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Abstract 

A binary matrix has the Consecutive Ones Property (CIP) when there is a permutation of its 
rows that leaves the 1’s consecutive in every column. We study the recognition problem for these 

matrices, giving a structure, PQR trees, generalizing the PQ trees of Booth and Lueker (1976). 
This new structure is capable of, not only recording all valid permutations when the matrix 

has the ClP, but also pointing out possible obstructions when the property does not hold. We 

recast the problem using collections of sets, developing a new theory for it. This problem appears 

naturally in several applications in molecular biology, for instance, in the construction of physical 
maps from hybridization data. 0 1998 Elsevier Science B.V. All right reserved. 

1. Introduction 

A binary matrix has the Consecutive Ones Property (ClP) for columns when there 

is a permutation of its rows that leaves the l’s consecutive in every column. One 

can analogously define the ClP for rows. It appears naturally in a wide range of 

applications [2, 3, 5, 61. Essentially, the ClP finds applications in any problem in which 

we are required to linearly arrange a set of objects subjected to restrictions of the 

form: objects in a given subset must appear consecutively in this order. In molecular 

biology, one such problem arose when Benzer [l], in 1959, performed a series of 

experiments aimed at verifying whether a chromosome was a linear arrangement of 

genes. In combinatorial terms, he had the adjacency relations defining a graph and 

wanted to know whether it was an interval graph. He solved the problem using a 

certain characterization of interval graphs that did not require the ClP, but the Cl P 

can be used to recognize interval graphs as well [2, 41. In any case, this application is 
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original 
chromosome 

m2 ml m5 m4 m3 

(4 

ml m2 m3 m4 m5 

t11 1 0 0 1 r t2 0 0 1 0 0 

t3 0 1 0 0 0 

t4 0 1 0 0 0 

t5 0 0 1 1 0 

ts 0 0 0 1 1 

@I 

Fig. 1. Example of a hybridization experiment. 

of historical interest only since we know now that genes are in fact arranged linearly 

on a chromosome. 

A more recent application is the construction of physical maps by hybridization. In 

this application, several contiguous stretches, possibly overlapping, are extracted from 

a long DNA molecule. These stretches are called clones, and the problem is to place 

them correctly along the DNA molecule. The only available information is the outcome 

of hybridization experiments, where a given probe is tested against each of the clones. 

A probe corresponds to a uniquely defined position in the DNA, and, in the absence of 

experimental errors, the only clones that will hybridize with it are the ones that contain 

this position. The problem here is to infer the correct positioning of the clones based 

on this data. An example is given in Fig. l(a)-(c). There, six clones, represented by 
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tl,. . . , t6, are tested against five probes, represented by ml,. ,ms, and the resulting 

matrix is shown in Fig. l(b). This matrix has the Cl P for rows, and one possible 

permutation of its columns that leaves the ones consecutive on its rows leads to the 

solution presented in Fig. l(c). Notice that the solution is different from the original 

arrangement, illustrating the fact that, in some cases, the data given is not enough to 

recover the original order. More experiments involving new probes must be done. As 

Greenberg and Istrail [6] point out, it is important to know all possible solutions in this 

application. This knowledge can help the scientist in (1) verifying if the data is enough 

to produce a unique solution, and (2) concluding that experimental errors occurred, in 

case there is no solution, and locating the errors. The discussion in Section 7 is related 

to these issues. 

1.1. Previous work 

The ClP has been widely studied. The first mention to this property, according to 

Kendall [8], was made by Petrie, an archaeologist, in 1899. Some heuristic methods 

were proposed for the problem [ 1 l] before Fulkerson and Gross [4] presented the first 

polynomial complexity solution. In 1972, Tucker [13] presented a characterization of 

the problem based on forbidden configurations for matrices. 

Booth and Lueker [2] proposed the first linear complexity solution for the problem 

in 1976, in addition to a compact data structure able to elegantly represent all valid 

permutations. This structure, called PQ tree, has a complicated implementation, despite 

its nice theory. In 1992, Hsu [7] also presented a linear complexity solution for the 

problem without using PQ trees and avoiding its complexity of implementation, but 

the details of his method are still difficult to grasp. 

In 1996, Meidanis and Munuera [9] proposed a new theory and a simple ex- 

tension of Booth and Lueker’s structures. The new trees, called PQR trees, exist 

for any instance and carry extra information that can be useful in several applica- 

tions, For instance, they can help finding erros in the data (Section 7), or finding 

all orthogonal sets (Definition 17), a problem already solved by Novick [lo]. In the 

present work we complete the formalization of the theory proposed by Meidanis and 

Munuera, including and proving some important results left behind in the earliest ver- 

sion of the new approach. This paper can be seen as a complete version of that 

conference paper. 

1.2. Contribution of this work 

As mentioned earlier, the Cl P can be seen as the problem of producing a linear 

order compatible to restrictions given by subsets of the elements. In this sense, the 

input instance consists of a collection %? of subsets, and this is the point of view 

adopted in this paper. 

We believe the main contribution of this work is a fresh way of thinking about 

the problem, that, in our opinion, will bring a much deeper understanding of its 
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combinatorial nature. The introduction of the completion ? of a collection %? (Def- 

inition 8), composed of all sets that must be consecutive if the sets in %? are con- 

secutive, is an important step for two reasons. First, it allows a “normalization” of 

collections, in the sense that two collections with the same completion impose es- 

sentially equivalent restrictions on the linear order. Second, it helps in the construc- 

tion of the tree that will represent all solutions, because the domain of every tree 

node is a set in the completion. Three operations (intersection, nondisjoint union, 

and noncontained difference) applied repeatedly, are sufficient to generate %? 

from V. 

The concept of orthogonality (Definition 16) has been important to the C 1P ever 

since the work of Fulkerson and Gross [4], although with different names. Fulker- 

son and Gross say that two sets overlap when they have a nonempty intersection 

that is properly contained in both. Booth and Lueker [2] do not use this concept 

explicitly. Novick [lo], uses the notation A N B for this concept, and Hsu [7] calls 

the sets strictly overlapping, which is the terminology we adopt here as well. This 

is all related to orthogonality, which is just the opposite concept: two sets are or- 

thogonal when they do not strictly overlap. Another contribution of this work is the 

characterization of domains of the tree nodes as sets in the completion that are or- 

thogonal to all sets in %. If we call %?’ the collection of sets orthogonal to all sets 

in %Y, the nodes correspond to sets in @n V’. Novick uses the notation M(T) to 

indicate %?‘. 

Other important results include a decomposition of valid permutations based on sets 

in %?flV’, and an extension of Hsu’s definition of prime instances for the case of 

nonnormalized collections. 

The inspection of possible types of prime collections lead to the discovery of another 

internal node type, besides the already known P and Q. We called the new type 

R node, and the new tree, PQR tree. These trees generalize both the PQ tree of 

Booth and Lueker [2] and the gPQ tree of Novick [lo]. Essentially, a PQ tree is 

a PQR tree without R nodes, and a gPQ tree is a PQR tree where R nodes are 

transformed into Q nodes, and the order of children is ignored. The presence of R 

nodes indicate that the instance does not have the ClP, and, in addition, R nodes can 

help in some cases to identify why the ClP does not hold. To illustrate the power 

of the new techniques, we prove again, in a much more uniform way, several known 

facts about PQ trees, for instance, the fact that they represent all valid permutations 

(Theorem 29). 

