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Section 7 Measuring preferential attachment

Plot the change in the degree  Δk during

 a fixed time Δt for nodes with degree k.

(Jeong, Neda, A.-L. B, Europhys Letter 2003;  cond-mat/0104131)

No pref.   attach: 
κ~k 

Linear pref. attach: 
κ~k2

To reduce noise, plot  the integral of Π(k) over k:
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Plots shows the integral of 
Π(k) over k:Internet
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No pref.   attach: 
κ~k 

Linear pref. attach: 
κ~k2
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Section 8 Nonlinear preferential attachment

α=0:  Reduces to Model A discussed in Section 5.4. The degree distribution follows the 
simple exponential function. 

α=1:  Barabási-Albert model, a scale-free network with degree exponent 3. 

0<α<1: Sublinear preferential attachment. New nodes favor the more connected 
nodes over the less connected nodes. Yet, for  the bias is not sufficient to generate a 
scale-free degree distribution. Instead, in this regime the degrees follow the stretched 
exponential distribution:

 



Section 8 Nonlinear preferential attachment

α=0:  Reduces to Model A discussed in Section 5.4. The degree distribution follows the 
simple exponential function. 

α=1:  Barabási-Albert model, a scale-free network with degree exponent 3. 

α>1: Superlinear preferential attachment. The tendency to link to highly connected 
nodes is enhanced, accelerating the “rich-gets-richer” process. The consequence of this 
is most obvious for α>2, when the model predicts a winner-takes-all phenomenon: 
almost all nodes connect to a single or a few super-hubs.

 



Section 8 Nonlinear preferential attachment

The growth of the hubs. The nature of preferential attachment affects the degree of the 
largest node. While in a scale-free network the biggest hub grows as (green curve), for 
sublinear preferential attachment this dependence becomes logarithmic (red curve). For 
superlinear preferential attachment the biggest hub grows linearly with time, always grabbing 
a finite fraction of all links (blue curve)). The symbols are provided by a numerical simulation; 
the dotted lines represent the analytical predictions.
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Section 9 Link selection model
Link selection model -- perhaps the simplest example of a local or 
random mechanism capable of generating preferential attachment. 

Growth: at each time step we add a new node to the network.

Link selection: we select a link at random and connect the new 
node to one of nodes at the two ends of the selected link.

 To show that this simple mechanism generates linear preferential 
attachment, we write the probability  that the node at the end of a 
randomly chosen link has degree k as

24THE BARABÁSI-ALBERT MODEL

The model requires no knowledge about the overall network topology, 

hence it is inherently local and random. Unlike the Barabási-Albert 

model, it lacks a built-in (k) function. Yet next we show that it gener-

ates preferential attachment. 

We start by writing the probability q
k
 that the node at the end of a ran-

domly chosen link has degree k as

Equation (5.26) captures two eff ects:

• The higher the degree of a node, the higher the chance that it is lo-

cated at the end of the chosen link.

• The more degree-k nodes are in the network (i.e., the higher is p
k
), 

the more likely that a degree k  node is at the end of the link.

In (5.26) C can be calculated using the normalization condition q
k
 = 1, 

obtaining C=1/ k . Hence the probability to find a degree-k node at the end 

of a randomly chosen link is

a quantity called excess degree . 

Equation (5.27) is the probability that a new node connects to a node with 

degree k. Consequently (5.27) plays the role of preferential attachment, al-

lowing us to write (k)=q
k
. The fact that it is linear in k indicates that the 

link selection model builds a scale-free network by generating linear pref-

erential attachment. 

Copying Model
While the link selection model off ers the simplest mechanism for prefer-

ential attachment, it is neither the first nor the most popular in the class 

of models that rely on local mechanisms. That distinction goes to is the 

copy in g m odel (Figure 5.14). The model mimics a simple phenomena: The 

authors of a new webpage tend to borrow links from other webpages on 

related topics [17, 18]. It is defined as follows 

In each time step a new node is added to the network. To decide where it 

connects we randomly select a node u , corresponding for example to a web 

document whose content is related to the content of the new node. Then we 

follow a two-step procedure (Figure 5.14):

(i) Ran dom  Con n ection : With probability p  the new node links to u , 

eff ectively linking to the randomly selected web document.

