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ABSTRACT
Motivation: Finding genomic distance based on gene order is a clas-
sic problem in genome rearrangements. Efficient exact algorithms for
genomic distances based on inversions and/or translocations have
been found but are complicated by special cases, rare in simula-
tions and empirical data. We seek a universal operation underlying a
more inclusive set of evolutionary operations and yielding a tractable
genomic distance with simple mathematical form.
Results: We study a universal double-cut-and-join operation that
accounts for inversions, translocations, fissions and fusions, but
also produces circular intermediates which can be reabsorbed. The
genomic distance, computable in linear time, is given by the number
of breakpoints minus the number of cycles (b − c) in the compar-
ison graph of the two genomes; the number of hurdles does not enter
into it. Without changing the formula, we can replace generation and
re-absorption of a circular intermediate by a generalized transposi-
tion, equivalent to a block interchange, with weight two. Our simple
algorithm converts one multi-linear chromosome genome to another
in the minimum distance.
Contact: syancopo@nshs.edu

1 INTRODUCTION
The study of pairwise genome rearrangement is rooted in the problem
of computing an edit distance based on gene order and orientation
(Sankoff, 1992) rather than on nucleotide sequence. In this study
it has become important to construct fast algorithms determining
the minimal path. The problem of transforming one genome to
another can be reduced to that of sorting a signed permutation by cer-
tain mutational operations (Sturtevant and Novitski 1941; Waterston
et al., 1982; Palmer and Herbon, 1986). The minimal number of
operations necessary to transform two genomes is referred to as a
distance, and the number of reversals, for example, has been called
their reversal or inversion distance (Caprara, 1997). The challenge
has been to find a consistent and biologically meaningful set of
operations for which the genomic distance problem is tractable.

A variety of biological operations have been proposed to affect
gene order, but no consensus has been reached on which set, if any,
would be definitive. The strategy, it appears, has been to discover
first how to sort genomic permutations by a single operation at a
time, and then with larger, more realistic combinations of operations.

∗To whom correspondence should be addressed.

Hannenhalli and Pevzner (1995a, hereafter HPa) found a polynomial-
time algorithm for sorting a single chromosome by inversions, and
Hannenhalli (1996) used the same techniques to design a polynomial-
time algorithm for optimal rearrangements by translocations, but to
date, no polynomial-time algorithm has been found for optimal sort-
ing solely by transpositions, despite more than 10 years of research
by many researchers (Bafna and Pevzner, 1995; Walter et al., 2000,
2003; Hartman, 2003).

As for combinations of operations, it has not been clear how to
assess the relative contributions of operations (Blanchette et al.,
1996) although a variety of combinations have been considered
(Sankoff, 1992; Dalevi et al., 2002; Meidanis and Dias, 2002). Many
of these are approached by heuristics or approximation algorithms.
Meidanis and Dias (2001) found efficient algorithms for transpos-
itions, fissions and fusions. Studies which include transpositions
have indicated that they should cost about twice as much as other
operations, but this has not been proven rigorously despite serious
attempts to do so (Eriksen, 2002).

Perhaps the most realistic combination to date has been solved
by Hannenhalli and Pevzner (1995b, hereafter HPb) for inversions,
translocations, fissions and fusions. They showed that distance can
be calculated close to linear time. The algorithm has subsequently
been improved by a number of people including Bergeron (2001),
Tesler (2002) and Ozery-Flato and Shamir (2003).

Transpositions (exchange of two contiguous segments) have been
less favored as fundamental evolutionary operations. A justifica-
tion may be that large-scale transpositions are much less frequently
observed than inversions and translocations, but the apparent compu-
tational intractability of transpositions is undoubtedly as important
a factor in neglecting them. There is clearly evidence for the occur-
rence of transpositions (Andersson and Eriksson, 2000; Dalevi et al.,
2002; Kent et al., 2003) The rarity of computationally observed
transpositions may be a case of not finding what you do not look for.
Also, a surprisingly high percentage of DNA may originate from
transposons or other mobile elements (Deininger and Roy-Engel,
2001).

