```
Algorithm 1: Computation of orthonormal bases for each subspace \(V_{*}\).
    Data: Three \(n \times n\) permutation matrices \(A, B\) e \(C\).
    Result: Subspace bases \(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\).
    \(S \leftarrow \emptyset\)
    \(L \leftarrow \operatorname{null}\left(\left[\begin{array}{l}(A-B) \\ (A-C)\end{array}\right]\right)\)
    foreach \(v \in L\) do
        \(S \leftarrow \operatorname{Add}(S, v)\)
    \(S_{1} \leftarrow S / /\) Basis of \(V_{*}(. A B C\).
    \(S \leftarrow S_{1}\)
    \(L \leftarrow \operatorname{null}(A-B)\)
    foreach \(v \in L\) do
        \(S \leftarrow \operatorname{Add}(S, v)\)
    \(S_{2} \leftarrow S-S_{1} / /\) Basis of \(V_{*}(. A B . C\).
    \(S \leftarrow S_{1}\)
    \(L \leftarrow \operatorname{null}(B-C)\)
    foreach \(v \in L\) do
        \(S \leftarrow \operatorname{Add}(S, v)\)
    \(S_{3} \leftarrow S-S_{1} / /\) Basis of \(V_{*}(. B C . A\).)
    \(S \leftarrow S_{1}\)
    \(L \leftarrow \operatorname{null}(C-A)\)
    foreach \(v \in L\) do
        \(S \leftarrow \operatorname{Add}(S, v)\)
    \(S_{4} \leftarrow S-S_{1} / /\) Basis of \(V_{*}(. A C . B\).
    \(L \leftarrow \operatorname{null}\left(\left[\begin{array}{llll}S_{1} & S_{2} & S_{3} & S_{4}\end{array}\right]\right)\)
    \(S_{5} \leftarrow \emptyset\)
    // Basis of \(V_{*}(. A . B . C\).
    foreach \(v \in L\) do
        \(S_{5} \leftarrow \operatorname{Add}(S, v)\)
```

As v_{2} is in the image of S_{2}, it can be written as $S_{2} u_{2}$, and therefore

$$
\begin{aligned}
P_{2} v & =S_{2}\left(N_{2}^{T} S_{2}\right)^{-1} N_{2}^{T} S_{2} u_{2} \\
& =S_{2} u_{2} \\
& =v_{2} .
\end{aligned}
$$

Note that, in the computation of P_{2}, P_{3}, and P_{4}, it is not possible to simplify the right-hand expression $S_{i}\left(N_{i}^{T} S_{i}\right)^{-1} N_{i}^{T}$. In general, neither S_{i} nor N_{i} are square matrices, and therefore they are not invertible. Nevertheless, the product $N_{i}^{T} S_{i}$ is always invertible.

Knowing the projection matrices, we can finally compute the median candidates, in Algorithm 2. Previously, we saw how to compute M_{A}. It is also possible to define M_{B} and M_{C} in an analogous way. The matrix M_{B} follows B in $V_{*}(. A . B . C$.$) instead of A$, and M_{C} follows C. The entire computation takes $O\left(n^{3}\right)$ arithmetic operations.

