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1. Percolation theory basics. The forest fire example.

2. Inverse percolation and network robustness.

3. Scale-free network robustness and Molloy-Reed criteria.
4. Critical Threshold in infinite networks

5. Critical Threshold in finite networks

6. Critical Threshold under attacks

7. Cascading failures: examples and empirical results

8. Modeling cascading failures: Failure Propagation model
9. Modeling cascading failures: Branching model
10.Building robustness and halting cascading failures.



Introduction



robust |r0 bast, 'r0 bast| adjective

(robuster, robustest ) strong and healthy;
vigorous: the Caplans are a robust, healthy
lot.

» (of an object) sturdy in construction: a
robust metal cabinet.

» (of a process, system, organization, etc.)
able to withstand or overcome adverse
conditions: California's robust property
market.

Robustness, means “oak” in latin, being the
symbol of strength and longevity in the
ancient world.



ROBUSTNESS IN COMPLEX SYSTEMS

Complex systems maintain their basic functions even under errors and failures

Cell & mutations

There are uncountable number of mutations and other errors in our cells, yet, we do not notice their
consequences.

Internet = router breakdowns

At any moment hundreds of routers on the internet are broken, yet, the internet as a whole does not
loose its functionality.

Where does robustness come from?

There are feedback loops in most complex systems that keep tab on the
component’s and the system’s ‘health’.

Could the network structure affect a system’s robustness?



Percolation Theory



ROBUSTNESS
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Section 8.2 Critical Exponents, Universality

» The value of p_depends on the lattice type, hence it is not universal.
For example, for a two-dimensional square lattice (Figure 8.4) we have
p. = 0.593, while for a two-dimensional triangular lattice p_ = 1/2 (site
percolation).

» The value of p_also changes with the lattice dimension: for a square
lattice p, = 0.593 (d = 2); for a simple cubic lattice (d = 3) p, ~ 0.3116.
Therefore in d = 3 we need to cover a smaller fraction of the nodes
with pebbles to reach the percolation transition.

e In contrast with p , the critical exponents do not depend on the lattice
type, but only on the lattice dimension. In two dimensions, the case
shown in Figure 8.4, we have v, = 43/18, B, = 5/36, and v = 4/3, for any
lattice. In three dimensions y, = 1.80, 8, = 0.41, and v = 0.88. For any
d > 6 we have v,=1,B8,=1,v=1/2, hence for large d the exponents are
independent of d as well [2].



Section 8.2 Network Breakdown: Inverse percolation

What, however, if the underlying network is not as regular as a square lat-
tice? As we will see in the coming sections, the answer depends on the pre-
s s 1‘ cise network topology. Yet, for random networks the answer continues to
f be provided by percolation theory: Random networks under random node
failures share the same scaling exponents as infinite-dimensional perco-
lation. Hence the critical exponents for a random network are v,=1,B,=1
and v = 1, corresponding to the d > 6 percolation exponents encountered
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Section 8.2 Percolation, Forrest Fire




Robustness of scale-free
networks



ROBUSTNESS OF SCALE-FREE NETWORKS

The interest in the robustness problem has three origins:
- Robustness of complex systems is an important problem in many areas
—>Many real networks are not regular, but have a scale-free topology

- In scale-free networks the scenario described above is not valid

Albert, Jeong, Barabasi, Nature 406 378 (2000)



ROBUSTNESS OF SCALE-FREE NETWORKS

Scale-free networks do not appear to

break apart under random failures.
Reason: the hubs.

The likelihood of removing a hub is small.

0 1
f
Albert, Jeong, Barabasi, Nature 406 378 (2000)
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Section 2 Network Breakdown: Inverse percolation

What is the value of f?
Molloy-Reed criteria:
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Section 8.3 Molloy-Reed Criterium

[6]. For a giant component to exist each node that belongs to it must be
connected to at least two other nodes on average (Figure 8.8). Therefore, the
average degree k. of arandomly chosen node i that is part of the giant com-
ponent should be at least 2. Denote with P(k, | i <> j) the joint probability that
anode in a network with degree k. is connected to a nodej that is part of the
giant component. This conditional probability allows us to determine the
expected degree of nodei as

(ki lies jy=, kP(klie> )=2. (8.26)
k:



Section 8.3 Molloy-Reed Criterium

(ki lie> jy=, kP(klie> )=2. (8.26)
k;

In other words, <k, | i < j) should be equal or exceed two, the condition
for node i to be part of the giant component. We can write the probability
appearing in the sum (8.26) as

P(k,-,i%)j)z P(iHjlki)p(ki)
P(i ¢ j) Pi<>j)

Pk li > j)= (8.27)
where we used Bayes’ theorem in the last term. For a network with degree
distribution p,, in the absence of degree correlations, we can write

2L _ R i jiky=—fi, @29

N(N-1) N-1' N-1

Pie j)=

which express the fact that we can choose between N - 1 nodes to link to,
each with probability 1/(N - 1) and that we can try this k, times. We can now
return to (8.26), obtaining

Y kiplk)

. N P@i < jlk)p(k,) _ kip(k,-)z k, (8.29)
21:7 kP(k,|i <> )) g‘ki o) ;ki 0 o

With that we arrive at the Molloy-Reed criterion (8.4), providing the con-
dition to have a giant component as

(k*)
e 5 (8.30)
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Section 2

Network Breakdown: Inverse percolation

Molloy-Reed criteria:

Erdos-Renyi network:

(k%) = (k)(1 + (k)

() _ R+ k)
CRRC

K

(ky > 1

1+ (k)y=2

Networks with k < 2 lack a giant component, being fragmented into
many disconnected components. The Molloy-Reed criterion (8.4) links
the network's integrity, as expressed by the presence or the absence of a
giant component, to (k and k7. It is valid for any degree distribution p,.