The rest of this paper is organized as follows. Section 2 gives the basic definitions 

needed throughout. (Additional, specific definitions appear in the rest of the paper as 

needed.) The PQR trees are introduced in Section 3. The new theory that leads to the 

construction of PQR trees is introduced in Section 4. The main results of the paper are 

developed in Section 5. An algorithm for constructing PQR trees is given in Section 6, 

along with proofs of correctness and complexity analysis. Section 7 contains examples 

that illustrate the behavior of PQR trees in the presence of errors. Finally, Section 8 

contains our concluding remarks. 
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2. Basic definitions 

The consecutive ones property is a property of two-dimensional matrices whose 

entries are only 0 or 1. These matrices are called binary matrices and a binary matrix 

has the consecutive ones property (CIP) for columns when its rows can be permuted so 

that in each of its columns the l’s appear consecutively. The permutations that leave the 

ones in such order are called valid permutations. The C 1P for rows is analogous and 

the problem of testing one of them can be replaced by the other, simply by transposing 

the matrix. 

It can also be viewed as a property of collections of sets. The term collection will 

be used here as a synonym for set of sets. In this work, collections will always be 

denoted by calligraph capitals, such as %?. In order to explain the connection better, 

we need a few definitions. A permutation of a finite set U, of size n, is a bijection 

CI :{ 1,2,. . ,n} H U. We denote the set of all permutations of U by Perm(U). The 

set of all subsets of U will be indicated by Subsets(U). To simplify notation, we 

sometimes write a set as a list of its elements in any order. For example, A = {k, l,m,n} 

can be written as A = Inkm. 

Given this finite set U, a permutation cx of the elements of U, and a subset A of U, 
we say that A is consecutive in a when the elements of A appear consecutively in X. For 

example, if U = abcdef and c( = efcbda, the subset A = cdb is consecutive in CI, while 

B = efa is not. Given a pair (U, V), with V C Subsets(U), we say that a permutation 

x of U is valid (with respect to ‘8) if all sets A E W are consecutive in c(. The pair 

(U, %?) has the ClP if there is at least one valid permutation. 

It is possible to view one application of the property as the other, as follows: let 

M be a binary matrix and let U be the set of its rows. Each column j of M can be 

seen as the set A C U formed by the rows i such that M[i,j] = 1. The matrix M can 

be seen as a pair (U, %Y) where V is the collection of the subsets of U that correspond 

to its columns. 

Example 1. For example, take the matrix below with its rows labeled: 

a 1 1 0 

b 1 0 1 

C 

d 

e i 1 

0 1 0 . 

1 1 1 

0 0 1 

A permutation of its rows shows that this matrix has the CIP: 

0 1 0 

1 1 0 

1 1 1 

1 0 1 

0 0 1 
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In terms of sets, we have 

u = {a,b,c,d,e}, 

A = {a,b,d}, 

B = {a,c,d), 

C = (6 4 e), 

where the sets A, B, and C form the collection V. The permutation a = cadbe is valid 

and shows that the pair (U, V) has the C 1 P. 

Example 2. As a counter-example take the matrix below: 

u = {a,b,c}, 

A = {b, c>, 
B = {a, b), 
C = {a,c}. 

There is no permutation that leaves b next to c and a next to b and c at the same 

time. 

In this work we will be interested in the complexity of recognizing whether a given 

instance has the Cl P and of finding valid permutations. For this we need a notion 

of size of an input instance. Following previous work in this area we will define 

n + m + r to be the size of an instance, where n is the number of rows, m is the 

number of columns of the binary matrix and r is the number of ones in the matrix. If 

we use sets, IZ= IUI, m= I%? and r= C,,% IAl. 

3. PQR trees 

PQR trees, defined by Meidanis and Munuera [9], are an extension of Booth and 

Lueker’s PQ trees [2]. 

A PQR tree over a set U is a rooted tree with three different types of internal nodes: 

P, Q and R. Its leaves are elements of U, without repetition. The internal nodes of a 

PQR tree must satisfy the following rules: 

(1) Each P node has at least two children. 

(2) Each Q node has at least three children. 

(3) Each R node has at least three children. 
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T T’ 

Fig. 2. Two equivalent PQR trees. 

We define the domain of a PQR tree T, Dam(T), as the union of its leaves. As 

mentioned earlier, Dam(T) is a subset of ZJ. 

The way a PQR tree represents all valid permutations for a pair (U, %?‘) with the 

ClP is by admitting some equivalence transformations over its internal nodes. Each 

transformation specifies a valid reordering of the children of a node. There are three 

kinds of valid reorderings for PQR trees: 

(1) arbitrary permutations of the children of a P node, 

(2) reversal of the children of a Q node, and 

(3) arbitrary permutations of the children of an R node. 

Two trees are equivalent, T E T’, if and only if one of them can be transformed into 

the other by applying zero or more equivalence transformations. 

Fig. 2 shows two equivalent PQR trees. We represent Q nodes by rectangular boxes, 

and P and R nodes by circles, distinguishing R nodes with an “R” inside the circle. 

Reading the leaves of a PQR tree, from left to right, yields a permutation of its do- 

main. This permutation is called the frontier of the PQR tree. For example, the PQR 

tree T in Fig. 2 has frontier cabfehdg while the tree T’ has frontier gdhb.efac. The 

frontier of a tree is denoted by Frontier(T). We expand this definition. 

Definition 3. Given a PQR tree T, define 

Compat( T) = {Frontier( T’): T’ E T} 

This is the set of all permutations that are frontiers of trees equivalent to T. We say 

that these permutations are compatible with T. 

PQR trees can always be built for a pair (iJ,%), which is not the case for PQ trees. 

For the former, if the instance (U, %‘) does not have the Cl P, no tree is going to be 

built. In such a case, the PQR tree will be built having at least one R node, 
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which may indicate the elements that obstruct the property. This is not always the 

case, as we shall see in Section 7. When the instance has the ClP, the PQR tree is 

equivalent to the PQ tree for the same instance. 

In the construction of PQR trees two new collections are characterized: @ and 

‘%‘. These two collections, formally described in the following sections, are used to 

divide the problem of the ClP into two smaller instances, using sets in %? n %“. We 

shall see later that every nonempty set in ?? n %?’ corresponds to a node in the PQR 

tree for %?. 

4. The new theory 

We present the results of this section grouped in some subsections. Before introduc- 

ing the new theory, we make some additional definitions. 

Definition 4. For a finite set U, define the trivial subsets of U as being the empty set, 

the singletons and U itself. So, Y(U) = (8, U} U {{a}: a E U} is the collection of the 

trivial subsets of U. 

Definition 5. We will denote by Vulid(U, %‘) or sometimes just by Valid(%) the set 

of all valid permutations with respect to (U, GT?). 

