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Abstract

A block-interchange is a rearrangement event that exchanges two, not necessar-
ily consecutive, contiguous regions in a genome, maintaining the original orientation.
Signed reversals are events that invert and change the orientation of a region in a
genome. Both events are important for the comparative analysis of genomes. For this
reason, we propose a new measure that consists in finding a minimum sequence of
block-interchanges and signed reversals that transforms a genome into another. For
each event, we assign a weight related to its norm and we argue the adequacy of this
parameter to indicate the power of each event.

We present a formula for the rearrangement measure and a polynomial time sort-
ing algorithm for finding a sequence of block-interchanges and signed reversals that
transforms a unichromosomal genome into another.

Keywords: Genome Rearrangements, Computational Biology

1 Introduction

Analyzing genome rearrangements by signed reversals is a well-known problem which
was investigated in several works [8, 10, 2, 18]. The first polynomial-time algorithm
for sorting by signed reversals was presented by Hannenhalli and Pevzner [8]. Several
improvements were suggested to lower the algorithm’s running-time [10, 2] until Tannier
and Sagot [18] present a sub-quadratic algorithm based on data structures designed by
Kaplan and Verbin [11]. Finding signed reversal distance can be done in linear time
by using an algorithm from Bader et al [1].

Sorting by block-interchanges was proposed and solved by Christie [4]. Lin et al [12]
presented a new solution to the problem by using the algebraic formalism developed
by Meidanis and Dias [14].

We propose a new measure for the comparison of genomes based on both signed
reversals and block-interchanges. A block-interchange is a rearrangement event that
exchanges two, not necessarily consecutive, contiguous regions in a genome, maintain-
ing the original orientation. Signed reversals are events that invert and change the
orientation of a region in a genome. These rearrangement events, remarkably signed
reversals [8], have been shown to be important in comparative analysis of genomes.
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Genome rearrangement measures involving several rearrangement events have been
proposed earlier [5, 7], however it is not clear which set of rearrangement events is the
most appropriate biologically [19]. Another common matter that arises when one deals
with a set of rearrangement events is how to assign a weight to each event in order
to reflect its relative frequency in a parsimonious, evolutionary scenario. We propose
a new parameter for the weight of a rearrangement event based on the norm of its
representation as permutation in the algebraic formalism. The norm is a formal and
systematic parameter applicable to any rearrangement event that can be represented
as a permutation. Moreover, this parameter is in accordance with previous weight
assignments [3]. On the other hand, a drawback in using the norm as a parameter is
that it does not make distinction between some rearrangement events such as block-
interchanges and transreversals.

The paper is organized as follows. In Section 2 we present a summary of the main
concepts of the algebraic formalism and define genomes, signed reversals, and block-
interchanges as permutations. In Section 3 the rearrangement measure based on signed
reversals and block-interchanges is formally defined. In addition, we show a formula
for this measure, which can be quickly computed. In Section 4 we show a polynomial
time algorithm for a minimum rearrangement event sequence that transforms a genome
into another. The algorithm is based on results from the algebraic formalism proposed
by Meidanis and Dias [14] and the analysis of the sorting by block-interchanges prob-
lem [12, 4]. We summarize the results in Section 5.

2 Algebraic Formalism for Block-Interchanges

and Signed Reversals

A permutation is a bijective mapping from a set into itself. Given a permutation π
over a set E, an element x ∈ E is fixed by π when π(x) = x. In the sequel we will
drop parentheses and represent π(x) simply by πx. This shall not cause confusion
since we use Greek letters for permutations and Roman letters for elements of E. The
set of non-fixed elements in π is the support of π; i.e. Supp(π) = {x ∈ E | πx 6= x}.
The identity permutation ι is the permutation such that ιx = x for all x ∈ E. The
orbit of x ∈ E under the permutation π, denoted by orb(π, x), is the set {y | y =
πkx for an integer k}. Denote by Orb(π,E) the set of orbits of a permutation π over
E. An orbit is called nontrivial when it has more than one element. Let o(π,E)
be the number of orbits in permutation π. A cycle is a permutation α over E such
that it has at most one nontrivial orbit. A cycle α is an r-cycle if its nontrivial
orbit contains r elements or an 1-cycle when α = ι. Two cycles are disjoint when their
corresponding nontrivial orbits are disjoint, or when at least one of them is the identity.
Any permutation can be represented uniquely as a product of disjoint cycles [6, 13].
A k-cycle decomposition of a permutation π is a representation of π as a product of
k-cycles, not necessarily disjoint. The norm of π, denoted by ‖π‖, is the minimum
number of 2-cycles whose product is π. A permutation α divides a permutation β,
denoted by α|β, when ‖βα−1‖ = ‖β‖ − ‖α‖.
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2.1 Block-Interchanges and Signed Reversals

