Network Science

Calculus: Brief Review

Joao Meidanis
University of Campinas, Brazil

March 18, 2021

Summary

(1) Definitions
(2) Examples
(3) Properties

Definitions

Definition of derivative

$$
\left(\frac{d}{d x} f(x)\right)\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Example:

$$
\begin{aligned}
\left(\frac{d}{d x} x\right)\left(x_{0}\right) & =\lim _{\Delta x \rightarrow 0} \frac{x_{0}+\Delta x-x_{0}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

Approximation

Definition of derivative:

$$
\left(\frac{d}{d x} f(x)\right)\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

We can approximate:

$$
\left(\frac{d}{d x} f(x)\right)\left(x_{0}\right) \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

if Δx is very small

Examples

Powers of x

$$
\begin{aligned}
\frac{d}{d x} x & =1 \\
\frac{d}{d x} x^{2} & =2 x \\
\frac{d}{d x} x^{3} & =3 x^{2} \\
\frac{d}{d x} x^{4} & =4 x^{3} \\
& \vdots \\
\frac{d}{d x} x^{n} & =n x^{n-1}
\end{aligned}
$$

Fractional, negative powers

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

For which values of n ?

$$
\begin{gathered}
n=1,2,3,4, \ldots \text { ? ok } \\
\text { Perhaps } n=0.5 \text { ? YES! } \\
\text { Perhaps } n=-1 \text { ? YES!! } \\
\text { Perhaps } n=-5.6 \text { ? YES!! } \\
\text { Perhaps } n=0 \text { ? YES!! }
\end{gathered}
$$

Log

$$
\begin{aligned}
\frac{d}{d x} x^{-3} & =-3 x^{-4} & \frac{d}{d x} x^{1} & =1 \\
\frac{d}{d x} x^{-2} & =-2 x^{-3} & \frac{d}{d x} x^{2} & =2 x \\
\frac{d}{d x} x^{-1} & =-1 x^{-2} & \frac{d}{d x} x^{3} & =3 x^{2} \\
\frac{d}{d x} x^{0} & =0 & \frac{d}{d x} x^{4} & =4 x^{3}
\end{aligned}
$$

We do not get x^{-1} as a derivative in this table

$$
\frac{d}{d x} \ln x=x^{-1}
$$

Here is the missing link!

Integrals

$$
\begin{aligned}
\int x & =\frac{1}{2} x^{2}+C \\
\int x^{2} & =\frac{1}{3} x^{3}+C \\
\int x^{3} & =\frac{1}{4} x^{4}+C \\
& \vdots \\
\int x^{n} & =\frac{1}{n+1} x^{n+1}+C
\end{aligned}
$$

Works for fractionary, negative n; except for $n=-1$

$$
\int x^{-1}=\ln x+C
$$

Properties

Product by constant

$$
\frac{d}{d x}(c f(x))=c \frac{d}{d x} f(x)
$$

Example:

$$
\frac{d}{d x}\left(3 x^{2}\right)=3 \frac{d}{d x} x^{2}=3 \cdot 2 x=6 x
$$

Product of two functions

$$
\frac{d}{d x}(f(x) g(x))=\left[\frac{d}{d x} f(x)\right] g(x)+f(x)\left[\frac{d}{d x} g(x)\right]
$$

Example:

$$
\begin{aligned}
\frac{d}{d x}(x \cdot x) & =\left[\frac{d}{d x} x\right] x+x\left[\frac{d}{d x} x\right] \\
& =1 \cdot x+x \cdot 1 \\
& =2 x
\end{aligned}
$$