Definition 6. Similarly, Consec(a) is the collection of all sets A C U that are consec- 

utive in LY. If S is a set of permutations, we define Consec(S) as the collection of sets 

consecutive in every c( E S, that is, 

Consec(S) = n Consec(a). 
iYES 

4.1. New collections: ?f and W’ 

The very first observation is that if the sets in V are to be consecutive, other sets 

must also be consecutive. They are defined by the operations: 

(1) the intersection A n B of two sets in V, 

(2) the union A U B of two sets in %‘, provided that A n B # 8 (nondisjoint union), and 

(3) the relative complement A\B of two sets in %‘, provided that B $2 A (noncontained 

complement ). 
In addition, the singletons {u} for a E U and U itself are always consecutive in any 

permutation. By convention, the empty set is always consecutive as well. Hence, the 

trivial subsets are always consecutive. 

Definition 7. A collection 9? of subsets of U is complete if it contains all the trivial 

subsets of U and is closed under operations (I), (2) and (3) above. 
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Definition 8. Given a collection 59, the completion of %Y, denoted by ???, is the smallest 

complete collection that contains V. The collection @ is well defined since it is the 

intersection of all complete supercollections of %?. 

Example 9. If U = abcde and % = {ab, be, cde}, then 

@ = F(U) U {ab, be, cde, abe, bcde, cd}. 

Example 10. For the same U, collection V = {UC} has completion % = %? U .F( U). 

Immediate consequences of these definitions are given below. 

Theorem 11. Given two collections 97, 9 over the same set U, we have 

(1) WK@, 

(2) V&W, 

We now investigate the relationship between completions and valid permutations. To 

this effect we prove some lemmas. 

Since a permutation a is a sequence of elements, we will denote by cc(i) the element 

of c( that is at position i in CI and by a-‘(x) the position occupied by element x E U. 

By cc-‘(A) we mean the set of indices i such that a(i) E A. If A is consecutive, then 

K’(A) is an interval [i..j]. 

Lemma 12. IJ‘ the sets A, B E W are consecutive in CC, CY E Valid(W), then A n B is 

consecutive in c(. 

Proof. Let cl-‘(A)= [i..j] and cc-‘(B) = [k..Z]. If A nB= 0 it is consecutive in cx. 

Otherwise, the intersection is given by interval [nuzx(i,k)..min(j, Z)], and is conse- 

cutive in x. Cl 

Lemma 13. If the sets A,BE% are consecutive in CI, CYE Vulid(%‘) and AnB#0, 

then A U B is consecutive in LX 

Proof. Let a-‘(A) = [i..j] and cc-‘(B) = [k..Z]. Suppose, without loss of generality, i<k. 
If 1 Gj, then B CA and A U B = A, which is consecutive in x. Otherwise, given that 

A n B # 8, we have ol-‘(A U B) = [i..Z] and A U B is consecutive in CI. 0 

Lemma 14. Zf the sets A, B E Q? are consecutive in ~1, a E Valid(%) and B $ A, then 
A\B is consecutive in CC. 

Proof. Let a-‘(A) = [i..j] and cc-‘(B) = [k..Z]. 
If I <i or j< k, the sets are disjoint and then A\B =A, which is consecutive in c(. 

If i < k and 1 Q j then B 2 A. Otherwise, we have, 
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l if kdi and Z<j then A\B= [I + l..j], 

l if k<i and j<l then A\B=fi, 

l if i<k and j< 1 then A\B = [i..k - I]. 

In all cases, the resulting interval is consecutive in CI, and this concludes our 

proof. 0 

An important relation follows: 

Theorem 15. For any collection %T, 

Valid(W) = Valid(@). 

Proof. It is enough to prove that Valid(W) c Valid(@) because w C %? guarantees that 

Valid(@) S Valid(q). By Lemmas 12-14, we can see that the sets obtained by opera- 

tions (l)-(3) are all consecutive in a permutation c1 E VaZid(%T). Since this is also true 

for every trivial set we can conclude that Valid(q) C Valid(%). 0 

Now we define the collection q’. 

Definition 16. Given two subsets A and B of U, we say that A and B are mutually 

orthogonal, denoted by A I B, when either: 

l AcB, or 

l B&A, or else 

l AnB=& 

Definition 17. Given a subset A of U and a collection QZ C Subsets(U), we write 

A I W when A I B for every BE W. Such a set A is said to be orthogonal to 97. The 

collection of all sets orthogonal to %? is denoted by %“. 

We write V I 9 to indicate that A i B for all A E Q? and BE 9. 

Easy consequences of these definitions follow. 

Theorem 18. Given two collections (&T, 9 over the same set U, we have 

(1) mOc:+, 

An interesting relation involving composition of the operators previously defined 

follows. 

Theorem 19. Zf d I .@ then &_LI. 

Proof. Let & and 98 be as in the statement of the theorem. Suppose we have A, BE d 
and H E 99. Then A I H and B I H. Table 1 proves that the sets A n B, A U B when 

A n B # 8 and A\B when B $ A are all orthogonal to H. 
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Table 1 
Possible outcomes of intersection, union, and complement for sets 

n BnH=8 B&H HCB 

AnH=O (AnB)nH=@ (AnB)nH=@ (AnB)nH=@ 
ACH (AnB)nH=0 (AflB)cH AnB=A 

HC_A (AnB)nH=@ AnB=B (4 n B) > H 

U BnH=Q) BC_H HCB 

AnH=@ (AUB)rlH=@ AnB=@ (AUB)>H 
ACH AflB=@ (AUB)CH (AUB)>H 
HCA (AUB)zH (AUB)>H (AUB)>H 

\ BnH=@ BCH HCB 

AnH=@ (A\B)nH=@ A\B=A (A\B)nH =v) 
AC_H A\B=A A\BcH A\B=@ 
H&A A\B>H BCA (A\B)rlH=@ 

In addition, trivial sets are orthogonal to any other set. Since we construct d by 

repeated use of operations (l)-(3) given at the beginning of Section 4.1, and adding 

trivial sets, this implies that J? I B. 0 

We can now use the previous result to prove: 

Theorem 20. For any collection %Y:, 

Proof. Applying Theorem 19 on the relation V I %‘l, and observing that d i .B 

implies that x2 C .& and that .G? 2 d’ we derive: 

On the other hand, a collection is always contained in its completion. Hence, %“I C 9 

and this implies the first equality in the theorem. 

Using Theorem 18, from V C %? we see that @FL >(%?)‘. Then $?’ = (%)‘. 0 

4.2. Decomposition 

Now we are going to see how the problem can be nicely decomposed using a set 

in @n %?l. We need the following definition. 

Definition 21. Define 

A/H = 
(A\H)U{H} if HgA, 

A if HnA=@ 
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and the inverse operation 

(A\{H})UH if H EA, 
AwH= 

A if H $A. 

Given a pair (U, 9) with V s Subsets(U) and a subset H E ??n ?Z’, the first subin- 

stance of the problem is defined taking the pair (H, W n Subsets(H)). We denote this 

subinstance by %? A H. 

