Network Science

Differential Equations: Brief Review

Joao Meidanis
University of Campinas, Brazil

March 21, 2021

Summary

(1) Basics

(2) A function equal to its own derivative
(3) Tricks and partial derivatives

Basics

Equations involving derivatives

$$
\begin{aligned}
\frac{d}{d x} f(x) & =g(x) \\
\frac{d}{d x} f(x) & =f(x) \\
f(x)+x \frac{d}{d x} f(x) & =h(x)
\end{aligned}
$$

Need to solve for $f(x)$

Alternative notation

$$
f^{\prime}(x)=\frac{d}{d x} f(x)
$$

The equations become

$$
\begin{aligned}
f^{\prime} & =g \\
f^{\prime} & =f \\
f+x f^{\prime} & =h
\end{aligned}
$$

The easiest case

$$
\frac{d}{d x} f(x)=g(x)
$$

or

$$
f^{\prime}=g
$$

This is easy. Just integrate:

$$
f=\int g
$$

A function equal to its own derivative

Example of differential equation

Do you know of any function that is its own derivative?

$$
\frac{d}{d x} f(x)=f(x)
$$

The equation becomes

$$
f^{\prime}(x)=f(x)
$$

or

$$
\frac{f^{\prime}}{f}=1
$$

Chain rule

$$
\frac{f^{\prime}}{f}=1
$$

If one remembers the chain rule, this becomes:

$$
(\ln f)^{\prime}=1
$$

Integrating,

$$
\ln f=x+C
$$

or

$$
f(x)=e^{x+C}=e^{C} e^{x}=c e^{x}
$$

Tricks and partial derivatives

Last example

$$
f+x f^{\prime}=h
$$

Product rule:

$$
\begin{aligned}
(x f)^{\prime} & =h \\
x f & =\int h \\
f(x) & =\frac{\int h}{x}
\end{aligned}
$$

Partial derivatives

$$
\frac{\partial}{\partial x} f(x, y) \Rightarrow \text { treat } y \text { as a constant }
$$

Example:

$$
\begin{aligned}
2 p(k, m) & =-p(k, m)-k \frac{\partial p(k, m)}{\partial k} \\
2 p(k, m) & =-\frac{\partial}{\partial k}[k p(k, m)]
\end{aligned}
$$

Guess what?

$$
2 p(k, m)=-\frac{\partial}{\partial k}[k p(k, m)]
$$

Is there a solution of the form:

$$
p(k, m)=k^{\alpha} f(m) ?
$$

Substitute:

$$
\begin{aligned}
2 k^{\alpha} f(m) & =-\frac{\partial}{\partial k}\left[k^{\alpha+1} f(m)\right] \\
2 k^{\alpha} f(m) & =-(\alpha+1) k^{\alpha} f(m) \\
2 & =-(\alpha+1) \\
-3 & =\alpha
\end{aligned}
$$