A combination problem of great biological relevance should
include transpositions in addition to inversions, translocations, fis-
sions and fusions. In this paper, we show how this problem becomes
far more tractable if the transposition operation is generalized to what
Christie (1996) has called a block interchange (exchange of any two
segments).
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2 OPERATIONS AND ALGORITHM
We assume that genomes A and B have the same gene content, organ-
ized into synteny blocks. A synteny block (SB) is a maximal sequence
of genes on a chromosome of genome A, occurring unchanged in
genome B. As is customary, we deal with the two ends (vertices)
of each SB as independent entities. If we connect them in pairs
arbitrarily, this defines a genome with circular chromosomes. By
introducing extra single vertices Hannenhalli and Pevzner (HP) call
‘caps’ denoting the end of a chromosome, we can represent linear
chromosomes. Following others, we introduce null chromosomes:
two connected caps.

A breakpoint is the connection between two successive SB in either
genome, between an SB and a cap (provided the same connection
does not occur in the other genome), or between two caps in a null
chromosome.

2.1 The double-cut-and-join operation
We call our elementary operation, ‘double-cut-and-join’ (DCJ), a
local operation on four vertices, initially connected in pairs. It con-
sists of cutting two connections (breakpoints) in the first genome, and
rejoining the resulting four unconnected vertices in two new pairs,
which can be done in either of two ways (Fig. 1). We weight this
operation 1, regardless of which end of the SB we are dealing with,
whether the two initial pairs are on the same chromosome or not, or
which of the two ways we rejoin. We study here the transformation
of ‘initial’ genome A to ‘target’ genome B by a minimal number of
DCJ operations.

Our main tool for visualization (examples in Figs 7–9, of section 3)
is the breakpoint graph (also called edge graph, comparison graph)
introduced by Bafna and Pevzner (1993) and used since by HP
and others (Bergeron, 2001; Tesler, 2002; Ozery-Flato and Shamir,
2003). Each end of an SB, and each cap at an end of a linear chro-
mosome, is a vertex in the graph; two vertices adjacent in genome A,
but not in B, are connected by a (straight) ‘black line’; two vertices
adjacent in B, but not in A, are connected by a ‘gray line’ (usually
an arc), but the line representing the SB itself is customarily not
drawn. We arrange for each cap to appear only once in each genome
(Section 2.3, Phase 0).

In the course of transforming genome A to B, black lines are altered
until the connections correspond to those of the gray lines specified
by the target genome. Each DCJ cuts two black lines and rejoins the
four cut ends into two new black lines.

At every stage, each vertex is connected to one black line and one
gray line. Hence each vertex is order 2, and the graph consists of
separate cycles alternating black and gray lines. Consequently, the
number of breakpoints in genome A (black lines) equals the number
of breakpoints (gray lines) in B, in each cycle. We denote a cycle
with L-black and L-gray lines as an L-cycle.

We define b as the number of breakpoints in either genome, and
c as the number of cycles as is customary. If a DCJ starts by cutting
two black lines belonging to different cycles, either way of rejoining
them will fuse the cycle into one. Therefore c will decrease by 1,
and b remains unchanged. If the two black lines to be cut belong to
the same cycle, one way of rejoining, which we call ‘proper’, breaks
the cycle in two, and the other, called ‘improper’, does not (Fig. 2).
With improper joining, both b and c remain unchanged.

With proper joining, there are three cases: First, if the two black
lines to be cut are not successive (separated by a single gray line)

Fig. 1. The general DCJ operation. The SB to which the endpoints a, b, c
and d belong are not shown. It is permitted for two of the four endpoints to
represent opposite ends of the same SB.

Fig. 2. A DCJ cuts the two black line connections belonging to the same
HP cycle. The rest of the cycle, understood as an alternation of HP gray and
black lines, is shown as a single line. ‘Proper’ rejoining cuts the cycle into
two; ‘improper’ rejoining does not.

in the cycle, proper joining keeps b unchanged and increases c by 1
(Fig. 2). Second, if the initial cycle has more than two black lines and
the two to be cut are successive, then the DCJ with proper rejoining
isolates a 1-cycle, consisting of a pair of vertices connected in both
genomes. Following convention, we consider the breakpoint in each
genome to be eliminated and b decreases by 1. We call the eliminated
breakpoints ‘healed’. The 1-cycle is deemed not to exist, so c remains
unchanged (Fig. 3a). Third, if the initial cycle is a 2-cycle, then two
breakpoints disappear along with their 1-cycles (Fig. 3b); b decreases
by 2 and c by 1. In all three cases, b − c decreases by 1.

