Network Science

Barabási: Ch. 2 - Graph Theory - Lecture 2

Joao Meidanis

University of Campinas, Brazil

September 26, 2020

Summary

(1) Brief Statistics Review
(2) Paths and Distances
(3) Breadth First Search (BFS)
(4) Connectivity
(5) Clustering coefficients

Brief Statistics Review

Average, moments, standard deviation

For a sample of N values $x_{1}, x_{2}, \ldots, x_{N}$:

- Average (mean):

$$
\langle x\rangle=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- The $n^{\text {th }}$ moment:

$$
\left\langle x^{n}\right\rangle=\frac{x_{1}^{n}+x_{2}^{n}+\ldots+x_{N}^{n}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{n}
$$

- Standard deviation:

$$
\sigma_{x}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}
$$

Distributions

For a sample of N values $x_{1}, x_{2}, \ldots, x_{N}$:

- Distribution:

$$
p_{x}=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x, x_{i}\right)
$$

where the Kronecker δ is defined as

$$
\delta(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

- We have:

$$
\sum_{x} p_{x}=1
$$

- Continuous case (density function f):

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Paths and Distances

Paths and Length

- Physical distance usually irrelevant in networks:
- a webpage can link to others very far away
- two neighbors may not know each other
- Definition: a path is a route following network links (some texts require distinct nodes)
- Path length: number of links traversed

Shortest Paths, Distance, Diameter

- Shortest path from i to j : smallest number of links
- $d_{i j}=$ distance from i to $j=$ length of a shortest path from i to j
- Undireted network: $d_{i j}=d_{j i}$
- Directed network: often $d_{i j} \neq d_{j i}$
- Directed network: existence of $i \rightarrow j$ path does not guarantee existence of $j \rightarrow i$ path
- Computing distances:
- powers of adjacency matrix - good to know
- BFS (breadth first search) algorithm - fast - good to run
- $d_{\text {max }}=$ diameter $=$ maximum distance in network
- Average distance (connected graph):

$$
\langle d\rangle=\frac{1}{N(N-1)} \sum_{i \neq j} d_{i j}=\frac{1}{2 L_{\max }} \sum_{i \neq j} d_{i j}
$$

Number of Paths

- $N_{i j}^{(k)}=$ number of length- k paths from i to j
- Can be computed from adjacency matrix $A_{i j}$
- There is a link from i to j if and only if $A_{i j}=1$
- Then $N_{i j}^{(1)}=A_{i j}$
- There is a length-2 path from i to j if and only if there is k such that $A_{i k} A_{k j}=1$
- The number of such paths is $N_{i j}^{(2)}=\sum_{k} A_{i k} A_{k j}=A_{i j}^{2}$
- And so on. In general

$$
N_{i j}^{(k)}=A_{i j}^{k}
$$

Breadth First Search (BFS)

Breadth First Search (BFS)

algorithm: step 0

Breadth First Search (BFS)

algorithm: step 1

Breadth First Search (BFS)

algorithm: step 2

Breadth First Search (BFS)

algorithm: step 3

Breadth First Search (BFS)

algorithm: step 4

Connectivity

Connectivity for Undirected Graphs

- Connected graph: any two nodes can be joined by a path
- Disconnected graph: two or more connected components
- Giant component: the largest connected component
- Isolates: the other connected components
- Bridge: link whose removal increases the number of components

Graph 1

Graph 2

Connectivity for Directed Graphs

- Strongly Connected graph: has paths back and forth from every node to every other node (e.g., AB path and BA path)
- Weakly connected graph: connected if we disregard link orientations
- Strongly connected components: can be identified; sometimes a single node
- In-component: nodes that reach a s.c.c.
- Out-component: nodes reachable from a s.c.c.

Graph 2

Clustering coefficients

Clustering coefficient

- What fraction of the possible links exist among my neighbors?

$$
C_{i}=\frac{2 L_{i}}{k_{i}\left(k_{i}-1\right)}
$$

where:

- $L_{i}=$ number of links between node i 's neighbors
- $k_{i}=$ degree of node i

$$
C_{i} \in[0,1]
$$

$$
C_{i}=1
$$

$C_{i}=1 / 2$

$$
C_{i}=0
$$

Clustering coefficient for the entire network

- Average clustering coefficient

$$
\langle C\rangle=\frac{1}{N} \sum_{i=1}^{N} C_{i}
$$

- Global clustering coefficient

$$
C_{\Delta}=\frac{3 \times \# \text { Triangles }}{\# \text { Connected Triplets }}
$$

- connected triplet: path $A B C$, but $A B C$ and $C B A$ are considered to be the same triplet.
- a triangle contributes 3 triplets to the denominator
- a path $A B C$ without link $A C$ contributes 1 triplet to the denominator
- both $\langle C\rangle, C_{\Delta} \in[0,1]$, not necessarily equal

Clustering coefficients: Example

$$
\begin{aligned}
& \langle C\rangle=\frac{13}{42} \sim 0.310 \\
& C_{\Delta}=\frac{6}{16}=0.375
\end{aligned}
$$

