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Questions 1

1. Percolation theory basics. The forest fire example.
2. Inverse percolation and network robustness.
3. Scale-free network robustness and Molloy-Reed criteria.
4. Critical Threshold in infinite networks
5. Critical Threshold in finite networks
6. Critical Threshold under attacks
7. Cascading failures: examples and empirical results
8. Modeling cascading failures: Failure Propagation model
9. Modeling cascading failures: Branching model
10.Building robustness and halting cascading failures.
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Section 1



Section 1 Introduction

robust |rōˈbəst, ˈrōˌbəst|  adjective

(robuster, robustest ) strong and healthy; 
vigorous: the Caplans are a robust, healthy 
lot.

• (of an object) sturdy in construction: a 
robust metal cabinet.
• (of a process, system, organization, etc.) 
able to withstand or overcome adverse 
conditions: California's robust property 
market.

Robustness, means “oak” in latin, being the 
symbol of strength and longevity in the 
ancient world.



Complex systems maintain their basic functions even under errors and failures     
                                                       

Cell   mutations

There are uncountable number of mutations and other errors in our cells, yet, we do not notice their 
consequences.

Internet   router breakdowns

At any moment hundreds of routers on the internet are broken, yet, the internet as a whole does not 
loose its functionality.

Where does robustness come from?

There are feedback loops in most complex systems that keep tab on the 
component’s and the system’s ‘health’.

Could the network structure affect a system’s robustness?
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Percolation Theory

Section 8.2



ROBUSTNESS



Section 2 Percolation Transition

Cluster size, <s>: average size of all finite 
clusters for a given p 

Order parameter, P∞: probability that a 
peeble belongs to the largest cluster. 

Correlation length:  mean distance 
between two sites on the same cluster. 

⟨ s⟩∼|p−pc|
−γ

P∞∼( p−pc)
β



Section 8.2 Critical Exponents, Universality



Section 8.2 Network Breakdown: Inverse percolation



Section 8.2 Percolation, Forrest Fire



Robustness of scale-free 
networks

Section 8.3



The interest in the robustness problem has three origins:

Robustness of complex systems is an important problem in many areas

Many real networks are not regular, but have a scale-free topology

In scale-free networks the scenario described above is not valid

Albert, Jeong, Barabási, Nature 406 378 (2000)
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Albert, Jeong, Barabási, Nature 406 378 (2000)

Scale-free networks do not appear to 
break apart under random failures. 
Reason: the hubs. 
The likelihood of removing a hub is small. 
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Section 8.3



Section 2 Network Breakdown: Inverse percolation

What is the value of f
c
?

Molloy-Reed criteria:



Section 8.3 Molloy-Reed Criterium



Section 8.3 Molloy-Reed Criterium



Section 2 Network Breakdown: Inverse percolation

Molloy-Reed criteria:

Erdos-Renyi network:



Robustness: we remove a fraction f of the nodes.

At what threshold fc will the network fall apart (no giant component)?

Random node removal changes 

the degree of individuals nodes [k  k’ ≤k) 

the degree distribution [P(k)  P’(k’)] 

Breakdown threshold:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

f<fc: the network is still connected (there is a giant cluster)
f>fc: the network becomes disconnected (giant cluster vanishes)

fc f

S
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Problem: What are the consequences of removing a fraction f of all nodes?
At what threshold fc will the network fall apart (no giant component)?

Random node removal changes 

the degree of individual nodes [k  k’ ≤k] 

the degree distribution [P(k)  P’(k’)] 

A node with degree k will loose some links and become a node with degree k’ with probability:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

The prob. that we had a k 
degree node was P(k), so 
the probability that we will 
have a new node with 
degree k’ : 

Remove k-k’ 
links, each  with 
probability f

Leave k’ links 
untouched, each  
with probability 1-f

Let us asume that we know <k> and <k2> for the original degree distribution P(k) 
 calculate <k’> , <k’2> for the new degree distribution P’(k’).
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Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Degree distribution after we removed f fraction of nodes.

The sum is done over 
the triangel shown in the 
right, so we can replace 
it with k’

k=[k’, ∞)
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Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Degree distribution after we removed f fraction of nodes.

The sum is done over 
the triangel shown in the 
right, i.e. we can replace 
it with k’

k=[k’, ∞)
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Robustness: we remove a fraction f of the nodes.

At what threshold fc will the network fall apart (no giant component)?

Random node removal changes 

the degree of individuals nodes [k  k’ ≤k) 

the degree distribution [P(k)  P’(k’)] 

Breakdown threshold:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

κ>2:  a giant cluster exists

κ<2:  many disconnected clusters

f<fc: the network is still connected (there is a giant cluster)
f>fc: the network becomes disconnected (giant cluster vanishes) fc f

S
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Albert, Jeong, Barabási, Nature 406 378 (2000)

Scale-free networks do not appear to 
break apart under random failures. 
Reason: the hubs. 
The likelihood of removing a hub is small. 
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γ>3:  κ is finite, so the network will break apart at a finite fc that depens on Kmin

γ<3:  κ diverges in the N ∞ limit, so fc  1 !!!
for an infinite system one needs to remove all the nodes to break the system.

