
JOURNAl. OF CO3.1PUTER AND SYSTEM SCIENCES 13, 335--379 (1976)

Testing for the Consecutive Ones Property, Interval Graphs, and
Graph Planarity Using PQ-Tree Algorithms*

KELLOG(; S. BOOTII t

Computer Systems Division, Lawrence Livermore Laboratory, Livermore, California 94550

AND

GEORGE S. [AIEKER*

Department of Information and Computer Science, University of California, Irvine,
Irvine, California 92717

Received December 1975; revised July 1976

A data structure called a PQ-tree is introduced. PQ-trees can be used to represent
the permutations of a set U in which various subsets of U occur consecutively. Efficient
algorithms are presented for manipulating PQ-trees. Algorithms using PQ-trecs are
then given which test for the consecutive ones property in matrices and for graph
planarity. The consecutive ones test is extended to a test for interval graphs using a
recently discovered fast recognition algorithm for chordal graphs. All of these algorithms
require a number of steps linear in the size of their input.

1.]NTRODUCTION

A data s t ruc tu re called a P Q - t r e e is i n t roduced here as an aid in solving three

p rob lems related to f ind ing permiss ib le pe rmu ta t i ons of a set U. T h e permiss ib le

pe rmuta t ions are those in wh ich cer ta in subse ts S C U occur as consecut ive s u b -

* This report was prepared as an account of work sponsored by the United States Government.
Neither the United States nor the United States Energy Research and Development Administra-
tion, nor any of their employees, nor any of their contractors, subcontractors, or their em-
ployees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-owned rights.

* Work performed under the auspices of the U.S. Energy Research and Development Ad-
ministration under Contract No. W-7405-Eng-48.

* Research supported by a National Science Foundation Graduate Fellowship and NSF
Grant G J-1052 while in the Program in Applied Mathematics and the Department of Electrical
Engineering at Princeton University.

335
Copyris,lht ~, 1976 by Academic Press, Inc.
All rizhts of reproduction in any form reserved.

336 BOOTH AND LUEKER

sequences. A PQ-tree represents a class of permissible permutations. As the elements
of each new subset S are constrained to appear together the number of permissible
permutations is reduced. The corresponding PQ-tree operation is called reduction
with respect to the set S. An efficient algorithm for computing the reduction of a
PQ-tree is presented. Its time complexity is shown to be linear in the size of the
input. The reduction algorithm is used to build linear algorithms for testing the
consecutive ones property in matrices, for recognizing interval graphs, and for testing
a graph for planarity.

Before defining the data structure it is worth explaining just what it is that these
three problems have in common. The answer is that in each case the situation arises
in which there is a set U of objects (the rows of a matrix, the dominant cliques of
a graph, or the edges of a graph) and it is required, for reasons specific to the problem,
that only certain permutations of these objects be permitted. Exactly which permuta-
tions are legal is determined by restrictions that are also dependent upon the specific
problem, but for the problems considered here the restrictions always take the form
"given the legal permutations obtained so far, permit only those permutations in
which the objects of the set S (some subset of U) occur consecutively." That is to say,
disallow a permutation in which two objects belonging to S are separated by an
object not belonging to S.

As an example of such restrictions, suppose that an information retrieval system is
being built. The following model considered by Ghosh [10] is a useful abstraction. A
data base consists of a set U of records on a disk. The retrieval system answers certain
queries concerning information stored in these records. A query can be thought
of as a subset S C U, where S consists precisely of those records which are needed
to answer the query. Suppose that the records are arranged on the disk so that each
query S has its set of records stored in consecutive locations. Any query can be
answered with only a single positioning move and transmission time directly propor-
tional to the amount of data actually required for the query. Within this model
consecutive storage arrangements are optimal and algorithms for finding the arrange-
ments are of practical interest.

The retrieval example can be illustrated with the following simple data base having
three records. Let the set of records be U = (A, B, C}. I f the only queries are (A},
{B}, and {C} then any of the six possible permutations of the records is acceptable.
Suppose that the system must also handle the query {A, B}. Now, because records
A and B must always be consecutive, there are only four permissible permutations:
ABC, BAC, CAB, and CBA. Adding another query {B, C} reduces the number
of possible storage arrangements even further. Only A B C and CBA are permissible.
So far, so good. But if the system must also accomodate the query {A, C), all hope
is lost! There is no permutation of the three records which simultaneously satisfies
all of the constraints; either A and B are not consecutive, B and C are not consecutive,
or else A and C are not consecutive.

PQ-TREE ALGORITHMS 337

This particular retrieval system is easy to analyze. As the number of records
becomes large and the number of queries becomes even larger, there is at least the
possibility that determining whether a legal permutation exists might prove to be a
hopelessly complex combinatorial task. The answer, of course, is that this is not
the case. A polynomial-time algorithm has already appeared in the literature [8].
The algorithm presented here achieves a linear running time. The improvement is due
to the data structure. PQ-trees are devised to handle precisely the problem stated
above, and to handle it efficiently.

An informal statement of the general problem is as follows. An algorithm must be
devised which accepts as input a set of objects U and a family of subsets of those
objects. The family is denoted by $. The algorithm must decide whether there
exists any permutation ~r such that the objects of each subset S E 5 occur within rr
as a consecutive subsequence. Ideally the algorithm should also determine all permuta-
tions which satisfy these criteria. A general solution, written in Pidgin Algol similar
to the style suggested in [1], is called reduction because it reduces the possible class
of permutations to only those which satisfy the constraints.

Boolean procedure REDUCTION(U, 5);
begin

/7 : : {rr I 7r is a permutation on U};
for each S ~ • do

/ / : = / - / n {~ I all objects of S are consecutive within 7r};
return/- /v ~

end

The algorithm is easy to implement if each set is specified by a list of its objects.
The only hard part is the inner loop. Given the current set of legal permutations
those which do not satisfy the new constraint must be thrown away. This in fact
is where all of the real work occurs. The next two sections develop machinery used
to perform the inner loop efficiently.

The key to the algorithm's success is the introduction of an appropriate data
structure for representing the entire class/-/using only a modest amount of storage
while still maintaining enough information to process the inner loop. One data
structure which works is a PQ-tree. A similar idea appears in [20] as part of a planarity
algorithm, but the representation uses formulas instead of trees and does not achieve
a linear running time. PQ-trees are defined in Section 2 and an efficient algorithm
for manipulating them is given in Section 3.

The first problem to which PQ-trees are applied is the consecutive ones property
for matrices [8], which is discussed in Section 4. A permutation of the rows of a
matrix is desired which places all of the ones within each column into consecutive
form. This is a straightforward application of the basic reduction algorithm. Using
the linear time bound for reduction, an O(m + n + f) complexity bound is proven

338 BOOTH AND LUEKER

for m • n matrices having f nonzero entries. Solutions to this problem have applica-
tions in a number of different fields. They also lead.Lo efficient recognition and
isomorphism tests for interval graphs.

The interval graph test discussed in Section 5 is a speeded-up version of an earlier
algorithm of Fulkerson and Gross [8]. Their algorithm includes a test for graph
chordality. Chordal graphs are discussed in [5] and [23]. A new algorithm based
on lexicographic breadth first search performs a chordality test in linear time [21, 24].
Combining a fast-reduction algorithm with the efficient chordality test results in
an interval graph test whose overall time bound is O(n + e) steps for graphs having
n vertices and e edges. Both chordal and interval graphs are related to Gaussian
elimination, and can be used to analyze the efficiency of elimination schemes for
sparse symmetric positive definite matrices [23, 24, 29].

The final application of PQ-trees is to the recognition of planar graphs. This is
a classical graph theory problem for which linear algorithms have been presented in
the literature [14]. The algorithm given in Section 6 is a revised version of an existing
algorithm due to Lempel, Even, and Cederbaum [20]. The new version uses the
reduction algorithm for PQ-trees. The result is an O(n) test for planarity, given a
graph with n vertices.

The test for the consecutive ones property has been implemented in the pro-
gramming language Pascal by Ladner, Fischer, and Young [18]. Their implementation
contains quite a bit of originality, since it was accomplished using only the brief
description of the present work given at the 1975 SIGACT Conference.

2. PQ-TR~ES

The first order of business is to precisely define the data structure which is proposed
and to relate the formal definitions to the informal remarks just given. After this
preliminary the basic reduction algorithm for refining the class of permissible permuta-
tions is illustrated. The question of efficiency for this algorithm is put off until
Section 3. A number of implementation details are also postponed until then.

Given a universal set U = {a 1 , a 2 aM}, the class of PQ-trees over that set
is defined to be all rooted, ordered trees [1] whose leaves are elements of U and
whose internal (nonleaf) nodes are distinguished as being either P-nodes or Q-nodes.
As an illustration, each of the following three operations will construct a legal
PQ-tree.

1. Every element a, ~ U is a PQ-tree whose root is the element. The tree
consists of only a single leaf and is drawn as the element itself.

2. I f T1, T2 ,. . , T, are all PQ-trees then the structure shown in Fig. 1 is
a PQ-tree whose root is a P-node.

PQ-TREE ALGORITHMS

Tl ~ T k

FIG. 1. A P-node.

339

A P-node is drawn as a circle, with its children (the trees 7"1, T~ ,..., Tk) drawn
below it.

3. I f 7"1, T~ T~ are all PQ-trees then the structure shown in Fig. 2 is
a PQ-tree whose root is a Q-node.

I I I
T~ T 2 . . . %
FIG. 2. A Q-node.

A Q-node is drawn as a rectangle, with its children drawn below it.
These operations always produce leaves which are elements of U and internal

nodes which are either P-nodes or Q-nodes, as required by the definition of a PQ-tree.
The only difference between a P-node and a Q-node is the way in which the children
are treated. This distinction between P-nodes and Q-nodes will become clearer
shortly. One further set of restrictions is made on the nodes of a PQ-tree. A PQ-tree
is proper exactly when each of the following three conditions holds.

1. Every element a~ ~ U appears precisely once as a leaf. This is because
PQ-trees are supposed to represent permutations of a set, so it does not make sense
for an element to appear more than once or to not appear at all.

2. Every P-node has at least two children. This rules out long chains of nodes
having only a single child. Scanning chains is very costly and should be avoided like
the plague.

3. Every Q-node has at least three children. This again eliminates chains
but also serves a more technical purpose. As explained below, there is no real distinction
between a P-node and a Q-node if there are only two children. It is convenient to
remove this redundancy.

These conventions serve to clean up some minor details by guaranteeing unique
PQ-tree representations for the classes of permutations being studied [3]. For this
reason, only proper PQ-trees will be considered throughout the remainder of this
paper. At some points during the algorithms described later, the actual trees con-
structed are not in fact proper. This does not violate the convention just established
because whatever impropriety is introduced is swiftly removed. After a complete
reduction the final tree is always proper.