We see that a DCJ never decreases the number b−c by more than 1.
But since this number is zero at the end, when all breakpoints have
been healed, the genomic distance, or minimum number of DCJ’s
to get from genome A to B, is at least as great as the initial value
of b − c.

It is possible to choose each step so that the two black lines to be
cut belong to the same cycle (since 1-cycles disappear when formed)
and so that the rejoining is proper. Then b − c will decrease at each
step. Therefore, the optimal path will consist of DCJs in which a
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Fig. 3. (a) For (ab) and (cd) separated by a single gray line, adjacent in an
HP cycle, proper rejoining after the double cut results in connecting b and c

so that the breakpoint between them is ‘healed’ (eliminated) and the 1-cycle
is dropped. (b) Both bc and ad are single gray lines so that the initial cycle
has length L = 2. Proper rejoining heals two breakpoints and two 1-cycles
are dropped.

single initial cycle is cut in two places and rejoined in the proper
way. The number of steps required is d = b−c, where b is the initial
number of breakpoints and c is the initial number of cycles.

2.2 Menu of operations on linear chromosomes
In particular contexts, we can identify the DCJ operation we have
defined with more familiar operations having a recognized biological
status. In this paper, we concern ourselves mainly with operations
performed on linear chromosomes.

First, consider the case in which each genome has only one chro-
mosome. In that case the cutting of a cycle in two places admits two
ways of rejoining; one reverses a segment of the chromosome and
the other snips out a circular fragment (Fig. 4).

In their work (HPa) on the pure reversal problem, HP speak of
reversals as induced by an arc which may be ‘oriented’ or ‘unori-
ented’. If the arc is oriented, it induces a reversal, equivalent in our
terminology to a DCJ with proper rejoining (Fig. 4a). If unoriented,
the reversal corresponds to a DCJ with improper rejoining (Fig. 4b).
This is why ‘hurdles’, which consist entirely of unoriented arcs, add
to the genomic distance, since they force one to introduce a reversal
which does not decrease b−c. (A hurdle is a particular configuration
of unoriented arcs defined in HPa). In our problem, we have a more
general operation, so, upon encountering a hurdle, we can apply
the same cuts (induced by an unoriented arc) as if we were doing
a reversal, but with the other rejoining, which produces a circular
intermediate (CI) (Fig. 4b). Being proper, this rejoining decreases
b − c, yielding our d = b − c instead of HP’s d = b − c + h + f ,
with h the number of hurdles, and f = 0 or 1.

With more than one chromosome, a cycle may extend between
them and the two cuts may be made on different chromosomes. In
such a case the DCJ results in a translocation (Fig. 5). The two
rejoinings differ by a reversal of one entire chromosome relative to
the other, prior to the operation. Only one choice of relative direction
corresponds to proper rejoining; one must examine the whole cycle
to find it.

Fig. 4. (a) A DCJ applied to black lines (ab) and (cd) in a linear chromosome
whose two left ends are joined by a gray line (called an ‘oriented arc’) results in
a reversal (or inversion) with proper joining, decreasing b−c. The remainder
of the chromosome is represented by dashed lines and of the cycle by thin
lines. (b) The gray arc joining the left end of black line (cd) to the right end of
(ab) is ‘unoriented’. Reversal of segment bc arises from improper joining and
does not increase b− c. Proper rejoining results in a CI with b− c decreasing
by 1. A block interchange results when the CI is reabsorbed after being cut
somewhere other than at the ‘healed’ breakpoint. (Fig. 6)

Fig. 5. A DCJ cutting two black lines on different chromosomes, but in the
same cycle, results in a translocation with either rejoining. To find which is
proper, one must see the whole cycle (not shown). Dashed lines represent the
rest of the chromosome.
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Fig. 6. A generalized transposition or block interchange is effected by cre-
ation and reabsorption of a CI, Greek letters represent segments of arbitrary
length in a linear chromosome. Segment βγ is cut and self-connected to
make a CI. It is then cut between β and γ in the CI so that insertion occurs
in the order γβ, resulting in exchanging β with δ. Cutting the CI in the same
place where it was joined when created results in a transposition (Bafna and
Pevzner, 1998; Eriksen, 2002).

