
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 13, Number 2, 2006
© Mary Ann Liebert, Inc.
Pp. 567–578

On Sorting by Translocations

ANNE BERGERON,1 JULIA MIXTACKI,2 and JENS STOYE3

ABSTRACT

The study of genome rearrangements is an important tool in comparative genomics. This
paper revisits the problem of sorting a multichromosomal genome by translocations, i.e.,
exchanges of chromosome ends. We give an elementary proof of the formula for comput-
ing the translocation distance in linear time, and we give a new algorithm for sorting by
translocations, correcting an error in a previous algorithm by Hannenhalli.

Key words: comparative genomics, genome rearrangement, translocation distance, sorting by
translocations.

1. INTRODUCTION

We revisit the problem of sorting multichromosomal genomes by translocations that was
introduced by Kececioglu and Ravi (1995) and Hannenhalli (1996): Given two genomes A and B,

the goal is to find a shortest sequence of exchanges of nonempty chromosome ends that transforms A into
B. The length of such a shortest sequence is the translocation distance between A and B, and the problem
of computing this distance is called the translocation distance problem.

The study of genome rearrangements allows one to better understand the processes of evolution and is an
important tool in comparative genomics. However, the combinatorial theories that underly rearrangement
algorithms are complex and prone to human errors (Ozery-Flato and Shamir, 2003; Tesler, 2002).

Given their prevalence in eukaryotic genomes (Mouse Genome Sequencing Consortium, 2002), a good
understanding of translocations is necessary. Using tools developed in the context of sorting two signed
genomes by inversions, we establish on solid grounds Hannenhalli’s equation for the translocation distance
and give a new algorithm for sorting by translocations.

Restricting genome rearrangements to translocations only might look, at first glance, like a severe
constraint. However, mastering the combinatorial knowledge of a single operation is always a step towards
a better understanding of the global picture. As more and more genomes are decoded, sound mathematical
models and correct algorithms will play a crucial role in analyzing them.

The next section introduces the basic background needed in the following. The third section gives a
counterexample to Hannenhalli’s algorithm. Section 4 presents a new proof and formula for the translocation
distance, and Section 5 discusses the algorithms.

1Département d’informatique, Université du Québec à Montréal, Canada.
2International NRW Graduate School in Bioinformatics and Genome Research, Center of Biotechnology, Universität

Bielefeld, Germany.
3Technische Fakultät, Universität Bielefeld, Germany.

567

568 BERGERON ET AL.

2. DEFINITIONS AND EXAMPLES

2.1. Genes, chromosomes, and genomes

As usual, we represent a gene by a signed integer where the sign represents its orientation. A chromosome
is a sequence of genes and does not have an orientation. A genome is a set of chromosomes. We assume that
each gene appears exactly once in a genome. If the k-th chromosome in a genome A of N chromosomes
contains mk genes, then the genes in A are represented by the integers {1, . . . , n} where n =∑N

k=1 mk:

A = {(a11 a12 . . . a1m1), (a21 a22 . . . a2m2), . . . , (aN1 aN2 . . . aNmN
)}.

For example, the following genome consists of three chromosomes and nine genes:

A1 = {(4 3), (1 2 −7 5), (6 −8 9)}.
For an interval I = (ai . . . aj) of elements inside a chromosome, we denote by −I the reversed interval

where the sign of each element is changed, i.e., −I = (−aj . . .− ai). Since a chromosome does not have
an orientation, we can flip the chromosome X = (x1 x2 . . . xk) into −X = (−xk . . . − x2 − x1) and
still have the same chromosome. More precisely, let us consider two chromosomes X and Y . We say that
a chromosome X is identical to a chromosome Y if either X = Y or X = −Y . Genomes A and B are
identical if for each chromosome contained in A there is an identical chromosome in B and vice versa.

A translocation transforms the chromosomes X = (x1 . . . xi xi+1 . . . xk) and Y = (y1 . . . yj yj+1 . . . yl)

into new chromosomes (x1 . . . xi yj+1 . . . yl) and (y1 . . . yj xi+1 . . . xk). It is called internal if all exchanged
chromosome ends are nonempty, i.e., 1 ≤ i < k and 1 ≤ j < l.

