
Vol. 24 no. 1 2008, pages 42–45
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm542

Sequence analysis

Assembly reconciliation
Aleksey V. Zimin1,*, Douglas R. Smith2, Granger Sutton3 and James A. Yorke1
1IPST, University of Maryland, College Park, 2Agencourt Bioscience Inc., Beverly, MA and 3The J. Craig Venter
Instutute, Rockville, MD, USA

Received on August 7, 2007; revised on October 15, 2007; accepted on October 22, 2007

Advance Access publication December 5, 2007

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Many genomes are sequenced by a collaboration of

several centers, and then each center produces an assembly using

their own assembly software. The collaborators then pick the

draft assembly that they judge to be the best and the information

contained in the other assemblies is usually not used.

Methods: We have developed a technique that we call assembly

reconciliation that can merge draft genome assemblies. It takes

one draft assembly, detects apparent errors, and, when possible,

patches the problem areas using pieces from alternative draft

assemblies. It also closes gaps in places where one of the alternative

assemblies has spanned the gap correctly.

Results: Using the Assembly Reconciliation technique, we produced

reconciled assemblies of six Drosophila species in collaboration

with Agencourt Bioscience and The J. Craig Venter Institute. These

assemblies are now the official (CAF1) assemblies used for analysis.

We also produced a reconciled assembly of Rhesus Macaque

genome, and this assembly is available from our website http://

www.genome.umd.edu.

Availability: The reconciliation software is available for download

from http://www.genome.umd.edu/software.htm

Contact: alekseyz@ipst.umd.edu

1 INTRODUCTION

Draft genome assemblies have misassemblies and gaps.

Many genomes (e.g. mouse, several species of Drosophila and

Rhesus Macaque) are sequenced by several centers, and then

assembled using two or more assembly programs. In the end,

the collaborators pick the draft assembly that they judge to be

the best. Most major assembly programs such as Arachne

(Batzoglou et al., 2002, Jaffe et al., 2003, Vinson et al., 2005),

PCAP (Huang et al., 2003), Phusion (Mullikin and Ning, 2003),

JAZZ and Celera Assembler (Myers et al., 2000) are similar in

that they use the variations on the traditional overlap, layout,

consensus approach. The details of the techniques used by

different assembly programs differ, and frequently one assem-

bly program is able to properly assemble a difficult region of

the genome, while the other ones cannot.
The major kind of misassembly in the contigs found in draft

genomes is the omission of one or more copies of repetitive

sequence, and, more generally, the loss of the unique chunks of

sequence that are surrounded by copies of a repeat along

with one of the repeat copies. Occasionally assemblers err by

including extra sequence in an assembly, but such ‘expansion’

errors are less common.
We used Nucmer (Delcher et al., 1999, 2002; Kurtz et al.,

2004) to align the two assemblies of Drosophila willistoni

produced by using two different assembly programs from the

same data. We used the draft assemblies produced by two

major assembly programs: Celera Assembler and Arachne.

We aligned the contigs of the two assemblies and looked for

cases, where it is evident that one assembly was missing a chunk

of sequence that was present in the other one. We call these

discrepancies ‘compression misassemblies’ or simply ‘compres-

sions’. In each case of compression there are two possibilities:

(i) one of the assemblies is correct, or (ii) both are wrong, so

each compression counts as a misassembly. Figure 1 illustrates

how we identified compressions by analyzing the alignments

of the contigs from the two assemblies. We only counted

compressions within contigs that were at least 1000 bases away

from the ends of the contigs. We did not use any scaffold

information for this analysis. These compressions are not due

to polymorphisms, which can be verified by looking at the

insert size statistics for inserts spanning the missing regions:

usually all inserts are uniformly short, which would not be

true for polymorphisms, where one would expect a bimodal

distribution of lengths. Table 1 summarizes the results, showing

that there are about 1.15 million bases in compressions between

the two assemblies. Furthermore, these errors are distributed

quite uniformly along the contig sequences and they are not

concentrated in the regions of the centromeres and telomeres

(which are generally not in either of the assemblies). These

errors change distances between genes and regulatory regions;

therefore they are biologically significant. The omissions may

also contain regulatory sequences or even coding sequences.

This kind of a comparison was a major motivation to develop

techniques for merging assemblies.

Another way to compare two assemblies of the same species

is to count how many bases in contigs of a draft assembly align

to the contigs of an alternative draft assembly. We performed

the comparison using the two assemblies of D.willistoni

mentioned above. We used Nucmer with default settings

and considered all alignments with 98% or higher identity.

