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Abstract

In this note we solve the edge-coloring problem for cycle powers C¥.
It is well-known that the edges o Cy can be colored with two colors if and
only if n is even. We generalize this resut showing that the edges of C*
can be colored with A(CK) = 2k colors if and only if n is even, for all k
with 0 < k < n/2. Coupled with the fact that CF is overfull if n is odd,
this solves the edge-coloring problem for this class of graphs.

1 Introduction

In this note we are concerned with optimal valid colorings for cycle powers (see
Section 2 for precise definitions). In general, edge-coloring is a difficult problem.
Although Vizing’s theorem [4] guarantees that the optimal coloring of a simple
graph G uses either A or A + 1 colors, where A is the maximum degree, it is
NP-complete to decide between these two possibilities. We call a graph class 1
if its edges can be colored with A colors, and class 2 otherwise. Cai and Ellis
[1] reviewed the status of this problem for several classes of graphs.

Classical results in this area state that cycles and complete graphs are class
1 when they have an even number of vertices, and class 2 otherwise. Because
cycles and complete graphs are special cases of cycle powers, it is natural to
consider the question for cycle powers in general. This note extends the classical
results to all cycle powers, that is, we prove that a cycle power is class 1 if and
only if it has an even number of vertices.

The rest of this paper is organized as follows. Section 2 contains the precise
definitions of concepts we use in the text. Section 3 treats the case of an odd
number of vertices, and Section 4 solves the other case. Finally, our conclusions
and considerations about future work appear in Section 5.

2 Definitions

We assume the reader is familiar with basic graph theory. Given a graph G,
we denote by V(G) its set of vertices, and by E(G) its set of edges. We will
deal exclusively with simple graphs here. For convenience, we consider directed
graphs, so that we can talk about initial points of edges: and edge (u,v) has u



as its initial point. A directed graph is simple when its undirected counterpart
is simple.

Given a nonempty subset £ C E(G), we denote by G[E] the graph having
E as edge set, and the vertices of G incident to some edge in E as vertex set.

A coloring of a graph G is a mapping k : E(G) — C of E(G) onto some
set C of colors. The coloring is valid when no two adjacent edges have the
same image under k. An optimal valid coloring is a valid coloring for which the
cardinality |C| is minimum. A celebrated theorem of Vizing [4] states that, for
simple graphs, this minimum is either the maximum degree A(G) or A(G) + 1.
If there is a valid coloring of G with A(G) colors we say that G is class I;
otherwise, G is said to be class 2.

Let G be a graph with n vertices and m edges. If m > A(G)|n/2], then G
is said to be overfull. It is easy to see that overfull graphs are class 2, because
each color can color at most [n/2] edges in a valid coloring.

A complete graph is a simple graph with edges between any pair of vertices.

For any integer n > 3 we define the cycle as being the graph C,, with

V(Cy,) = {0,1,2,---,n—1},
EC,) = {(0,1),(1,2),---,(n —2,n—1),(n—1,0)}.

(We exclude n = 2 because the graph would not be simple, but the main results
are still valid for this case.) The k-th power of a directed graph G is defined
recursively as follows. We first define the product G x H of two graphs G and
H with the same vertex set V:

VI(GxH) =V
EGxH) = {(u,v)|3Fw e V((u,w) € E(G) and (w,v) € E(H))}.
Then define G' = G and G* = G x G¥~! for k > 2.
When G is a cycle C,, the k-th power is simple only when 1 < k < n/2, so

we will limit ourselves to these cases from here on. Observe that when n is odd
and k = (n —1)/2 , C* is a complete graph. For even n, technically there is
no k for which C* is complete, because 07(1”/ % is not simple, but we could have
defined an undirected version of graph powers to remedy this. We prefer to keep

the directed version, though, because it simplifies the arguments in Section 4.2.
Notice that A(CF) =2k for 1 < k < n/2.

3 Powers of odd cycles are overfull

A cycle power C* with odd n, like any regular graph of odd order, is overfull.
To confirm this fact, observe that

~nA  n(2k)
m=5 =5 =
for 0 < k < n/2. On the other hand,
n n—1
A bJ = (2k) 75— = (n = Dk.



Therefore, m > A|n/2] when k > 0. This shows that C¥ is class 2 when n is
odd.

4 Powers of even cycles

In this section we treat the case where n is even. We will see that in many cases
grouping edges by size (to be defined later) will result in several groups that
can be colored independently, using two colors for each group. In the remaining
cases, some groups cannot be colored with two colors. We remedy this problem
by joining edges with size [ and size [ + 1, obtaining a four-colorable edge-set,
which can again be colored independently.

4.1 Edges of size | are two-colorable when n/gcd(l,n) is
even

Let n be an even number and k an integer with 1 < k < n/2. Let S; be the set
of edges of size [, defined as

S ={(z,z+Imodn)|0<z<n-1}

These sets form a partition of the edge-set of C¥, that is, ;N Sy = P if [ #1'
and

k
E(chH =]
=1
The main result of this section is the following.

Theorem 1 For | < k, the induced graph CX[S;] has d connected components,
each one being a cycle of length n/d, where d = ged(l,n).

Proof: Two vertices  and y are in the same component if and only if there is
an integer r such that
y=x+rl (modn).

This is equivalent to d | (y — ). Hence, two vertices are in the same component
if and only if they belong to the same residue class modulo d. The result follows
because there are exactly d such residue classes, and all of them have the same
size (see, for instance, the number theory book by Irelan and Rosen [3]). i

The corollary below follows immediately from Theorem 1, since even cycles
are two-colorable.

