph G,we denote by V (G) its set of verties, and by E(G) its set of edges. We willdeal exlusively with simple graphs here. For onveniene, we onsider diretedgraphs, so that we an talk about initial points of edges: and edge (u; v) has u1



as its initial point. A direted graph is simple when its undireted ounterpartis simple.Given a nonempty subset E � E(G), we denote by G[E℄ the graph havingE as edge set, and the verties of G inident to some edge in E as vertex set.A oloring of a graph G is a mapping � : E(G) 7! C of E(G) onto someset C of olors. The oloring is valid when no two adjaent edges have thesame image under �. An optimal valid oloring is a valid oloring for whih theardinality jCj is minimum. A elebrated theorem of Vizing [4℄ states that, forsimple graphs, this minimum is either the maximum degree �(G) or �(G) + 1.If there is a valid oloring of G with �(G) olors we say that G is lass 1 ;otherwise, G is said to be lass 2.Let G be a graph with n verties and m edges. If m > �(G)bn=2, then Gis said to be overfull. It is easy to see that overfull graphs are lass 2, beauseeah olor an olor at most bn=2 edges in a valid oloring.A omplete graph is a simple graph with edges between any pair of verties.For any integer n � 3 we de�ne the yle as being the graph Cn withV (Cn) = f0; 1; 2; � � � ; n� 1g;E(Cn) = f(0; 1); (1; 2); � � � ; (n� 2; n� 1); (n� 1; 0)g:(We exlude n = 2 beause the graph would not be simple, but the main resultsare still valid for this ase.) The k-th power of a direted graph G is de�nedreursively as follows. We �rst de�ne the produt G �H of two graphs G andH with the same vertex set V :V (G�H) = VE(G�H) = f(u; v) j 9w 2 V ((u;w) 2 E(G) and (w; v) 2 E(H))g:Then de�ne G1 = G and Gk = G�Gk�1 for k � 2.When G is a yle Cn, the k-th power is simple only when 1 � k < n=2, sowe will limit ourselves to these ases from here on. Observe that when n is oddand k = (n � 1)=2 , Ckn is a omplete graph. For even n, tehnially there isno k for whih Ckn is omplete, beause C(n=2n is not simple, but we ould havede�ned an undireted version of graph powers to remedy this. We prefer to keepthe direted version, though, beause it simpli�es the arguments in Setion 4.2.Notie that �(Ckn) = 2k for 1 � k < n=2.3 Powers of odd yles are overfullA yle power Ckn with odd n, like any regular graph of odd order, is overfull.To on�rm this fat, observe thatm = n�2 = n(2k)2 = nk;for 0 � k < n=2. On the other hand,� jn2 k = (2k)n� 12 = (n� 1)k:2



Therefore, m > �bn=2 when k > 0. This shows that Ckn is lass 2 when n isodd.4 Powers of even ylesIn this setion we treat the ase where n is even. We will see that in many asesgrouping edges by size (to be de�ned later) will result in several groups thatan be olored independently, using two olors for eah group. In the remainingases, some groups annot be olored with two olors. We remedy this problemby joining edges with size l and size l + 1, obtaining a four-olorable edge-set,whih an again be olored independently.4.1 Edges of size l are two-olorable when n= gd(l; n) isevenLet n be an even number and k an integer with 1 � k < n=2. Let Sl be the setof edges of size l, de�ned asSl = f(x; x+ l mod n) j 0 � x � n� 1g:These sets form a partition of the edge-set of Ckn, that is, Sl\Sl0 = ; if l 6= l0and E(Ckn) = k[l=1Sl:The main result of this setion is the following.Theorem 1 For l � k, the indued graph Ckn[Sl℄ has d onneted omponents,eah one being a yle of length n=d, where d = gd(l; n).Proof: Two verties x and y are in the same omponent if and only if there isan integer r suh that y � x+ rl (mod n):This is equivalent to d j (y�x). Hene, two verties are in the same omponentif and only if they belong to the same residue lass modulo d. The result followsbeause there are exatly d suh residue lasses, and all of them have the samesize (see, for instane, the number theory book by Irelan and Rosen [3℄). 2The orollary below follows immediately from Theorem 1, sine even ylesare two-olorable.Corollary 1 The graph Ckn [Sl℄ is two-olorable when l � k < n=2 and n= gd(l; n)is even.
3