Given a chromosome X = (x1 x2 . . . xk), the elements x1 and −xk are called its tails. Two genomes are
co-tailed if their sets of tails are equal. Note that an internal translocation does not change the set of tails
of a genome.

In the following, we assume that the elements of each chromosome of the target genome B are positive
and in increasing order. For example, we have that

A1 = {(4 3), (1 2 −7 5), (6 −8 9)},
B1 = {(1 2 3), (4 5), (6 7 8 9)}.

The sorting by translocations problem is to find a shortest sequence of translocations that transforms
one given genome A into the genome B. We call the length of such a shortest sequence the translocation
distance of A and denote this number by d(A). The problem of computing d(A) is called the translocation
distance problem.

In the following, we will always assume that translocations are internal. Therefore, in the sorting by
translocations problem, genomes A and B must be co-tailed.

Translocations on a genome can be simulated by inversions of intervals of signed permutations (see
Hannenhalli and Pevzner [1995], Tesler [2002], and Ozery-Flato and Shamir [2003]). For a genome A

with N chromosomes, there are 2NN ! possible ways to chain the N chromosomes; each of these is called
a concatenation. Given a concatenation, we extend it by adding a first element 0 and a last element n+ 1.
This results in a signed permutation PA on the set {0, . . . , n+ 1}:

PA = (0 a11 a12 . . . a1m1 a21 a22 . . . a2m2 . . . aN1 aN2 . . . aNmN
n+ 1).

An inversion of an interval reverses the order of the interval while changing the sign of all its elements.
We can model translocations on the genome A by inversions on the signed permutation PA. Sometimes
it is necessary to flip a chromosome. This can also be modeled by the inversion of a chromosome, but
does not count as an operation in computing the translocation distance since the represented genomes are
identical. See Fig. 1 for an example.

In the following sections, we consider several concepts such as elementary intervals, cycles, and compo-
nents that are central to the analysis of the sorting by translocation problem. These concepts were originally
developed for the analysis of the inversion distance problem. The notation follows Bergeron et al. (2005).

ON SORTING BY TRANSLOCATIONS 569

FIG. 1. Left: An optimal sorting scenario for the translocation distance problem for the genomes A1 and B1; the
exchanged chromosome ends are underlined. Right: Given an arbitrary concatenation, the problem can be modeled by
sorting the signed permutation PA1 by inversions; solid lines denote inversions that represent translocations; dashed
lines denote inversions that flip chromosomes.

2.2. Elementary intervals and cycles

Let A be a genome on the set {1, . . . , n}. We consider the extended signed permutation PA defined by
an arbitrary concatenation of the chromosomes of A.

Definition 1. A pair p · q of consecutive elements in a signed permutation is called a point. A point is
called an adjacency if it is a point of the form i · i + 1 or −(i + 1) · −i, 0 ≤ i ≤ n, otherwise, it is called
a breakpoint.

The signed permutation PA has n+ 1 points, N − 1 of them are between tails, and two other points are
between 0 and a tail and between a tail and n + 1. Those N + 1 points define the concatenation of the
genome A and are called white points. The points inside chromosomes are black points.

For example, the signed permutation

PA1 = (0 4 3 1 2 -7 5 6 -8 9 10)
� � � � � � � � � �

has ten points; three of them are adjacencies, and all the other points are breakpoints. The points 0 · 4,
3 · 1, 5 · 6 and 9 · 10 are white.

When sorting, eventually all black points must become adjacencies. A translocation is an inversion
of an interval defined by two black points inside different chromosomes. We can flip chromosomes by
performing an inversion of an interval defined by two white points.

Definition 2. For each pair of unsigned elements (k, k + 1), 0 ≤ k < n + 1, define the elementary
interval Ik associated to the pair k · k + 1 of unsigned elements to be the interval whose endpoints are

1. the right point of k, if k is positive, otherwise, its left point;
2. the left point of k + 1, if k + 1 is positive, otherwise, its right point.

Since we assume that genomes are co-tailed and that the elements of the target genome are positive
and in sorted order, the two endpoints of an elementary interval will always be either both black or both
white. From Definition 2, it follows that exactly two elementary intervals of the same color meet at each
breakpoint.

570 BERGERON ET AL.

FIG. 2. Elementary intervals and cycles of the signed permutation PA1 .

