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Bose-Einstelin condensation



MAPPING TO A QUANTUM GAS

= Bose gas
%1,k g

Fithessn —-> Energy level ¢

New node with fithess n > New energy level

Link pointing to node n - Particle at level €

Network - quantum gas

G. Bianconi and A.-L. Barabasi, Physical Review Letters 2001; cond-mat/0011029




BOSE-EINSTEIN CONDENSATION
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The dynamic exponent f(e) depends on m, determined by the
self-consistent equation:
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m Bose-Einstein Condensation
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m Bose-Einstein Condensation
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Bose-Einstein Condensation

Bianconi & Barabasi, Physical Review Letters 2001; Europhys. Lett. 2001.



FITNESS MODEL: Bose-Einstein Condensation
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Bianconi & Barabasi, Physical Review Letters 2001: Europhys. Lett, 2001.



Evolving Networks



(i) The model predicts y = 3, while the experimentally observed degree
exponents vary between 2 and 5 (Table 4.1).

(ii) The model predicts a power-law degree distribution, while in real sys-
tems we observe systematic deviations from a pure power-law func-
tion, like small-degree saturation or high-degree cutoff ( ).

(iii) The model ignores a number of elementary processes that are ob-
viously present in many real networks, like the addition of internal
links and node or link removal.



Section 5 INITIAL ATTRACTIVENESS
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(k,k')~(A+Bk)(A+Bk')

Double preferential attachment (A=0).
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Random attachment (B=0).
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Start with the Barabasi-Albert model.

In each time step:

add a new node with m links
remove r nodes (in average).

r < 1: Scale-free phase

2r
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r = 1: Exponential phase

r > 1: Declining network



The coexistence of node removal with oth-

100 er elementary processes can lead to inter-
esting topological phase transitions. This
is illustrated by a simple model in which

80 the network’s growth is governed by (6.23),

EXPONENTIAL and we also remove nodes with rate r

60 DEGREE DISTRIBUTION [30]. The network displays three distinct

A phases, captured by the phase diagram
shown above, whose axes are the node re-

40 STRETCHED moval rate r and initial attractiveness A:

POWER LAW / EXPONENTIAL
DEGREE cps

?IB- bISTRIBUTION Subcritical Node Removal: r < r*(A)

If the rate of node removal is under a crit-

0 ical value r*(A), shown as the white line on
the figure, the network will be scale-free.
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« Start with the Initial Attractiveness model: gﬁzzca;lrl\efgggel:e;ngxig:‘,Eff\u)e ), the
[(k) ~ A+ k degree distribution turns into a stretched
* |n each time Step exponential (SECTION 4.A).
* add a new node with m links ,
) Exponential Networks: r> r*(A)
* remove r nodes (|n average). The network looses its scale-free nature,

developing an exponential degree distri-
bution.



The Impossibility of Node deletion
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Section 5 Declining Fashion: New York




Section 5 Declining Fashion
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» Preferential Attachment h  10°
While overall the network was shrinking, new nodes continued to ar- “ j a
rive. The measurements indicate that the attachment probability of ’ : iy
o e 18
these new nodes follows /1(k) ~k* with a=1.20 + 0.06 (Figure 6.13a), of- w3 Lk
fering evidence of superlinear preferential attachment ( ). <=
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« Link Deletion
The probability that a firm lost a link follows k(t)-" with n = 0.41 + b.
0.04, i.e. it decreased with the firms’ degree (Figure 6.13b). This doc-
[ ] .'.n.‘h

uments a weak-gets-weaker phenomenon, when the less connected 100
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firms are more likely to loose links.
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m Accelerated growth

we assumed that L = (k)N, where (k) is
independent of time or N.

* the average degree of the Internet m(t) = myt?
increased from 3.42 (Nov. 1997) to 3.96
(Dec. 1998);
* the WWW increased its average degree
from 7.22 to 7.86 during five months; y =34 20
1-6

* In metabolic networks the average degree
of the metabolites grows approximately
linearly with the number of metabolites
[33].



Section 5 Aging
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v<0: new nodes afttach to older nodes p= 10 p=1 b =1 p= 11

- enhances the role of preferential (b) , ,
attachment. n! gl
f
v— — each new node will only connect to o -
the oldest node - hub-and-spoke topology
(Fig 6.10a). s}

v>0: new nodes attach to younger nodes 2!

v— +: each node will connect to its
immediate predecessor (Fig. 6.10a).
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Summary



Section 6 summary : Topological Diversity

e Power-Law
A pure power-law emerges if a growing network is governed by lin-
ear preferential attachment only, as predicted by the Barabasi-Albert
model. It is rare to observe such a pure power law in real systems. This
idealized model represents the starting point for understanding the
degree distribution of real networks.

e Stretched Exponential
If preferential attachment is sublinear, the degree distribution
follows a stretched exponential (SECTION 4.11). A similar degree-dis-

tribution can also appear under node removal at the critical point
(Figure 6.12).



Section 6 summary : Topological Diversity

e Fitness-induced Corrections

In the presence of fitness the precise form of p, depends on the fitness
distribution p(n), which determines p, via (6.6). For example, a uniform
fitness distribution induces a logarithmic correction in p, as predicted
by (6.8). Other forms of p(n) can lead to rather exotic forms for p,.

Small-degree Saturation

Initial attractiveness adds a random component to preferential at-
tachment. Consequently, the degree distribution develops a small-de-
gree saturation, as seen in (6.24).

High-degree Cutoffs

Node and link removal, present in many real systems, can induce
exponential high-degree cutoffs in the degree distribution. Further-
more, random node-removal can deplete the small-degree nodes, in-
ducing a peak in p,.



Section 6 summary : Topological Diversity

In most real networks several of the elementary processes discussed in
this chapter appear together. For example, in the scientific collaboration
network we have sublinear preferential attachment with initial attractive-
ness and the links can be both external and internal. As researchers have
different creativity, fitness also plays a role, hence an accurate model re-
quires us to know the appropriate fitness distribution. Therefore, the de-
gree distribution is expected to display small degree saturation (thanks to
initial attractiveness), stretched exponential cutoff at high degrees (thanks
to sublinear preferential attachment), and some unknown corrections due
to the particular form of the fitness distribution p(n).

In general if wish to obtain an accurate fit to the degree distribution, we
first need to build a generative model that analytically predicts the func-
tional form of p,. Yet, in many systems developing an accurate theory for
p, may be an overkill. It is often sufficient, instead, to establish if we are
dealing with a bounded or an unbounded degree distribution ( ),
as the system’s properties will be primarily driven by this distinction.



MODEL CLASS EXAMPLES CHARACTERISTICS

& fixed
* p, bounded
* Static, time independent topoelogies

Erdds-Rényi

Static Models Watts-Stragatz

Canfiguration Model v Arbitrary pre-defined p,

Uenerabve Models =
Hidden Farameter Mogel * Static, time independent topaelogies

Barabasi-Albert Madel

Bianconi-Barabasi Model

Initial Attractiveness Madel
Evolving Metwark Models Internal Links Model

MNode Deletion Model

Accelerated Growth Modal

Aging Model

" ¢, is determined by the processes
that cantribute to the netwark's
evalutian

*Time-warying network topalogies



LESSONS LEARNED: evolving network models

There is no universal exponent characterizing all networks.

Growth and preferential attachment are responsible for the emergence
of the scale-free property.

The origins of the preferential attachment are system-dependent.

Modeling real networks:
* identify the low-level processes in the system
* measure their frequency from real data
* develop dynamical models to capture these processes.

If the model is correct, it should correctly predict not only the degree
exponent, but both small and large k-cutoffs.



The end