We found that out of 223M total bases in the contigs of the

assembly A, 12M bases did not align to assembly B. Vice versa,*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://
http://www.genome.umd.edu/software.htm
http://creativecommons.org/licenses/

out of 229M total bases in assembly B, 7M bases did not align

to the assembly A. Adding up these numbers give 19M bases

of differences or �8.5% of the total bases.
In this article, we describe an Assembly Reconciliation

technique that can merge draft genome assemblies. In a

nutshell, Assembly Reconciliation takes an original draft

assembly, detects apparent errors, and, when possible, patches

the problem areas using pieces from one or more alternative

draft assemblies. It also closes gaps in scaffolds where the

alternative assembly has spanned the gap correctly. Several

alternative assemblies can be used to incrementally improve the

original assembly. Based on this technique, we developed

software that improves a ‘reference’ assembly using alternative

assemblies of the same read data. The improved reference, or

reconciled assembly is produced, with fewer gaps and mis-

assemblies. Our software works for genomes of up to 4GB in

size. In what follows we list the concepts on which the software

is based and the results of our recent work on seven fruit fly

genomes.

2 METHODS

Reconciliation is based on two methods: detecting misassemblies and

closing gaps. We currently use the ‘CE statistic’ to detect compression/

expansion misassemblies and to verify the validity of gap spanning.

We briefly review the concept of the CE statistic.

For a given location in a draft assembly, we examine the sample

of inserts from a given library that span this location in the genome.

Using the read placement coordinates from the assembly, we com-

pute the mean M of the implied insert lengths li for the sample.

More precisely, if N is the local coverage, or the number of inserts in a

sample, and the lengths are denoted l1, . . . , lN, then

M ¼
1

N

XN

i¼1
li:

The CE statistic is based on the fact that the variance of the sum of

independent random variables is equal to the sum of their variances.

The statistic measures the distance between the mean M of the local

sample and the library mean m in the units of expected sample standard

deviation �=
ffiffiffiffi
N

p
. We define the value of the CE statistic Z as

Z ¼
M� �

�=
ffiffiffiffi
N

p :

Large negative Z implies that the sample of inserts is compressed,

thus it is possible that there was an omission of a chunk of sequence in

the region spanned by the inserts in the sample. Likewise, large positive

Z indicates that a chunk of sequence may have been erroneously

inserted. The distribution of the insert lengths in the library is in general

not normal, but for sufficiently large sample size (coverage) N we can

approximate the distribution of M (and therefore Z) by the normal

distribution due to Central Limit Theorem. For any Z040 and sample

size N, we can compute the probability that a value of |Z|�Z0 occurs at

random. Setting the threshold for problem detection at Z0¼ 3.3, when

N is large, detects events that have approximately 0.001 probability to

occur at random. For smaller values of N, we determine the cutoff value

for each N.

The algorithm that we currently use to reconcile two assemblies

(called the reference assembly and the supplementary assembly) is

as follows (see also Figure 2 for illustration).

(1) Create gaps. We first compute the CE statistic on the reference

assembly, and find all locations in the assembly where the

absolute value of the CE statistic is larger than the threshold.

We then break the assembly at these locations. We introduce

positive gaps in the sequence for the compressions and negative

gaps for expansions, creating a gapped reference assembly.

We also separate the read multi-alignment according to the gap

in the sequence.

(2) Align sequences. We next align the gapped reference assembly to

the supplementary assembly using Nucmer. The Nucmer settings

are modified to only use seeds that are unique both in reference

and query sequences and to require the minimum length of the

cluster of matches of 400 to avoid short repeat-induced matches

(see Nucmer documentation at http://mummer.sourceforge.net/).

(3) Identify possible gap closures. After that we use the alignment

to find out which contigs in the supplementary assembly span the

intra-scaffold gaps of the reference assembly (both pre-existing

gaps and gaps introduced in step 1) such that (i) the orientation

of the alignments is correct; (ii) the gap size with respect to the

alignment is within 3 reported SDs of the reported scaffold gap

size and (iii) the absolute value of the CE statistic in the

supplementary assembly over the closure region is less than 3.3.

This generates a list of candidate gap closures.

(4) Find read placements for closed gaps. We use the candidate gap

closures based on the sequence alignments from the previous step

and examine the reads in the gapped reference assembly placed

on both sides of the gaps, which cover the portions of the contigs

that aligned the supplementary assembly. We look for two anchor

reads on both sides of the gap that are placed at the same relative

location in the supplementary assembly. We then take the set of

reads from the supplementary assembly that are located between

the two anchor reads and insert it into the reference, closing the

gap. We extract from the supplementary assembly the sequence

Table 1. Compression misassemblies detected in the two alternative

draft assemblies of D.willistoni

Contig compressions in assembly A compared to assembly B:

Compression size 100 or greater 1,000 or greater

Number of compressions 157 71

Number of bases in compressions 540 539 512 722

Contig compressions in assembly B compared to assembly A:

Compression size 100 or greater 1,000 or greater

Number of compressions 348 136

Number of bases in compressions 615 420 538 659

Matching sequences

Compression error in Assembly A,
OR expansion error in Assembly B

Assembly

A

Assembly

B

Fig. 1. Identifying a compression by aligning draft assemblies A and B.