Definition 3. A black (or white) cycle is a sequence of breakpoints that are linked by black (respectively,
white) elementary intervals. Adjacencies define trivial cycles.

The elementary intervals and cycles of our example permutation PA1 are shown in Fig. 2.
The white cycles formed by the N+1 white points depend on the concatenation. Since the order and the

orientation of the chromosomes are irrelevant for the sorting by translocations problem, we focus on the
black cycles that are formed by the n−N black points. The number of black cycles of PA is maximized
and equals n−N , if and only if genome A is sorted.

2.3. Effects of a translocation on elementary intervals and cycles

In the previous section, we have seen that we have to reduce the number of black breakpoints or increase
the number of black cycles of PA in order to sort a genome A by translocations. Thus, we are interested
in how a translocation changes the number of breakpoints, as well as the number of cycles.

Lemma 1 (Kececioglu and Ravi [1995]). A translocation in genome A modifies the number of black
cycles of PA by 1, 0, or −1.

Following the terminology of Hannenhalli (1996), a translocation is called proper if it increases the
number of black cycles by 1, improper if it leaves the number of black cycles unchanged, and bad if
it decreases the number of black cycles by 1. As a consequence of Lemma 1, we get the lower bound
d(A) ≥ n−N − c, where c is the number of black cycles of genome A.

An elementary interval whose endpoints belong to different chromosomes is called interchromosomal;
otherwise, it is called intrachromosomal. Given an interchromosomal elementary interval Ik of PA, we can
always assume that elements k and k + 1 have different signs, since we can always flip a chromosome.
This implies that the corresponding translocation creates a new adjacency: either k · k+1 or −(k+1) ·−k.
Hence we have the following.

Lemma 2. For each interchromosomal elementary interval in PA, there exists a proper translocation
in the genome A.

2.4. Intrachromosomal components

As discussed by Bergeron et al. (2004) for the inversion distance problem, elementary intervals and
cycles can be grouped into higher structures:

Definition 4. A component of a signed permutation is an interval from i to i + j or from −(i + j)

to −i, where j > 0, whose set of elements is {i, . . . , i + j}, and that is not the union of smaller such
intervals.

We refer to a component by giving its first and last element such as [i . . . j]. When the elements
of a component belong to the same chromosome, then the component is said to be intrachromosomal.
An intrachromosomal component is called minimal if it does not contain any other intrachromosomal
component. An intrachromosomal component that is an adjacency is called trivial, otherwise nontrivial.

ON SORTING BY TRANSLOCATIONS 571

FIG. 3. The intrachromosomal components of the signed permutation PA2 of the genome A2 = {(1 −2 3 8 4
−5 6), (7 9 −10 11 −12 13 14 −15 16)} and the forest FA2 .

For example, consider the genome

A2 = {(1 −2 3 8 4 −5 6), (7 9 −10 11 −12 13 14 −15 16)}.

The signed permutation PA2 has the six intrachromosomal components [1 . . . 3], [4 . . . 6], [9 . . . 11],
[11 . . . 13], [13 . . . 14], and [14 . . . 16]; all of them are minimal, and all except [13 . . . 14] are nontrivial.
They can be represented by a boxed diagram such as in Fig. 3. Note that [3 . . . 9] and [6 . . . 7] are com-
ponents that are not intrachromosomal.

The relationship between intrachromosomal components plays an important role in the sorting by translo-
cations problem. As shown by Bergeron and Stoye (2003), two different intrachromosomal components of
a chromosome are either disjoint, nested with different endpoints, or overlapping on one element.

When two intrachromosomal components overlap on one element, we say that they are linked. Successive
linked intrachromosomal components form a chain. A chain that cannot be extended to the left or right
is called maximal. We represent the nesting and linking relation of intrachromosomal components of a
chromosome in the following way:

Definition 5. Given a chromosome X and its intrachromosomal components, define the forest FX by
the following construction:

1. Each nontrivial intrachromosomal component is represented by a round node.
2. Each maximal chain that contains nontrivial intrachromosomal components is represented by a square

node whose (ordered) children are the round nodes that represent the nontrivial intrachromosomal
components of this chain.