57I/x3/3-7

340 BOOTH AND LUEKER

Reading the leaves of a tree T from left to right yields its frontier, denoted by
FRONTIER(T) . The example which follows in Fig. 3 is a (proper) PQ-tree for the set
U {A, B, C, D, E, F, G, H, I , J, K). The tree's frontier is the permutation
ABCDEFGHIJK.

The frontier of a tree is obviously a permutation of the set U. The problem at
hand involves an entire class of permutations H. In order for PQ-trees to help they
must be able to represent all of the permissible permutations.

A B c I
!

D

E F ~ i

G H J K
FIG. 3. A PQ-tree.

The definition of a PQ-tree does not suggest much about the order in which the
children of a node should appear. Because the basic problem involves grouping all of
the elements belonging to a particular set S it seems natural that internal nodes
group their descendants. It also seems natural, in the absence of any other informa-
tion, to leave the order within the group unspecified. Such freedom to reorder
children means that a particular tree can frequently be redrawn by changing the
left-to-right order of some of the children of some of the nodes. This freedom to
rearrange can be formalized in the following manner.

Two trees are equivalent iff one can be transformed into the other by applying zero
or more equivalence transformations. Each transformation specifies a legal reordering
of the nodes within a tree. There are only two types of equivalence transformations:

1. arbitrarily permute the children of a P-node,

2. reverse the children of a Q-node.

I C A A'
D

E F

I. I

H G J K

FIG. 4. A PQ-tree equivalent to the tree of Fig. 3.

PQ-TREE ALGORITHMS 341

The equivalence of two trees is writ ten T ~- T' . For the example in Fig. 3 there
are 768 different trees in the equivalence class. One more of these trees is shown in
Fig. 4. The new tree's frontier is BHGIJKEFDCA.

Every tree in an equivalence class has a different frontier. Conveniently an
equivalence class of PQ-trees has exactly the frontiers which correspond to a class/7"
of permutat ions defined by rules of the form "keep all the elements consecutive for

each set S ~ ~ . "
A tree built only of leaves and P-nodes cannot represent the class H := {ABC, CBA}

which occurs in the information retrieval example of Section 1. There are only three
possible trees to check. None of these have the desired rearrangements. The necessity
for both P-nodes and Q-nodes is thus obvious. The sufficiency of only two types,
which may not be so obvious, is dealt with at the end of this section.

I t is convenient to have a name for all of the frontiers which can be obtained by
equivalence transformations on a tree. The set of consistent permutations for a tree
is denoted by

C O N S I S T E N T (T) = { F R O N T I E R (T ') E T ' - - - T}.

One special tree is singled out and given a name. I t is the universal tree which
has a single P-node for its root and a leaf for every element of U. The universal
tree has every possible permutat ion in its consistent set. A second definition is also
useful. The null tree, which has no nodes at all and hence is not even a PQ-tree
according to the rules, is admitted to the club anyway. By convention the null tree
has no frontier and its set of consistent permutations is empty. Both trees are shown
in Fig. 5 below. All other PQ-trees fall somewhere between these two extremes.
It is shown in [3] that the classes of consistent permutations form a lattice whose
smallest element corresponds to the null tree and whose largest element corresponds
to the universal tree.

~[i ~ a m
Universal tree Null tree

Frc. 5. The universal tree and the null tree.

This completes the cast of characters. They are the set U = {a I , a2 ,..., a,,,} from
which the leaves are chosen, two types of internal nodes, some rules for properly
pasting things together, and two special trees which are given names - - the universal
tree and the null tree. There are a number of consequences for these definitions
which are worth exploring.

The complete freedom with which the children of a P-node are permuted means
that there is no implied left- to-right order among them. The children of a Q-node are

342 BOOTH AND LUEKER

more inhibited. The restriction to simple reversal means that the same two children
will always be endmost and all of the others will be interior. In addition, each interior
child of a Q-node always has the same two immediate siblings. These facts are useful
when manipulating PQ-trees so the properties endmost and interior will be used
later to classify nodes for processing.

There is only one operation on PQ-trees. Given a subset S C U and a tree T,
a new tree is needed whose consistent permutations are exactly the original permuta-
tions in which the leaves selected by S occur in some order as a consecutive sequence.
There is a fairly natural way to obtain such a tree. The new tree is called the S-reduction
of T. It is denoted by REDUCE(T, S). The S-reduction can be constructed from
the original tree by examining the tree node-by-node. The reduction procedure given
below defines the reduced tree. The fact that REDUCE(T, S) is actually the PQ-tree
which represents the desired class of permutations is proven later in Theorem 1.

The procedure R E D U C E is a more complete version of the inner loop for the
reduction algorithm given in Section 1. It is still not the entire implementation. Many
details have yet to be discussed. The procedure applies a sequence of templates to
the nodes of a PQ-tree. Each template has a pattern and a replacement. If a node
matches the template's pattern, the pattern is replaced within the tree by the
template's replacement. The value of the procedure is a new PQ-tree. It is the null
tree if the original tree could not be reduced for the set specified.

PQ-tree p r o c e d u r e REDUCE(T, S);
begin

initialize Q U E U E to empty;
for each leaf X E U do place X onto Q U E U E ;
while I Q I fEUE ', ~ 0 do

begin
remove X from the front of Q U E U E ;
if some template applies to X then

substitute the replacement for the pattern in T
else

begin
T : : null tree;
exit from do

end;
if S C (Y : X is an ancestor of Y} then exit from do;
i f every sibling of X has been matched then

place the parent of X onto Q U E U E
end;

return T
end

PQ-TREE ALGORITHMS 343

Each template specifies a local change within the tree. Only the node being matched
and its children are altered. The patterns to which nodes are matched depend upon
the set S and the frontier of the subtree rooted at the particular node for which a
match is being sought. The matched pattern is selected by examining the node
and its children after the children themselves have been matched. This is the reason
that the parent of a node is only queued if the node is actually the last sibling to
be matched. Queueing enforces the child-before-parent discipline. The bottom-up
strategy is important because it allows information to be propagated from the leaves
to the internal nodes in a controlled manner.

A node X is said to be full if all of its descendants are in S; X is said to be empty
if none of its descendants are in S. i f some but not all of the descendants are in S,
X is said to be partial. Nodes are said to be pertinent if they are either full or partial.
The pertinent subtree of T with respect to S, denoted P E R T I N E N T (T , S), is the
subtree of minimum height whose frontier contains all of S. The pertinent subtree
and its root are unique. The root of the pertinent subtree is denoted by ROOT(T, S).
It is usually not the root of the entire tree.T. Figure 6 shows the pertinent subtree
for the tree appearing in Fig. 3. The set used in this example is S = {E, I, J, K}.
ROOT(T, S) is the Q-node at the top.

Fic. 6.

E F

G H 3 K

The pertinent subtree for the PQ-tree in Fig. 3 when S = {E, I, J, K}.

Pattern-matching is very simple for leaves. There are only two templates. Either
a leaf is a member of S or else the leaf is not a member of S. In either event there
is no change to the tree when the replacement is made except to note that the leaf
in question is labeled either full or empty.

Matters are more complicated for internal nodes. The goal is to ensure that after
replacement the frontier of the tree rooted at the matched node has all of its pertinent
leaves occurring as a consecutive subsequence of the frontier. There are a number
of different cases which arise. Some of these cases cannot accomodate the goal. They
result in a failure return from the matching procedure when no template is found.

There are a few easy eases for P-nodes too. Any P-node which has all of its children
labeled empty can be labeled empty and no change is necessary. Similarly if all of a
node's children are labeled full then the node can be labeled full and left alone.
The templates for these cases are shown in Fig. 7. Nodes which are labeled as empty
are drawn normally (those on the left side in this example) and nodes which are

344 BOOTH AND LUEKER

labeled as full are drawn with shading (those on the right side). Only the children's
labels matter. The children's types (leaf, P-node, or Q-node) do not matter during
template-matching. All children are drawn as triangles regardless of their type.

Templates consist of two pieces. The first (top) piece is the pattern. The node
being matched and its children must be equivalent to the pattern. I f so the template
applies and the second (bottom) piece specifies the replacement to make within the
tree. For both of the templates in Fig. 7 the replacement is exactly the same as the
pattern. Other templates are not so simple.

FIG. 7. Easy eases for P-nodes--Template/DO (left) and Template P1 (right).

The nontriviat cases occur when the children of a P-node have different labels.
The situation immediately becomes more complicated. The full children have to
be grouped together in order to ensure that all of the pertinent leaves (elements
of S) are consecutive. The template in Fig. 8 accomplishes this task when the P-node is
the root of the pertinent subtree. It is sufficient to simply gather all of the full children
under a new P-node which then is made a child of ROOT(T, S). The root is left
unlabeled because the template-matching is finished. The algorithm does not queue
the parent of a matched node if all of the pertinent leaves have been accounted for.
This is by definition true for ROOT(T, S).

FIG. 8. Template P2 for ROOT(T, S) when it is a P-node.

PQ-TREE ALGORITHMS 345

A match for Template P2 exists if some equivalence transformation can be applied
to ROOT(T, S) which will order the children of ROOT(T, S) in the same way as
the children in the pattern. The transformation is applied to ROOT(T, S) and then
the replacement is substituted into T. A single template can thus be used to match
many different patterns.

Before the template of Fig. 8 is applied all of the children of the P-node are free
to rearrange in any order whatsoever. After the replacement this is not the case.
Empty children and full children may no longer intermingle. The reason for this
should be obvious. If the final tree is to have all of the pertinent leaves consecutive
along the frontier, no node having nonpertinent descendants can come between
two nodes having pertinent descendants. Respecting this inevitability, the arrangement
shown retains the most flexibility. Empty children are completely free to rearrange
among themselves and the full children are likewise free. Moreover, the full children
may appear anywhere within the empty children. This cannot hurt, since all of the
pertinent leaves have been accounted for.

Most P-nodes are not the root of the pertinent subtree. After all, there is only
one root. The normal case requires a little more care. If a P-node has some children
which are labeled empty and some children which are labeled full then the P-node
must be designated singly partial. This is a new label, different from either empty
or full, which can only appear on an internal node. The template for this case is
shown in Fig. 9. Partial nodes are partially shaded, with the shading indicating which
children are full.

FI~. 9. Template P3 for a singly partial P-node which is not ROOT(T, S).

As before, a match exists if there is some equivalence transformation which causes
the node being matched and its children to look like the pattern. Unlike Template P2,
the replacement for Template P3 does not allow the full children of the P-node
to appear just anywhere within the empty children. Since the P-node being matched
is known not to be ROOT(T, S) there must be at least one other pertinent leaf which
is not a descendant of the P-node. This leaf will eventually have to become consecutive
with those leaves which are descendants. This implies that all of the full children

346 BOOTH AND LUEKER

must be on either one side or the other. The replacement for Template P3 guarantees
this.