The other subinstance of the problem is (U/H, W/H). The collection W/H is defined 

as: %?/H = {A/H: A E %?, A $Z H}. We denote this subinstance by @T/H. 

When the problem cannot be decomposed any further, we have the instances such 

that %?n 97’ = f(U). These instances are called prime and correspond to PQR trees 

with one internal node. 

Now we need a few definitions regarding the permutations in each of these sets. 

If p is a permutation on U/H and y is a permutation on H, denote by /?[H/y] the 

permutation c( obtained from p by substituting H by y. For instance, if fi = abHfd and 

y= ecg, then /?[H/y] =abecgfd. If H is clear from the context, we will write simply 

fi * y instead of p[H/y]. Accordingly, if X and Y are sets of permutations of U/H and 

H, respectively, we will write 

X*Y={/?*y: PEX, YEY}. 

An important result is what follows. We observe that no tree is necessary for this 

conclusion. 

Theorem 22. Given a collection V and a nonempty set H E @n ‘Gfl we have 

Valid( U, W) = Valid(U/H, W/H) t Valid(H, W AH). 

Proof. Given c( E Valid(U, %Y), the elements of H appear consecutively in c(, since 

H E %?. Hence, a can be written uniquely as a = /?[H/y], where j is a permutation on 

U/H and y is a permutation on H. 

Now for any AE%‘, AnH must be either 0 or A or H, since HE’&. IfAflH=8 
or H, y is clearly valid for A r7 H. If A f% H = A, y is valid for A fY H because a is valid 

for A E %?. Hence, y E VuZid(H, 92 AH). 
Let A/H be an element of +2/H. Recall that CL is valid for A E %T. Now if H &A 

we have of course p valid for A/H, since H was contracted in both c( and A to a 

single element. If H n A = 8 then the section involving A in CI is not changed, that 

is, remains consecutive in p. In both cases j3 is valid for A/H. This shows that 

fi E Valid(U/H, q/H). 
Conversely, it is easy to see that if b E Valid(U/H,e/H) and y E Valid(H,%T A H), 

then B[H/r] E Valid(U, %‘), because H is orthogonal. 0 
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4.3. Prime instunces 

In this section we inspect the prime instances, using an auxiliary graph defined 

below. 

Definition 23. Define the graph g( U, $?) = ( V, E), where V = U and E = { ab : {a, b} E 

%}. This is the graph of binuries of $?. Sometimes we will write just 99(U) for 

9( U, % ). 

Theorem 24. For any collection %?, euch connected component of .9(W) is either (I 

puth or u complete subgraph. 

Proof. This is obvious for components of up to three vertices. Let A be a component 

that is not a path and assume that (Al z 4. The component A either has a cycle or a 

vertex of degree at least three. If A has a cycle involving, say, a, b and c as consecutive 

elements, then abc E 55’. There is also another set B in %? containing a and c but not 

b obtained going around the cycle. The intersection B nabc = UC is also in $? and 

therefore a is an element of degree at least three in B(g). 

Let x be any vertex of degree at least three. We claim that the neighborhood of x 

is a complete subgraph. Indeed, if edges ax, bx and cx exist, then ab = (ax u bx)\cx 

is in %?. Analogously we prove that UC and bc are also in %. Continuing this way 

with the remaining vertices of A, i.e., starting with a vertex of the neighborhood 

of the complete graph already obtained, then with a vertex of the neighborhood of 

the new complete graph and so on, we can conclude that A is a complete 

subgraph. 0 

In order to prove Lemma 25 we need the following definition. We say that a sub- 

set A C U is connected (with respect to $77) when A induces a connected subgraph of 

.JA( % ) . 

Lemma 25. Zf % is prime and A E @ is nontrivial, then A is connected. 

Proof. Induction on IAl. The result is immediate for IAl = 2. If IA] 3 3, A cannot be 

orthogonal to %. Hence there is BE %? with A j! B. Then A fl B and A\B are both in @ 

and strictly smaller than A, so the result is true for them, i.e., they are both connected. 

Also, since /A/ >3, at least one of them is nontrivial. 

By induction hypothesis, both A n 6 and A\B are connected. However, A cannot 

be written as a nondisjoint union of A rlB and A\B. Our strategy, then, is to use a 

“bridge”, that is, a connected set X that strictly overlaps both A n B and A\B and is 

contained in A. Then, A can be written as a nondisjoint union of connected sets A n B, 

X and A\B, and is therefore connected. 

If A n B is nontrivial, let D = A f? B; otherwise, let D = A\B. Since in any case D is 

nontrivial and D E @, we have D $+YL and then, there is E E % such that D J! E. 
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Fig. 3. The set X, shown in gray, acts as a “bridge” between D and A\D: (a) X =A n E; (b) X = A\E. 

If E n (A\D) # 0, then (A n E) no # 8 and (A n E) n (A\D) # 0. Take X =A n E 

(Fig. 3(a)). Since X E %? and is connected by induction, we see that there is a path in X 

between elements of D and elements of A\D. Since both A and A\D are in ? and are 

also connected by induction, we conclude that A is connected. If En (A\D) = 0 then 

E must have some element not in A. But then (A\E) n D # 0 and (A\E) f? (A\D) # 8; 

using the same argument for X =A\E that we used above for A n E we can also 

conclude that A is connected (Fig. 3(b)). 0 

Theorem 26. If %? is prime and @ is not trivial, then 9(‘3) is a connected graph. 

Proof. Let A be the largest connected subset of U. Since %? is not trivial, by the 

above lemma we know that IAl 22. We claim that A = U. If not then A is nontrivial 

and hence A # %?‘, since A E@. Then there is BE V with A ,f B and therefore AUB 

would be a larger connected subset, again by the lemma. This contradiction proves that 

indeed A = U. 0 

In several of our induction proofs the base case refers to prime collections. It is 

important to characterize prime instances in order to solve the questions posed in 

these base cases. For 1 U I< 3 every set is trivial and every permutation is valid with 

respect to every set. The following result is of fundamental importance for larger 

collections. 

Theorem 27. Let %? be a prime collection of subsets of U with JUI 2 3. Then either 

(1) P=Y(U), or 

(2) ??= Consec(cc), for some permutation a on U, or else 

(3) %? = Subsets(U). 

Proof. If V C ,Y( U) then obviously $? = F(U). If %? is not trivial, then by Theorem 26 

we have 98(U) connected. Furthermore, by Theorem 24, !A?(%‘) is either a path or 

complete. 
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If g’(V) is a path, this path defines two permutations of the elements of U, one 

being the reverse of the other: just traverse the path from one extreme to the other. 

Let x be one of these permutations. Any set consecutive in x can be constructed from 

the binaries by nondisjoint union. Thus Consec(r) C %. If a set not consecutive in x 

were present in %?, then we would be able to construct a binary not consecutive in Y 

using intersection, and &J(%?) would not be a path. 

Finally, if .%(G9) is complete, all binaries belong to %, and therefore all subsets of 

U belong to %. 0 

5. Relation between the ClP and PQR trees 

We proceed by giving some definitions and proofs which show that for every binary 

matrix a PQR tree can be built and that each PQR tree is an instance of a ClP problem. 