Genomes and rearrangement events can be modeled as permutations in the algebraic
formalism [14]. A DNA chromosome has two strands with complementary orientation
to each other. Let E+ be the set of blocks of genes (or other markers) in one of the
strands of the chromosome. In the same way, we define E− as the set of blocks of genes
in the strand complementary to the previous one. Let E = E+ ∪ E−. We define the
permutation Γ as the function that associates each block of genes to its complementary
block in E. So E− = {Γx | x ∈ E+}.

Given the function Γ over E, a cycle α is called a strand when x ∈ Supp(α) if and
only if Γx 6∈ Supp(α), for each x ∈ E. The conjugation of a permutation α by β,
denoted by β · α , is βαβ−1 [14]. A chromosome is a product of two strands α and
Γ · α−1. Two chromosomes are disjoint when their supports are disjoint. A genome
is a product of disjoint chromosomes. A fundamental property of genomes is: if π is
a genome, then ΓπΓ = π−1. In this text, we restrict our analysis to unichromosomal
genomes, that is, genomes composed by a single chromosome. In addition, we deal with
circular genomes instead of linear genomes since circular genomes are more naturally
modeled as permutations. There are several works describing how to transform a kind
of genome into another [9, 15].

Given a genome π and Γ, both over E, we define the following rearrangement events:

Definition 2.1 1. A block-interchange is a rearrangement event ρ composed by the
product of four 2-cycles

(u x)(πΓx πΓu)(v y)(πΓy πΓv);

such that

(a) u 6= x,u 6= y and v 6= y,
(b) v, x, y ∈ orb(π, u),
(c) (u v)(x y)|π;

in this case we say that ρ is applicable to π.

2. A signed reversal is a rearrangement event ρ composed by the product of two
2-cycles

(u πΓv)(v πΓu);

such that (u v)|π and u 6= v; in this case we say that ρ is applicable to π.

Given a rearrangement event ρ, its weight, denoted by w(ρ), is ‖ρ‖/2. The adop-
tion of the norm of a genome rearrangement event as its weight, which is particularly
important when evaluating genome rearrangement problems involving several, distinct
rearrangement events, is supported by the similarity in weights assigned to rearrange-
ment events in other works [3]. Particularly, block-interchanges and transpositions
seem to be less frequent than signed reversals [16, 17]. To account for that, they are
assigned the double of the weight of a signed reversal by the norm rule.

A cycle α is said to be a cycle of a permutation θ when α is one of the cycles in the
unique disjoint cycle decomposition of θ. Given genomes π, σ, and function Γ, all over
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E, a pair is a couple of cycles α and (πΓ) · α−1 of σπ−1. Let c(π, σ) be the number of
pairs of σπ−1. The number of pairs of σπ−1 is c(π, σ) = (|E| − ‖σπ−1‖)/2. We denote
c(ρπ, σ)− c(π, σ) by ∆c(ρ, π, σ) where ρ is a rearrangement event applicable to π. If ρ
is a signed reversal applicable to π, then we have ∆c(ρ, π, σ) ∈ {−1, 0, 1} [8].

Given the genomes π and σ over E, they are called equiorbital genomes when
Orb(π,E) = Orb(σ,E). Given equiorbital genomes π and σ, and the function Γ, all
over E, if ρ is a block-interchange applicable to π, then we have ∆c(ρ, π, σ) ∈ {−2, 0, 2}
(Christie [4] presents a proof for the case when σ = (1 2 . . . n)(−n . . . −2 −1) over
E = {−n, . . . ,−2,−1, 1, 2, . . . , n}, function Γ is (1 −1)(2 −2) . . . (n −n), and π is a
genome over E such that π and σ are equiorbital genomes, but the same proof can be
easily extended to the general case.)