Confessions are in order. A number of details have been glossed over and should be
carefully examined. The first point is that, as warned previously, the replacement
for Template P3 creates an improper PQ-tree because the Q-node which is labeled
partial has only two children. This is all right, however. Since there is at least one
other pertinent leaf which is not a descendant of this Q-node, there will eventually
be three children. This will happen later, as ancestors of the current node are matched.

The second point is that Template P3 has some alternate forms. These occur
when there is only one full child or one empty child. Replacements for these special
cases are shown in Fig. 10.

FIO. 10. Alternate replacements for Template P3.

All of the loose ends have been tied up now. But of course there are still more
cases to come. With the introduction of partial nodes there is the added possibility
that one of the children is partial. I f a P-node has exactly one partial child the P-node
is labeled singly partial. There are two cases, depending upon whether or not the
P-node is ROOT(T, S). Figure 11 shows the template for the root and Fig. 12 shows
the template for other P-nodes. These are analogous to Template P2 (Fig. 8) and
Template P3 (Fig. 9).

••t//IZ///I///////t/A
Fie. 11. Template P4 for ROOT(T, S) when it is a P-node with one partial child.

PQ-TREE ALGORITHMS 347

I f there are less than two empty or full children, the corresponding P-node is
eliminated from the replacement for Template P4 or Template PS. The corresponding
replacements are similar to those shown in Fig. 10. I t may even happen that there
are no empty children or no full children. In these cases both the missing children
and their P-node are deleted from the replacement.

The final legal template for P-nodes is the pattern having precisely two singly
partial children. The P-node being matched is labeled doubly partial to denote the
fact that two partial children exist. In this case the P-node must be the root of the
pertinent subtree. I f it is not the root there is no way that the matching can continue.
This is easy to see. Each partial child has an empty end and a full end. The only
possibility is the replacement shown in Fig. 13. I f there is any other pertinent leaf
it is impossible to make it consecutive with the leaves in the subtree rooted at the
doubly partial node.

FIG. 12.
child.

Template P5 for a singly partial P-node, other than ROOT(T, S), with one partial

$7

~ 1 7 6 A

~/ / / / / / / / / / / / / / / / / /
/ /A "

Fig.] 3. Template P6 for ROOT(T, S) when it is a doubly partial P-node.

348 BOOTH AND LUEKER

All other P-nodes not matching one of the templates just described are considered
illegal. The template-matching process halts unsuccessfully and the tree is irreducible.
These illegal cases correspond to P-nodes with more than two partial children.
It is easy to see that no matter in what order three partial nodes occur, pertinent
leaves which are descendants of the left and right nodes will be separated by
nonpertinent leaves which are descendants of the middle node. This violates one
of the constraints imposed by the sets, hence it is ruled illegal.

Q-nodes also have a number of different templates. The cases when all of the
children are labeled identically are taken care of by Template Q0 and Template Q1,
which are analogous to Template P0 and Template P1. There is no change to the
Q-node except for the new label it receives. As with P-nodes the interesting situation
is when some of the children have different labels. There are only two major cases
which remain, but each has a number of subcases. The most general situations are
illustrated.

A Q-node is singly partial if it has at most one singly partial child and if the
left-to-right order of the children is that shown in Fig. 14. The rule which says
that a template applies if any equivalence transformation of the node and its children
matches the pattern allows only that the children of either Q-node may be reversed.

FtG. 14. Template 0 2 for a singly partial 0-node.

Some or all of the empty, full, or partial children may be missing from the pattern.
The only important requirement is that not all of the children are labeled identically
(so Templates Q0 and Q1 do not apply). As before, children missing from the pattern
are deleted from the replacement.

The final legal Q-node template is the doubly partial case. Just as for P-nodes, a
doubly partial Q-node must be the root of the pertinent subtree. Up to two children
may be singly partial (although there might not be any partial children at all) but
the left-to-right order must be exactly that shown in Fig. 15, except for a possible
reversal. Note that both endmost children must either be empty or partial; otherwise
Template Q2 would apply.

P(Q-TREE ALGORITHMS 349

. . . .

FIG. 15. Template Q3 for a doubly partial Q-node.

This is the last of the legal templates for Q-nodes. Any other pattern is illegal
and results in a failure of the template-matching process. Using all of the templates
specified above, each node within the tree is matched until the root of the pertinent
subtree is found. Each node matches at most a single template. As long as legal
templates are found the process continues. The matching stops when no more
rearrangements are necessary; all of the pertinent leaves will be consecutive within
the frontier.

As an illustration of the reduction algorithm consider the tree in Fig. 3. The set
used to reduce the tree is S = {E, I, J, K}. The tree in Fig. 4 is equivalent to the
tree in Fig. 3 and has all of the elements of S as a consecutive subsequence along
its frontier. The algorithm should succeed. It does, and REDUCE(T, S) is the
tree shown in Fig. 16. The two (Q-nodes in the original tree have been merged into
a single Q-node and one of the P-nodes has also been absorbed into the Q-node.

I
I

H G

/
I f I I L1 c A
I /~ E F D

J K

FIG. 16. A reduced PQ-tree.

Notice that the set S occurs as a consecutive subsequence within the frontier of
REDUCE(T, S). Even better, it is consecutive within the frontier of every tree in
the equivalence class of REDUCE(T, S). This is no accident. P(Q-trees are designed
to have this property. The S-reduction of a tree can be characterized in terms of
consistent permutations. Given any subset S C U, let T(U, S) be the P(Q-tree shown
in Fig. 17.

350 BOOTH AND LUEILER

a I ~ ~ ant

ai I ai2 �9 . �9 ale
F I c . 17. T(U, S) for S = (a q , a~ 2 ,..., ai,}.

Obviously CONSISTENT(T(U, S)) is exactly the class of permutations in which
the elements of S occur as a consecutive subsequence. Two special cases are worth
noting. T(U, U) is the universal PQ-tree because the two P-nodes violate the rules
for proper trees so they are collapsed to one P-node. T (Z , s~)is another way of
specifying the null tree. I f there are no leaves there cannot be any internal nodes!
This notation will be used later as a convenient abbreviation.

THEOREM 1. Let T be any PQ-tree and let S C U be any subset of the universal set.

CONSISTENT(REDUCE(T, S))
= CONSISTENT(T) n CONSISTENT(T(U, S)).

Proof. To show that the two classes of permutations are actually the same it is
sufficient to prove that each is contained within the other. Equality then follows.
The first step is to demonstrate that the left-hand side is contained within the right-
hand side. This has two parts.

Let ~r be any permutation in the class CONSISTENT(REDUCE(T, S)). I f such a
permutation exists the tree must have been successfully reduced, otherwise
REDUCE(T, S) would be the null tree. By definition the reduced form of T has an
equivalent tree whose frontier is ~r. Let this equivalent tree be T'. The basic idea
underlying the proof is to construct a tree T" which is equivalent to T and which
has rr as its frontier. This is accomplished by undoing the template-matching which
reduced T, but without undoing the equivalence transformations which were used
during the template-matching. The process of applying a template has two stages;
the pattern must be matched, possibly requiring an equivalence transformation,
and then the replacement made. Consider what happens when the templates are
applied in the reverse order from which they are applied during the reduction
algorithm. I f the replacement is undone but the equivalence transformation used
to match the pattern is left applied, the entire template-matching process can be run in
reverse. The result is a tree T" which is equivalent to the original tree T but which has
the same frontier as T'. This common frontier is rr, hence rr ~ CONSISTENT(T) .

Next we show that ~r is also in CONSISTENT(T(U, S)), that is, that the elements
of S appear consecutively in ~r. By inspection of the templates which can apply to
the root, we see that after the root is matched there will be a node X in the tree such
that

PQ-TREE ALGORITHMS 351

(a) the descendants of X include all of S, and

(b) X is either a full P-node or a Q-node all of whose pertinent children are
full and appear consecutively.

From this it follows that all elements of S must appear consecutively in the frontier
of any tree equivalent to the reduced tree.

Finally we show that CONSISTENT(T)c3 CONSISTENT(T(U, S))is contained
in CONSISTENT(REDUCE(T, S)). That is, if a permutation ~r is in the consistent
set of the original tree and happens to have the dements of S appearing consecutively,
then ~" is also in the consistent set of the reduced tree. Let T' be a tree equivalent
to T and having ~- as its frontier. The fact that S appears consecutively in rr implies
that no node in the pertinent subtree, except the root, can have more than one partial
child; the root may have at most two partial children. Note also that after any partial
node other than the root is matched, it becomes a Q-node; moreover, its sequence
of children, examined from left to right (or possibly from right to left), will consist
of a sequence of full nodes followed by a sequence of empty nodes. These observations
guarantee that each node matches one of the templates. Next note that for each
template, the fact that S is consecutive in the frontier of T ' implies that the replace-
ment can take place with no change to the frontier of the tree. Thus 7r is in
CONSISTENT(REDUCE(T ' , S)). Then since T ' and T are equivalent, and
since template matching preserves equivalence, ~r is also in

CONSISTENT-(REDUCE(T, S)). |

This first theorem explains why PQ-trees are interesting. They can be used to
represent all of the permutations in which each set in a family of subsets occurs as
a consecutive subsequence. I f the initial PQ-tree is the universal tree for some set
U an S-reduction restricts the consistent permutations to be exactly those in which S
is consecutive. Mukiple reductions on a family of sets produce the class of permuta-
tions in which every one of the sets is consecutive. This is precisely the operation
needed for the applications which follow.

3. EFFICIENT IMPLEMENTATION

The template-matching algorithm of Section 2 is purposely lacking in details. No
claim is made that it represents an efficient technique for performing reductions on
PQ-trees. This matter will be addressed here. There are two problems to be faced
when implementing the reduction algorithm. The program must decide which
templates to apply and then it must apply them. These two actions are not independent.
They interact with each other and this interaction must be taken into account.

The only real constraint imposed by the template-matching approach is that all of
the children of a node must be matched before the parent is matched. This require-

352 BOOTtl AND LUEKER

ment stems from the fact that the appropriate template for a node can only be selected
after knowing the reduced forms of the node's children. Tile implementation discussed
here scans the tree twice, both times beginning with the leaves and working toward
the root. If that were all there were to the story, the algorithm would be quite easy.

But life is not so simple. Section 2 assumes that the entire tree is processed. Each
node is classified as empty, full, or partial and then a pattern replacement is performed.
But what if the sets being reduced are small? Scanning the entire tree each time
would be an extremely expensive proposition.

