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Measuring preferential
attachment



easuring preferential attachment
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(Jeong, Neda, A.-L. B, Europhys Letter 2003: cond-mat/0104131)



Section 7 Measuring preferential attachment

2

10° ——rr——rrre——rree— 10 e
G citation Plots shows the integral of
19" | network .~ . 71°° M(k) over k:
k(k)=YII(K)
K<k
el No pref. attach:
10 10 10
. ) K~K
10 I 1 10 I
! neurosci actor )

collab Linear pref. attach:

K~k? -_——-

- 10°  collab. 7 s

Ik~ A+ k%, ax <1




Section8 |

Nonlinear preferential
attachment



onlinear preferential attachment
(k) ~ k*

a=0: Reduces to Model A discussed in Section 5.4. The degree distribution follows the
simple exponential function.

a=1: Barabasi-Albert model, a scale-free network with degree exponent 3.

0<a<1: Sublinear preferential attachment. New nodes favor the more connected
nodes over the less connected nodes. Yet, for the bias is not sufficient to generate a
scale-free degree distribution. Instead, in this regime the degrees follow the stretched
exponential distribution: 2u(a) kl_a>
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k.. ~(Inp)""



onlinear preferential attachment
(k) ~ k*

a=0: Reduces to Model A discussed in Section 5.4. The degree distribution follows the
simple exponential function.

a=1: Barabasi-Albert model, a scale-free network with degree exponent 3.

o>1: Superlinear preferential attachment. The tendency to link to highly connected
nodes is enhanced, accelerating the “rich-gets-richer” process. The consequence of this
is most obvious for a>2, when the model predicts a winner-takes-all phenomenon:
almost all nodes connect to a single or a few super-hubs.
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onlinear preferential attachment
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The growth of the hubs. The nature of preferential attachment affects the degree of the
largest node. While in a scale-free network the biggest hub grows as (green curve), for
sublinear preferential attachment this dependence becomes logarithmic (red curve). For
superlinear preferential attachment the biggest hub grows linearly with time, always grabbing
a finite fraction of all links (blue curve)). The symbols are provided by a numerical simulation;
the dotted lines represent the analytical predictions.
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The origins of preferential
attachment



Section 9 Link selection model

Link selection model -- perhaps the simplest example of a local or
random mechanism capable of generating preferential attachment.

(a) NEW NODE
Growth: at each time step we add a new node to the network.

Link selection: we select a link at random and connect the new

node to one of nodes at the two ends of the selected link. H

To show that this simple mechanism generates linear preferential
attachment, we write the probability that the node at the end of a

randomly chosen link has degree k as (b)

q, = Ckp, (5.26)
® O

In (5.26) C can be calculated using the normalization condition 2q, =1, ‘
obtaining C=1/ (k). Hence the probability to find a degree-k node at the end
of arandomly chosen link is

C[k:ﬁ’ (5.27)
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(a) Random Connection: with probability p the new node
links to u.

(b) Copying: with probability 1-p we randomly choose an
outgoing link of node u and connect the new node to the
selected link's target. Hence the new node “copies” one of
the links of an earlier node

(a) the probability of selecting a node is 1/N.

(b) is equivalent with selecting a node linked to a randomly
selected link. The probability of selecting a degree-k node
through the copying process of step (b) is k/2L for
undirected networks.

The likelihood that the new node will connect to a degree-k
node follows preferential attachment

(k)= p/N+(1— p)k/(2L)

Social networks: Copy your friend’s friends.
Citation Networks: Copy references from papers we read.
Protein interaction networks: gene duplication,
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Section 9 Optimization model
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Section 9
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The oblique boundary of the
scale-free regime is § = N2,
Indeed, if nodes are placed
randomly on the unit square, then
the typical distance between
neighbors decreases as N~1/2,
Hence, if d,~N-"2 then 6d,=h, for
most node pairs. Typically the
path length to the central

node h; grows slower than N (in

small-world networks h,~log N,
in scale-free

networks h,~IninN).