Let Descr(v) be the set formed by all leaves that descend from node u in ‘T: 

Descr(v) = {u E U: v is an ancestor of a in T}. 

Notice that Descr(v) is nothing else than the domain of the subtree rooted at z!. 

We extend this definition to sets S of nodes as follows: 

&w~(S) = u IkxT(U). 
Y&s 

The collection Compl(T) is defined as follows. 

(1) r(U) is contained in Compl( T). 

(2) Desc~(S) is in Compl(T) if S is the set of all children of a P node of T. 

(3) Descr(S) is in Compl(T) if S is a set of consecutive children of a Q node of T. 

(4) Descr(S) is in CompZ(T) if S is an arbitrary set of children of an R node of T. 

(5) No other sets are in CornpI( 

In (2))(4) above S is a set of siblings, that is, nodes that share a common parent. 

The collection Compl(T) constructed from tree T has several important properties. 

First of all, it is complete, as its name already suggests. Then, Compl( T) has the C 1P 

if and only if T has no R nodes. Thus, a good way of knowing if a collection % 

has the ClP is to find a tree T with the property that Compl(T) =%?, and then check 

whether this tree has R nodes. Such a tree will be called a PQR tree for W. 

All these properties will be shown in the rest of this section. Furthermore, we will 

indicate how to construct a PQR tree T for any collection %. It turns out that for a 

fixed w all these trees are equivalent to each other. The section closes with a few extra 

results. 

We now present the proofs of the results mentioned above. 

Theorem 28. The collection Cornpl(T) is complete. 
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Proof. The trivial sets are in Compl(T) by definition. We must therefore show that 

Compl( T) is closed under intersection, nondisjoint union, and noncontained 

complement. 

It suffices to consider two sets Descr(S) and Descr(S’) with S and S’ being sets of 

children of the same internal node u. Otherwise the sets would be mutually orthogonal 

and the operations yield either one of the original sets or a trivial set. Now there are 

three choices for the type of v. 

If v is a P node, S=S’ and we are done. If v is a Q node, the operation, be 

it intersection, nondisjoint union, or noncontained complement, yields Descr(S”) for 

some set S” of consecutive children of v. Finally, if v is an R node, anything goes, so 

again we obtain a set in Compl(T). 0 

The following result shows that we can view CompZ(T) as the collection of all sets 

consecutive in every permutation compatible with T. However, it is only valid if T is 

a PQ tree, that is, has no R nodes. 

Theorem 29. If T has no R nodes, then 

Compl( T) = Consec( Compat( T)). 

Proof. It is easy to see from the definitions that every set in CornpI is consecutive 

in T’s frontier, so 

Compl( T) C Consec(Frontier( T)). 

It is also straightforward to see that equivalent trees yield the same complete collection, 

that is, 

T z T’ + Compl( T) = Compl( T’). 

These two observations imply that 

Compl( T) C Consec( Compat( T)). 

Now for the other direction, let A be a set in Consec(Compat(T)). Mark all leaves 

in T that belong to A and then perform the following procedure: 

while there is a node v with all children marked then 

unmark v’s children and mark v. 

Let X be the set of marked nodes after this procedure. We can write 

A = U Descr(v). 
VEX 

If X is a singleton then A belongs to Compl(T) by definition. If X has at least 

two elements, then all elements of X must be siblings. In fact, let x and y be two 

nodes in X. Observe that if x is an ancestor of y one of them would not be marked, so 

there is no ancestry relationship between them. Let v be the lowest common ancestor 
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of x and y. If there is a node z in the path from x to u, then z is not marked, and 

therefore there is a leaf a descending from z which does not belong to A. Regard- 

less of the type of node z, there will be a permutation of its children that leaves a 

between the descendants of x and y in the frontier. This contradicts the fact that A 

is consecutive in the frontier of every tree equivalent to T. Therefore, there are no 

intermediate nodes between x and v, and an analogous argument holds for y and u as 

well. 

It follows that X is a set of siblings. Let v be the common parent. If v is a P node, 

then X must include all children of v, otherwise we can find a permutation of these 

children yielding an equivalent tree in whose frontier A is not consecutive. If v is a 

Q node, then X must be formed by consecutive children by the same reason. In both 

cases A fits the description of a set in Compl(T). Because T has no R nodes, this 

completes our proof. 0 

As remarked, the consecutive ones property is related to the absence of R nodes. 

The following result makes this relationship more precise. 

Theorem 30. There is a valid permutation ,for collection Compl( T) if and only if T 

has no R nodes. 

Proof. Notice that if T has no R nodes, its frontier is a valid permutation for 

Compl( T). 
On the other hand, if T has at least one R node no permutation is valid for 

Compl(T). Indeed, let x be any permutation and let v be an R node of T. Let x, 

y, and z be three distinct children of v (an R node has at least three children}. Choose 

any leaf a descending from x, any leaf b descending from y, and any leaf c descending 

from z. Regardless of the order in which a, b, and c appear in x, one of the following 

three sets in Compl(T) will fail to be consecutive: 

Descr(x) U Descr(y), 

Descr( y) U Descr(z), 

Descr(z) U Desc&). 0 

It is true that for any collection $5’ there is a PQR tree T such that Compl(T) =%. 

However, we will postpone the proof of this result until the section containing an 

algorithm for this task. We proceed here showing how a tree compactly represents 

the valid permutations of a collection. We need a few preliminary definitions and 

results. 

Theorem 31. g T does not have R nodes, then 

Valid( Compl( T)) = Compat( T ). 

Proof. By induction on the number of internal nodes of T. 
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R A 
ab cd 

Fig. 4. A tree for a collection V such that Vulid(Compl(T)) # Compat(T) 

If T has only one internal node, this node is necessarily the root. We have two 

possibilities: the root can be either a P node or a Q node. Recall that R nodes do not 

exist in T. 

If T has a P node, then Compl(T) = F(U) and Vulid(Compl(T)) = Perm( U). On 

the other hand, Compat(T) = Perm(U) as well, so we have equality in this case. 

If T has a Q node, then Compat(T) = {a,??} for some permutation c(, where a is 

the reverse of cx. But we also have Compl(T) = Consec(cc) and it is not hard to see 

that Vulid( Compl( T)) = Compat( T). 

Let us now proceed with the induction considering trees with more than one internal 

node. Let T be such a tree and take v an internal node of T whose children are all 

leaves. The set H = Descr(v) satisfies the hypotheses of Theorem 22 and therefore we 

have 

Vulid( Compl( T)) = Vulid( Compl( T)/H) * Valid( Compl(T) A H). 

However, Compl( T)/H = Compl(T,), where T, is the tree obtained from T by re- 

placing v by a single element called H. On the other hand Compl(T) AH = Compl(T;! ), 

where T2 is the subtree rooted at v. By induction hypothesis, we have 

Vulid( Compl( TI )) = Compat( TI ) 

and 

Valid(Compl(T2)) = Compat(T2). 