By cutting off a cap from each of two linear chromosomes, one
achieves a fusion, along with the production of a null chromosome
consisting of the two end-blocks with a connecting line. Fission
is accomplished by having a null chromosome in the initial state.
Following HPb, we consider fusion and fission as special cases of
translocation.

It is possible to split and fuse the CIs, and to absorb them into a
linear chromosome. For initial and final genomes consisting only of
linear chromosomes, it is possible to reabsorb a CI into a linear chro-
mosome by a proper DCJ whenever it has been created, decreasing
b − c. Without increasing the genomic distance we, therefore, can
forbid fusion and fission of CIs, requiring their absorption as soon
as created.

The resulting menu of operations on linear chromosomes is:

• Translocations (including fission and fusion): weight 1.

• Inversions: weight 1.

• Creation (weight 1) and immediate absorption (weight 1) of
a CI.

We may further require that the CI be absorbed onto the linear chro-
mosome that produced it, since its creation and absorption in separate
chromosomes can be accomplished by two translocations. Also,
creation and absorption with reversal can be achieved by two inver-
sions. Replacing the third (dual DCJ) operation by block interchange
(Fig. 6) we can rewrite the menu without CI’s:

• Translocations (including fission and fusion): weight 1.

• Inversions: weight 1.

• Block interchanges: weight 2.

The block interchange operation is an exchange (without reversal) of
two segments in the same chromosome, which is either contiguous
or remote in the originating genome. Christie (1996) pointed out
that block interchange can be viewed as a generalized transposition
operation, in which exchanged segments need not be contiguous.

2.3 A simple algorithm to find an optimal path
Using our menu of operations, we devised an algorithm to find
an optimal path between genomes with linear chromosomes not
necessarily having the same number of chromosomes. It performs
operations in a definite order: translocations (including fissions and
fusions) first, then inversions, finally block interchanges. Decreas-
ing b − c by eliminating at least one breakpoint at each step, it never
increases c.

2.3.1 Phase 0—end-capping (prior to any DCJ steps)We start by
adding unlabeled caps to both ends of each chromosome in genome
A and B in the edge graph. We connect each A-cap to the adjacent
SB end by a black line, each B-cap to the adjacent SB end by a gray
line, so that every SB end is the terminus of both a black and a gray
line, but each cap is attached to only one line, gray or black.

We then trace a path from any A-cap along alternating black and
gray lines until it terminates on another A-cap (an AA-path) or on a
B-cap (an AB path). These are the same as the Pi–Pi and Pi–Gamma
paths of HPb, except that no caps are added in genome B so their AB
path terminates at an SB end. We repeat this for each A-cap that is not
part of a path. When all A-caps have been so treated, we start a path
with any B-cap that is not part of a path; it necessarily terminates on
another B-cap. We repeat until all B-caps have been treated and all
caps are part of an AA, AB or BB path.

We next identify the two caps at the end of each AB path with
each other, closing the path into a cycle containing just one cap. HPb
achieve this by adding a gray line connecting the A-cap at one end
of the path to the naked ‘tail’ SB end at the other end.

Because they occupy different positions in the same genome, the
caps at both ends of an AA path cannot be identified, and nor can
those at the ends of a BB path. We do not pair up AA and BB paths
as is sometimes done to reduce the number of null chromosomes
to a minimum, diminishing both the number of breakpoints and the
number of cycles so that b−c remains the same. Instead, we connect
the two caps of each AA path by a new gray line which introduces
a null chromosome in genome B. Likewise we connect the two caps
of each BB path by a new black line, introducing a null chromosome
in genome A. Each AA or BB path is closed into a cycle containing
just two caps in immediate succession, and all caps are incorporated
into cycles.

