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Abstract

In 1976, Booth and Leuker invented the PQ trees as a compact way
of storing and manipulating all the permutations on n elements that
keep consecutive the elements in certain given sets C1, C2, . . . , Cm.
Such permutations are called valid. This problem finds applications
in DNA physical mapping, interval graph recognition, logic circuit
optimization and data retrieval, among others. PQ trees construction
time is linear on the size of the input sets. In 1995, Meidanis and
Munuera created the PQR trees, a natural generalization of PQ trees.
The difference between them is that PQR trees exist for every set
collection, even when there are no valid permutations. The R nodes
encapsulate subsets where the consecutive ones property fails. In this
note we present an almost-linear time algorithm to build a PQR tree
for an arbitrary set collection.

Keywords: Trees, analysis of algorithms

1 Introduction

Given a collection of m subsets C1, C2, . . . , Cm of a set U of n elements,
the consecutive ones problem consists in answering whether there is a valid

permutation of the elements in U , that is, a permutation that keeps the
elements of each Ci consecutive. Such permutations are called valid.
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Many problems can be stated as the consecutive ones problem, such as
DNA physical mapping [10], interval graphs recognition [5], logic circuit op-
timization [4] and data retrieval [6].

The consecutive ones problem was solved by a polynomial time algorithm
devised by Fulkerson and Gross [5] in 1965. Booth and Leuker [2] invented
the PQ trees in 1976, a data structure to solve the problem and compactly
represent every valid permutation for U subject to C1, C2, . . . , Cm. They also
gave a linear time algorithm for building PQ trees. In 1995, Meidanis and
Munuera [8] created PQR trees, a natural generalization of PQ trees, and
gave a quadratic algorithm to build PQR trees. In a continuation of this
work, Meidanis, Porto and Telles [9] extended the algebraic theory behind
this problem. PQR trees can be used to solve all problems that PQ trees
solve, with the additional advantage that when there is no valid permutation
PQR trees will point out specific subcollections responsible for the failure
of the consecutive ones property [9]. This feature is specially interesting in
applications where experimental errors may occur and the problem to solve
becomes NP-complete, as in DNA physical mapping [10, 7].

For a time it was unknown whether the extra R nodes add enough com-
plexity into the structure as to make a linear time algorithm impossible.
One major problem in this respect was related to the movement of uncol-
ored (“white”) nodes (see Section 4), which did not seem to be bounded by
the number of black or gray nodes. Here we show how to implement the
algorithm so as to never have to move uncolored nodes. Another important
issue was to merge two Q or R nodes in time O(1). We solved this issue
by representing the children of such nodes as a union-find structure, where
only one designated child point to the parent, and the other siblings point
to this designated child directly or indirectly, composing a union-find struc-
ture. This leads to O(1) merging, but the price to pay is O(α(r)) to find the
parent, and an overall almost-linear time bound, where r is the sum of sizes
of the input sets.

The algorithm given here is not a simple extension of Booth and Leuker’s
algorithm, but relies on deeper properties of the trees uncovered by the new
theory. It uses a fewer number of better organized patterns than the PQ
algorithm. The correctness proof also draws heavily on the theory developed.
We believe that this contributes significantly towards a better solution to this
problem.

This article is organized as follows. Section 2 gives basic definitions and
Section 3 introduces the basics on PQR theory. Our algorithm and analysis
come in Sections 4 and 5. Our conclusions appear in Section 6.
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2 Definitions

The term collection is used here as a synonym for set of sets. Hereafter,
collections will always be denoted by calligraph capital letters, such as C.
To simplify notation, we sometimes write a set as a list of its elements in
any order. For example, A = {k, l, m, n} can be written as A = lnkm.
A permutation of a finite set U with |U | = n is a one-to-one mapping
α : {1, 2, . . . , n} 7→ U . Permutations are also denoted as lists of elements, for
instance, we write α = efcbda meaning α(1) = e, α(2) = f and so on. The
power set of a set U is denoted P(U). A trivial subset of U is a set with 0,
1, or n elements.