On the other hand, it is also true that 

Compat( T) = Compat( TI ) * Compat( T2), 

since T is the result of replacing the leaf H in Tl by T2. The result follows from these 

last three equalities. q 

Example 32. Let U = abed and %? = {ab, bc, cd, ad}. The PQR tree T for %? is shown 

in Fig. 4. We observe that the permutation abed belongs to Compat(T) but is clearly 

not consecutive for %7, since Valid( Compl(T)) = 0. This justifies the need for the 

restriction in Theorem 3 1. 

We are now ready for one of our main results, which states that if a collection has 

the C 1 P, its valid permutations are described by a tree that satisfies some criteria. Later 

on, we will see that any collection admits a tree satisfying these criteria (Theorem 38). 
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Theorem 33. Zf’ % has the CIP und the tree T is such that Compl( T) = @, then 

Valid(W) = Compat( T). 

Proof. By Theorems 15 and 3 1 we have 

Valid(W) = Valid(/) = VaZid( Compl( T)) = Compat( T). 

Observe that we can use Theorem 31 because Theorem 30 guarantees that T does not 

have R nodes. 0 

Example 34. To see that the restriction is necessary in the previous theorem, con- 

sider the collection in Example 32. It is clear that the permutation abed belongs to 

Compat(T) but does not belong to Valid(W), which is empty in this case. 

The remaining of this section is devoted to some interesting results that shed more 

light on the relationship among trees, collections, and permutations. 

We start by characterizing the sets in Compl( T) n Compl(T)‘. 

Lemma 35. For any tree T and any node v of T lqe have 

DescT(v) E CompZ( T) rl CompZ( T)‘. 

Conversely, every nonempty set in Compl(T) n Compl(T)’ is qf the form Desq(v) 
jk)r some node v oj T. 

Proof. Let us first show that Des+(v) E Compl( T). If v is a leaf, then Descr(v) is 

trivial and we are done. If v is an internal node, we can take S as the set of all children 

of v, and, regardless of the type of v, Descr(S) E Compl(T) by definition, Note that 

Desq-(S) = Descr(v) in this case. 

To prove that Descr(v) E Compl( T)’ we have to worry only about nontrivial sets 

in Compl(T). Such sets are of the form Descr(S), where S is a set of children of a 

certain node x. We have three cases to consider: 

l c is an ancestor of x (includes the case v =x): then Descr(t;) > Descr(S). 

l There is an ancestor of v in S: then DescT(v) C DescT(S). 

l remaining cases: Descr(v) n Desq(S) = Q1. 

Conversely, suppose that a nonempty set H E Compl( T) also belongs to Compl( T)‘. 

The result is obvious if H is trivial (take the root or a leaf as v), so let us assume 

that H is not trivial. Then H = Desq(S) for some set S of children of a node v, with 

IS/ 32. If v is a P node, S must include all its children by definition. If v is a Q node 

and S does not include all children of zi, then there is another set S’ of consecutive 

children of v such that Descr(S) ,L Descr(S’), a contradiction. Similarly, if u is an R 

node S must also contain all its children. 

In all cases we have then H = Desc~(S) = Descr(v). E 

Now we present some results involving equivalent trees. 
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Theorem 36. Given two PQR trees T and T’ over the same set U, we have 

Compl(T) = Compl( T’) % T - T’. 

Proof. It is straightforward to see that if T = T’ they yield the same complete collec- 

tion. The rules for forming sets in Cornpl(T) are invariant under equivalence transfor- 

mations. 

To prove that Compl( T) = Compl(T’) implies the equivalence between T and T’ 

is more involved, and we will do it by induction on the number of elements of U, 

starting with the base case / UI = 2. In this case the trees must have a P node with two 

leaves as children, and they are clearly equivalent. 

If 1 Uj 2 3, let us first treat the case where the collection Compl(T) is prime. By 

Lemma 35 both trees T and T’ have only one internal node - the root. Furthermore, 

Theorem 27 describes all possibilities for Compl(T). It is easy to see that the roots 

of T and T’ must be of the same type. If this type is P or R, the trees are obviously 

equivalent. If the roots are Q nodes, then to generate the same collection Compl(T) 

we must necessarily have the children in T’ in the same order they appear in T, or in 

the reverse order. Therefore, once again the trees are equivalent. 

Now let us tackle the case where Compl(T) is not prime. Let H be a nontrivial set in 

Compl(T) n Compl(T)‘. By Lemma 35 there are nodes v in T and VI in T’ such that 

H = De.q(v) = DescTf(u’). 

Let T/v be the PQR tree obtained from T by substituting the subtree rooted at v by a 

new leaf H = Descr(v). Let also 2’ A v be the subtree rooted at v. It is straightforward 

to verify that 

Compl(T/v) = Compl(T)/Descr(v) 

and 

Compl(T A v) = Compl( T) A Desq(v). 

Because Compl(T) = Compl(T’) and Descr(v) = DescTI(v’), we have 

Compl( T/v) = Compl( T’lv’) 

and 

Compl( T A v) = Compl(T’ A v’). 

Now by the induction hypothesis we have the equivalences 

T/v = T’jv’ 

and 

T/Iv-T/Au’. 

But this implies at once the equivalence between T and T’. 0 



J. Meidanis et al. I Discrete Applied Mathematics 88 (1998) 325-354 345 

a b c a b c 

60 @I 

Fig. 5. (a) PQR tree rooted at a P node. (b) PQR tree rooted at an R node. 

Theorem 37. Zf T and T’ are two trees without R nodes, then 

Compat( T) = Compat( T’) H T E T’. 

Proof. The + part follows from the definition. For the + part, notice that by 

Theorem 29 we have 

Compat( T) = Compat( T’) + CompZ( T) = Compl( T’), 

because none of the trees has R nodes. The result then follows immediately from 

Theorem 36. fl 

The example in Fig. 5 shows that the hypothesis is necessary in the previous theorem. 

6. Algorithm 

The algorithm we are about to present is based on the following result, which tells 

us how to construct a PQR tree for a given collection %‘. 

Theorem 38. For any collection W over a set U, there is a PQR tree T such that 

Compl( T) = g. 

Proof. By induction on the number of elements of U. If 1 UI = 2, a tree consisting of 

just a root of type P and two children satisfies the requirements for any collection V. 

Now let us turn to the case 1 Uj 3 3. We investigate first the case where V is prime. 

In this case, Theorem 27 describes %?, and in each case a tree T can be constructed 

such that CompZ( T) = ?? as follows. 

In case (1) we have a trivial completion. Thus, T can be a P node with all elements 

of U as children. It is immediate that Compl(T) = F(U). 
In case (2) only two permutations are valid, namely, x and its reverse. Take T as 

a Q node with all elements of U as children, in the order given by ~1. It is clear that 

Compl( T) = Consec( a). 
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Finally, in case (3) all sets are in the completion. Take T as an R node with all 

elements of U as children. By definition, we have Compl( T) = Subsets(U). 

Let us now treat the nonprime instances. Let H be a nontrivial set in %? n WL. We 

construct subinstances %7/H and VA H as in Section 5. By induction hypothesis, there 

are trees T, and T2 such that 

Compl( T, ) = W/H 

and 

Compl(T2) = % A H. 