3. A square node is the child of the smallest intrachromosomal component that contains this chain.

We extend the above definition to a forest of a genome by combining the forests of all chromosomes:

Definition 6. Given a genome A consisting of chromosomes {X1, X2, . . . , XN }, the forest FA is the
set of forests {FX1 , FX2 , . . . , FXN

}.

Note that the forest FA can consist of more than one tree in contrast to the unichromosomal case
(Bergeron et al., 2004). Figure 3 shows the forest FA2 that consists of three trees.

2.5. Effects of a translocation on intrachromosomal components

We say that a translocation destroys an intrachromosomal component C if C is not an intrachromosomal
component in the resulting genome. When a genome is sorted, eventually all its nontrivial intrachromosomal
components, and hence all its trees, are destroyed.

The only way to destroy an intrachromosomal component with translocations is to apply a translocation
with one endpoint in the component and one endpoint in another chromosome. Such translocations always

572 BERGERON ET AL.

merge cycles and thus are always bad. Yet, a translocation may destroy more than one component at the
same time. In fact, a translocation that acts on one point of an intrachromosomal component C destroys C

and all the intrachromosomal components that contain C. Thus, at most two minimal intrachromosomal
components on two different chromosomes, plus all intrachromosomal components containing these two
components, can be destroyed by a single translocation.

It is also possible to eventually destroy by a single translocation two intrachromosomal components that
initially belong to two different trees of the same chromosome. The next results show how.

Lemma 3. If a chromosome X of genome A contains more than one tree, then there exists a proper
translocation involving chromosome X.

Proof. Consider the chromosome X = (x1 . . . xm). We assume that all elementary intervals involving
chromosome X are intrachromosomal. The first step is to show that then the whole chromosome is an
intrachromosomal component. We have to show that the first element of the chromosome is the smallest
element and the last element is the greatest, if both are positive, and the reverse, if both are negative, and
that all elements between the smallest and the greatest are contained in the chromosome.

Let i be the smallest unsigned element contained in chromosome X. Suppose that i has positive sign
and x1 �= i. The left point of i is an endpoint of the elementary interval Ii−1. Since i is the smallest
element, the unsigned element i− 1 belongs to a chromosome different from X. Therefore the elementary
interval Ii−1 is interchromosomal. This contradicts our assumption that all elementary intervals involving
the chromosome X are intrachromosomal.

Let j be the greatest unsigned element contained in chromosome X. Suppose that j has positive sign
and xm �= j . Then the right point of j is an endpoint of the elementary interval Ij , and the element j + 1
belongs to another chromosome. Thus, the elementary interval Ij is interchromosomal contradicting our
assumption.

By a similar argumentation, we can show that x1 = −j , if j is the greatest element and has negative
sign, and xm = −i, if i the smallest element and has negative sign. Moreover, all elements between i

and j have to be contained in chromosome X because otherwise there would be an interchromosomal
elementary interval. Thus, chromosome X itself is an intrachromosomal component and contains a single
tree. This leads to a contradiction. Therefore, there must exist an interchromosomal elementary interval
with exactly one endpoint in X. By Lemma 2, the corresponding translocation is proper.

Hannenhalli showed that if there exists a proper translocation, then there exists a proper translocation
that does not create any new minimal intrachromosomal components (see Theorem 10 of Hannenhalli
[1996]). However, as we will see in Section 3, Hannenhalli’s result is not sufficient to prove his claims,
and leads to an incorrect algorithm. The following theorem states a stronger result, which is necessary to
prove the distance formula and to develop sound algorithms.

Theorem 1. If a chromosome X of genome A contains more than one tree, and no other chromosome of
A contains any nontrivial intrachromosomal component, then there exists a proper translocation involving
chromosome X that does not modify FA.

Proof. A proper translocation can modify FA either by linking two existing nontrivial intrachromosomal
components or by creating new ones. In the first case, the two existing components must be in separate
chromosomes, contrary to the hypothesis.

By Lemma 3, there exists at least one proper translocation involving chromosome X. Assume that
they all create new nontrivial components and consider a proper translocation T that creates a component
[i . . . j] of minimal length, where i < j − 1. We will show that then there must exist another proper
translocation that either creates smaller components or does not create nontrivial components.