Given a permutation α of the elements of U , and a subset A of U , we say
that A is consecutive in α when the elements of A appear consecutively
in α. For example, if U = abcdef and α = efcbda, the subset A = cdb is
consecutive in α, while B = efa is not. Given a pair (U, C), with C ⊆ P(U),
we say that a permutation α of U is valid (with respect to C) if all sets A ∈ C
are consecutive in α. The pair (U, C) has the consecutive ones property
(C1P) if there is at least one valid permutation.

A PQR tree over a set U is a rooted tree with four types of nodes –
P, Q, R and leaves – subject to the following restrictions:

• The leaves are in one-to-one correspondence with the elements of U .

• Every P node has at least two children.

• Every Q node has at least three children.

• Every R node has at least three children.

A node v in a PQR tree is identified with the set of leaves having v as
ancestor. We use v to denote either the node or the set of its descending
leaves (elements of U) interchangeably.

An example of a PQR tree over the set U = abcdefghijklmnop and the
collection C = {abcdef, bc, cd, de, ce, ghijklmn, no, op, hijkl, lm} appears in
Figure 1. The notion of a PQR tree for a collection C ⊆ P(U) is formalized
in Section 3.

Two PQR trees are equivalent when one can be obtained from the other
by zero or more of the following operations:

• arbitrary permutations of the children of a P node,

• reversal of the children of a Q node,

• arbitrary permutations of the children of an R node.
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Figure 1: An example of a PQR tree.

This is an equivalence relation. We denote by T the equivalence class of
a tree T .

A PQ tree is a PQR tree without R nodes [9]. PQ trees are a compact way
of representing all valid permutations for a collection with the C1P [2]. In
general, regardless of whether the tree has the C1P, a PQR tree is a compact
way of representing its completion (see Section 3).

3 PQR Theory

Meidanis and Munuera [8] created a theory, later consolidated by Meidanis,
Porto, and Telles [9], that greatly helps reasoning about the problem and lies
at the heart of the algorithm we present here. In this section we recall basic
findings of this theory that will be used in the sequel.

The main points of the theory are:

• the realization that the set operations intersection, noncontained differ-

ence, and nondisjoint union produce consecutive sets from consecutive
sets and can be used to enrich the input set collection C into a normal-
ized, complete collection C. The PQR tree associated to C is unique up
to equivalence and depends only on C.

• the realization that the concept of orthogonality between sets can be
used to characterize the nodes that appear in a PQR tree for C, through
the collection C⊥, which holds every set orthogonal to C.

Formally, given two sets A and B, we define the following notation for
operations provided that A and B satisfy some precondition:
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• The nondisjoint union of A and B, denoted A⊎B, is equal to A∪B

provided that A ∩ B 6= ∅.

• The noncontained difference of A and B, denoted A ◦\ B, is equal
to A \ B provided that B 6⊆ A.

A collection is complete when it contains the trivial sets and is closed
under the operations intersection, nondisjoint union and noncontained differ-

ence. Given a collection C ⊆ P(U), its completion C is the smallest complete
collection that contains C. Analogously, the completion of a PQR tree T ,
denoted by Compl(T ), is defined as the following collection:

1. The empty set, the set of all leaves in T and the sets {x} such that x

is a leaf of T are contained in Compl(T ),

2.
⋃

v∈S v is in Compl(T ) if S is the set of all children of a P node of T ,

3.
⋃

v∈S v is in Compl(T ) if S is a set of consecutive children of a Q node
of T ,

4.
⋃

v∈S v is in Compl(T ) if S is an arbitrary set of children of an R node
of T ,

5. No other sets are in Compl(T ).

Definition 1 We say that T is a PQR tree for C when C = Compl(T ).

In general there are several PQR trees for the same collection C, and
therefore we cannot speak of the PQR tree for C, However, all these trees
are equivalent, hence we can unambiguously define an equivalence class of
trees for a given collection C.

Definition 2 We denote by PQR(C) the equivalence class of all PQR trees

for C.

Two sets A and B are orthogonal, denoted A ⊥ B, if either A ⊆ B,
or B ⊆ A, or else A ∩ B = ∅. Similarly, a collection C is orthogonal to a
set A if every set in C is orthogonal to A. Given a collection C ⊆ P(U), the
collection C⊥ is the collection of every set in P(U) that is orthogonal to C.