The entire tree is not scanned. Not even all of the pertinent subtree is scanned.
Instead, just a piece of the pertinent tree is checked. The pruned pertinent subtree
of T with respect to S is the smallest connected subgraph (not necessarily a proper
PQ-tree!) which contains all of the pertinent leaves. This is denoted by
PRUNED(T, S). The root of the pruned pertinent subtree is ROOT(T, S), the
root of the entire pertinent subtree. The pruned pertinent subtree for the pertinent
subtree shown in Fig. 6 is shown in Fig. 18. The same set S = {E, I, J, K} is used.
In this case, the pruned pertinent subtree fails to satisfy the definition of a proper
PQ-tree on at least two counts: it has a P-node with only one child and two Q-nodes
with only two.

Flo. 18.

6
/

E

J K

The pruned pertinent subtree for the example in Fig. 6.

Two passes are used in the actual implementation. The first identifies the nodes
to be processed and the second applies the templates. The combined algorithm is
called pruned reduction because it only looks at the pruned pertinent subtree. The
first pass is called bubbling up. It marks all of the nodes which are in PRUNED(T, S).
This is necessary in order to properly sequence the template-matching which follows.
The two-pass strategy leads to an interesting dilemma.

Empty nodes are never actually looked at, so they must be recognized by their
absence, rather than their presence. This is why the separate marking pass is used.
As the marking bubbles up the tree from the pertinent leaves it is able to mark each
node which needs to be processed and at the same time it leaves a count at each node
telling exactly how many of the children will be processed. It is these counts which
enable the second pass to determine when the last pertinent child of a node has been
matched, so that the parent is properly queued. If this were not the case a parent
with some empty children might never be queued.

PQ-TREE ALGORITHMS 353

The dilemma stems from the fact that a bottom-up strategy is employed only to
avoid processing the entire tree but requires that each child point to its parent (how
else can the algorithm bubble up?), yet the maintenance of parent pointers may
easily require as much work as traversing the entire tree! Parent pointers cause a
problem for one simple reason. If an internal node has a large number of empty
children and the node is deleted as part of the replacement, every one of the children
must receive a new parent pointer. It is possible that almost all of the nodes in the
tree may receive a new parent even though the set S has only two elements.

The way out of the dilemma is to strike a balance between the desire to avoid
scanning the entire tree and the need to minimize pointer upkeep. Parent pointers
need only be kept for children of P-nodes and for endmost children of Q-nodes.
Interior children do not need parent pointers. They can borrow them from their
endmost siblings at the appropriate moment.

As the first pass bubbles up the tree it can be temporarily blocked at an interior
node. If there is no parent pointer it is impossible to queue the parent. Each interior
node without a parent pointer is called blocked. A count is kept of the number of
times this happens. The actual count, kept as a global blockcount, does not record
all of the blocked nodes. Instead it keeps track of each block of blocked nodes. A
block is a maximal left-to-right chain of blocked siblings. Thus two or more blocked
nodes which are consecutive children of the same Q-node are only counted once.
The difference between a blocked node and a block of blocked nodes is important,
and should be kept in mind when thinking about the bubbling up pass.

s J

. . . A - A - A . . .

. . A - A - A . .

Flo. 19. Blocked interior node which increases the bloekcount.

As occurred earlier for the template-matching, there are a number of cases.
Children of P-nodes and endmost children of Q-nodes are easy to handle. The more
complicated cases involve interior children of Q-nodes. Figure 19 depicts one situation
when an interior node is encountered during the bubbling up phase. The node being
processed is indicated by cross-hatching. Previously processed nodes are shaded.
Parent pointers are only shown if they actually exist. The sibling pointers are always
present and are shown in the diagrams. For the case shown here, there is no parent
pointer, so the blockcount is increased.

It can also happen that both siblings have already been processed and that they

354 BOOTH AND LUEKER

are unblocked. Both have valid pointers to the parent which can be given to the node
being processed. No change in the blockcount is required. This situation is diagrammed
in Fig. 20.

,

L i

FIc. 20. Unblocked interior node leaving the blockcount unchanged.

I f one of the node 's siblings is already blocked there is no increase in the blockcount.
Two nodes are now blocked. Figure 21 shows this case.

. . . ~ - & - A . . .

..~/./,(at: I . I
f

. . . 2 k - 2 k - A . . .

Flc. 21. Blocked interior node leaving the blockcount unchanged.

A similar situation is shown in Fig. 22. This t ime one of the siblings is already
unblocked so the new node is immediately given a parent pointer. Here too the
blockcount is not changed.

A more interesting case is when both siblings are blocked. Again the new node is
blocked, but there is an important difference. The blockcount must be decremented
by one because two blocks of blocked nodes have merged into a single block. Th is is
shown in Fig. 23.

[.._

.

. , ' , c o o

Fic. 22. Unbloeked interior node leaving the blockcount unchanged.

P Q - T R E E A L G O R I T H M S

, , , ,~1~: �9 I

. . . �9

355

, , ~ p : i I

. . . A - A - A . . .

Fro. 23. Blocked interior node which decrements the blockcount.

The final case is the most interesting. I f one of the siblings is blocked and one
of the siblings is unblocked the node being processed is unblocked since it can obtain
a valid parent pointer. But more can be done. The pointer can be passed through
the entire block of blocked siblings. Thus the blockcount decrements and a number
of orphaned nodes suddenly receive parents. This is shown in Fig. 24. All of the
cases shown in Figs. 19-24 apply only to interior children of Q-nodes. When an
endmost child is found it already has a parent pointer and thus it is automatically
unblocked. A check is made to see if the immediate sibling is blocked. I f it is, a scan
similar to that employed in Fig. 24 is used to pass the parent pointer across the
block of blocked siblings. The blockcount is decremented by one if there are any
blocked siblings which become unblocked.

I 1

. . . z r- r-A . . .

I I

. . .

Fro. 24. Unblocked interior node which decrements the blockcount.

Using this strategy every pertinent node will have a valid parent pointer at the
beginning of the second pass. The interior pertinent children can be counted at the
same time they receive parent pointers so that the parent will have a correct count
during the second pass. Care must be taken to initialize all of the nodes to unmarked
and to reinitialize them after each reduction, but this can be easily handled at no
additional cost.

If the tree cannot be reduced it may happen that some interior nodes remain
blocked. This can be detected during the bubbling up because the blockcount will be
greater than zero. This is not quite correct, though. If the root of the pertinent
subtree is a Q-node and all of its pertinent children are interior then a blockcount

57U'z3/3-8

356 BOOTH AND LUEKER

of one is legal. This is handled as a special case. The actual root is never needed,
so a pseudonode can be assigned as a surrogate parent for the blocked children. The
pseudonode can be removed afterwards.

If the blockcount is greater than one at the end of the bubbling up pass there is
no hope that the tree can be reduced. The reduction algorithm can be halted im-
mediately. There is only one more complication which remains to be covered. The
procedure is supposed ~ to halt after it has processed the pruned pertinent subtree.
I t should stop at the root of P R U N E D (T , S). This is easier said than done. Instead
the bubbling up continues until the blockcount is zero and the queue of nodes to
process has only one node, or else the blockcount is one and the queue is empty.
Either case is acceptable.

If the tree is actually irreducible the bubbling up may perform a lot of extra work.
But at most it will process the entire tree. The applications for reduction always
halt when the tree is irreducible, so this extra work does not really affect the total
running time. The entire tree had to be built by the algorithm hence one additional
pass over all of the nodes can not hurt!

I f the bubbling up pass processes the root of the tree it must keep track of this
fact. There are no higher nodes to process, but it must pretend that it is still adding
nodes to the queue to ensure that proper end conditions are detected. Conceptually
this can be remedied by imagining an infinite hierarchy of virtual nodes which are
ancestors of the root of the tree. The actual implementation simply sets a flag to
remember that the root of the tree has been processed. I f the root of the entire tree
is encountered and the queue empties with the blockcount nonzero, the tree is not
reducible.

With a little care all of these details can be handled and the bubbling up procedure
shown below will mark all of the pertinent nodes. I t can also leave a count at each
node of how many children are pertinent. This is used during the second pass to
determine when the last child has been matched.

Before presenting the procedure for the first pass, a complete list of the global
variables used by both passes is explained. The fields associated with each node are
also helpful. The global variables are the following:

B L O C K C O U N T . The number of blocks of blocked nodes during the bubbling
up pass.

B L O C K E D N O D E S . The number of blocked nodes during the bubbling up
pass. This is only needed for the case when a pseudonode is used. The count at the
end of the first pass is exactly the number of pertinent children for the pseudonode.

O F F _ T H E _ T O P . A variable which is either 0 (its initial value) or 1 (if the
root of the tree has been processed during the first pass). I t acts as a count of the
number of virtual nodes which are imagined to be in the Q U E U E during the
bubbling up.

PQ-TREE ALGORITHMS 357

QUEUE. A first-in first-out list which is used during both passes for sequencing
the order in which nodes are processed.

Each node has the following fields. Not every field is used for every node so there
is plenty of opportunity to reduce the storage requirement by reusing fields, but
this possibility is ignored in the interest of clarity.

C H I L D _ C O U N T . A count of the number of children currently possessed by
the node. This is only used for P-nodes.

C I R C U L A R L I N K . A set of links which form the children of a P-node into
a doubly-linked circular list; the order of the list is arbitrary. The sole purpose of
the circular list is to enable a P-node to find its only empty child when all other
children are full or partial. This field is not used for children of Q-nodes.

E N D M O S T C H I L D R E N . A set containing the two endmost children of a
Q-node. This is only used for Q-nodes.

I : U L L C H I L D R E N . A set containing all of the children of a node which
are currently known to be full. This is implemented as a list (no special order is
necessary) and a count is kept of the number of nodes on the list. Children are added
to the list after they are matched to a template in the second pass.

I M M E I) I A T E _ S I B L I N G S . A set containing exactly 0, 1, or 2 other nodes.
A child of a P-node has no immediate siblings, the endmost children of Q-nodes
havc only one immediate sibling, and the interior children of Q-nodes have two
immediate siblings. The field is interpreted as an unordered set. This convention
allows sibling chains to be reversed without having to modify the pointers for every
node of the chain. Sibling chains can be traversed in either direction beginning with
any sibling in the chain.

LABEI,. An indication of whether the node is empty, full, or partial.

MARK. A designation used during the first pass. Every node is initially
unmarked. It is marked queued when it is placed onto Q U E U E during the bubbling
up. It is marked either blocked or unblocked when it is processed. Blocked nodes
can become unblocked if their siblings become unblocked.

PARENT. The immediate ancestor of the node. This field is always valid for
children of P-nodes and for endmost children of Q-nodes. It is only valid for interior
children of Q-nodes if the child is marked as unblocked. The root of the PQ-tree
is the unique node having no immediate siblings and no parent.