Since T creates the component [i . . . j], by flipping chromosomes as necessary, the signed permutation
PA can be written as

PA = (. . . i . . . x . . . −j . . . −y . . .)
� �

T

ON SORTING BY TRANSLOCATIONS 573

where i and x are on the same chromosome and j and y on a different chromosome. Translocation T

transforms PA into PA′ :

PA′ = (. . . i . . . x y . . . j . . .).

Since i < j−1, we have that i �= x or j �= y (or both). Suppose that i �= x, then there exists an elementary
interval J that has one endpoint between i and x and the other endpoint between x and j . Thus J is an
interchromosomal elementary interval of PA:

PA = (. . . i . . . x . . . −j . . . −y . . .).
� �

J

By flipping chromosomes as necessary, we can assume that J is oriented. Applying the corresponding
proper translocation to A yields

PA′′ = (. . . i . . . j . . . − x . . . − y . . .),

or

PA′′ = (. . . i . . . − y . . . − x . . . j . . .).

In both cases, i and x are on different chromosomes of A′′. A new nontrivial component that contains x

does not contain i and thus must contain j in order to be longer than [i . . . j].
A new nontrivial component cannot contain both i and j , since element x ∈ {i, . . . , j} and x is on a

different chromosome than i. If it contains i and is longer than [i . . . j], then it must be an interval of
PA′′ of the form (i′ . . . i . . . j ′), where i′ < i < j ′ < j . But all the elements at the right of i are greater
than i, and all the elements at the left of i are smaller than i, implying that either i′ = i or i = j ′, which
is a contradiction. Similar arguments hold if the new nontrivial component contains j and is longer than
[i . . . j]. The case where j �= y can be treated similarly.

Efficient sorting by translocations will use the fact that trees belonging to different chromosomes can
be easily dealt with. When all the trees are in one chromosome, we want to separate them; that means
move them to different chromosomes. The next result states that such a separation is always possible with
translocations that do not modify the topology of the forest.

Corollary 1. If a chromosome X of genome A contains more than one tree, and no other chromosome
of A contains any nontrivial intrachromosomal component, then the trees can be separated by proper
translocations without modifying FA.

Proof. By Theorem 1, there exists a proper translocation that does not change FA. Such a proper
translocation either separates the trees or does not. If all the trees are still contained in the same chro-
mosome, then, by the same argument, there exists another proper translocation that does not change the
number of trees. Thus, there always exists either a separating or a nonseparating proper translocation.
Since the number of successive proper translocations is finite, there always exists a sequence of proper
translocations that separate the trees.

3. A DISCUSSION OF HANNENHALLI’S ALGORITHM

In order to compute the translocation distance, Hannenhalli (1996) introduced the notions of subper-
mutations and even-isolation. Subpermutations are equivalent to chains containing at least one nontrivial
intrachromosomal component. A minimal subpermutation is a subpermutation that does not contain any
other. A genome A has an even-isolation if all the minimal subpermutations of A reside on a single
chromosome, the number of minimal subpermutations is even, and all the minimal subpermutations are

574 BERGERON ET AL.

contained within a single subpermutation. Hannenhalli showed that

d(A) = n−N − c + s + o+ 2i

where s denotes the number of minimal subpermutations, o = 1 if the number of minimal subpermutations
is odd and o = 0 otherwise, and i = 1 if P has an even-isolation and i = 0 otherwise.

Based on the above equation, Hannenhalli gave a polynomial time algorithm for the sorting by transloca-
tions problem (Algorithm 1) where a translocation is called valid if it decreases the translocation distance.

Algorithm 1. Hannenhalli’s algorithm (Hannenhalli, 1996)
1: while A is not identical to the target genome do
2: if there is a proper translocation in A then
3: select a valid proper translocation ρ

4: else
5: select a valid bad translocation ρ

6: end if
7: A← Aρ

8: end while

The main assumption behind the algorithm is that if there exists a proper translocation, then there always
exists a valid proper translocation (Theorem 12 of Hannenhalli [1996]). This is based on the argument
that there exists a proper translocation that increases the number of cycles by 1 and does not change
the number of minimal subpermutations. Hannenhalli wrongly concludes that such a proper translocation
cannot create an even-isolation. The following genome shows that, apart from the obvious way to create
an even-isolation by creating new subpermutations, there is a second way:

A3 = {(1 2 4 3 5 12), (11 6 8 7 9 10)}.
� �

Genome A3 has exactly one proper translocation (underlined above), yielding

A′3 = {(1 2 4 3 5 6 8 7 9 10), (11 12)}.