The following results from an earlier work [9] are important here. The
first one states that for every collection there is a PQR tree, the second
characterizes the nodes in a PQR tree and the third relates the C1P to the
PQR trees.
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Theorem 1 (Th. 38 from Meidanis et al [9]) For any collection C over

a set U , there is a PQR tree such that

Compl(T ) = C.

Theorem 2 (Lemma 35 from Meidanis et al [9]) If T is a PQR tree

for a collection C then the nodes of T correspond exactly to the sets in C∩C⊥.

Theorem 3 If T is a PQR tree for a collection C and T has no R nodes,

then the set of all permutations of U valid with respect to C can be obtained

reading the leaves of every tree equivalent to T from left to right.

Theorem 3 is a direct consequence of Theorems 15 and 31 from the work
of Meidanis et al [9].

4 An Almost-Linear Time Algorithm

The algorithm for PQR tree construction described in this section is an on-
line algorithm, in the sense that it builds a PQR tree T for the collection C
adding one set from C at a time. We start with a so-called universal tree,
which is a tree with a single internal node of type P with all leaves as its
children. This tree corresponds to the empty set collection.

The procedure of adding S can be explained using the diagram in Figure 2.
In this diagram, C is a collection and T is PQR(C). We use the notation C+S

meaning C ∪ {S} and T + S meaning

T + S = {Y | ∃ T ∈ T with Compl(T ) ∪ {S} = Compl(Y )}.

Based on the fact that two trees are equivalent if and only if they have
the same completion [9, Theorem 36], it is easy to see that T + S is also an
equivalence class of PQR trees. Furthermore, this class is PQR(C + S). The
addition routine takes any tree from T and produces a tree in T + S.

T + S

TC

C ∪ {S}

Add SAdd S

Figure 2: Diagram explaining one iteration of the main loop of the algorithm.

The algorithm for adding a set S to a tree T appears below. It first colors
some tree nodes using colors 0, 1, 2, with 0=white, 1=gray and 2=black, and
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finds the least common ancestor node of all leaves in S, refereed to as the
LCA. In the sequel gray nodes are repeatedly killed, merged, or uncolored.
At the end, all nodes are back to their original color (white).

1. color the leaves corresponding to S

2. color the tree and find the LCA

3. restructure the tree, eliminating gray nodes
4. adjust the LCA

5. uncolor the tree

A better explanation of each step follows.

Step 1 Leaves corresponding to the elements of S are colored black.

Step 2 Coloring of internal nodes of T is done as follows:

• an internal node v is colored black when v ⊂ S,

• an internal node v is colored gray when v 6⊥ S,

• an internal node v is left uncolored (“white”) when either v ∩S = ∅ or
S ⊆ v,

This coloring can be accomplished simultaneously with finding the LCA

of all black leaves as described in the original Booth and Leuker paper [2].
It is important to guarantee that the LCA will always be an internal node.
When S is a singleton, there is only one black leaf, and in this case we take
its parent as the LCA.

Notice that the nodes colored gray will not be nodes of any tree in T +S,
since they are not orthogonal to S. This motivates the next step of the
algorithm, which restructures the tree until no gray node remains.

Step 3 This step repeatedly kills, merges, or uncolors gray nodes, some-
times also creating new nodes when needed, until no gray nodes remain in
the tree. This step is therefore the iteration of a simpler task, which is the
processing of one gray node.
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while there is a gray child v of the LCA r do

prepare LCA(r)
prepare child(r, v)
if r is of type P then

move children away from the LCA

else

merge into the LCA

subroutine prepare LCA(r)
case type of r of:

P: join black children
Q: do nothig
R: do nothing

subroutine prepare child(r, v)
case type of v of:

P: transform P node into Q node
Q: conditionally reverse gray node v

R: do nothing

The operations mentioned in the code fragment are illustrated in Figures 3
to 6, where a triangle represents a node whose type is either Q or R, r is the
label for the LCA and v is the label for the gray child being processed.