Corollary 1 The graph C¥[S)] is two-colorable whenl < k < n/2 and n/ ged(l,n)
s even.



4.2 Edges of sizes [ and [—1 form a four-colorable subgraph
when n/ged(l,n) is odd

In this section we prove the following result.

Theorem 2 The graph C¥[S; U S;_1] is four-colorable when | < k < n/2 and
n/ged(l,n) is odd.

Proof: Let d be ged(l,n). If n/d is odd, then d and [ are necessarily even. We
know from the results of Section /refs:cycles that S; is a disjoint union of odd
cycles, whereas S;— is a disjoint union of even cycles. The idea is to exchange
some edges between S; and S;_; in order to merge the odd cycles into even ones,
without disturbing too much the coloring of S;_;.

The set S;—1 can be colored with two colors. We select a special coloring of
this edge set as follows. Paint with one color all edges with odd initial point,
and paint with the other color the remaining edges, that is, the ones with even
initial point. It is easy to see that this coloring is valid, because [ — 1 is odd.

Let C; be the following set of edges

Cy={

17l)7

[ +1,20),
3,1+2),

[ +3,20+2),

~ Y~ T~

(d-1,d+1-2),

(d+1-1,d+21-2) }.
All these edges are of the form (a,a + [ — 1) and therefore belong to S;_;.
Furthermore, the initial point a is odd for all these edges, which means that

they will all be colored with the same color.
Now consider the set C5 given below

Cy=1{

1L,1+1),
1,21),

3,0+ 3),

[ +2,20+2),

~ o~ T~

(d—1,d+1—1),
(d+1-2,d+21-2) }.

These edges are of the form (b,b + [) and thus belong to S;. An important
observation is that they belong to distinct cycles in S;. Indeed, two edges belong



to the same cycle in S; when their initial points a and b satisfy d | (b — a). Let
us divide C3 in two parts A and B as follows.

A = {(g,a+1)|1<a<d-1andaisodd}
B = {(bb+1)]I<b<d+!—2andbiseven}

Two edges in A cannot be in the same cycle because their initial points belong
to an interval of length less than d; the same holds for two edges in B. Now
if we pick one edge from A and another from B, the difference between their
initial points is odd and thus cannot be divisible by an even number such as d.

We exchange the edges in C; and Cs between S; and S;_;. More precisely,
consider

Sio1 = (S —C1) Uy,
SI = (S,UC) =G

Notice that S]_; US] = S;—1 US;, because we just exchanged edges between the
two sets.

We claim that S;_; is two-colorable. In fact, C; is a matching because its
edges were all of the same color in S;_;. This means that the 2d endpoints are
all distinct. But C5 has the exact same set of 2d endpoints, so it is a matching
as well. It is not difficult to see that we can give the color that C; had to Cs
and produce a valid coloring for S]_,.

We claim that S; is two-colorable as well. The reason is that, with the
exchange, the d odd cycles in S; are grouped in pairs (notice that d is even) and
the two cycles in each pair are merged to form an even cycle. Take, for instance,
the first two edges of Cf,

(L,D), (1 +1,20)

and the first two edges of Cs,
(1,14 1),(1,20).

With the exchange, the cycles in S; that contained edges (1,1 + 1) and (I, 21)
become a longer, even cycle (see Figure 1). A similar merge occurs with the
other cycles in S;. Given that there are d cycles and d exchanged edges with no
two edges in the same cycle, all the cycles get merged by the exchange and S}
is a disjoint union of even cycles. Thus, it is two-colorable. |

4.3 Main theorem

Theorem 3 The graph C* is class 1 for even n.

Proof: Induction on k.

If k =1 then C* = C,, which is class 1 for even n.

If ¥ > 1 we distinguish two cases according to the parity of n/d, where
d = ged(k,n). If n/d is even, C*[Sk] is two-colorable. By induction hypothesis



O I+1 [+1

Sy Si
Figure 1: Effect of exchange on cycles in 5.

Ck~lis class 1. But E(C¥) = Ey U Ey, where E; = E(C¥1) and Ey = S;.
Because A(CK[Ey]) = 2k—2, A(C¥[Es]) = 2, and both induced graphs are class
1, we have that C* is class 1.

If n/dis odd, we use the results of Section 4.2 and conclude that C¥[S,Usj,_1]
is four-colorable. By induction hypothesis, C¥~2 is class 1. But E(CF) =
E\UE,, where E; = E(C*~2) and Ey = S;,US),_1. Because A(C¥[E,]) = 2k—4,
A(CK[E,]) = 4, and both induced graphs are class 1, we have that C¥ is class
1. O

5 Conclusions

We proved that powers of a cycle are class 1 if and only if the number of
vertices is even, generalizing the known results for cycles and complete graphs.
This new result can potentially lead to a A coloring of several other graphs by
considering pullback functions. These functions were introduced by Figueiredo
and colleagues [2] and are able to transport valid edge colorings from one graph
to another. It would be interesting to characterize the graphs to which a A
coloring of C* can be transported.

Interesting questions are raised by considering nonsimple graphs. For odd n
and k > n/2, the power C¥ although not simple, is still overfull, which implies
that there is no A coloring. However, Vizing’s theorem for general graphs
bounds the minimum number of colors by A + p, where y is the maximum edge
multiplicity. It would be interesting to color optimally these graphs. On the
other hand, for even n, the A coloring of C* shown here is valid for values of k
greater than n/2.
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