P A R T I A L C H I I , D R E N . A set containing all of the children of a node which
are currently known to be partial. This is similar to the set of full children. In practice
it can have at most two elements, since otherwise the node will not match a legal
template.

358 BOOTH AND LUEKER

P E R T I N E N T _ C H I L D _ C O U N T . A count of the number of pertinent children
currently possessed by a node. This count is initially zero and is incremented by
one each time a child of the node is processed during the bubbling up. During the
matching pass the count is decremented by one each time a child is matched. The
node is queued for matching when the pertinent child count reaches zero during
the second pass.

P E R T I N E N T L E A F _ C O U N T . A count of the number of pertinent leaves
which are descendants of this node. This field is built up during the second pass
as each child of the node is matched. It is the sum of the pertinent leaf counts for all
of the pertinent children.

TYPE. A designation telling whether the node is a leaf, a P-node, or a Q-node.

A complete version of the bubbling up pass is now given. I t can be translated
into most higher-level languages in a straightforward manner using common
programming techniques [1].

PQ-tree p r o c e d u r e BUBBLE(T, S);
begin

initialize QUEUE to be empty;
BLOCK_COUNT : ~ 0;
BLOCKED_NODES : = 0;
OFF_THE_TOP : ~ 0;
for X ~ S do place X onto QUEUE;
while I QUEUE[+ B L O C K C O U N T + O F F T H E T O P > 1 do

begin
i f [QUEUE I : 0 then

begin
T : = T(;~, ~) ;
exit from do

end;
remove X from the front of QUEUE;
MARK(X) : : "blocked";
B S : : {Y ~ IMMEDIATE_SIBLINGS(X) [MARK(Y) ~ "blocked"};
U S : : {Y ~ IMMEDIATE_SIBLINGS(X) I MARK(Y) : "unblocked"};
i l l US ~, ~ 0

then
begin

choose any Y ~ US;
PARENT(X) : = PARENT(Y);
MARK(X) : = "unblocked"

end

PQ-TREE ALGORITHMS 359

else i f i IMMEDIATE_SIBLINGS(X)] < 2 then MARK(X) :----
"unblocked";

i f MARK(X) ---- "unblocked"
then

begin
Y :---- PARENT(X);
i f l B S [> 0 t h e n

begin
L I S T : = the maximal consecutive set of blocked siblings

adjacent to X;
fo r Z ~ L I S T do

begin
MARK(Z) :---- "unblocked";
PARENT(Z) :---- Y;
P E R T I N E N T CHILD_COUNT(Y) :--
P E R T I N E N T _ C H I L D COUNT(Y) + 1

end
end;

if Y ---- nil
t hen OFF_THE_TOP : ~ l
else

begin
P E R T I N E N T _ C H I L D C O U N T (Y) : z
P E R T I N E N T CHILD_COUNT(Y) + 1;
i f MARK(Y) ---- "unmarked" then

begin
place Y onto QUEUE;
MARK(Y) : ~ "queued"

end
end;

B L O C K C O U N T : ~ BLOCK_COUNT --] BS];
B L O C K E D N O D E S :---- B L O C K E D N O D E S --] L I S T]

end
else

begin
BLOCK_COUNT :---- BLOCK_COUNT + 1 - - r BSI;
BLOCKED_NODES : = B L O C K E D N O D E S + 1

end
end;

r e t u rn T
end

360 BOOTH AND LUEKER

Note that L IST may be computed in time directly proportional to I L I S T i through
the use of the IMMEDIATE_SIBLINGS fields. Starting at any unblocked node X,
we may traverse its chain of siblings in either direction. Siblings are added to L I S T
until one is encountered which is not blocked.

Note also that after BUBBLE all pertinent proper descendants of ROOT(T, S),
except those which are blocked, have valid parent pointers. If B L O C K C O U N T
is 1 and B L O C K E D N O D E S is greater than 1 when the BUBBLE procedure
finishes, a pseudonode must be created. This process will be described only briefly
here. During the BUBBLE procedure a list BLOCKED_LIST of all nodes which
are ever marked "blocked" may be maintained. After the procedure finishes, all
nodes which are no longer blocked are removed from BLOCKED_LIST. A pseudo-
node Z of type Q-node is created. Each node in BLOCKED_LIST is given Z as its
parent. The E N D M O S T C H I L D R E N of Z are those nodes in BLOCKED_LIST
which have fewer than 2 blocked siblings. Note that the only template which could
match the true parent of the nodes in BLOCKED_LIST is Q3.

The bubbling up procedure never uses a parent pointer until after it is known to be
valid. This eliminates the need to maintain pointers from all of the interior children
but still enables BUBBLE to find all of the pertinent nodes with only a modest
amount of work. The exact bound is given by the next lemma.

LEMMA 2. The bubbling up phase of reduction requires O(I PRUNED(T, S)I) steps.

Proof. Note that the work performed during one iteration of the main loop is
on the order of one plus the number of nodes which become unblocked during this
iteration. Now each node is added to the queue at most once and becomes unblocked
at most once. Thus the total work performed is bounded by the number of nodes
processed. The nodes processed are those in PRUNED(T, S), plus some extra
nodes which are ancestors of ROOT(T, S). There cannot be many of these extra
nodes. The queueing strategy guarantees that if node X is processed before node X'
then the parent of X must be processed before the parent of X' , unless the parent
of X' was already queued because of some other child being processed. Each ancestor
of ROOT(T, S) has only one pertinent child. This implies that the total number
of ancestors of ROOT(T, S) which are actually processed does not exceed the longest
leaf-to-root distance within PRUNED(T, S). Certainly this is no more than
I PRUNED(T, S)I. |

Bubbling up supplies all of the information necessary to perform the template
matching. The second pass is essentially the procedure REDUCE which was explained
in Section 2. The difference is that only the leaves which are in S are initially placed
on the queue for processing. With some additional tricks the second pass can also
be performed at modest cost. The final version of the template-matching is the
procedure given below. Note that Template P0 and Template Q0 are not used.

PQ-TREE ALGORITHMS 361

Since only pertinent nodes are processed there are never any empty nodes in the
queue. A new Template L1 has also been added for full leaves. The template's
replacement is the same as its pattern--the leaf itself.

PQ-tree p rocedure REDUCE(T, S);
begin

initialize QUEUE to empty;
fo r each leaf X ~ S do

begin
place X on QUEUE;
P E R T I N E N T L E A F C O U N T (X) : = 1

end;
while [QUEUE[> 0 do

begin
remove X from the front of QUEUE;
if [PERTINENT_LEAF_COUNT(X)[< I S[

then
begin c o m m e n t X is not ROOT(T, S);

Y :-- PARENT(X);
PERTINENT_LEAF_COUNT(Y) : =

PERTINENT LEAF_COUNT(Y)
+ P E R T I N E N T L E A F C O U N T (X) ;

PERTINENT CHILD COUNT(Y) : =
P E R T I N E N T _ C H I L D _ C O U N T (Y) - 1;

if PERTINENT_CHILD_COUNT(Y) = 0 then
place Y onto QUEUE;

if not TEMPLATE_LI(X) then
if not TEMPLATE_PI(X) then
if not TEMPLATE_P3(X) then
if not TEMPLATE_P5(X) then
if not TEMPLATE_QI(X) then
if not TEMPLATE_Q2(X) then

begin
T := T (~ , ~);
exit from do

end
end

else
begin c o m m e n t X is ROOT(T, S);

if not TEMPLATE_LI(X) then
if not TEMPLATE_PI(X) then

362 BOOTH AND LUEKER

i f not TEMPLATE_P2(X) then
if not TEMPLATE_P4(X) then
i f not TEMPLATE_P6(X) then
i f not TEMPLATE_QI(X) then
i f not TEMPLATE_Q2(X) then
i f not TEMPLATE_Q3(X) then

T :---- T (~ , ~) ;
exit from do

end
end;

return T
end

All that remains is to describe the templates. There are a few things to be careful
of here also. Note that when Template P5 is applied there are a number of empty
children which receive a new parent. In order to achieve the linear bounds to follow,
we must avoid having to manipulate fields within these empty children. To do this,
we use their original parent as the "new" P-node which groups the empty children.
This avoids changing any parent pointers of empty nodes.

Procedures for Templates P5 and Q2 are shown here in detail; the other template
procedures are similar. Note the order in which templates are tried. This information
can be used to simplify some of the procedures because information is implicitly
known about previous templates which failed.

Boolean procedure TEMPLATE_P5(X);
begin

i f TYPE(X) % P-node then return false;
if I PARTIAL CHILDREN(X)I :A 1 then return false;
Y : = the unique element in PARTIAL_CHILDREN(X);
EC := the unique element in ENDMOST_CHILDREN(Y) labeled "empty";
FC : = the unique element in E N D M O S T C H I L D R E N (Y) labeled "full";
comment the following statement may be performed in time on the order

of the number of pertinent children of X through the use of the
C I R C U L A R L I N K fields;

if Y has an empty sibling then ES :---- an empty sibling of Y;
comment Y will be the root of the replacement;
PARENT(Y) :---- PARENT(X);
PERTINENT_LEAF_COUNT(Y) :-~ P E R T I N E N T _ L E A F C O U N T (X) ;
LABEL(Y) :---- "partial";
PARTIAL_CHILDREN(PARENT(Y)) : =

PARTIALCHILDREN(PARENT(Y)) u {Y};
remove Y from the list of children of X formed by the CIRCULAR_LINK fields;

PQ-TREE ALGORITHMS 363

if [IMMEDIATE_SIBLINGS(X)I = 0
then replace X by Y in the list of children of PARENT(X) formed by the

CIRCULAR_LINK fields
else

begin
replace X by Y in the list of children of PARENT(X) formed by the
IMMEDIATE SIBLINGS fields;

if X c ENDMO ST_CHI LDREN(PARENT(Y))
then ENDMOST_CHILDREN(PARENT(Y)) : =

ENDMOST_CHILDREN(PARENT(Y)) -- {X} u {Y}
end;

if l FULL_CHILDREN(X)] > 0 then
begin

i f [FULL_CHILDREN(X)] = 1
then let ZF be the unique element in FULL_CHILDREN(X) and remove

ZF from the CIRCULAR_LINK list of which it is currently a member
else

begin
create a new P-node called ZF; LABEL (ZF):= "full";
fo r each node W in F U L L C H I L D R E N (X) do

begin
remove W from the CIRCULAR_LINK list of

which it is currently a member;
PARENT(W) :---- ZF

end;
set the C I R C U L A R L I N K fields of the nodes in

F U L L C H I L D R E N (X) to form a doubly-linked circular list;
CHILD_COUNT(ZF) : =] FULL_CHILDREN(X)]

end;
PARENT(ZF) := Y;
IMMEDIATE_SIBLINGS(PC) :~-- IMMEDIATE SIBLINGS(PC) u {ZF);
IMMEDIATE_SIBLINGS(ZF) := {PC};
ENDMOST_CHILDREN(Y) : ~
ENDMOST_CHILDREN(Y) -- {FC) u {ZF)

end;
NUMBER_EMPTY : = CHILD_COUNT(X)