Critical Threshold for arbitrary P(K)

Robustness: we remove a fraction f of the nodes.
At what threshold f, will the network fall apart (no giant component)?
Random node removal changes

the degree of individuals nodes [k 2 k' <k)

the degree distribution [P(k) 2 P’(k’)]

1
Breakdown threshold: | f. =1— <k2> : S

o !

f<f_: the network is still connected (there is a giant cluster)
f>f_: the network becomes disconnected (giant cluster vanishes)

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



BREAKDOWN THRESHOLD FOR ARBITRARY P(k)

Problem: What are the consequences of removing a fraction f of all nodes?
At what threshold f, will the network fall apart (no giant component)?

Random node removal changes
the degree of individual nodes [k =2 k' <k]
the degree distribution [P(k) = P’(k’)]
A node with degree k will loose some links and become a node with degree k’with probability:

k e y The prob. that we had a k 0 K
K’ f~a-1) k'< k degree node was P(k), so P'(k") = Zp(k)( 'J fk_k'(l _ f)k'
/ AN the probability that we wil - k
Remove k-k’ Leave K’ links have a new node with
links, each with  untouched, each degree k-
probability f with probability 1-f

Let us asume that we know <k> and <k2> for the original degree distribution P(k)
—> calculate <k’> , <k’?>> for the new degree distribution P’(k’).

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



BREAKDOWN THRESHOLD FOR ARBITRARY P(K)

z- k
P'(k") = ZP(k)[k'J f**a1 - f)*  Degree distribution after we removed f fraction of nodes.

SRS k(k . .
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The sum is done over
the triangel shown in the
right, so we can replace
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Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



BREAKDOWN THRESHOLD FOR ARBITRARY P(K)

- k
P'(k') = ZP(k)[k'J f**1 - f)*  Degree distribution after we removed f fraction of nodes.
k=k'

<k?> =<k'(K—1)=k'> = D K'(k'-1)P'(k")~ <Kk'>,

k'=0

The sum is done over
the triangel shown in the
right, i.e. we can replace

it with
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Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



BREAKDOWN THRESHOLD FOR ARBITRARY P(K)

Robustness: we remove a fraction f of the nodes.
At what threshold f, will the network fall apart (no giant component)?

Random node removal changes
the degree of individuals nodes [k = k' <k)
the degree distribution [P(k) 2 P’(k’)]

<k>;=(1-1)<k> < k' >, . k>2: agiant cluster exists
<k?>=(01-f) <k*>+f(1-f)<k> = <k'>, — ~ k<2: many disconnected clusters
1 S
Breakdown threshold: | f. =1— (i) !
———1
(k)
f<f_: the network is still connected (there is a giant cluster)
f>f_: the network becomes disconnected (giant cluster vanishes) f. f

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



ROBUSTNESS OF SCALE-FREE NETWORKS

Scale-free networks do not appear to
break apart under random failures.
Reason: the hubs.

The likelihood of removing a hub is small.

0 1
f
Albert, Jeong, Barabasi, Nature 406 378 (2000)

Network Science: Robustness Cascades



ROBUSTNESS OF SCALE-FREE NETWORKS

K . >3
1 <k2> 2_7/ 3mln , 7/
f.=1——— K= = K_.  'K':- 3>y >2
—1 <k> |3—y
§ Kmax 2>7/>1

1

Kmax = I<min]\]y_1
y>3: K s finite, so the network will break apart at a finite f, that depens on K_._

y<3: kdiverges in the N-> < limit, so f, > 1 !ll

for an infinite system one needs to remove all the nodes to break the system.
3y
~ -1
For a finite system, there is a finite but large f_that scales with the system size as: k=1- CN ’

Internet: Router level map, N=228,263; y=2.1£0.1; k=28 > £.=0.962



ROBUSTNESS OF SCALE-FREE NETWORKS
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In general a network displays enhanced robustness if its breakdown — Bubie-Froee Call
threshold deviates from the random network prediction (88),i.e.if
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ROBUSTNESS and Link Removal

e Link Removal
'i"{._ Node Removal «
..\‘!.
® A ]
075 - ® ‘.‘.\
S .
o DR the critical threshold fc is the
— 05 °. i )
~ g same for random link and node
3 "o o removal
o ¢ ® \"\
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Attack tolerance



Achilles’ Heel of scale-free networks
)

