Network Science Depth-First Search

Joao Meidanis

University of Campinas, Brazil

September 28, 2020

Summary

1 Depth-First Search (DFS) Algorithm

2 Example

Applications

Depth-First Search (DFS) Algorithm

Depth-First Search

Needs:

adjacency lists

Provides:

- edge classification
- cycle detection
- topological sort

Algorithm — Core

```
function DFS-VISIT(u, Adj)
for v in Adj[u] do
    if v not in parent then
        parent[v] \leftarrow u
        DFS-VISIT(v, Adj)
    end if
end for
end function
```

Algorithm — Main

```
function DFS(V, Adj)

parent \leftarrow \{\}

for v in V do

if v not in parent then

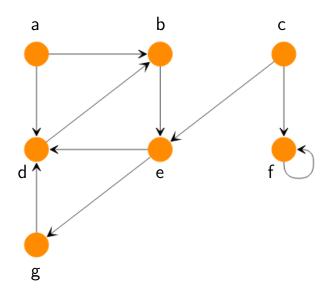
parent[v] \leftarrow None

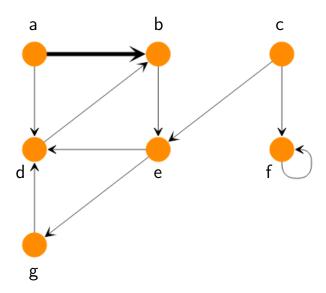
DFS-VISIT(v, Adj)

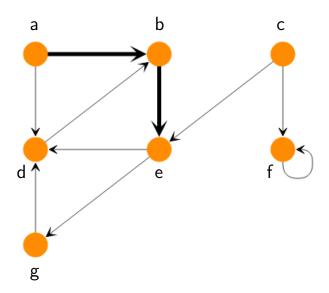
end if

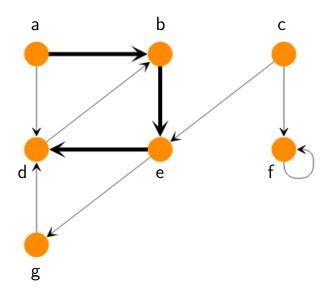
end for
```

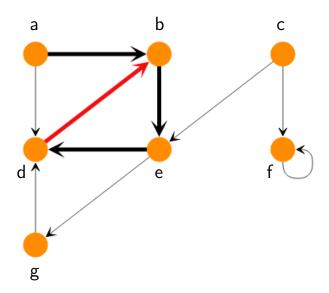
Example

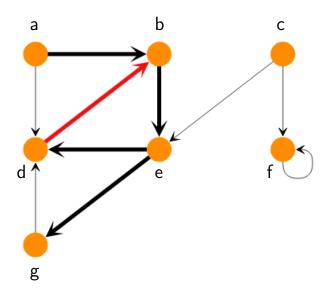


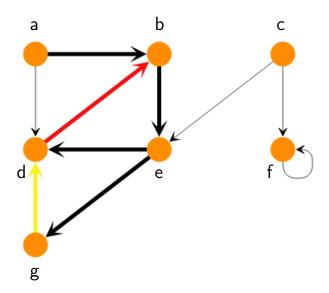


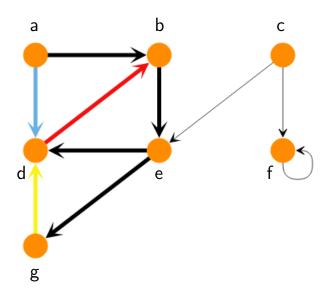


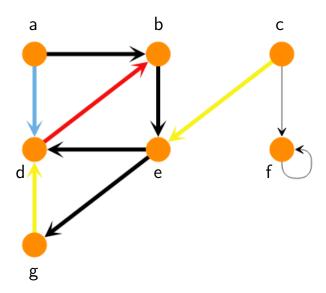


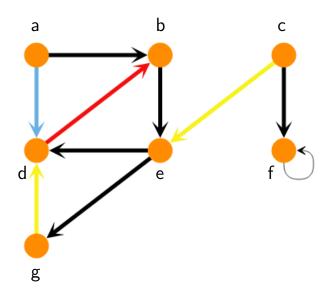


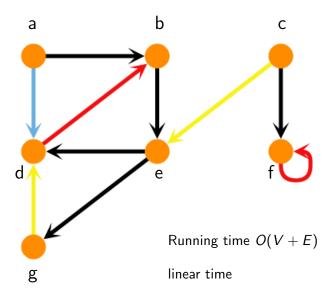












Applications

Edge classification

Depends on DFS itself, not just graph

Types of edges:

- tree edges
 - forward edges
 - backward edges
 - cross edges

Algorithm additions

- Starting and ending times
 - useful to classify edges
- ullet forward edges: u
 ightarrow v with
- backward edges: $u \rightarrow v$ with
- cross edges: $u \rightarrow v$ with
- impossible:

- u _____ v ____
- <u>____</u>
 - ____

Undirected graph

- no forward edges
- no cross edges

Cycle detection

Graph has a cycle \iff DFS has a backward edge

Topological sorting

Premises:

- Acyclic graphs
- Tasks that depend on one another

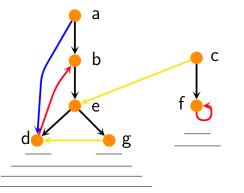
Results:

- Topological sort: Safe order for the tasks
- DFS: reverse order of finishing times

Cycle detection

DFS has a backward edge ⇒ Graph has a cycle

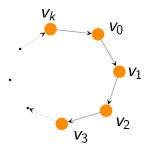
backward edge: $u \rightarrow v$ with



u starts while v active \Longrightarrow there is a path from v to u

Cycle detection

Graph has a cycle ⇒ DFS has a backward edge



 v_0 : first visited vertex in cycle

 v_1 , v_2 , v_3 , ..., v_k : start after v_0

 v_1 , v_2 , v_3 , ..., v_k : start before v_0 finishes

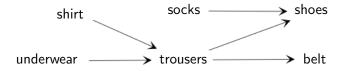
Therefore, V_0 _____

and $v_k
ightarrow v_0$ is a backward edge

Topological sorting

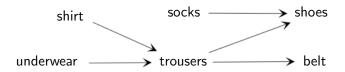
Example: getting dressed

 $\begin{array}{lll} \text{socks} & \text{socks} \rightarrow \text{shoes} \\ \text{shoes} & \text{underwear} \rightarrow \text{trousers} \\ \text{belt} & \text{shirt} \rightarrow \text{trousers} \\ \text{shirt} & \text{trousers} \rightarrow \text{belt} \\ \text{underwear} & \text{trousers} \rightarrow \text{shoes} \\ \end{array}$



Topological sorting

Example: getting dressed



shoes, socks, belt, trousers, underwear, shirt

belt, shoes, trousers, shirt, socks, underwear