- -] F U L L _ C H I L D R E N (X) [- [PARTIAL_CHILDREN(X)];
i f NUMBER_EMPTY > 0 then

begin
i f N U M B E R E M P T Y = 1

then ZE : = ES
else

364 BOOTH AND LUEKER

begin
ZE : = X; LABEL (ZE):--= "empty";
CHILD COUNT(ZE) := NUMBER_EMPTY

end;
PARENT(ZE) :--- Y;
IMMEDIATE_SIBLINGS(EC) :-- IMMEDIATE SIBLINGS(EC) L) {ZE};
IMMEDIATE SIBLINGS(ZE) := {EC);
ENDMOST_CHILDREN(Y):---:
ENDMOSTCHILDREN(Y) -- {EC} u {ZE}

end;
if NUMBER_EMPTY < 2 then destroy" X;
r e t u r n t r u e

end
Boolean p rocedure TEMPLATE_Q2(X);
begin

if TYPE(X) ~ O-node then r e tu rn false;
if X is a pseudonode then r e tu rn false;
if I PARTIAL_CHILDREN(X)I > 1 then r e tu rn false;
if l FULL.CHILDREN(X)I > 0

then
begin

if I FULL CHILDREN(X) n ENDMOST_CHILDREN(X)j :/= 1
then r e tu rn false;

let Y be the unique element in
FULL_CHILDREN(X) c~ E N D M O S T C H I L D R E N (X) ;

for i : I step l unti l] FULL_CHILDREN(X)! do
begin

if Y 6 FULL_CHILDREN(X) then retlarn false;
Y : the next sibling in the chain of children of X

end;
if PARTIAL_CHILDREN(X) ~ {Y} then r e tu rn false

end
else if PARTIAL_CHILDREN(X) (~ ENDMOST_CHILDREN(X)

then r e tu r n false;
LABEL(X) := "partial";
PARTIAL_CHILDREN(PARENT(X)) :---

PARTIAL_CHILDREN(PARENT(X)) • {X};
i f PARTIAL_CHILDREN(X)I > 0 then

begin
Y :-- the unique element of PARTIALCHILDREN(X) ;
FC :-- the unique endmost full child of Y;

PQ-TREE ALGORITHMS 365

if Y has a full immediate sibling
then

begin
let FS be the unique full immediate sibling of Y;
IMMEDIATE_SIBLINGS(FS) :==

I M M E D I A T E SIBLINGS(FS) -- { Y} U (FC};
IMMEDIATE_SIBLINGS(FC) : =

I M M E D I A T E SIBLINGS(FC} U {FS}
end

else
begin

E N D M O S T C H I L D R E N (X) : =
E N D M O S T C H I L D R E N (X) - Y u {FC};

PARENT(FC) : : X
end;

EC : : the unique endmost empty child of Y;
if Y has an empty immediate sibling

then
begin

let ES be the unique empty immediate sibling of Y;
IMMEDIATE_SIBLINGS(ES) : :-
IMMEDIATE_SIBLINGS(ES) -- { Y} u {EC};

IMMEDIATE_SIBLINGS(EC) :=
IMMEDIATE_SIBLINGS{EC} u {ES}

end
else

begin
E N D M O S T C H I L D R E N (X) :.-=

E N D M O S T C H I L D R E N (X) -- Y u {EC};
PARENT(EC) : = X

end;
destrov Y

end;
r e t u rn t rue

end

This completes the description of the template-matching. The next lemma shows
that with the addition of a bubbling up phase the template-matching can be accom-
plished in much less time.

LEMMA 3. The template-matching phase of reduction requires O([PRUNED(T, S)[)
steps.

366 BOOTH AND LUEKER

Proof. As indicated above, the algorithm can be implemented so that the work
performed in matching any node X is on the order of one plus the number of pertinent
children of X. Summing this over all nodes matched, we obtain O(/PRUNED(T, S)]).

!
These two bounds can be combined into a single bound which will suffice to prove

linearity for the applications in the following sections. The pruned reduction algorithm
is simply BUBBLE followed by REDUCE. The overall algorithm is as follows:

PQ-tree p r o c e d u r e REDUCTION(U, •);
T : = T(U, U);
for each S ~ ~ do

begin
T : = BUBBLE(T, S);
T : ~ REDUCE(T, S)

end;
return T

end

One problem which has not been addressed explicitly here is the reinitialization
of certain fields. For example, the MARK fields should be set to "unmarked" at
the beginning of each pass. One convenient way to do this is to maintain a list of
all nodes which are modified during the reduction; after the reduction is complete
one may scan this list and reset the fields of the nodes as required.

The next lemma is useful in obtaining linear bounds on the time used by PQ-tree
algorithms. Define a unary node to be a node in the pertinent subtree which has
just one pertinent child. Let UNARY(T, S) be the set of all unary nodes in T with
respect to the set S.

LEMMA 4. Theprunedreduction algorithm requires only O(I S] +] UNARY(T, S)])
steps to reduce T with respect to S.

Proof. There are only I S] leaves. Binary branching implies that there are at
most O(] S [) nonunary nodes in PRUNED(T, S). The remainder of the proof
follows directly from Lemmas 2 and 3. |

The interesting form of this lemma is its application to the case of multiple reduc-
tions. The terms due to unary nodes within the trees can be eliminated by averaging
their cost over all of the sets. Given a family of sets $ define SIZE(5) to be the sum
of the sizes of all the sets in the family.

THEOREM 5. The class of permutations in which each set of a family ~ occurs as a
consecutive subsequence can be computed in O(m + n + SISE(~)) steps if U has m
objects and S has n sets.

PQ-TREE ALGORITHMS 367

Proof. We use the algorithm R E D U C T I O N presented above. One readily sees
that the work outside of the calls to BUBBLE and REDUCE uses only O(m + n)
time. From Lemma 4 the total work in all of the BUBBLE and REDUCE calls
can be computed as the sum of two terms. One is the total contribution due to the
sizes of the sets; this is just SIZE(5). The second term is the sum of[UNARY(T, S)I
over all sets S in S. This term is a bit harder to bound. We begin by noting that
a unary node cannot be the root of PERTINENT(T , S) and that its children cannot
be all empty or all full. Thus the only templates which can apply to unary nodes
are P3, P5, and Q2. First consider Template P3. I t is not hard to see that if P3 is
applied more than twice, there must be three partial nodes in T, none of which is
an ancestor of any other, from which it follows that S cannot be made consecutive
so REDUCE fails. We conclude that the total number of applications of P3 is
O(m + n).

The bound on the number of applications of P5 and Q2 is obtained by a more
indirect argument. The Template Q2 must be split into two subcases: let Q2' be
Template Q2 when no partial children are present and let Q2" be Template Q2
when one partial child is present. By an argument like that used for P3, we see that
Q2' can be applied a total of O(ra + n) times. Now let NORM(T) be the number
of Q-nodes in T plus the number of nodes in T whose parent is a P-node. I t is easy,
though tedious, to verify the following facts.

(a) Initially, NORM(T) is at most m.

(b) No template replacement increases NORM(T) by more than one.

(c) Templates P5 and Q2" reduce NORM(T) by at least one.

Now we have already seen that the number of applications of all templates except
P5 and Q2" is O(m + n + SIZE(S)). Then since NORM(T) is clearly nonnegative,
(a), (b), and (c) imply that the number of applications of P5 and Q2" is O(m + n +
SIZE(S)). This completes the proof. |

The bound shown in Theorem 5 will be used in Sections 4 and 6 to prove linear
bounds for algorithms which use PQ-tree reduction.

4. CONSECUTIVE ONES

A (0, 1)-matrix M has the consecutive ones property for columns iff its rows can be
permuted so that in each column all of the ones are consecutive [8]. This means that
a permutation of the rows is desired for which no two ones within a single column are
separated by a zero in that same column. A number of related properties can also be
defined such as the circular ones property in which the ones are allowed to "wrap
around" from the bottom of a column to the top [25].

368 BOOTH AND LUEKER

1 1 0 1 1

O 0 0 l O

I 1 1 1 0

0 1 0 1 1

I 0 1 1 0

Consecutiveon~

O l O l l

| I 0 1 1

I I I I 0

| 0 1 1 0

0 0 0 1 0

FIo. 25.

1 1 0 0 0

l O 0 0 1

0 1 1 0 0

0 0 0 1 1

0 0 1 1 0

Cireularones

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

I 0 0 0 0

1 1 0 1 1

0 1 1 1 1

0 0 1 0 1

0 0 0 1 0

N ~ t h e r p ~ y

o

M a t r i c e s w i t h c o n s e c u t i v e a n d c i r c u l a r ones .

The matrix on the top left in Fig. 25 has the consecutive ones property for columns.
The original version is not in consecutive form but the rows can be rearranged as
shown in the bottom left matrix so that the ones are consecutive. The definition
merely requires that some ordering of the rows places the ones into consecutive
form, hence the matrix is deemed to have the consecutive ones property. The top
center matrix has the circular ones property because the rows can be rearranged
as shown on the bottom center so that all of the columns have circular ones. There
is no rearrangement of the rows which will place it into consecutive form so it does not
have the consecutive ones property. The matrix on the top right has neither a circular
form nor a consecutive form; there is no arrangement of the rows which achieves
either circular or consecutive ones.

Matrices having consecutive ones and other related properties occur in many
fields, including archeology [16], information retrieval [10], and table-driven parsing
[15]. Tucker [31] has given a structure theorem for the consecutive ones property.
The theorem is similar to Kuratowski's [17] forbidden subgraph characterization of
planar graphs.

Fulkerson and Gross published an O(mn ~) algorithm for testing an m • n matrix
for the consecutive ones property [8]. This bound can be improved by noticing
that the dominant term is due to the computation of a matrix product. Using the
techniques developed by Strassen [28], the Fulkerson-Gross algorithm can be im-
plemented to run in O(max{m(l~ 2, mnO~ steps for an m • n (0, 1)-matrix
[3]. Using the reduction algorithm an even better bound can be obtained. The basic
algorithm is the following procedure.