3 Genome Rearrangement Measure

The algebraic rearrangement by block-interchanges and signed reversals problem con-
sists in finding a sequence with the minimum weight of block-interchanges and signed
reversals to transform one circular genome with signals into another. In other words,
we want to find a sequence of rearrangement events ρ1 ρ2 . . . ρk, such that:

σ = ρk ρk−1 . . . ρ1 π

where each ρi is a block-interchange or a signed reversal, and ρi+1 is applicable to
ρi ρi−1 . . . ρ1 π, and

∑k
i=1 w(ρi) is minimum. We call this minimum W (π, σ).

The sorting by block-interchanges and signed reversals problem differs from the
previous problem just by assuming σ = (1 2 . . . n)(−n . . . −2 −1).

We propose the parameter W (π, σ) as a new measure in the comparison of genomes.
A good event for the pair (π, σ) is a block-interchange or a signed reversal ρ such

that ∆c(ρ, π, σ) = w(ρ).

Lemma 3.1 Given genomes π, σ, and the function Γ, all over E, a rearrangement
event ρ applicable to π is a good event for the pair (π, σ) if and only if ρ|σπ−1.

Proof: If ρ|σπ−1 then ‖σπ−1ρ−1‖ = ‖σπ−1‖ − ‖ρ‖. Manipulating the later formula:

‖ρ‖
2

=
‖σπ−1‖ − ‖σπ−1ρ−1‖

2
=

|E| − ‖σπ−1ρ−1‖ − |E|+ ‖σπ−1‖
2

= c(ρπ, σ)− c(π, σ)

and since c(ρπ, σ) − c(π, σ) = ∆c(ρ, π, σ) then ∆c(ρ, π, σ) = w(ρ). Therefore ρ is a
good event for the pair (π, σ).

Conversely, if ρ is a good event for the pair (π, σ) then ∆c(ρ, π, σ) = w(ρ), that is,
we have c(ρπ, σ)− c(π, σ) = ‖ρ‖/2. By definition of c(π, σ) we have

‖σπ−1‖ − ‖σπ−1ρ−1‖
2

=
‖ρ‖
2

.

Therefore ‖σπ−1ρ−1‖ = ‖σπ−1‖ − ‖ρ‖ and hence ρ|σπ−1. 2
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Lemma 3.2 Given genomes π, σ, and the function Γ, all over E, for any sequence
of rearrangement events ρ1, . . . , ρk, such that ρk . . . ρ1π = σ and ρi is applicable to the
genome ρi−1 . . . ρ1π, we have:

1.
∑k

j=1 w(ρj) ≥ ‖σπ−1‖
2 ;

2.
∑k

j=1 w(ρj) = ‖σπ−1‖
2 if and only if each rearrangement event ρi is a good event

for the pair (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k.

Proof:

1. Let ρ1, . . . , ρk be a sequence of rearrangement events such that ρk . . . ρ1π = σ and
ρi is applicable to ρi−1 . . . ρ1π for 1 ≤ i ≤ k . Therefore ρk . . . ρ1 = σπ−1, and we
get the following upper bound for ‖σπ−1‖.

‖σπ−1‖ = ‖ρk . . . ρ1‖
≤ ‖ρk‖+ . . . + ‖ρ1‖

= 2
k∑

j=1

‖ρj‖
2

= 2
k∑

j=1

w(ρj)

Therefore we have
∑k

j=1 w(ρj) ≥ ‖σπ−1‖
2

2. Firstly, we prove the “if” part, that is, we assume that each rearrangement event
ρi is a good event for the pair (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k. By definition of
weight, we have:

k∑
j=1

w(ρj) =
‖ρ1‖+ . . . + ‖ρk‖

2
. (1)

Since rearrangement event ρi is a good event for the pair (ρi−1 . . . ρ1π, σ) for
1 ≤ i ≤ k then

‖ρi‖
2

= c(ρi . . . ρ1π, σ)− c(ρi−1 . . . ρ1π, σ).