Assembly reconciliation

43

http://mummer.sourceforge.net/

that spans the gap. We then insert that sequence into the gap of

the reference assembly.

(5) Validate gap closures. Using the newly placed reads, we then

compute the CE statistic on the updated reference assembly

and find out which gap closures resulted in compressions or

expansions. If a gap was an intra-scaffold gap and closing it

resulted in a compression or expansion, we undo the closure and

return the reference assembly to its initial state. If a gap is

introduced as a result of the compression or expansion in the

reference and closing it results in a compression or expansion, we

return the reference to its initial state. Thus, we only keep the gap

closures that have proper CE statistic values over the closure

region.

(6) Resolve multiply placed reads. Finally, we resolve the problem of

the multiply placed reads using mate pairs. If a read is placed

twice, we look for the placement of its mate and choose the

placement that is most consistent with the mate. If the mate is not

placed, or if neither placement is better, we choose the placement

at random, making sure we do not create gaps in coverage. The

final read placements do not affect the sequence of the reconciled

assembly.

The algorithm is not symmetric with respect to the assemblies,

because it only closes the gaps within scaffolds of the reference

assembly. The reconciled assembly’s scaffolds are almost identical

in sizes to the scaffolds of the reference assembly; the only difference is

that there are fewer gaps in them.

The only possible scenario for improperly closed gap would be if the

supplementary assembly closed a gap incorrectly, and the misassembly

in the supplementary assembly is so small that it is indetectable by the

mate pair placement statistic. We should also mention that if both

initial assemblies misassembled a region, then the reconciled assembly

will also contain a misassembly in the same region.

Since reconciliation uses insert size statistics for detecting errors, the

algorithm’s ability to detect (and correct) misassemblies depends on the

insert coverage in the assemblies. Even if the read coverage is relatively

small but the inserts are large, the software will perform well.

The algorithm is currently coded in PERL, and it takes 2 h to run

on a single 2.4GHz Opteron processor to reconcile two fly genome

assemblies of �200MB each. The majority of the run time is spent on

running the assembly alignment.

The reconciliation software also creates a list of locations in the

assembly that are likely to be misassembled, even when it was unable

to fix them.

We note that often, in creating its best possible assembly, a team

will often make numerous runs using different settings in the

assembly software. Reconciliation can be used to combine the

results of the different runs. For example, it may be useful to create a

reference assembly with conservative settings and use more aggressive

assembly as supplementary to close gaps and thus increase the

contig sizes.

Finally, we note that intra-scaffold gaps and expansion/compression

errors are not the only kinds of deficiencies in the draft assemblies.

Rearrangements are also common, but they are not addressed by our

algorithm. Also future versions of the software will address the question

of filling inter-scaffold gaps and possibly use an additional set of

techniques for finding errors.

3 RESULTS

To test the Assembly Reconciliation software, we applied it to

the two draft assemblies of Wolbachia pipientis wMel. We chose

as reference the assembly produced by TIGR. The supplemen-

tary assembly was produced by our group (UMD). Both

assemblies were created using Celera Assembler with the only

difference that UMD assembly used the read overlaps

generated by the UMD overlapper (Roberts, 2004) and TIGR

assembly used the overlaps generated by Celera overlapper.

Bacterial genomes generally lack the complex repeat structure

present in the genomes of larger multicellular organisms,

and the reconciliation software did not locate any compression

misassemblies in the TIGR assembly. Reconciliation closed

four gaps. We checked the closures by aligning the modified

(merged) contigs to the finished sequence. These contigs aligned

perfectly. Other contigs, of course were unmodified.

We have applied the reconciliation software to assemblies

of eight Drosophila species: yakuba, virilis, grimshawi, erecta,

willistoni, ananassae, mojavensis and pseudoobscura. The

reconciliation results are listed in Table 2. The first column

in Table 2 lists the fly species and the assemblies used for

reconciliation. All Agencourt assemblies were produced using

Arachne assembler. All J. Craig Venter Institute (VI) and

TIGR assemblies were produced using Celera Assembler.

Washington University (WashU) assembly of D.yakuba was

produced using PCAP, and University of Maryland (UMD)

assembly of D.virilis was produced using Celera Assembler

A (reference)

B (supplementary)

Check for CE problems in
A, break and align

Check for CE problems in B
in places where B closes
gaps

bad good good

Merge read sequences and
consensus sequence, closed
gaps are shown in green

Check for CE problems in
the reconciled assembly

good bad

Undo bad joins, resolve
multiply placed reads

Reconciled assembly – fixed
one compression in this case

Find read sequences in
common

Fig. 2. Illustration of the assembly reconciliation process. Underlined

red regions are the CE problems. Reads are shown above the blue and

green lines representing the consensus sequence. Assembly A is the

reference assembly. Assembly B remains unmodified.