Boolean procedure C O N S E C U T I V E (M) ;
beg in

let U be the set of rows in M;

PO-TREE ALGORITHMS 369

T : = T(U, U);
for j : = 1 step 1 until n do

begin
let S be the set of rows having a one in column j;
T : = BUBBLE(T, S);
T : = REDUCE(T, S);
if T ~- T(~ , ~) t h e n r e t u r n false

end;
r e t u r n t r u e

e n d

THrOREM 6. I f M is an m • n (0, 1)-matrix specified by its f nonzero entries a
consecutive ones test can be performed in O(m + n + f) steps.

Proof. The algorithm shown above performs the desired test. The number of
elements in the universal set is m, the number of sets is n, and the total size of the
sets is clearly f. All of the work except for the reduction steps is clearly linear. Using
the results of Theorem 5 it is easy to show that the reductions require O(m -k n + f)
steps. The entire algorithm is thus linear. I

A similar result holds for the circular ones property. Tucker observed the following
interesting construction [30]. Given a (0, 1)-matrix M choose any row of the matrix.
Let M e be the matrix obtained from M by complementing every column of M which
has a one in the selected row.

LEMMA 7 (Tucker). A (0, 1)-matrix M has the circular ones property for columns
i f f M e has the consecutive ones property for columns.

Proof. The key observation is that after the complementation the new matrix
M c has zeros everywhere in the selected row. Without loss of generality it can be
assumed that the permutation of the rows which places M into circular form does
so by placing the selected row at the top of the matrix. Such a permutation must then
place M c into consecutive form. The truly circular case is ruled out, so testing M c
for consecutive ones is sufficient. Recomplementing the consecutive form of M e
yields a circular form for]14. |

Tucker's construction does not guarantee a fast test unless a judicious selection
is made for the row which determines the complementation. An all-ones row would
result in having to complement the entire matrix. This is easily avoided.

LEMMA 8. If M is an m • n (0, 1)-matrix having f nonzero entries there exists
an m • n (0, 1)-matrix M c having at most 2 f nonzero entries such that M has the circular

370 BOOTH AND LUEKER

ones property iff M e has the consecutive ones property. M c can be computed from M in
O(m + n + f) steps.

Proof. Choose a row having a minimum number of ones. Construct the matrix
M c as in the previous lemma. Each row will have no more than the number of ones
it originally contained plus the number of ones produced by complementation.
This at most doubles the total number of ones in the matrix.

M c can be constructed by scanning a list of the nonzero entries of M. The com-
plementation is easily performed using list handling techniques. Since each one
is only processed a fixed number of times, independent of the size of M, the total
time required is O(m + n + f) . |

COROLLARY 9. An m • n (0, 1)-matrix specified by its f nonzero entries can be
tested for circular ones in O(m + n + f) steps.

Proof. By Lemma 8 the computation of M c is within the desired time bound.
The number of edges in M c is f ' ~ 2f which is O(f) . The rest of the work is just
the consecutive ones test so the total work is O(m + n + f) . |

There are a number of generalizations for the consecutive ones property, including
some NP-complete problems associated with finding matrices which approximate
these properties. Further related results are surveyed in [3].

5. INTERVAL GRAPHS

A graph G ---- (V, E) is an interval graph iff there is a 1-1 correspondence between
its vertices and a set of intervals on the real line such that two vertices are adjacent
iff the corresponding intervals have a nonempty intersection. The set of intervals
is called an intersection model for G. Haj6s was the first to mention these graphs
in the literature [13]. Since then interval graphs have been related to problems in
biology [2], psychology [22], and traffic light sequencing [27]. They are also related
to Gaussian elimination schemes for sparse symmetric positive definite matrices [29].

Characterizations for interval graphs have been given in [8, 11, 19]. Polynomial
recognition algorithms exist based on each of the three characterizations. All have
worst-case time bounds of at least O(n ~) for graphs with n vertices. Using the reduction
algorithm for PQ-trees this can be lowered to O(n + e) for graphs with n vertices
and e edges. The characterization in [8] is the first occurrence in the literature of
the consecutive ones property. Consecutive ones play a key role in interval graph
recognition, as evidenced by the following theorem which also appears in [8].

Within a directed graph G = (/7, E) a clique is a completely connected subgraph.
The dominant cliques are those which are maximal with respect to set inclusion.

PQ-TREE ALGORITHMS 371

The dominant clique vs vertex matrix for G has a row for each dominant clique
and a column for each vertex, with an entry being nonzero iff the vertex is a member
of the clique.

THEOREM 10 (Fulkerson-Gross). G = (V, E) is an interval graph iff its dominant-
clique vs vertex matrix has the consecutive ones property for columns.

This characterization suggests an algorithm for recognizing interval graphs. The
first step is to compute the dominant cliques so that a list of nonzero entries can
be constructed for the matrix. This task is made considerably easier by the fact
that every interval graph is a chordal graph [5]. These are just those graphs in which
for every cycle C of length greater than three there exists an edge connecting two
vertices of C which are not consecutive in C. The algorithms given in [8, 11, 19]
each test for chordality as a precondition to being an interval graph. They do not
have obvious linear-time implementations.

Gavril has shown how to test chordality in O(n 1~ steps [9]. His algorithm is
based on the fact that a chordality test can be turned into a matrix multiplication,
for an appropriately defined matrix. The time bound then follows from Strassen's
result [28].

A more efficient algorithm, based on a lexicographic breadth first search of the
graph, has been developed in [21, 24]. Lexicographic breadth-first search is very
similar to the idea used in [4] and [26] for solving certain scheduling problems.
The dominant-clique versus vertex matrix can be constructed in O(n q-e) steps
using this technique. A useful property of chordal graphs is the fact that the dominant-
clique vs vertex matrix never has more than O(n + e) nonzero entries [8]. Putting
all of these pieces together the following algorithm emerges. Let G = (V, E) be an
undirected graph.

Boolean procedure INTERVAL(V, E);
begin

i f G is not chordal then return false;
let U be the dominant cliques of G;
T : = T(U, U);
for v c V do

begin
let S be the set of cliques containing v;
T : z BUBBLE(T, S);
T : ~ REDUCE(T, S);
i f T = T (~ , ~) then return false

end;
return true

end

57:t/I 3/3-9

372 BOOTH AND LUEKER

THEOREM 11. A graph G = (V, E) can be tested for being an interval graph in
O(n + e) steps when G has n vertices and e edges.

Proof. The output of the O(n + e) chordality test can be used as the input to
the consecutive ones test. The total number of nonzero entries is O(n + e) so the
overall bound is still O(n + e). |

It is interesting to note that the consecutive ones test required during ttie interval
graph recognition algorithm can be simplified somewhat by processing the vertices
of the graph in a special order. This ordering is obtained by using a modified form
of the lexicographic breadth first search mentioned above. For details see [21].

A by-product of the interval graph test is the reduced PQ-tree whose leaves are
the dominant cliques. It is possible to use this tree as the basis for a canonical repre-
sentation- for interval graphs. Using an algorithm similar to the tree isomorphism
algorithm in [1], one may test for isomorphism of interval graphs in O(n + e) time.
This is discussed in greater detail in [21].

The importance of this last result is increased by the observation that the existence
of a polynomial-time algorithm for solving general graph isomorphism is equivalent
to the existence of a polynomial-time isomorphism test for either chordal or tran-
sitively-orientable [11] graphs. (All interval graphs are chordal and have transitively
orientable complements.) Hirschberg and Edelberg [12] proved this equivalence for
bipartite graphs. The bipartite result implies the result for transitively-orientable
graphs. The proof for chordal graphs is similar and is given in [21].

6. PLANARITY

PQ-trees can be applied to problems other than those which arise directly from
the consecutive ones property. The PQ-tree reduction algorithm can be used to build
an efficient test for planar graphs. Hopcroft and Tarjan have already presented a
linear test for planarity [14]. This section discusses a "new" algorithm for testing
graph planarity which also runs in linear time. The algorithm is of interest for two
reasons. It is a distinctly different application for PQ-trees and it improves an existing
algorithm by introducing the appropriate data structure.

Lempel, Even, and Cederbaum [20] have published an. algorithm for testing
planarity which is based on formula manipulation. The algorithm employs a reduction
operation almost identical to the one used here. Their version uses formulas to
represent a graph and does not have a linear time bound. A linear version of the
algorithm has been implemented, but it does not perform the formula manipulation
[6]. The version here achieves the linear bound while implementing the original
formula manipulation. The trick is to represent formulas by PQ-trees.

The possibility of using PQ-trees for planarity testing was suggested by Tarjan

PQ-TREE ALGORITHMS 373

[29] after PQ-trees had been devised for the consecutive ones problem. He noticed
that the reduction operation for PQ-trees is very similar to the formula manipulation
carried out by the Lempel, Even, and Cederbaum algorithm.

Before explaining the planarity algorithm, two facts about graphs are needed as
background. The first is well known from graph theory, the second is proven in [20].

LEMMA 12. .4 graph G is planar iff each of its biconnected components is planar.

LEMMA 13 (Lempel-Even-Cederbaum). I f G = (V, E) is a biconnected graph
then its vertices can be numbered so that 1 and n are adjacent and, for any vertex numbered
1 ~ j ~ n, there exist vertices numbered i and k such that i ~ j ~ h and both i and k
are adjacent to j.

Algorithms requiring O(n + e) steps for graphs having n vertices and e edges
exist for finding biconnected components [1] and for generating the desired numbering
[7]. It is assumed that all graphs to be considered are biconnected and that the vertices
are numbered as in Lemma 13. The graph with its vertices numbered as indicated in
Fig. 26 will be used throughout this section as an example of the planarity algorithm.

FIc. 26. A numbered, biconnected graph.

The algorithm tests a graph G = (V, E) having n vertices and e edges. The
algorithm assumes that n > 2 since otherwise G is trivially planar. Edges in E are
considered to be directed from the lower numbered vertex to the higher. Edges
can be directed at the same time the numbering is generated. A PQ-tree is used
to represent the graph. The elements of the universal set are edges, although U
will change during the course of the algorithm. An edge is added to U during the
iteration corresponding to its lower-numbered vertex and it is removed from U
during the iteration corresponding to its higher-numbered vertex.

Boolean p r o c e d u r e PLANAR(V, E);
begin

U : = the set of edges whose lower-numbered vertex is 1 ;
T : = T(U, U);
f o r j : - - 2 s tep 1 unt i l n - - 1 do

374 BOOTH AND LUEKER

begin
S : = the set of edges whose higher-numbered vertex is j ;
T : ~ BUBBLE(T, S);
T : = REDUCE(T, S);
if T ~ T (~ , ;~) then return false;
S' : z the set of edges whose lower-numbered vertex is j;
i f ROOT(T, S) is a Q-node

then replace the full children of ROOT(T, S) and their
descendants by T(S', S')

else replace ROOT(T, S) and its descendants by T(S', S');
U:= U - - S u S '

end;
return true

end

The numbering defined in Lemma 13 ensures that neither S nor S' is ever empty.
As usual we must always make sure that the tree is proper. Therefore when part
of T is replaced by T(S', S') a little care must be taken. For example, if ROOT(T, S)
is a Q-node and after the replacement it has only two children, it is changed to a
P-node. Also, if after the replacement any node has only one child, it is removed
from the tree.