The conditional reversal of a node is as follows. A gray node v is reversed
when the colors of its first and last children are not in line with the colors of
v’s left and right neighbors, in the following sense. Remember that 0=white,
1=gray and 2=black. Call v’s left neighbor vi−1, and v’s right neighbor
vi+1. If color(vi−1) < color(vi+1), and color(v.first) > color(v.last), then v

is reversed. Analogously, if color(vi−1) > color(vi+1), and color(v.first) <

color(v.last), then v is reversed as well. If v has only one neighbor (i.e. v

is the leftmost or rightmost child), apply the reversal when the color of v’s
extreme child closest to the existing neighbor is numerically farther away
from the color of this neighbor than the color of v’s other extreme child.

Booth and Lueker’s algorithm for PQ tree construction consists of pat-
terns that are to be matched and replaced within the tree. Our algorithm
replaces this entire pattern matching scheme by simpler code, which depends
only on the types of r and v, and is much easier to implement.

Step 4 After Step 3, there are no gray nodes left in the tree. Therefore, all
maximal black nodes are children of the LCA. We have to adjust the LCA

as follows, according to its type.
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.........
wzw1gyg1b1 bx

v

T ′ T ′′

...
gyg1

b1 bx w1 wz

b

... ...

v

rr

Figure 3: Operation “transform P node into Q node”. This operation must
produce a Q node with children ordered in non increasing order of color.

......
w1gyg1

b1 bx

r

b

...

wz

T ′′

.........
wzw1gyg1b1 bx

r

T ′

Figure 4: Operation “join black children”.

vi

r

v1

...
vi−1

...
vi+1vs

...
f1 ft

T ′

r

...... ...vi+1vsftvi−1 f1v1

T ′′

Figure 5: Operation “merge into the LCA”.

• the LCA is a P node: if the LCA has two or more black children, and
at least one white child, create a new child of type P of the LCA and
move all black maximal nodes to this new node.

• the LCA is a Q node: if all maximal black nodes are consecutive, do
nothing; otherwise change the type of the LCA to R.

• the LCA is a R node: do nothing.

We note that checking whether the black children of a Q node are con-
secutive can be accomplished in time proportional to the number of black
children.
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gy bg1

v
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f1 ft

r

...
w1 wz

...

gy bg1

v

ft
...

f1

T ′′ if z > 0

T ′′ if z = 0

... ...
b g1 gy w1 wz

...

v

r

ftf1

T ′

u

u

u

Figure 6: Operation “move children away from the LCA”.

Step 5 Uncolor all black nodes.

Figure 7 shows the execution of the algorithm for the tree shown and
S = ghm.

5 Correctness and complexity

5.1 Correctness

To prove that the algorithm is correct it is necessary to show that, if T ′ and
T ′′ are the uncolored trees before and after any given step in the algorithm,
then

Compl(T ′) ∪ {S} = Compl(T ′′) ∪ {S} (1)

This is easy to see for Steps 1, 2, and 5. For Step 3, we need to show
the invariant (1) holds for all the operations on PQR trees described in the
previous section. For Step 4, when the LCA is a P node we just do the same
as in the “join black children” operation. When the LCA is a Q node we
simply have another operation not present in Step 3: “transform Q node into
R node”.
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uncolor tree

mark the leaves

kill gray node kill gray node

corresponding to S
color tree and

find the LCA

LCA

LCA LCA

LCA

i j k
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l

R

g m h

Ra f
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l

R

i j k

Ra f

b c d e
g

h i j k

l m

o pn
Ra f

b c d e
g

h i j k

l m

o pn

Ra f

b c d e

o pn

l

h i j k

Ra f

b c d e

o pn

l

Figure 7: Execution of the algorithm for the tree shown and S = ghm.

To illustrate the proof method for operations, we will show how it applies
to operation “join black children” (Figure 4). The nodes in T ′ all appear also
in T ′′, with the same types. Therefore Compl(T ′) ∪ {S} ⊆ Compl(T ′′) ∪ {S}.
On the other hand, we can write

b = (r ∩ S) ◦\ g1 ◦\ . . . ◦\ gy,
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which shows that b ∈ Compl(T ′) ∪ {S} and allows us to conclude that
Compl(T ′′) ∪ {S} ⊆ Compl(T ′) ∪ {S}, completing the proof.

If T and Y are the trees before and after the iteration that adds set S,
we conclude that

Compl(T ) ∪ {S} = Compl(Y ) ∪ {S}.