.
____a ® s : ~

Attacks Failures
S y<3:f=1
(R. Cohen et al PRL, 2000)

0 f, 1
Albert_ Jeonq_ Barabési, Nature 406 378 (2000) Network Science: Robustness Cascades



Pw (f)/P  (0)

Achilles’ Heel of complex networks

Attacks -e

Random Failures -»

R. Albert, H. Jeong, A.L.

failure
attack

Internet
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Barabasi, Nature 406 378 (2000)




Attack threshold for arbitrary P(k)

Attack problem: we remove a fraction f of the hubs.
At what threshold f, will the network fall apart (no giant component)?
Hub removal changes
the maximum degree of the network [K
the degree distribution [P(k) 2 P’(k’)]
A node with degree k will loose some links because some of its neighbors will vanish.

9 K,max <K )

max — Ymax

Claim: once we correct for the changes in K__ and P(k),we are back to the robustness problem.
That is, attack is nothing but a robustness of the network with a new K, and P(k).

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



Attack threshold for arbitrary P(k)

Attack problem: we remove a fraction f of the hubs.
the maximum degree of the network [K__ =2 K',__, <K

max max)

If we remove an f fraction of hubs, the maximum degree changes:

J Pk = £
Kmax
P(k)dk (¥ — I)Kmln kdk = 1— Kmm (Kmax — K", we can ignore
K o K o the K__ term
K.V -
— =f K =Ko 17 < The new maximum degree after
K max removing f fraction of the hubs.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



Attack threshold for arbitrary P(k)

Attack problem: we remove a fraction f of the hubs.

the degree distribution changes [P(k) 2 P’(k’)]

A node with degree k will loose some links because some of its neighbors will vanish.
Let us calculate the fraction of links removed ‘randomly’ , f', as a consequence of removing f

as l’<,max Sl<max
1 7/ _ 1 K;/flKQf)/

K}/fl (K277/ _Kv2f)/ ) - _

. Ko
fraction of hubs. rkP(k)dk
K ax °
[ kP (k) dk B}
K, -1 Tx lf;/dk 1
' max — _1 K?’. k —
f <k >¥ <k>(y ) o <k >

K X

fv:_ 1 y_le—.lKnyff__;//:_ 1 y_lK . f
<k>2—}/ min~ “~min <k>2—]/ min
(m—y+1) 1—,
fr=f'
—1
<k>:_(7/ )Krnin
(2-7)

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

min max max

<k>2—7/ min max

For y—=>2, f>1, which means that even
the removal of a tiny fraction of hubs will
destroy the network. The reason is that
for y=2 hubs dominate the network



Attack threshold for arbitrary P(k)

Attack problem: we remove a fraction f of the hubs.
At what threshold f, will the network fall apart (no giant component)?

Hub removal changes 1

the maximum degree of the network [K__ > K <K ) K' =K, .f'”

the degree distribution [P(k) = P’(k’)] 2=r
A node with degree k will loose some links because some of its neighbors will vanish. f' — f =7

Claim: once we correct for the changes in K__ and P(k), we are back to the robustness problem.
That is, attack is nothing but a robustness of the network with a new K’,__ and f'.

l 1 Co<k”> <k*> K
f——l_ Y K = — =
K'—1 <k'> (A-f)<k> 1-f
( Kmin 7/>3 2—y 2_ 3—y
K = §_7/<‘Kmax3_y‘Krjr/1in2 3>7/>2 fClTy :2+3—7/Krmn(fcly _1J
7 K 2>y >1 7

Cohen et al.. Phvs. Rev. Lett. 85. 4626 (2000).



Attack threshold for arbitrary P(k)

2 — 3-

* Whilef_for failures decreases monotonically with y, f_for attacks can
have a non-monotonic behavior: it increases for small y and decreses

Eand
fc 11—y = 2 + —

for largey. 1 ‘ ‘ ‘
9ey Random Failures
Attacks —
« f_for attacks is always smaller than f,for random failures. 08 < =3 i
in =

e For large y a scale-free network behaves like a random network. As a
random network lacks hubs, the impact of an attack is similar to the
impact of random node removal. Consequently the failure and the
attack thresholds converge to each other for large y. Indeed, if y —
« then p, — &(k —k,, ), meaning that all nodes have the same degree
k.. Thereforerandom failures and targeted attacks becomeindistin-
guishablein the y — « limit, obtaining

1
==y e13

* AsFigure813shows, arandom network has afinite percolation thresh-
old under both random failures and attacks, as predicted by Figure 812
and (813)for largeyy.



Erdos-Renyi networks

Consider a random graph with connection probability p such that
at least a giant connected component is present in the graph.

1 Attacks e
Find the critical fraction of removed s, Random Failures «
nodes such that the giant connected
component is destroyed.

o

0.75

05

Pe (f)/P o (0)

- ] 025

° [ ]
[ ]
0 L |%esgeesesccsescsseceslochecssssssssess =
0 0.25 0.5 f 0.75 1

The higher the average degree, the larger damage the network
can survive.



Historical Detour: Paul Baran and Internet

Station
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