This translocation creates an even-isolation by chaining the two existing subpermutations [2 . . . 5] and
[6 . . . 9]. Therefore, the translocation is not valid.

In order to prove the translocation formula, Hannenhalli first shows that if there exists a proper transloca-
tion, then there exists an alternative proper translocation that does not create new minimal subpermutations
(Theorem 10 of Hannenhalli [1996]). Then Hannenhalli assumes that there is no proper translocation and
follows by indicating how to destroy subpermutations (Theorem 13 of Hannenhalli [1996]). These results
lead to an algorithm based on the false impression that the subpermutations can be destroyed independently
of the sorting procedure.

Sometimes, in an optimal sorting scenario, we first have to destroy the subpermutations as is the case
for genome A3. But in other cases, we first have to separate the subpermutations before destroying them.
For example, consider the following genome:

A4 = {(−9 8 −7 4 −3 2 −1), (10 6 5 11)}.

In order to sort genome A4 optimally, we first have to apply a proper translocation separating the subper-
mutations [−9 . . .− 7] and [−3 . . .− 1], yielding

A′4 = {(−9 8 −7 4 5 11), (10 6 −3 2 −1)}.

In the resulting genome A′4, the two subpermutations belong to different chromosomes so that we can
destroy them by a single bad translocation.

However, in the next section, we will show that Hannenhalli’s equation for the translocation distance
holds, but that any sorting strategy should deal with destroying intrachromosomal components at each
iteration step.

ON SORTING BY TRANSLOCATIONS 575

4. COMPUTING THE TRANSLOCATION DISTANCE

Given a genome A and the forest FA, let L be the number of leaves and T the number of trees of the
forest. The following lemma will be central in proving the distance formula and establishing an invariant
for the sorting algorithm.

Lemma 4. Let A be a genome whose forest has L leaves and T trees. If L is even and T > 1, then
there always exists a sequence of proper translocations, followed by a bad translocation, such that the
resulting genome A′ has L′ = L− 2 leaves and T ′ �= 1 trees.

Proof. If all the trees are on the same chromosome then, by Corollary 1, we can separate the forest
with proper translocations without modifying T or L.

Assume that there exist trees on different chromosomes. In the following, we show how to pair two
leaves such that the bad translocation destroying the corresponding intrachromosomal components reduces
the number of leaves by two, and such that the number T ′ of trees in the resulting genome is either 0 or
greater than 1.

Let t1 be a tree with the largest number of leaves and t2 be a tree with the largest number of leaves not
on the same chromosome as t1. If t1 has only one leaf, then all trees have only one leaf, including t2, and
it is possible to destroy both t1 and t2 with a single bad translocation. In this case, T = L and T ′ = L′;
thus, T ′ �= 1 since L′ = L− 2 is even.

If t1 has more than one leaf, choose its second leaf from the left and pair it with any leaf of t2. Performing
the bad translocation that destroys those two leaves will create a new tree with the single leaf that was the
leftmost leaf of t1. If T ′ = 1, then this single tree is the tree with one leaf; therefore, L′ = 1, which is
impossible since L′ = L− 2 is even.

Lemma 4 implies that when the number of leaves is even and T > 1, we can always destroy the forest
optimally: we can use proper translocations to separate the forest and then remove two leaves with a bad
translocation. Eventually, all trees are destroyed, i.e., T = 0. The basic idea is to reduce all other cases to
the simple case of Lemma 4.

Theorem 2. Let A be a genome with c black cycles and FA be the forest associated to A. Then

d(A) = n−N − c + t

where

t =
⎧⎨
⎩

L+ 2 if L is even and T = 1 (1)

L+ 1 if L is odd (2)

L if L is even and T �= 1. (3)

Proof. We first show that d(A) ≥ n− N − c + t . Consider an optimal sorting of length d containing
p proper translocations and b bad translocations; thus, d = p+ b. Since b translocations remove b cycles
and p translocations add p cycles, we must have

c − b + p = n−N, implying d = n−N − c + 2b.