We prefer our method because it treats both genomes the same and
all AA and BB paths the same way, with a unique prescription and no
arbitrary choices. In algorithms for sorting by reversals and translo-
cations alone (such as HPb) chromosomes are first concatenated into
one, and various additional operations and precautions are needed to
manipulate the concatenation and avoid the later creation of further
‘hurdles’ or other obstacles, which would increase the eventual num-
ber of steps needed. These precautions sometimes require combining
paths into a larger cycle. With our expanded menu of operations we
need have no fear of causing more hurdles and do not need pre-
cautions, additional operations or to concatenate the chromosomes.
This simplifies understanding and saves running time, requiring only
O[n] time .

We are now ready to undertake the DCJ steps. At each step, we
refer to the genome defined by current black lines as the current
genome, initially identical to genome A, and at the end to genome
B. (See Section 3 for phase 0–3 examples.)

2.3.2 Phase 1—translocations (including fissions and fusions)In
this phase we make no distinctions between null chromosomes and
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others, nor between cycles containing caps and those that do not.
Choosing any chromosome in the current genome, we follow it,
starting from one of the caps, until we find an element connected by
a gray line to an element in a different chromosome in the current
genome. A chromosome having none is ‘robust’, i.e. all its mater-
ial also belongs to a single chromosome in genome B. We cut the
two successive black lines adjacent to the gray line, in the man-
ner of Fig. 3. Naturally they belong to the same cycle. By proper
rejoining, the cycle is cut in two, at least one of which is a 1-cycle
that ‘disappears’ as the corresponding breakpoint is ‘healed’, result-
ing in a translocation (possibly a fission or fusion) and diminishing
b − c by 1.

We repeat the procedure until all chromosomes in the current gen-
ome are robust. Both genomes started phase 1 with the same number
of chromosomes after padding with null chromosomes in phase 0,
and the operations performed do not change this equality (fission
uses up a null chromosome, fusion creates one). Chromosomes in
the current genome, including caps, correspond one-to-one to those
in genome B with only rearrangements within a chromosome still
necessary. Fissions needed to eliminate the null chromosomes in
genome A, and fusions needed to create the null chromosomes in
genome B, have been carried out automatically. Null chromosomes
in the current genome are now the same as in genome B. There have
been no wasted steps, every step decreases b − c.

2.3.3 Phase 2—inversionsFrom now on each chromosome is
treated separately. We start from the beginning of the chromosome,
and for each vertex we examine the gray line attached to it. If this
gray line is ‘oriented’ (Fig. 4a) we cut the two black lines adjacent to
it and rejoin in the proper way, achieving an inversion and decreasing
b − c by 1. If ‘unoriented’ (Fig. 4b) we go on to the next gray line.
We continue thus until all gray lines are unoriented, so that all SBs
in the chromosome have the same direction in the current genome
as in genome B.

In both phases 1 and 2 it is unnecessary for us to provide against
the creation of new hurdles by computing a ‘score’ (Bergeron, 2001),
since hurdles will be handled in phase 3 without loss of efficiency.
This considerably simplifies our procedure, shortening running time
compared to the problem of sorting by translocations and inversions
alone.

2.3.4 Phase 3—block interchangesChoosing a gray line arbitrar-
ily, we cut the two black lines adjacent to it. Since all gray lines are
now unoriented, proper rejoining will create a CI. Since genome B
has no circular chromosome, there must be a gray line connecting
this CI to the rest of the linear chromosome. We cut the two black
lines adjacent to it, and perform a proper rejoining. Since one of these
black lines was on the CI and the other on the linear chromosome,
the operation reabsorbs the CI. The two DCJ’s are equivalent to a
block interchange (Fig. 6) decreasing b − c by 2. We may regard the
DCJ as a convenient way of determining which block interchange to
make. We repeat until all breakpoints are healed.

Our procedure for phase 3 is the same as that of Lin et al. (2005) for
sorting by block interchange despite differences in formulation. They
set up the problem as one of sorting a permutation of SB’s, equivalent
to re-pairing SB ends when no SB’s need to be reversed. Their ‘pair
exchange’ is equivalent to our DCJ. Their ‘split operation’ is our DCJ
creating a CI and their ‘join operation’ is our DCJ absorbing the CI.