For a finite system, there is a finite but large fc that scales with the system size as: 

Internet: Router level map, N=228,263; γ=2.1±0.1;    κ=28   fc=0.962
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Robustness of Finite Networks

Equation (8.9) predicts that for a scale-free network f
c
 converges to one 

only if  k
m ax

  ∞, which corresponds to the N  ∞ limit. While many net-

works of practical interest are very large, they are still finite, prompt-

ing us to ask if the observed anomaly is relevant for finite networks. To 

address this we insert (4.18) into (8.9), obtaining that f
c
 depends on the 

network size N  as (ADVANCED TOPICS 8.C)

where C collects all terms that do not depend on N . Equation (8.10) indi-

cates that the larger a network, the closer is its critical threshold to f
c
 = 1. 

To see how close f
c
 can get to the theoretical limit f

c
 = 1, we calculate f

c
 

for the Internet. The router level map of the Internet has k 2 / k = 37.91 

(Table 4.1). Inserting this ratio into (8.7) we obtain f
c
 = 0.972. Therefore, 

we need to remove 97% of the routers to fragment the Internet into dis-

connected components. The probability that by chance 186,861 routers 

fail simultaneously, representing 97% of the N = 192,244 routers on the 

Internet, is eff ectively zero. This is the reason why the topology of the 

Internet is so robust to random failures.

In general a network displays en han ced robu stn ess  if its breakdown 

threshold deviates from the random network prediction (8.8), i.e. if

Enhanced robustness has several ramifications:

•  The inequality (8.11) is satisfied for most networks for which k2  devi-

ates from k ( k  + 1). According to Figure 4.8, for virtually all reference 

networks k2  exceeds the random expectation. Hence the robustness 

predicted by (8.7) aff ects most networks of practical interest. This is 

illustrated in Table 8.1, that shows that for most reference networks 

(8.11) holds.

•  Equation (8.7) predicts that the degree distribution of a network does 

not need to follow a strict power law to display enhanced robustness. 

All we need is a larger k2 than expected for a random network of 

similar size.

• The scale-free property changes not only f
c
, but also the critical expo-

nents 
p
,

c 
and  in the vicinity of f

c
. Their dependence on the degree 

exponent is discussed in ADVANCED TOPICS 8.A.

• Enhanced robustness is not limited to node removal, but emerges un-

der link removal as well (Figure 8.10).

,

NETWORK ROBUSTNESS
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What happens if we randomly remove the 
links rather than the nodes? The calculations 
predict that the critical threshold f

c
 is the 

same for random link and node removal [7, 
8]. To illustrate this, we compare the impact 
of random node and link removal on a ran-
dom network with k = 2. The plot indicates 
that the network falls apart at the same crit-
ical threshold f

c
  0.5. The diff erence is in the 

shape of the two curves. Indeed, the remov-
al of an f fraction of nodes leaves us with a 
smaller giant component than the removal of 
an f fraction of links. This is not unexpected: 
on average each node removes k  links. Hence 
the removal of an f fraction of nodes is equiv-
alent with the removal of an f k  fraction of 
links, which clearly makes more damage than 
the removal of an f fraction of links.

Figure 8.10
Robustness and Link Removal



ROBUSTNESS and Link Removal 

the critical threshold fc is the 
same for random link and node 

removal 



Attack tolerance

Section 8.4
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Attacks

  3 : fc=1

(R. Cohen et al PRL, 2000)

Failures

Albert, Jeong, Barabási, Nature 406 378 (2000)

Achilles’ Heel of scale-free networks
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Achilles’ Heel of complex networks

Internet

failure
attack

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)
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Attack threshold for arbitrary P(k)
Attack problem: we remove a fraction f of the hubs.

At what threshold fc will the network fall apart (no giant component)?

Hub removal changes 

the maximum degree of the network [Kmax  K’max ≤Kmax) 

the degree distribution [P(k)  P’(k’)] 

A node with degree k will loose some links because some of its neighbors will vanish.

Claim: once we correct for the changes in Kmax and P(k),we are back to the robustness problem.

That is, attack is nothing but a robustness of the network with a new Kmax and P(k). 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

fc f
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Attack threshold for arbitrary P(k)
Attack problem: we remove a fraction f of the hubs.

the maximum degree of the network [Kmax  K’max ≤Kmax) `

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

If we remove an f fraction of hubs, the maximum degree changes:

As K’max ≤Kmax

we can ignore 
the Kmax  term  

Network Science: Robustness Cascades

 The new maximum degree after 
removing f fraction of the hubs.
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Attack threshold for arbitrary P(k)
Attack problem: we remove a fraction f of the hubs.

the degree distribution changes  [P(k)  P’(k’)] 

A node with degree k will loose some links because some of its neighbors will vanish.

Let us calculate the fraction of links removed ‘randomly’ , f’, as a consequence of removing f 

fraction of hubs.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

as K’max ≤Kmax 

For γ2, f’1, which means that even 
the removal of a tiny fraction of hubs will 
destroy the network. The reason is that 
for γ=2 hubs dominate the network

Network Science: Robustness Cascades
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Attack threshold for arbitrary P(k)
Attack problem: we remove a fraction f of the hubs.