A.V.Zimin et al.

44

with read overlaps produced by the UMD overlapper.
Reconciliation used the assemblies in the order given in the

table. For example for D.ananassae, the Agencourt assembly
was the reference and VI assembly was supplementary. For
each fly Agencourt Bioscience and J. Craig Venter Institute
chose the reference assembly based on the objective assembly

statistics—generally contig and scaffold sizes. ‘Before reconci-
liation’ column in the Table 2 gives the statistics of the reference
assemblies.

These results show that assemblies can be improved
significantly using assembly reconciliation; at a minimum,
many of the compression problems—which represent erroneous

deletions—can be fixed. In every reconciled assembly the
contigs get larger, i.e. the N50 contig size increased compared
to the reference draft. That constitutes significant improvement
of the reference draft genome. We observed that the greatest

improvements in the assembly contig statistics and the number
of CE problems were achieved when we reconciled three
assemblies produced by three different centers (D.virilis and

D.yakuba assemblies). Thus using more assemblies seems
to be better, at least in this small sample. All except two
(D.yakuba and D.pseudoobscura) of the assemblies shown

in the table are now the official versions and are posted
on the Flybase website at http://www.flybase.org/docs/news/
DrosTimelinesStatusMar06.htm. The assembly reconciliation

software is available at http://www.genome.umd.edu/
software.htm.

ACKNOWLEDGEMENTS

This work was supported under NSF grant DMS0616585,

and under NIH Grant 1R01HG0294501.

Conflict of Interest: none declared.

REFERENCES

Batzoglou,S. et al. (2002) ARACHNE: a whole-genome shotgun assembler.

Genome Res., 12, 177–189.

Delcher,A.L. et al. (1999) Alignment of whole genomes. Nucleic Acids Res., 27,

2369–2376.

Delcher,A.L. et al. (2002) Fast algorithms for large-scale genome alignment and

comparison. Nucleic Acids Res., 30, 2478–2483.

Dew,I.M. et al. (2005) A tool for analyzing mate pairs in assemblies (TAMPA).

J. Comput. Biol., 12, 497–513.

Jaffe,D.B. et al. (2003) Whole-genome sequence assembly for mammalian

genomes: Arachne 2. Genome Res., 13, 91–96.

Huang,X. et al. (2003) PCAP: a whole-genome assembly program. Genome Res.,

13, 2164–2170.

Kurtz,S. et al. (2003) Versatile and open software for comparing large genomes.

Genome Biol., 5, R12.

Mullikin,J.C. and Ning,Z. (2002) The phusion assembler. Genome Res., 13,

81–90.

Myers,E.W. et al. (2000) A whole-genome assembly of Drosophila. Science, 287,

2196–2204.

Roberts,M. et al. (2004) A preprocessor for shotgun assembly of large genomes.

J. Comput. Biol., 11, 734–752.

Sanger,F. et al. (1982) Nucleotide sequence of bacteriophage lambda DNA.

J. Mol. Biol., 162, 729–773.

Table 2. Assembly reconciliation results for seven Drosophila species

Species Before reconciliation After reconciliation

Contig N50 CE problems Contig N50 CE problems

D.virilis (AgencourtþVIþUMD) 101kb 1566 118kb (þ17%) 1094 (�30%)

D.yakuba (WashUþAgencourtþTIGR) 116kb 954 164 kb (þ41%) 685 (�28%)

D. willistoni (VIþAgencourt) 145 kb 1058 165kb (þ14%) 893 (�16%)

D.grimshawi (AgencourtþVI) 78 kb 1010 91 kb (þ17%) 936 (�7%)

D.erecta (AgencourtþVI) 366 kb 798 448kb (þ22%) 645 (�19%)

D.ananassae (AgencourtþVI) 83 kb 2206 93 kb (þ12%) 1903 (�14%)

D.mojavensis (AgencourtþVI) 100 kb 1045 121 k (þ21%) 841 (�20%)

D.pseudoobscura (AgencourtþTIGR) 97 kb 369 103kb (þ6%) 287 (�22%)

Contig N50 denotes the size of the largest contig for which at least half of the bases in the assembly are in contigs of that size or larger. Bold font highlights the largest

improvement. For each fly the assemblies used are listed in parentheses, and the first in each is the reference assembly.

Assembly reconciliation

45

http://www.flybase.org/docs/news/
http://www.genome.umd.edu/