We will show that 2b ≥ t , implying d ≥ n−N − c + t .
Since a bad translocation removes at most two leaves, we have that b ≥ L/2, if L is even, and

b ≥ (L+ 1)/2, if L is odd. Therefore, in cases (2) and (3), it follows that b ≥ t/2.
If there is only one tree with an even number of leaves, then there must be a bad translocation B in the

optimal sorting that has one endpoint in a tree and the other not contained in a tree. If this translocation
does not destroy any leaves, then b ≥ 1 + L/2. If translocation B destroys a minimal component, it
destroys exactly one, and the minimal number of bad translocations needed to get rid of the remaining
ones is ((L− 1)+ 1)/2, implying again that b ≥ 1+ L/2. Thus, in case (1), we also have b ≥ t/2.

In order to show that d(A) ≤ n−N − c+ t , we will exhibit a sequence of proper and bad translocations
that achieve the bound n−N − c + t .

576 BERGERON ET AL.

In case (2), if L is odd and T = 1, we destroy the middle leaf of the tree. Then L−1 is even, and T > 1
or T = 0. If T > 1, then the preconditions of Lemma 4 apply, and the total number of bad translocations
will be 1+ (L− 1)/2.

If L is odd and T > 1, we destroy a single leaf of some tree with more than one leaf, if such a tree
exists. Otherwise, we must have T > 2, since the number of leaves is odd, and we destroy any leaf. In
both cases, we have T ′ > 1. Again, the total number of bad translocations will be 1+ (L− 1)/2.

In case (3), if L is even and T �= 1, then the preconditions of Lemma 4 apply, and the total number of
bad translocations will be L/2.

In case (1), if L is even and T = 1, we destroy any leaf and apply case (2). The total number of bad
translocations will be 1+ L/2.

For example, the genome

A2 = {(1 −2 3 8 4 −5 6), (7 9 −10 11 −12 13 14 −15 16)}
of Section 2.4 consists of two chromosomes and 16 elements. The signed permutation PA2 has seven black
cycles. The forest FA2 has three trees and five leaves (see Fig. 3). Therefore, we have

d(A2) = n−N − c + t = 16− 2− 7+ 6 = 13.

5. ALGORITHMS

In this section, we present two algorithms. The first algorithm allows one to compute the translocation
distance between two genomes in linear time. The second algorithm is the first correct polynomial time
algorithm for sorting a genome by translocations.

5.1. Translocation Distance Algorithm

The algorithm to compute the translocation distance is similar to the one to compute the reversal distance
presented by Bergeron et al. (2004). We only sketch the algorithm here and discuss those parts that need
to be modified.

Assume that a genome A and an extended signed permutation PA are given. The algorithm consists
of three parts. In the first part, the cycles of PA are computed by a left-to-right scan of PA without
taking into account the points between tails. The second part is the computation of the intrachromosomal
components. We apply to each chromosome the linear-time algorithm of Bergeron et al. (2004) to compute
intrachromosomal components. Finally, in the third part of the algorithm, the forest FA is constructed by
a single pass over the intrachromosomal components, and the distance can then easily be computed using
the formula of Theorem 2.

Altogether, we can state the following theorem, previously announced by Li et al. (2004).

Theorem 3. The translocation distance d(A) of a genome A can be computed in linear time.

5.2. Sorting by Translocations Algorithm

We now turn to the sorting by translocations problem. An algorithm that sorts a genome optimally is
shown in Algorithm 2. Assume that the forest FA of the genome A is given. We denote by L the number
of leaves and by T the number of trees of the forest.

Initially, we apply up to two translocations in order to arrive at the preconditions of Lemma 4. If the
forest consists of a single tree with an even number of leaves (line 2), we destroy any leaf. In the resulting
genome, if the number of leaves is odd and in a single tree, we destroy its middle leaf; if there is more
than one tree, we apply a translocation that destroys one leaf of the greatest tree. In all cases, we get a
genome A′ with T ′ = 0, or T ′ > 1 and L′ even.