In phases 1, 2 and 3 the time is O[nδ], where δ is the number
of DCJ steps and n is the initial value of b. The reason it is not

Fig. 7. Capping procedures for sorting chromosome (−1, 3, 2) in genome A,
to (1, 2, 3) in genome B. (a) A naive method caps A as (0, −1, 3, 2, 4) and
B as (0, 1, 2, 3, 4) yielding b − c = 4 − 1 = 3. (b) Our phase 0, closes the
two AB paths by identifying the A cap at one end of a path with the B cap
at the other end. (c) Performing the identifications indicated in (b) by arrows
gives b − c = 4 − 2 = 2.

O[n] is that the placement of SB’s on the chromosomes must be
updated after each step. If CIs were not required to be absorbed
immediately and we were willing to perform the operations in any
order, it would be unnecessary to keep track of which SB’s are on
which chromosomes, and the running time would be O[n].

3 DISCUSSION
Closure, in phase 0, of each AB path into a cycle guarantees the
number of cycles thus obtained is maximal, so that b − c is minimal.
Illustrated in Figure 7, the breakpoint graph for sorting (−1, 3, 2)
into (1, 2, 3) undergoes initial capping.

As shown in Fig. 7b and c, there are two AB paths so that our
capping procedure yields two cycles, and b − c = 2. Indeed, sorting
(−1, 3, 2) can be accomplished in two inversions, first to (−3, 1, 2)
and then (−3, −2, −1), producing genome B backwards. This is quite
acceptable, but if the capping is done as in Figure 7a, it effectively
insists on getting genome B in the ‘forwards’ order, which costs an
extra inversion. Such capping merges the two AB paths into one cycle
so that b − c = 4 − 1 = 3. In our algorithm the problem of ensuring
chromosomes are ‘optimally flipped’ is handled automatically.

Figure 8 contrasts our method of handling AA and BB paths with
the more usual procedure that minimizes the number of null chro-
mosomes by pairing AA with BB paths, where possible. Sorting
(−1, −3, 2) into (1, 2, 3) via the usual pairing procedure (Fig. 8a)
yields b − c = 4 − 1 = 3. Our method (Fig. 8b) produces an extra
cycle, but at the cost of an extra breakpoint in the null chromosome in
either genome, so that b−c = 5−2 = 3. In this case the two methods
yield the same distance b−c; but in multi-chromosomal sorting there
generally exist non-optimal ways of pairing the AA and BB paths,
which would yield an unnecessarily high value of b − c that reflects
meaningless reversals and exchanges of whole chromosomes.

The advantages of our capping procedure do not mean we have
found an easier way of dealing with the capping problem treated by
HPb and later authors. They are possible because we have added
block interchange to the menu.
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Fig. 8. A second illustration of our capping procedure. Genome A: (−1, −3,
2), is to be sorted to genome B: (1, 2, 3). (a) The standard capping precedes
the chromosome with (0) and ends with (4), giving b−c = 4−1 = 3. (b) Our
phase 0 caps A with (0) and (4), and B with (5) and (6). There is an AA and a
BB path. Each is closed by an extra (dotted) line which amounts to creating
a null chromosome in the opposite genome providing an extra breakpoint so
that b − c = 5 − 2 = 3. The null chromosome in A is (5,6) and in B, (0,4).

Fig. 9. How phases 1 and 2 sort Genome A of Figure 8. (a) Genome A with
caps is (0, −1, −3, 2, 4), (5,6). Our algorithm recognizes the null chromosome
as a second chromosome and looks for a translocation. Proceeding along the
first chromosome from cap 0, the first inter-chromosomal gray line connects
the right end of −1 to the left cap of the null chromosome. The two black
lines to be cut are marked with cross-slashes. Only those gray lines are shown
that contribute to the cycle being cut. (b) The translocation indicated in (a)
(actually a fission) results in two real chromosomes. The algorithm again
starts from cap 0 and stops at the first inter-chromosomal gray line. This
translocation will be a fusion. (c) Two steps of phase 1 result in a genome
differing from genome B only by intra-chromosomal rearrangement. The
algorithm proceeds to phase 2 and cuts at both ends of the first oriented gray
line encountered, inducing a reversal that leads to: (5, 1, 2, 3, 6), (0, 4).