Let Tl [H/T21 be the tree obtained from Tt by replacing leaf H by Tz. We claim that 

this tree is a PQR tree for V. To prove this claim, we need the following intermediate 

results: 

Compl( T, [H/Tz]) = (CompZ( Tl ) w H) U Compl( T2) 

and 

(1) 

The first result can be easily proven without difficulty from the definitions of CornpI 

and the operations on sets defined in Section 5. The second result is also not difficult. 

We briefly sketch the proof here. We begin by observing that the right-hand collection 

is complete and contains %?; therefore it contains q. On the other hand, both V/H w H 

and (67 AH are contained in V, and this implies that their completions are contained in 

the completion of %‘. Eq. (1) now follows easily because of the relation 

%?/HwH=V/HwH, 

valid in this context. 0 

As a direct consequence of this result, we prove the following lemma. 

Lemma 39. Z’ Vulid(%T) # 0, then %? = Consec( Valid(W)). 

Proof. By Theorem 38 there is a tree T with 

%? = Compl( T). 

This tree has no R nodes (Theorem 30), hence we can write, 

Compl( T) = Consec( Compat(T)) = Consec( Valid(~)), 

using Theorems 29 and 3 1, respectively. The conclusion follows form Theorem 15. 0 

Using the results presented so far and using the convention that any PQR tree 

containing an R node has the empty set as its set of valid permutations, we see that 
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Function PQR-Tree( U, %‘) 
if there is a nontrivial set H in @n %?’ then 

TI c PQR-Tree( U/H, V/H) 

T2 c PQR-Tree(U n H,V AH) 

return T1 with leaf H replaced by TZ 

else 
{V is prime } 

case 
% trivial: return P-node( U ) 

3~ E valid(W): return Q-node(x) 
otherwise: return R-node( U ) 

endcase 
endif 

Fig. 6. A recursive algorithm to construct PQR trees. 

every instance (U, 55’) has all its valid permutations described by a suitable PQR tree, 

and that the ClP is equivalent to absence of R nodes. In addition, we have the recursive 

algorithm of Fig. 6 for constructing a PQR tree for (U,%?). 

The correctness of the algorithm follows from these results. We will now investigate 

its complexity, dividing it in some smaller steps. In what follows we clarify how to 

execute every step. 

The steps that must be accomplished are: 

(1) Find a nontrivial set H E %? n %?l, or report that none exists. 

(2) Decompose V into W/H and 59 A H. 

(3) Join trees T1 and T2. 

(4) Test whether a prime collection is trivial. 

(5) Find a valid permutation for a nontrivial prime collection, or report that none exists. 

Let us define a new graph related to these tasks. This is the overlapping graph defined 

by Fulkerson and Gross [4]. Associate with (e a graph G(q), in which each vertex 

denotes a set of +.Z and an edge connects two vertices of G(q) if the corresponding sets 

A and B of %? have nonempty intersection and neither of them is included in the other, 

i.e., A ,!! B. To make the reading easier, whenever we mention sets in a component we 

mean vertices representing sets in a connected component. 

We have the following results concerning sets H in $? n %‘. 

Theorem 40. Let X be a connected component of G(q). Then 

H= UA 
AEX 

is a set in %n%li 
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Proof. The set H can be obtained by nondisjoint union of (some) sets in X, hence it 

belongs to %?. Notice also that H contains every set in X, so it is orthogonal to those. 

If a set BE V outside X is not orthogonal to H, then it is not orthogonal to some 

A EX, a contradiction. Therefore, H E WL. 0 

The set H obtained as suggested by Theorem 40 is called a union of component. 

Before we can proceed on our results, we must prove a property of G(W). An 

auxiliary lemma precedes the result. 

Lemma 41. Zf A, B, and H are subsets of U with A C H, B I H, and A +!! B, then 

BCH. 

Proof. The fact that B I H leaves three possibilities. If H C B we would have A C B, 

which is not true. If H n B=@ then An B = 0 also, which is impossible. The only 

possibility left is B C H, which must then be true. 0 

Lemma 42. Zf all the unions of components in G(W) are trivial, then all nontrivial 

sets in V belong to the same connected component of G(V). 

Proof. Suppose the conclusion is not true and let X and Y be two connected compo- 

nents of G(%‘), with nontrivial sets Al,. . . , Ak and BI,. . . , Bt, respectively. Since all the 

unions of connected components are trivial, 

U Ai= U Bj=U. 
I Qi<k I Qj<l 

As the components are disjoint and their unions are equal to U, at least one set of X 

is properly contained in one set of Y or one set of Y is properly contained in some 

set of X. Suppose, without loss of generality, that Ai c B,. Then, by Lemma 41, ev- 

ery set adjacent to A1 must be also contained in B,, otherwise there would be an 

edge between B1 and some Ai. The same applies to the rest of the sets in the con- 

nected component. So, the entire component X would be included in B,, but B1 cannot 

beU. 0 

Building unions of components is one way of obtaining suitable sets for the decom- 

position. Another way is afforded by the following concept. Two elements a and b 

of U are called twins with respect to (8 if the binary set ab is in 9’; notice that 

ab E ‘ST1 if and only if no set A E ‘Z?, IAl 22, has I{a, b} n Al = 1. This is an equiva- 

lence relation. 

Lemma 43. Zf all unions of components in G(e) are trivial, then the equivalence 
classes of the twins relation are sets in @n 5~‘~. 

Proof. As the twins relation is an equivalence relation, and every pair in an equivalence 

class H is contained in @. we have H E W’. 
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To see that H E @, it suffices to consider H nontrivial. Let us divide the nontrivial 

sets in % into A,,A2,. . ., Ak,BI,B2 ,..., Bt so that HCAi, 1 di<k, and HnB, =9), 

1 <i<l. 

Notice that no set in W is properly contained in or strictly overlaps H. Because H 

is nontrivial we know there are nontrivial sets in ‘8; by Lemma 42 they are all in one 

component of G(%‘), whose union must be U. Therefore, k 3 1, that is, there is at least 

one set Al E (8 that contains H. 

Let us suppose, also, that the sets Br , Bz,. . . , BI were ordered by a BFS applied in 
G(%) starting in Al. We proceed to show by induction on j that, for 0 <j < 1, 

H,=(...(A, nA:!n...nAk)\BI)\B2),\...)\B,)E~’. 

For a base case, let j = 0. Then Ho = (Al n A2 f?. n Ak ) E @. For j > 0, suppose that 

(...(A, nA2n...nAk)\B,)\B*),\...)\Bj~I)EI. 

Since Bj is nontrivial, it belongs to the same connected component as the other sets, 

and there is a previous Ai or B;, i < j, adjacent to it. Let us consider the two possible 

cases: 

(1) If B, JAi then Bj g Ai, and hence 

Bjg(...(Ar nA2n...nAk)\B,)\B2),\...)\Bj-l), 

which implies that 

(...(A, nA2n...nAk)\B,)\B2),\...)\B;)E~ 

by noncontained difference. 