Then, as long as there exist intrachromosomal components (i.e., T > 1 and L is even), we can destroy the
forest optimally as described in Lemma 4: we use proper translocations to separate the forest, and remove
two leaves with each bad translocation. Once all intrachromosomal components are destroyed (i.e., T = 0),

ON SORTING BY TRANSLOCATIONS 577

Algorithm 2. Sorting by translocations algorithm
1: L is the number of leaves, and T the number of trees in the forest FA associated to the genome A

2: if L is even and T = 1 then
3: destroy one leaf such that L′ = L− 1
4: end if
5: if L is odd then
6: perform a bad translocation such that T ′ = 0, or T ′ > 1 and L′ = L− 1
7: end if
8: while A is not sorted do
9: if there exist intrachromosomal components on different chromosomes then

10: perform a bad translocation such that T ′ = 0, or T ′ > 1 and L′ is even
11: else
12: perform a proper translocation such that T and L remain unchanged
13: end if
14: end while

we can sort the genome using proper translocations that do not create new nontrivial intrachromosomal
components. Such proper translocations exist as we have shown in the proof of Theorem 1. Thus, there
always exists either a proper translocation that does not modify the topology of the forest or a bad
translocation that maintains the preconditions of Lemma 4. This establishes the correctness of the algorithm
and we have the following theorem.

Theorem 4. Algorithm 2 solves the sorting by translocations problem in O(n3) time.

Initially, the forest FA associated to a genome A is constructed. This can be done in O(n) time as
discussed above. The algorithm requires at most O(n) iterations. The bad translocations of line 9 can be
found in constant time as described in the proof of Lemma 4. Since there are O(n) proper translocations
and each translocation requires the construction of the forest to verify the condition T ′ = T and L′ = L,
the search for a proper translocation in line 11 takes O(n2) time. Hence, the total time complexity of
Algorithm 2 is O(n3).

6. CONCLUSION

The real challenge in developing genome rearrangement algorithms is to propose algorithms whose
validity can be checked, both mathematically and biologically. The most useful set of rearrangement
operations currently includes translocations, fusions, fissions, and inversions (Tesler, 2002). Unfortunately,
we think that few people are able to assess the mathematical validity of the current algorithms. The work
we have done in this paper opens the way to simpler description and implementation of such algorithms.

ACKNOWLEDGMENTS

We wish to thank Michal Ozery-Flato for a very careful reading and for sharing with us a simple and
elegant proof of Lemma 4.

REFERENCES

Bergeron, A., Mixtacki, J., and Stoye, J. 2004. Reversal distance without hurdles and fortresses. Proc. 15th Ann. Symp.
on Combinatorial Pattern Matching, CPM 2004, LNCS 3109, 388–399.

Bergeron, A., Mixtacki, J., and Stoye, J. 2005. The inversion distance problem, in Gascuel, O., ed., Mathematics of
Evolution and Phylogeny, chap. 10, 262–290, Oxford University Press, Oxford, UK.

Bergeron, A., and Stoye, J. 2003. On the similarity of sets of permutations and its applications to genome comparison.
Proc. 9th Ann. Int. Conf. on Computing and Combinatorics, COCOON 2003, LNCS 2697, 68–79.

578 BERGERON ET AL.

Hannenhalli, S. 1996. Polynomial-time algorithm for computing translocation distance between genomes. Disc. Appl.
Math. 71(1–3), 137–151.

Hannenhalli, S., and Pevzner, P.A. 1995. Transforming men into mice (polynomial algorithm for genomic distance
problem). Proc. 36th Ann. Symp. on Foundation of Computer Science, FOCS 1995, 581–592.

Kececioglu, J.D., and Ravi, R. 1995. Of mice and men: Algorithms for evolutionary distances between genomes with
translocation. Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA 1995, 604–613.

Li, G., Qi, X., Wang, X., and Zhu, B. 2004. A linear-time algorithm for computing translocation distance between
signed genomes. Proc. 15th Ann. Symp. on Combinatorial Pattern Matching, CPM 2004, LNCS 3109, 323–332.

Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome.
Nature 420, 520–562.

Ozery-Flato, M., and Shamir, R. 2003. Two notes on genome rearrangements. J. Bioinf. Comp. Biol. 1(1), 71–94.
Tesler, G. 2002. Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3),

587–609.

Address correspondence to:
Jens Stoye

Universität Bielefeld
Technische Fakultät

AG Genominformatik
D-33594 Bielefeld, Germany

E-mail: stoye@TechFak.Uni-Bielefeld.DE