By definition of number of pairs c(, ) we have

‖ρi‖
2

=
‖σπ−1ρ−1

1 . . . ρ−1
i−1‖

2
+
‖σπ−1ρ−1

1 . . . ρ−1
i ‖

2
. (2)

Using Equation 1 and Equation 2 and some manipulation:

k∑
j=1

w(ρj) =
‖σπ−1‖ − ‖σπ−1ρ−1

1 . . . ρ−1
k ‖

2

=
‖σπ−1‖ − ‖σσ−1‖

2

=
‖σπ−1‖

2
.
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Therefore
∑k

j=1 w(ρj) = ‖σπ−1‖
2 .

On the other hand, if
∑k

j=1 w(ρj) = ‖σπ−1‖/2 then ‖σπ−1‖ =
∑k

j=1 ‖ρj‖.
By the triangular inequality property, we have

‖σπ−1ρ−1
1 . . . ρ−1

i−1‖ ≤ ‖σπ−1ρ−1
1 . . . ρ−1

i ‖+ ‖ρi‖,

for 1 ≤ i ≤ k, in other words we have

0 ≤ ‖σπ−1ρ−1
1 . . . ρ−1

i ‖ − ‖σπ−1ρ−1
1 . . . ρ−1

i−1‖+ ‖ρi‖,

for 1 ≤ i ≤ k. Since each term ‖σπ−1ρ−1
1 . . . ρ−1

i ‖ − ‖σπ−1ρ−1
1 . . . ρ−1

i−1‖ + ‖ρi‖ is
nonnegative and manipulating the expanded sum we get

0 ≤
k∑

i=1

(
‖σπ−1ρ−1

1 . . . ρ−1
i ‖ − ‖σπ−1ρ−1

1 . . . ρ−1
i−1‖+ ‖ρi‖

)
= ‖σπ−1ρ−1

1 . . . ρ−1
k ‖ − ‖σπ−1‖+

k∑
i=1

‖ρi‖.

But since σπ−1ρ−1
1 . . . ρ−1

k = ι and
∑k

i=1 ‖ρi‖ = ‖σπ−1‖ then

k∑
i=1

(
‖σπ−1ρ−1

1 . . . ρ−1
i ‖ − ‖σπ−1ρ−1

1 . . . ρ−1
i−1‖+ ‖ρi‖

)
= 0.

Then ‖σπ−1ρ−1
1 . . . ρ−1

i ‖ − ‖σπ−1ρ−1
1 . . . ρ−1

i−1‖ + ‖ρi‖ = 0 for 1 ≤ i ≤ k; i.e. we
have

‖σπ−1ρ−1
1 . . . ρ−1

i ‖ = ‖σπ−1ρ−1
1 . . . ρ−1

i−1‖ − ‖ρi‖

for 1 ≤ i ≤ k. Therefore, we have ρi|σπ−1ρ−1
1 . . . ρ−1

i−1 for 1 ≤ i ≤ k and
by Lemma 3.1 each ρi applicable to ρi−1 . . . ρ1π is a good event for the pair
(ρi−1 . . . ρ1π, σ).

2

Lemma 3.3 Given distinct, equiorbital genomes π, σ, and the function Γ, all over E,
there is a block-interchange ρ applicable to the genome π such that ρ is a good event
for the pair (π, σ) and ρπ and σ are equiorbital genomes.

Proof: Since genomes π and σ are distinct, consider the elements x, y, σπ−1x and
σπ−1y where σπ−1x 6= x, σπ−1x 6= σπ−1y, x 6= y, and x 6= σπ−1y, such that:

1. y ∈ orb(π, x);

2. πσπ−1x 6= x;

3. σπ−1y 6= y and πσπ−1y 6= y;

4. (y σπ−1y)(x σπ−1x) - π.
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In Section 3 of Lin et al [12] there is a demonstration that elements x and y exist
for any pair of distinct, equiorbital genomes.