The operations of phase 1 and 2 are illustrated in Figure 9, using the
sorting problem treated in Figure 8. Since the capping has produced a
null chromosome in each genome, we now have a two-chromosome
problem and our algorithm begins by looking for translocations
(phase 1). Indeed, it first performs a fission (Fig. 9a), then a fusion

Fig. 10. (a) A positive permutation on five elements containing two hurdles.
(0) and (6) are caps. (b) Longer permutation with two hurdles, with caps (0)
and (7).

(Fig. 9b), and then goes to phase 2 for an inversion, which completes
the sorting. Phase 3 is not necessary. (The whole sorting can be done,
if desired, by three inversions, but we have designed the algorithm
to perform translocations first.)

Phase 3 of the algorithm follows a trajectory that does not corres-
pond to the HPa algorithm for eliminating hurdles. In Figure 10(a) we
show a positive permutation with two hurdles. Having b = 6, c = 2
and b−c = 4, it can be sorted with two block interchanges (21 ⇔ 12
and 54 ⇔ 45) which in this case are contiguous exchanges or trans-
positions. The HP algorithm for sorting by pure inversions starts by
inverting three, merging the two hurdles to yield b = 6, c = 1 and
no hurdles, after which five more inversions are required for a total
of distance 6 = b− c+h. An alternative path by inversion is to treat
each hurdle separately mimicking our contiguous exchanges with
three inversions each, also resulting in a distance of six.

The permutation of Figure 7b, however, requires a non-contiguous
block interchange (64 ⇔ 46) to sort the second hurdle. For a distance
of seven, this takes four inversions to mimic, whereas the optimal
inversion path, which starts by inverting three, still requires only
6 = b − c + h. Thus in general, our optimal sorting procedure
(with length b − c) does not parallel an optimal procedure for pure
inversions.

Bafna and Pevzner (1998) have shown that in sorting a positive
permutation by transpositions (that is, the exchange of contiguous
segments) one needs at least (b − codd)/2 steps where codd is the
number of odd cycles. But if the exchanged segments need not be
contiguous, it is easily seen that only (b − c)/2 steps are required,
since each step decreases b − c by 2 as shown above in phase 3 of
the algorithm. It is thus natural to weight each block interchange two
when combined with inversions and translocations.

From the DCJ perspective, however, a block interchange has a
weight of two simply because it is a shorthand for describing two
successive DCJ’s. The operations allowed by Eriksen (2002) for a
single chromosome, inversions and contiguous exchanges (transpos-
itions), are more powerful than those of HP (inversions alone for
single chromosomes) but less powerful than ours (inversions and
all block interchanges). Eriksen’s shortest distance is consequently
intermediary between HP’s b − c + f + h and our b − c.

The computation of genomic distance based on DCJs is highly
efficient in that it just requires the computation of c, the number of
cycles, which can be computed in linear time. There are currently no
exact polynomial-time algorithms for sorting genomic permutations
that combine transpositions with inversions and translocations.
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4 LOOKING AHEAD
The general DCJ operation is a plausible elementary operation for
genome evolution. Producing the familiar processes of inversion,
translocation, fission and fusion it also, via a double step, creates and
reabsorbs CIs, equivalent to a block interchange which exchanges
two not necessarily contiguous segments along a single chromo-
some. Although we have focused here on linear chromosomes, our
approach is applicable to genomes consisting of circular genomes,
as well as combinations of the two, such as in Borrelia burgdorferi,
consisting of ∼1500 genes, half of which are located on a long linear
chromosome, with the rest interspersed among ∼21 plasmids—some
circular and some linear. Qiu et al. (2004) showed extensive recom-
bination takes place between the main chromosome and the plasmids
and amongst the plasmids. Another intriguing idea is to apply our
method to the formation and re-absorption of small replicating cir-
cular DNA sequences (amplisomes) thought to be responsible for
rearranging tumor genomes as considered by Raphael and Pevzner
(2004).
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