4.2 Edges of sizes l and l�1 form a four-olorable subgraphwhen n= gd(l; n) is oddIn this setion we prove the following result.Theorem 2 The graph Ckn[Sl [ Sl�1℄ is four-olorable when l � k < n=2 andn= gd(l; n) is odd.Proof: Let d be gd(l; n). If n=d is odd, then d and l are neessarily even. Weknow from the results of Setion /refs:yles that Sl is a disjoint union of oddyles, whereas Sl�1 is a disjoint union of even yles. The idea is to exhangesome edges between Sl and Sl�1 in order to merge the odd yles into even ones,without disturbing too muh the oloring of Sl�1.The set Sl�1 an be olored with two olors. We selet a speial oloring ofthis edge set as follows. Paint with one olor all edges with odd initial point,and paint with the other olor the remaining edges, that is, the ones with eveninitial point. It is easy to see that this oloring is valid, beause l � 1 is odd.Let C1 be the following set of edgesC1 = f(1; l);(l + 1; 2l);(3; l + 2);(l + 3; 2l+ 2);...(d� 1; d+ l � 2);(d+ l � 1; d+ 2l� 2) g:All these edges are of the form (a; a + l � 1) and therefore belong to Sl�1.Furthermore, the initial point a is odd for all these edges, whih means thatthey will all be olored with the same olor.Now onsider the set C2 given belowC2 = f(1; l + 1);(l; 2l);(3; l + 3);(l + 2; 2l+ 2);...(d� 1; d+ l � 1);(d+ l � 2; d+ 2l� 2) g:These edges are of the form (b; b + l) and thus belong to Sl. An importantobservation is that they belong to distint yles in Sl. Indeed, two edges belong4



to the same yle in Sl when their initial points a and b satisfy d j (b� a). Letus divide C2 in two parts A and B as follows.A = f(a; a+ l) j 1 � a � d� 1 and a is odd gB = f(b; b+ l) j l � b � d+ l� 2 and b is even gTwo edges in A annot be in the same yle beause their initial points belongto an interval of length less than d; the same holds for two edges in B. Nowif we pik one edge from A and another from B, the di�erene between theirinitial points is odd and thus annot be divisible by an even number suh as d.We exhange the edges in C1 and C2 between Sl and Sl�1. More preisely,onsider S0l�1 = (Sl�1 � C1) [ C2;S0l = (Sl [ C1)� C2:Notie that S0l�1[S0l = Sl�1[Sl, beause we just exhanged edges between thetwo sets.We laim that S0l�1 is two-olorable. In fat, C1 is a mathing beause itsedges were all of the same olor in Sl�1. This means that the 2d endpoints areall distint. But C2 has the exat same set of 2d endpoints, so it is a mathingas well. It is not diÆult to see that we an give the olor that C1 had to C2and produe a valid oloring for S0l�1.We laim that S0l is two-olorable as well. The reason is that, with theexhange, the d odd yles in Sl are grouped in pairs (notie that d is even) andthe two yles in eah pair are merged to form an even yle. Take, for instane,the �rst two edges of C1, (1; l); (l + 1; 2l)and the �rst two edges of C2, (1; l+ 1); (l; 2l):With the exhange, the yles in Sl that ontained edges (1; l + 1) and (l; 2l)beome a longer, even yle (see Figure 1). A similar merge ours with theother yles in Sl. Given that there are d yles and d exhanged edges with notwo edges in the same yle, all the yles get merged by the exhange and S0lis a disjoint union of even yles. Thus, it is two-olorable. 24.3 Main theoremTheorem 3 The graph Ckn is lass 1 for even n.Proof: Indution on k.If k = 1 then Ckn = Cn whih is lass 1 for even n.If k > 1 we distinguish two ases aording to the parity of n=d, whered = gd(k; n). If n=d is even, Ckn [Sk℄ is two-olorable. By indution hypothesis5



1 l + 1l 2l 1 l + 1l 2l
Sl S0lFigure 1: E�et of exhange on yles in Sl.Ck�1n is lass 1. But E(Ckn) = E1 [ E2, where E1 = E(Ck�1n ) and E2 = Sk.Beause �(Ckn [E1℄) = 2k�2, �(Ckn [E2℄) = 2, and both indued graphs are lass1, we have that Ckn is lass 1.If n=d is odd, we use the results of Setion 4.2 and onlude that Ckn[Sk[sk�1℄is four-olorable. By indution hypothesis, Ck�2n is lass 1. But E(Ckn) =E1[E2, where E1 = E(Ck�2n ) and E2 = Sk[Sk�1. Beause �(Ckn [E1℄) = 2k�4,�(Ckn[E2℄) = 4, and both indued graphs are lass 1, we have that Ckn is lass1. 25 ConlusionsWe proved that powers of a yle are lass 1 if and only if the number ofverties is even, generalizing the known results for yles and omplete graphs.This new result an potentially lead to a � oloring of several other graphs byonsidering pullbak funtions. These funtions were introdued by Figueiredoand olleagues [2℄ and are able to transport valid edge olorings from one graphto another. It would be interesting to haraterize the graphs to whih a �oloring of Ckn an be transported.Interesting questions are raised by onsidering nonsimple graphs. For odd nand k > n=2, the power Ckn, although not simple, is still overfull, whih impliesthat there is no � oloring. However, Vizing's theorem for general graphsbounds the minimum number of olors by �+�, where � is the maximum edgemultipliity. It would be interesting to olor optimally these graphs. On theother hand, for even n, the � oloring of Ckn shown here is valid for values of kgreater than n=2.
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