Therefore C, is dominated by

the 46d; term and the

smallest C, is achieved by
minimizing the distance-
dependent term. Note that
strictly speaking the transition
only occurs in the N = o limit.



Section 9 Optimization mode
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For very large 6 the contribution
provided by the distance term 6d,

overwhelms h in (5.28). In this

case each new node connects to
the node closest to it.

The resulting network will have a
exponential-like, bounded degree
distribution, resembling a
random network.

In the white regime we lack an
analytical form for the degree
distribution.

We used the method described in
SECTION 5.6. Starting from a
network with N=10,000 nodes we
added a new node and measured
the degree of the node that it
connected to. We repeated this
procedure 10,000 times, obtaining
M(k).

The plots document the presence
of linear preferential attachment
in the scale-free phase, but its
absence in the star and the
exponential phases.
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In An Informal Theory of the Statistical
Structure of Languages [2¢] Benoit

Mandelbrot proposes optimization as the
arigin of power Laws.
rooted in ophimization,
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Simon's model is analytically circular...

Mandelbrot publishes
° comment on Simon’s paper [27]
writing:
Benoit : a ; A e :
Dr. Mandelbrot's principal and mathemati- b The essence of Sirnon’s lengthy
cal objections to the model are shown to be } reply a year later is well o
unfounded ! summarized in its abstract [28].
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-Most of Simon's (1960) reply was irrelevant.

In & 19 page response antitled

o Final Note. Mandelbrot
states [29]:

Simon's subsequent Reply to
‘Final Mote' by Mandelbrot °

does not cancede [30]

This present ‘Reply’ refutes the almost
entirely new arguments introduced by Dr.
Mandelbrot in his “Final Note”.. -

Herbert
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had the privilege of commenting upon a
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Mandlebrot [31) writes

| Simon’s final reply ends but
|| does not resclve the debate [32]

Benoit
Dr. Mandelbrot has proposed a new set of
objections to my 1955 models of Yule
distributions. Like earlier objections, Lhese
~

are invalid.
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Diameter and clustering
coefficient
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Bollobas, Riordan, 2002



m Clustering coefficient

Reminder: for a random graph we have:
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Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(ky =2m

Degree Dynamics
k(t) =m (t/t)°

Consequently, the modeling philosophy behind the model is simple: to un-
D I e derstand the topology of a complex system, we need to describe how it came
B=1/2 into being.

Degree Distribution

pk - k—y

Degree Exponent
y=3

Average Distance

(d) ~ logN/log logN
T The network grows, but the degree distribution is stationary.
(C) ~ (InN)*/N



Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(ky =2m

Degree Dynamics
k(t) =m (t/t)°

Dynamical Exponent
B=1/2

Degree Distribution
pk - k—y

Degree Exponent
y=3

Average Distance

(d) ~ logN/log logN

Clustering Coefficient

(C) ~ (InN)?/N

» The model predicts y=3 while the degree exponent of real networks
varies between 2 and 5 (Table 4.2).

e Many networks, like the WWW or citation networks, are directed,
while the model generates undirected networks.

» Many processes observed in networks, from linking to already exist-
ing nodes to the disappearance of links and nodes, are absent from
the model.

» The model does not allow us to distinguish between nodes based on
some intrinsic characteristics, like the novelty of a research paper or
the utility of a webpage.

e While the Barabasi-Albert model is occasionally used as a model of the
Internet or the cell, in reality it is not designed to capture the details of
any particular real network. It is a minimal, proof of principle model
whose main purpose is to capture the basic mechanisms responsible
for the emergence of the scale-free property. Therefore, if we want to
understand the evolution of systems like the Internet, the cell or the
WWW, we need to incorporate the important details that contribute
to the time evolution of these systems, like the directed nature of the
WWW, the possibility of internal links and node and link removal.



Preliminary project presentation
(Apr. 28th)

5 slides

Discuss:

What are your nodes and links

How will you collect the data, or which dataset you will study
Expected size of the network (# nodes, # links)

What questions you plan to ask (they may change as we move
along with the class).

Why do we care about the network you plan to study.

Network Science: Evolving Network Models February 14, 2011