(2) If Bj JL Bi then Bj n Bi #a), and hence 

Bj~(“.(A1nA2n’.‘nA,)\B1)\B2),\...)\Bj~I), 

which implies that 

(...(A, nA2n...nAk)\BI)\B2),\...)\Bj)E’ 

also by noncontained difference. 

The result follows observing that H = HI. 0 

The following example shows why the restrictions in Lemma 43 are necessary. 

Example 44. Let U = abcde and %? = {cde}. The set ab is a twin class but it does 

not belong to @. But the component of G(V) consisting of cde alone has a nontrivial 

union. 

Definition 45. A partition of a set U with respect to 59 is the division of U into 

nonempty pair-wise disjoint subsets (blocks) such that the union of all of them is U 

and every set in ‘6Z can be constructed by doing the union of some blocks. 
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We say that a partition A of U with respect to 9? refines another partition B 

with respect to the same collection if every block of A is contained in some block 

of B. 

The coarsest partition of U with respect to ‘3 is a partition that does not refine any 

other. 

The next lemma proves the equivalence between the equivalence classes of the twins 

relation for 97 and the nontrivial blocks of the coarsest partition of U with respect 

to %?. This claim is true only if no singleton is present in %7, as we can easily realize, 

so we must remove the singletons before applying a partition algorithm. This operation 

does not affect Valid(%Y). 

Lemma 46. Let W be a collection with no singletons and such that all unions qf 

components in G(g) are trivial. Then the nontrivial blocks of the coarsest par- 

tition of U with respect to Q? are exactly the equivalence classes for the twins 

relation. 

Proof. Since the equivalence classes of the twins relation are in %?n ?i?‘, its easy to 

see that each class is completely contained in a single block of the coarsest partition 

of U with respect to %?. 

Conversely, let H be a block of the coarsest partition of U with respect to %’ and 

suppose that H is not contained in any equivalence class of the twins relation. Then its 

elements are split in at least two disjoint blocks A and B. Then there must exist S E %? 

such that either A C S and B g S or A g S and B C S. So S refines H which would not 

be a block of the coarsest partition anymore. 0 

The following result shows that no other ways of obtaining sets in %?n %?’ are 

necessary. 

Theorem 47. If 9? is a collection such that 

w all unions of components in G(%) are trivial, 

a $7 has no twins, 

then 5~? is prime. 

Proof. The result is obvious if 59 & F(U), so we assume 55’ has at least one nontrivial 

set. By Lemma 42, all nontrivial sets in %? are part of the same connected component 

of G(V), and the union of this component equals U. In other words, for every a E U 
there is a nontrivial set A E %? such that a E A. 

We will prove the result by contradiction. Suppose that H is a nontrivial set in 

@ f~ %“. Because H is nontrivial, there are at least two distinct elements a and b 
in H, and at least one element c not in H. By hypothesis a and b are not twins, 

hence there is a set A E %Y that separates a and b, that is, ab ,I A. But A I H, therefore 

ACH. 
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On the other hand, there is a nontrivial set BE %’ such that c E B. Because both A 

and B correspond to vertices in G(q), and G(%) is connected, there is a path 

AJA, J...AAk,fB 

in G(g) leading from A to B. By Lemma 41, A, 2 H. Repeated application of this 

lemma eventually results in B C H, but this contradicts the fact that c E B\H. 0 

Now we consider the cost of building the PQR tree. Based on the previous results, 

we can subdivide step (1) into: 

( 1) find a nontrivial set H E ?f f’ VL, or report that none exists 

(a) Find unions of components in G(q). 

(b) If all are trivial, find twin classes. 

(c) If all twin classes are trivial as well, report that % is prime. 

Steps (2)-(4) are easily accomplished in linear time. The more intricate steps are (1) 

and (5). In step (I), steps (lb) and (lc) are simple also, and can be accomplished in 

linear time (singletons can be removed easily, twin classes can be found by coarsest 

partitioning, which is a process similar to 1exBFS [12, 71). Step (lc) can be acomp- 

plished in linear time provided that a spanning tree for the component is given [7, 

Section 21. 

The crucial step is then (la) finding unions of components. We currently do not 

know how to implement this step in linear time, except by resorting to previous linear 

algorithms for the ClP in the literature. With this, each invocation of the PQR tree 

routine will cost linear time, and the overall running time will be quadratic because 

each time the instance is broken into two others whose combined size is bounded by 

the size of the original instance plus a constant: 

Lemma 48. For my collection % and any set H E % n g1 we have 

size( UJH, W/H) + size(H, Q? A H) < size( U, %) + 1. 

What is the point of having a new algorithm that is slower than previous ones and 

still needs these as subroutines? One reason is that the algorithm is much clearer than 

the previous ones, and if we could find simpler algorithms to implement step (la), it 

may very well be that in some cases people would rather implement a simpler algorithm 

than deal with intricate code. 

7. Robustness 

As a final remark, we provide examples to illustrate how a PQR tree can behave in 

the presence of errors. 
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fghijk 

a b c d 

Fig. 7. PQR tree for collection %?. 

abcdefghij k 1 m 

Fig. 8. What the PQR tree for collection %! would be without errors. 

abcdefghijklm 

Fig. 9. PQR tree for collection w with an error. 

Example 49. Let us suppose we made an hybridization experiment, and we obtained 

the following collection: 

U = abcdefghij, 

%? = { ab, bc, cd, bd, ac, abcde, efgh, ef, ghijk, fg, ghi, ij, jk}. 

The tree for this collection appears in Fig. 7. As we can see, it has an R node, so 

the collection does not have the ClP. But this R node tells us that an error may had 

occurred in the experiments involving only a, b, c and d, a small subset of the probes. 

Example 50. Suppose now we were to obtain the tree in Fig. 8, which looks like a 

good answer, after performing the experiments that resulted in the family below. 

U = abcdefghijklm, 

%? = {abc, ab, bcde, defg, de, ef ,fg, ghij, hijkl, ij, jk, kl, lm} 

But let us consider that an error included the set al in %?. The resulting tree would 

be the one in Fig. 9, a tree that provides no help in finding out the experimental error. 

Other analysis methods are needed. 
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In both examples, a PQ tree would not be constructed and no information could be 

retrieved from the experiments. 

8. Conclusion 

This paper contributes to a better understanding of the Consecutive Ones Property 

in several ways, following the steps of Meidanis and Munuera [9]. 

First, we develop a new theory, that recasts the property in terms of collections of 

sets. Then, the class of PQ trees of Booth and Lueker [2] is extended to include PQR 

trees. The new trees exist for any collection, not only collections that have the ClP. 

New proofs of the fact that a PQ tree is capable of recording all valid permutations 

of a collection are given. In addition, we prove that for every PQ tree there is a 

collection of sets for which this tree records the valid permutations. 

A new, simpler, algorithm for building a PQR tree for a given collection is given. 

The algorithm runs in polynomial time, but it depends on previous algorithms, and it 

would be interesting to find a linear time algorithm based on the ideas developed here. 

The linear time algorithms in the literature are hard to implement, and do not construct 

R nodes. 
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