Noticing that after Step 4 we have S ∈ Compl(Y ), we have actually

Compl(Y ) ∪ {S} = Compl(Y ).

We conclude that

Compl(T ) ∪ {S} = Compl(Y ),

showing that tree Y is in fact in T + S.

5.2 Complexity

In this section we will assume that we are given a collection C1, C2, . . . , Cm

of subsets of U = {1, 2, . . . , n} to construct their PQR tree, and that r =
∑

j |Cj|.
The main operations involved in the algorithm are: node creation, node

killing, node reversal, node moving, node merging, node coloring, and node
uncoloring. We will consider first the operations done in Step 3, which is the
most intricate step.

Each node must know its parent because of the way coloring is done (bot-
tom to top). To guarantee the almost-linear time bound, we must implement
the set of children of a Q or R node as a union-find structure[3]. One des-
ignated child will hold a pointer to their parent, and all other siblings will
point to other siblings which are closer to the designated child. This permits
execution of the “Merge into the LCA” operation in O(1) time, but the price
to pay is an O(α(r)) bound for finding the parent of a node. Moreover, to
perform the operations that compose the templates every node must know
its children. Another drawback on using a union-find structure is that Q or
R nodes cannot be actually deleted, but marked only as deleted. We have
to be able to replace a child, revert a child list and merge child lists in O(1)
time. A data structure called symmetric list or symlist [1], based on ideas
by Sleator and Tarjan [11], can be used for this purpose

We will show that the algorithm performs O(r) operations, with cost
O(α(r)) each. Each time a set S is added, work proportional to |S| is al-
lowed. It turns out that sometimes a small set is added and the tree changes
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significantly, meaning that we cannot guarantee that adding S can be done
within O(|S|) time. However, an amortized O(|S|) bound holds. We will
show this by exhibiting a tree potential function that records the part of
the O(|S|) not actually used for work yet and which is available for future
operations.

In what follows, a move operation inlcudes also the case where a Q or R
is merged with its Q or R parent. From this point on, let us denote the set
of black, gray and white children of a node v respectively by B(v), G(v) and
W (v).

Theorem 4 The amount of operations involved in Step 3 is dominated by

the move operations.

Proof: Leaves are never created or killed. Internal nodes are created
with zero children, and only internal nodes with at most one child are killed.
Therefore, to kill a node its children must be moved elsewhere first. Likewise,
the creation of a node is always followed by movements to bring children in.
The reversal of a node is always followed by a movement as well.

Node coloring occurs when a new node is colored black. Therefore, col-
oring is dominated by creation. Uncoloring occurs when all colored children
of a P node are moved elsewhere. Therefore, uncoloring is dominated by
movement. 2

Theorem 5 The total number of moves in Step 3 for adding a set S to a

tree T is bounded by:

m3(T, S) ≤ |B(r)| + |G(r)| +
∑

v gray P node

(|B(v)| + |G(v)|) +

∑

v gray Q/R node

1,

where r is the LCA.

Proof: Table 1 shows the number of moves for each combination of LCA

type and gray child type. Notice that in every case, the gray child being
processed is destroyed or becomes uncolored. Therefore, each gray node is
processed exactly once. Notice also that the LCA is of type P at most once
for each set added (in the first iteration of the loop in Step 3), and therefore
the term |B(r)| + |G(r)| enters the sum at most once.

2
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type of LCA type of v movements
P P |B(r)| + |G(r)| + |B(v)| + |G(v)|
P Q/R |B(r)| + |G(r)|

Q/R P |B(v)| + |G(v)|
Q/R Q/R 1

Table 1: Upper bound on number of movements in each case of Step 3.

The main result of this section relies on the concept of tree potential. The
potential of a tree T is defined as follows.

pot(T ) =
∑

v P node of T

|v| +
∑

v Q/R node of T

1.

Recall that |v| is the cardinality of v as a set, which is the set of all its leaf
descendants.

Theorem 6 Let T be a PQR tree and Y the tree obtained from T by adding S

as described in the algorithm of Section 4. The gain in potential ∆pot(T, S) =
pot(Y ) − pot(T ) satisfies

∆pot(T, S) ≤
∑

v∈B(r)

|v| −
∑

v gray P node

∑

u∈G(v)

|u| −
∑

v gray Q/R node

1,

where r is the LCA.