(ii) Copy in g: With probability 1-p  we randomly choose an ou tgoin g 

lin k  of node u  and link the new node to the link’s target. In other 

qk =
kpk

k

The main steps of the copying model. A new 
node connects with probability p  to a randomly 
chosen target node u , or with probability 1-p  to 
one of the nodes the target u  points to. In other 
words, with probabilty 1-p  the new node copies  a 
link of its target u .

Figure 5.14
Copying Model

THE ORIGINS OF PREFERENTIAL ATTACHMENT

(5.27),

q Ckpk k

.

(5.26)
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(5.26)



Section 9 Copying model

(a) Random Connection: with probability p the new node 
links to u.
 (b) Copying: with probability 1-p we randomly choose an 
outgoing link of node u and connect the new node to the 
selected link's target. Hence the new node “copies” one of 
the links of an earlier node

 (a) the probability of selecting a node is 1/N. 
 (b) is equivalent with selecting a node linked to a randomly 
selected link. The probability of selecting a degree-k node 
through the copying process of step (b) is k/2L for 
undirected networks. 
The likelihood that the new node will connect to a degree-k 
node follows preferential attachment

Social networks: Copy your friend’s friends.
Citation Networks: Copy references from papers we read.
Protein interaction networks: gene duplication, 
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Section 9 Optimization model

The vertical boundary of the star 
configuration is at δ=(1/2)1/2. This is 
the inverse of the maximum 
distance between two nodes on a 
square lattice with unit length, 
over which the model is defined. 
Therefore if δ < (1/2)1/2, for any new 
node δdij< 1 and the cost (5.28) of 
connecting to the central node 
is Ci = δdij+0, always lower than 
connecting to any other node at 
the cost of f(i,j) = δdij+1. Therefore 
for δ < (1/2)1/2 all nodes connect to 
node 0, resulting in a network 
dominated by a single hub (star-
and-spoke network (c)). 

δ = 0.1 δ = 10 δ = 1000

EXPONENTIAL
NETWORK



Section 9 Optimization model

The oblique boundary of the 
scale-free regime is δ = N1/2. 
Indeed, if nodes are placed 
randomly on the unit square, then 
the typical distance between 
neighbors decreases as N−1/2. 
Hence, if dij~N−1/2 then δdij≥hij for 
most node pairs. Typically the 
path length to the central 
node hj grows slower than N (in 
small-world networks hj~log N, 
in scale-free 
networks hj~lnlnN). 
Therefore Ci is dominated by 
the δdij term and the 
smallest Ci is achieved by 
minimizing the distance-
dependent term. Note that 
strictly speaking the transition 
only occurs in the N → ∞ limit. 

δ = 0.1 δ = 10 δ = 1000

EXPONENTIAL
NETWORK



Section 9 Optimization mode

δ = 0.1 δ = 10 δ = 1000

EXPONENTIAL
NETWORK

For very large δ the contribution 
provided by the distance term δdij 
overwhelms hj in (5.28). In this 
case each new node connects to 
the node closest to it. 
The resulting network will have a 
exponential-like, bounded degree 
distribution, resembling a 
random network.
In the white regime we lack an 
analytical form for the degree 
distribution.
We used the method described in 
SECTION 5.6.  Starting from a 
network with N=10,000 nodes we 
added a new node and measured 
the degree of the node that it 
connected to.  We repeated this 
procedure 10,000 times, obtaining 
Π(k).
The plots document the presence 
of linear preferential attachment 
in the scale-free phase, but its 
absence in the star and the 
exponential phases.
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coefficient

Section 10



Section 10 Diameter

Bollobas, Riordan, 2002



Section 10 Clustering coefficient

What is the functional form of C(N)?

Reminder: for a random graph we have:

Konstantin Klemm, Victor M. Eguiluz,
Growing scale-free networks with small-world behavior,
Phys. Rev. E 65, 057102 (2002), cond-mat/0107607

  

Crand =
< k >

N
~ N -1

  

C =
m

8

(lnN)2

N



The network grows,  but the degree distribution is stationary.

Section 11: Summary



Section 11: Summary
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5 slides

Discuss:

What are your nodes and links

How will you collect the data, or which dataset you will study

Expected size of the network (# nodes, # links)

What questions you plan to ask (they may change as we move 
along with the class).

Why do we care about the network you plan to study.