At what threshold fc will the network fall apart (no giant component)?

Hub removal changes 

the maximum degree of the network [Kmax  K’max ≤Kmax) 

the degree distribution [P(k)  P’(k’)] 

A node with degree k will loose some links because some of its neighbors will vanish.

Claim: once we correct for the changes in Kmax and P(k), we are back to the robustness problem.

That is, attack is nothing but a robustness of the network with a new K’max and f’. 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).
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work under attack. To do this we rely on the fact that hub removal 

changes the network in two ways [9]:

•  It changes the maximum degree of the network from k
m ax

 to k'
m ax

 as all 

nodes with degree larger than  k'
m ax

 have been removed.

•  The degree distribution of the network changes from p
k
 to  p'

k'
, as 

nodes connected to the removed hubs will loose links, altering the de-

grees of the remaining nodes.

By combining these two changes we can map the attack problem into 

the robustness problem discussed in the previous section. In other words, 

we can view an attack as random node removal from a network with ad-

justed k'
m ax

 and p'
k'
. The calculations predict that the critical threshold f

c
 for 

attacks on a scale-free network is the solution of the equation [9, 10] (AD-
VANCED TOPICS 8.F)

Figure 8.12 shows the numerical solution of (8.12) in function of the de-

gree exponent , allowing us to draw several conclusions:

•  While f
c
 for failures decreases monotonically with , f

c
 for attacks can 

have a non-monotonic behavior: it increases for small and decreses 

for large .

•  f
c
 for attacks is always smaller than f

c
 for random failures.

•  For large  a scale-free network behaves like a random network. As a 

random network lacks hubs, the impact of an attack is similar to the 

impact of random node removal. Consequently the failure and the 

attack thresholds converge to each other for large . Indeed, if   

∞ then p
k 

 (k − k
m in

), meaning that all nodes have the same degree 

k
m in

. Therefore random failures and targeted attacks become indistin-

guishable in the   ∞ limit, obtaining 

                        (8.13)

• As Figure 8.13 shows, a random network has a finite percolation thresh-

old under both random failures and attacks, as predicted by Figure 8.12 
and (8.13) for large .

The airport analogy helps us understand the fragility of scale-free net-

works to attacks: The closing of two large airports, like Chicago’s O’Hare 

Airport or the Atlanta International Airport, for only a few hours would 

be headline news, altering travel throughout the U.S. Should some se-

ries of events lead to the simultaneous closure of the Atlanta, Chicago, 

Denver, and New York airports, the biggest hubs, air travel within the 

North American continent would come to a halt within hours.

Online Resource 8.2

Scale-free Networks Under Attack

NETWORK ROBUSTNESS
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2

3
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3

1 1).

The dependence of the breakdown threshold, 
f

c
, on the degree exponent  for scale-free net-

works with k
m in  = 2, 3. The curves are predicted 

by (8.12) for attacks (purple) and by (8.7) for 
random failures (green). 

Figure 8.12
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During an attack we aim to inflict maximum 
damage on a network. We can do this by re-
moving first the highest degree node, fol-
lowed by the next highest degree, and so on. 
As the movie illustrates, it is suffi cient to 
remove only a few hubs to break a scale-free 
network into disconnected components. Com-
pare this with the network’s refusal to break 
apart under random node failures, shown in 
Online Resource 8.1. Visualization by Dashun 
Wang.

>
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work under attack. To do this we rely on the fact that hub removal 

changes the network in two ways [9]:

•  It changes the maximum degree of the network from k
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 as all 

nodes with degree larger than  k'
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old under both random failures and attacks, as predicted by Figure 8.12 

and (8.13) for large .

The airport analogy helps us understand the fragility of scale-free net-

works to attacks: The closing of two large airports, like Chicago’s O’Hare 

Airport or the Atlanta International Airport, for only a few hours would 

be headline news, altering travel throughout the U.S. Should some se-

ries of events lead to the simultaneous closure of the Atlanta, Chicago, 

Denver, and New York airports, the biggest hubs, air travel within the 

North American continent would come to a halt within hours.
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Critical Threshold Under Attack
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During an attack we aim to inflict maximum 
damage on a network. We can do this by re-
moving first the highest degree node, fol-
lowed by the next highest degree, and so on. 
As the movie illustrates, it is suffi cient to 
remove only a few hubs to break a scale-free 
network into disconnected components. Com-
pare this with the network’s refusal to break 
apart under random node failures, shown in 
Online Resource 8.1. Visualization by Dashun 
Wang.
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Consider a random graph with connection probability p such that 

at least a giant connected component is present in the graph.

Find the critical fraction of removed 

nodes such that the giant connected

component is destroyed.

The higher the average degree, the larger damage the network 

can survive.

Q: How do you explain the peak in the average distance?

Network Science: Robustness Cascades

Erdos-Renyi networks
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Historical Detour: Paul Baran and Internet

1958