Since πσπ−1x 6= x, πσπ−1y 6= y, and (x σπ−1x)(y σπ−1y) - π then permutation
(x σπ−1y)(y σπ−1x) divides π by the rules of product by 2-cycles [14]. Therefore
permutation

ρ = (x σπ−1x)(πΓσπ−1x πΓx)(y σπ−1y)(πΓσπ−1y πΓy)

is a block-interchange applicable to π since (x σπ−1y)(y σπ−1x)|π. In addition, the
block-interchange ρ is a good event for the pair (π, σ) because ρ|σπ−1 by the choice of
w, z, a, b. Since ρ is a block-interchange then ρπ and σ are equiorbital because block-
interchanges do not change the elements in each strand and, consequently, in each orbit
of π. Therefore ρ is a block-interchange applicable to the genome π such that ρ is a
good event for the pair (π, σ) and ρπ and σ are equiorbital genomes.

2

Lemma 3.4 Given genomes π, σ that are not equiorbital, and the function Γ, all over
E, there is a signed reversal ρ applicable to π such that ρ is a good event for the pair
(π, σ).

Proof: Since genomes π and σ are not equiorbital then there exists an element
x ∈ E such that σπ−1x 6∈ orb(π, x). We are going to show that the signed reversal
ρ = (x σπ−1x)(πΓσπ−1x πΓx) is applicable to π and it is a good event for the pair
(π, σ). Elements x and σπ−1x belong to distinct strands of the unichromosomal genome
π and we have Γπ−1σπ−1x = πΓσπ−1x by the fundamental property ΓπΓ = π−1, so
πΓσπ−1x ∈ orb(π, x) and therefore (x πΓσπ−1x)|π. In addition, we have x 6= πΓσπ−1x
because otherwise x = πΓσπ−1x implies πΓx = σΓπΓx and then there is an element z
such that σΓz = z, which contradicts the definition of a genome and the function Γ.
Therefore, reversal (x σπ−1x)(πΓσπ−1x πΓx) is applicable to π. Moreover, since σπ−1

is a product of companion cycles απΓα−1πΓ then for any cycle (a1 . . . am) of σπ−1

there is a cycle (πΓam . . . πΓa1) of σπ−1, and therefore πΓx 6∈ orb(σπ−1, x). Finally,
by the choice of x and since σπ−1x ∈ orb(σπ−1, x), πΓσπ−1x ∈ orb(σπ−1, πΓx), and
πΓx 6∈ orb(σπ−1, x) then ρ|σπ−1, and by Lemma 3.1 reversal ρ is a good event for the
pair (π, σ). 2

4 Algorithm

In this section we present an algorithm for finding a sequence of good events and the
weight, which takes O(n2) running time.
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Algorithm SRBISort

1. r = 0;

2. θ = π;

3. W = 0;

4. while (θ 6= σ) do {
5. r + +;

6. if (Orb(θ, E) = Orb(σ,E) )

7. find a permutation ρr such that

8. ρr is a block-interchange

9. ρr applicable to θ

10. ρr is a good event for the pair (θ, σ).

11. else

12. find a permutation ρr such that

13. ρr is a signed reversal

14. ρr applicable to θ

15. ρr is a good event for the pair (θ, σ).

16. θ = ρrθ;

17. W = W + w(ρr);

18. }
19. return ρ1, . . . , ρr and W ;

Lemma 4.1 Given π, σ, and Γ over E, SRBISort algorithm presents a sequence of
good events for the pair (π, σ) with minimum weight W (π, σ) that transforms genome
π into σ in O(n2) running time, where n = |E|/2.

Proof: We show that the algorithm SRBISort is correct by defining the following
loop invariant over the parameter r: θ = ρr . . . ρ1π and ρi is a good event for the pair
(ρi−1 . . . ρ1π, σ) applicable to ρi−1 . . . ρ1π, for 1 ≤ i ≤ r.

For r = 0, before the main loop in the line 4, we have θ = π and the invariant is
trivially valid.