The planarity algorithm explained here is equivalent, except for some minor
details, to the algorithm presented in [20]. A proof of correctness is given in [20].
I t is left to the reader to establish that the version presented here implements the
same algorithm. The proof is not hard, but a full discussion of the original algorithm
is beyond the scope of this paper. Instead the algorithm will be illustrated by running
it on the simple graph shown in Fig. 26.

The tree is initialized outside of the main loop to be a universal tree with a leaf
for each edge directed out of vertex 1. This first tree is shown in Fig. 27. Any permuta-
tion of the edges is legal. This corresponds to the fact that there are no constraints
on the graph. Only vertex 1 has been positioned. As more vertices are added the
freedom to rearrange vertices is diminished. This is reflected in the PQ-tree by
the ordering imposed upon the edges.

0.2) O,a) 0.~)
FIC. 27. Initial PQ-tree for planarity testing.

The inner loop is repeated three times. At each iteration the edges entering a
particular vertex are forced to be consecutive. For the first iteration, j ~ 2, the

PQ-TREE ALGORITHMS 375

reduction is trivial. There is only one such edge. It is (1, 2). The tree is already
{(1, 2)}-reduced. After the edges entering vertex 2 are known to be consecutive
within the tree they are replaced by a single P-node having a child for each edge
directed out of vertex 2. This substitution produces the next tree shown in Fig. 28.
Notice that the set U has changed. The edge (1, 2) has been removed and the edges
(2, 3), (2, 4), and (2, 5) have been added.

(z,3) (2.4) (z.s)
FIG. 28. PQ-tree after first iteration of inner loop.

This first iteration is complete. The second iteration processes vertex 3, since j ---- 3.
The current tree must be {(1, 3), (2, 3)}-reduced so that all of the edges coming
into vertex 3 are consecutive. The resuk is the tree in Fig. 29. This time the reduction
is nontrivial.

(2.3) 0.3)

(2.4) (2.5)

(1.5)

Ft(;. 29. PQ-tree after reducing edges entering vertex 3.

There are two edges which enter vertex 3. They are replaced with a P-node. One
of the special cases occurs, because the root of the pertinent subtree is a Q-node.
This causes no problem, though, and the substitution yields the tree of Fig. 30.

(t.s)

(2.4) (2,5) (3.4) (3.5)
FIO. 30. PQ-tree after substituting edges leaving vertex 3.

376 B O O T H A N D LUEKER

For the final iteration, j 4, the reduction leaves almost no freedom to the cdges.
All but one of the edges are forced to have a rigid left-to-right order. This is shown
in Fig. 31.

" l (i .5)

1 I I 1
(z.~) (2.4) (3,4) (3.5)

FI~;. 31. PQ-tree after reduction whenj ~- 4.

Substituting the single edge (4, 5) for the edges (2, 4) and (3, 4) produces thc final
form of thc PO-tree, shown in Fig. 32.

(t .5)

(s.5) (4,5) (3.5)

Fie. 32. Final PQ-tree for planarity test.

The algorithm halts with the value t rue , surely the correct response in light of
the planar representation initially given in Fig. 26. The graph tested is a familiar
one. Adding the other possible edge produces K s , one of the two forbidden subgraphs
of Kuratowski 's structure theorem for planar graphs [17]. K s is known to be non-
planar. Rerunning the algorithm with this added edge will indeed produce the
answer false.

TttEOREM 14. Given a graph G having n vertices the planarity algorithm requires
at most O(n) steps.

Proof. As mentioned earlier, O(n + e) algorithms exist to find bieonnected
components and the numbering of Lemma 13, so we assume G is biconnected and
numbered. Outside of the calls to BUBBLE and REDUCE, the algorithm can easily
be seen to require only O(n 4- e) time.

T o see that the calls to R E D U C E and BUBBLE use only O(n _a e) time, we use
an argument just like that in Theorem 5. The only significant difference here is
the fact that parts of the tree are replaced by T(S', S'). It is easy to see that this
replacement can increase N O R M (T) by at most I S ' I. But the sum of l S ' i over all
iterations is O(n + e), so we again obtain an overall time bound of O(n + e) for
the calls to BUBBLE and REDUCE.

PQ-TREE ALGORITHMS 377

So far we have seen that the algorithm requires O(n + e) time. To obtain a bound
of O(n), we use the trick employed in [14]: since a planar graph on n vertices has
at most 3 n - 3 edges, we may immediately reject inputs with more than 3 n - 3
edges. For the remaining graphs, O(n + e) is the same as O(n). 1

7. CONCLUSION

A new data structure called a PQ-tree has been introduced. PQ-trees are used for
representing the classes of permutations within which various subsets of a universal
set appear as consecutive subsequences. These permutations are useful for solving
three problems: testing for the consecutive ones property, recognizing interval
graphs, and testing graph planarity. For these problems algorithms based on PQ-trees
are linear in the size of their input when implemented on a random access computer.

The consecutive ones test is an improvement over previously published algorithms.
Interval graph recognition uses the consecutive ones test and a test for graph
chordality. The linear time bound is again an improvement over previously published
algorithms. The planarity test is a speeded-up version of an existing algorithm, due
to Lempel, Even, and Cederbaum. For planarity the linear time bound is not new.
The algorithm of Hopcroft and Tarjan is also linear. It would be of interest to compare
actual implementations of these two planarity algorithms to estimate the constants of
proportionality and to analyze the average behavior instead of the asymptotic worst-
case behavior. This has not been done, and is suggested as a topic for further study.

Additional material and references may be found in both [3] and [21]. Many of the
references were originally cited in [22].

ACKNOWLEDGMENTS

The authors wish to thank Professors Richard M. Karp, Robert E. Tarjan, and Jeffrey D.
Ullman for their many helpful suggestions during both the research and presentation of these
results. John Beatty, Shimon Even, Michael Fischer, Richard Ladner, and Jan van Leeuwen
have all read drafts of this article and each has pointed out numerous opportunities to eliminate
errors or improve clarity.

REFERENCES

1. A. V. AHo, J. E. HoPcaovr, AND J. D. ULLMAN, "The Design And Analysis Of Computer
Algorithms," Addison-Wesley, Reading, Mass., 1974.

2. S. BENZER, On the topology of the genetic fine structure, Proc. Nat. Acad. Sci. U.S.A. 45
(1959), 1607-1620.

378 BOOTH AND LUEKER

3. K.S . BOOTH, PQ-tree algorithms, Ph. D. Dissertation, Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley, California, 1975. (Also available
as UCRL-51953 from Lawrence Livermore Laboratory, Livermore, California, 1975.)

4. E. G. COFFMAN, JR. AND R. L. GRAHAM, Optimal scheduling for two-processor systems,
Acta Informatica 1 (I 972), 200-213.

5. G. A. DIRAC, On rigid circuit graphs, Abh. Math. Sere. Univ. Hamburg 25 (1961), 71-76.
6. S. EVEN, personal communication.
7. S. EVEN AND R. E. TARJAN, Computing an st-numbering, Theoretical Computer Science,

to appear.
8. D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J.

Math. 15 (1965), 835-855.
9. F. GAVR1L, An algorithm for testing chordality of graphs, Inform. Proc. Lett. 3, No. 4 (1975),

110-112.
10. S. P. GHOSH, File organization: the consecutive retrieval property, Comm. A C M 9 (1972),

802-808.
11. P. C. GILMORE AND A. J. HOFFMAN, A characterization of comparability graphs and of

interval graphs, Canad. J. Math. 16 (1964), 539-548.
12. D. HIRSCHaERO AND M. EDELBERG, On the complexity of computing graph isomorphism,

Technical Report TR-130, Princeton University, Computer Science Laboratory, Department
of Electrical Engineering, Princeton University, Princeton, N.J., August 1973.

13. G. HAJ6S, {~ber eine art yon graphen, Internationale Mathematische Nachrichten l I (1957), 65.
14. J. E. HOPCROFT AND R. E. TARIAN, Efficient planarity testing, J. A C M 21 (1974), 549-568.
15. G. JENNINGS, Representation of a collection of finite sets as intervals on a line, manuscript,

Courant Institute, New York University, 1974.
16. D. G. KENDALL, Incidence matrices, interval graphs and seriation in archaeology, Pacific

J. Math. 28, No. 3 (1969), 565-570.
17. K. KUR^TOWSKI, Sur le problbme des courbes gauches en topologie, Fund. Math. 15 (1930),

271-283.
18. R. E. LADNER, M. J. Fiscrma, AND S. YOUNG, private communication.
19. C. G. LV_KKEaKeRKER AND J. CH. BOLAND, Representation of a finite graph by a set of intervals

on the real line, Fund. Math. 51 (1962), 45-64.
20. A. LEMPEL, S. EVEN, AND I. CEDERBAUM, An algorithm for planarity testing of graphs, in

"Theory of Graphs: International Symposium: Rome, July, 1966" (P. ROSENSTIEHL, Ed.),
pp. 215-232, Gordon and Breach, New York, 1967.

21. G. S. LUEKER, Efficient algorithms for chordal graphs and interval graphs, Ph. D. Dis-
sertation, Program in Applied Mathematics and the Department of Electrical Engineering,
Princeton University, Princeton, N.J., 1975.

22. F. S. ROBERTS, "Discrete Mathematical Models, with Applications to Social, Biological,
and Environmental Problems," Prentice-Hall, Englewood Cliffs, N.J., to appear.

23. D. RosE, Triangulated graphs and the elimination process,]. Math. Anal. AppL 32 (1970),
597-609.

24. D. J. RosE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex elimination on
graphs, S I A M]. Computing 5, No. 2 (June 1976), 266-283.

25. H. J. RVSER, Combinatorial configurations, S I A M]. Appl. Math. 17, No. 3 (May 1969),
593-602.

26. R. SETm, Scheduling graphs on two processors, S I A M]. Computing 5, No. 1 (March 1976),
73-82.

27. K. E. STOVFERS, Scheduling of traffic lights--a new approach, Transportation Research 2
(1968), 199-234.

PQ-TREE ALGORITHMS 379

28. V. STRASSEN, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354-356.
29. R. E. TARJAN, personal communication.
30. A. C. "I~cra~R, Matrix characterizations of circular-are graphs, Pacific J. Math. 39, No. 2

(1971), 535-545.
31. A. C. ~CCr~R, A structure theorem for the consecutive l ' s property, J. Combinatorial

Theory 12(B) (1972), 153-162.