Proof: The nodes in Y that are not in T are (at most):

• P node with all black children of r (due to operation “Join black chil-
dren”)

• For each gray P node, a P node with all its black children (due to
operation “Transform P node into Q node”)

• For each gray P node, a P node with all its white children (due to
operation “Transform P node into Q node”)

• A Q node child of an LCA of type P (due to operation “Move children
away from the LCA”). Notice that physical node v remains, but a new
logical node (as a set) may be created.
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On the other hand, the nodes in T that are not in Y are exactly the gray
nodes. Therefore,

∆pot(T, S) ≤
∑

v∈B(r)

|v| +
∑

v gray P node

∑

u∈B(v)∪W (v)

|u| + 1 −

−
∑

v gray P node

|v| −
∑

v gray Q/R node

1

≤
∑

v∈B(r)

|v| −
∑

v gray P node

∑

u∈G(v)

|u| −
∑

v gray Q/R node

1.

2

Theorem 7 The total number of operations work(T, S) involved in adding

S to T satisfies

work(T, S) = O(|S| + m3),

where m3 = m3(T, S) is as in Theorem 5.

Proof: Steps 1, 4 and 5 are O(|S|). Step 2 is O(|S| + m3), as proved by
Booth and Leuker [2]. In their paper they call prunned(T, S) the subtree of
all gray nodes plus the LCA, and show that Step 2 is O(|prunned(T, S)|). It
turns out that |prunned(T, S)| = O(m3), because every gray node v satisfies
|B(v)| + |G(v)| ≥ 1. 2

Theorem 8 There is an O(|S|) amortized bound for adding a set S to tree

T , namely

work(T, S) + ∆pot(T, S) = O(|S|).

Proof: In view of Theorem 7, it suffices to show that

m3 + ∆pot(T, S) = O(|S|).

From previous formulas, by straightforward algebraic manipulation,

m3 + ∆pot(T, S) ≤ |B(r)| + |G(r)| +
∑

v∈B(r)

|v| +
∑

v gray P node

|B(v)|

≤ 3|S|.

This last inequality is due to the following reasons:

|B(r)| +
∑

v gray P node

|B(v)| ≤ |S|

since B(r) ∪
⋃

v gray P node B(v) is a disjoint union contained in S;

|G(r)| ≤ |S|,
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since the sets of G(r) are disjoint; finally,

∑

v∈B(r)

|v| =

∣

∣

∣

∣

∣

∣

⋃

v∈B(r)

v

∣

∣

∣

∣

∣

∣

≤ |S|,

since the sets of B(r) are disjoint and contained in S. 2

From this last theorem we can assess the total work needed to add sets
C1, C2, . . . , Cm to a universal tree T0 (a tree with just one P internal node with
all leaves as its children), which results in a PQR tree Tm for this collection
of input sets. Summing up the number of operations for adding all the sets,
we end up with:

m−1
∑

i=0

work(Ti, Ci+1) + pot(Tm) − pot(T0) = O(r + m),

or
m−1
∑

i=0

work(Ti, Ci+1) = O(r + m + n),

since pot(Tm) ≥ 0, and pot(T0) = n. As we saw, each operation can be
performed in O(α(r)), and therefore the almost-linear bound follows.

6 Conclusions

This work represents a significant contribution towards a cleaner and more
general solution to the consecutive ones problem. Based on the theory devel-
oped by Meidanis and Munuera [8], later extended by Meidanis, Porto, and
Telles [9], we propose a new algorithm to build PQR trees corresponding to
a set collection, in time almost proportional to the collection’s size.

This algorithm is more intuitive than the original PQ tree algorithm pro-
posed by Booth and Lueker, and, in addition, constructs trees for all input
collections, regardless of their consecutive ones status. The resulting tree will
point out specific subcollections responsible for the failure of the consecutive
ones property if that is the case.

Several practical applications modeled by the consecutive ones problem
require the ability to deal with input data with errors. It is important to
explore the possibility of using PQR trees to address this issue. We hope our
contribution, besides being an interesting theoretical result, leads to practical
algorithms for dealing with noisy data.
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