Suppose that the invariant is valid for r = k, that is, we have θ = ρk . . . ρ1π and ρi

is a good event for the pair (ρi−1 . . . ρ1π, σ) applicable to ρi−1 . . . ρ1π for 1 ≤ i ≤ k. In
the next iteration of the loop in line 6 we have two cases: θ and σ are either equiorbital
or not. In both cases there is a good event for the pair (θ, σ) by Lemma 3.3 and
Lemma 3.4. Therefore the invariant remains valid before the next iteration of the loop
in line 4.

If θ = σ then the condition in the line 4 is false and the algorithm executes the
code in the line 19. At this point in the execution then we have θ = ρr . . . ρ1π such
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that each ρi is a good event for the pair (ρi−1 . . . ρ1π, σ) applicable to ρi−1 . . . ρ1π, for
1 ≤ i ≤ r since the loop invariant is valid. Therefore σ = ρr . . . ρ1π and ρ1, . . . , ρr is a
sequence of good events, such that ρi is a good event for the pair (ρi−1 . . . ρ1π, σ) and
it is applicable to ρi−1 . . . ρ1π, where 1 ≤ i ≤ r, transforming genome π into genome σ.

In the worst case, just one element in each strand of the genome will be placed in its
proper position per iteration of the loop in line 4, i.e. the block while will be executed
O(n) times. A sequence of signed reversals is an example of a worst case instance in
the time complexity. For each step in the while loop it is verified whether genomes θ
and σ are equiorbital in line 6. This verification can be accomplished in O(n) running
time by maintaining two labels for each element in the set E representing the strand
the element belongs to in θ and σ, respectively. Genomes θ and σ are equiorbital when
every element with the same value for the θ label (and those elements only) have the
same value for σ label. Labels must be updated for the pair of genomes ρrθ and σ where
ρr is a signed reversal (block-interchanges do not affect orbits). The update process can
be achieved in O(n) running time since a signed reversal may change the orientation,
and conquently the label value of n− 1 elements in each strand of θ. Finding a block-
interchange that is a good event for the pair (θ, σ) can be performed in O(n) time by
representing genomes using a simple array data structure and a rotation of elements
as suggested by Lin et al [12]. Signed reversals that are good events can be found in
O(n) by using the same data structure employed on verifying whether two genomes are
equiorbital. Given an element x ∈ E one must confirm if x and σθ−1x belong to distinct
strands of θ; and, in this case, the signed reversal ρr = (x σθ−1x)(θΓσθ−1x θΓx) is a
good event. Since there are n pairs x and σθ−1x, then such verification takes O(n)
running time. Therefore the total time complexity is quadratic in n. 2

Theorem 4.2 Given genomes π, σ, and the function Γ, all over E, we have

W (π, σ) =
‖σπ−1‖

2
.

Proof: Given genomes π and σ over E, Lemma 4.1 guarantees the existence of a
sequence of rearrangement events ρ1, . . . , ρk such that ρk . . . ρ1π = σ and ρi is applicable
to ρi−1 . . . ρ1π and ρi is a good event for (ρi−1 . . . ρ1π, σ) for 1 ≤ i ≤ k. In addition,
by Lemma 3.2, we have W (π, σ) ≥ ‖σπ−1‖/2 and

∑k
i=1 w(ρi) = ‖σπ−1‖/2. Therefore

W (π, σ) = ‖σπ−1‖/2. 2

Given the genomes π and σ over E, Theorem 4.2 offers a simple formula to the
measure W (π, σ). The measure W (π, σ) can be obtained in O(n), which is the time
complexity for compute σπ−1 and finding its norm, although finding a sequence of
good events that transforms the genome π into σ is quadratic.

5 Conclusion

Genome Rearrangement analysis involving signed reversals and block-interchanges may
be an important technique for unichromosomal genome comparison. We showed that
a measure based on genome rearrangement by signed reversals and block-interchanges
can be properly achieved through the algebraic formalism. In addition, we presented a
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simple algorithm to find a minimum sequence of signed reversals and block-interchanges
that transforms a genome into another.

Dealing with multichromosomal genomes and recombination events (e.g. translo-
cations) is a promising direction for future work. This approach was already explored
in the work of Yancopoulos et al [19], although we believe that a further simplification
is possible by using the algebraic formalism.
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