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EPIDEMIC PREDICTION

SECTION 10.7

During much of its history humanity has been helpless when faced with 

a pandemic. Hence infectious diseases repeatedly swept through conti-

nents, decimating the world's population. The first vaccine was tested only 

in 1796 and the systematic develop most of vaccines and cures against new 

pathogens became possible only in the late 1990s. Despite the spectacular 

advances in vaccine development, they are eff ective only against a small 

number of pathogens. Consequently transmission-reducing and quaran-

tine-based measures remain the main tools of health professionals in com-

batting new pathogens. For the combination of vaccines, treatments and 

quarantine-based measures to be eff ective, we need to predict when and 

where the pathogen will emerge next, allowing local health offi cials to best 

deploy their resources.

The real-time prediction of an epidemic outbreak is a very recent devel-

opment. The ground was set by the development of the epidemic modeling 

framework in the 1980s [72] and by the 2003 SARS epidemic, which result-

ed in worldwide reporting guidelines allowing the systematic collection 

of data pertaining to a pandemic [1], off ering real-time input to modeling 

eff orts. The 2009 H1N1 outbreak was the first beneficiary of these devel-

opments, becoming the first pandemic whose spread was predicted in real 

time.

The emergence of any new pathogen raises several key questions: 

• Where did the pathogen originate? 

• Where do we expect new cases?

• When will the epidemic arrive at various densely populated areas?

• How many infections are to be expected?

• What can we do to slow its spread?

• How can we eradicate it?

Today these questions are addressed using powerful epidemic simula-

>
Online Resource 10.4
North American Flight Patterns

A video showing the real time flights across the 
world using data released by the Federal Avia-
tion Administration. The global transportation 
network is responsible for the rapid spread of 
pathogens across continents. The same flight 
schedules represent the input for epidemic 
forecasts. While this video, produced by Aaron 
Koblin, could easily be seen as a purely scien-
tific illustration, it also serves as an art work. 
Indeed, the video is now in Media Art collection 
of the Museum of Modern Art (MoMA) in New 
York.
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GLEAM then implements the network-based epidemic framework de-

scribed in ,  generating a large number of potential outcomes 

of the pathogen’s global progression for the coming months. For H1N1 the 

predictions were compared with data collected from surveillance and viro-

logic sources in 48 countries during the full course of the pandemic [80], 

resulting in several key findings:

• Peak Time 
Peak time corresponds to the week when most individuals are in-

fected in a particular country. Predicting the peak time helps health 

offi cials decide the timing and the quantity of the vaccines or treat-

ments they distribute. The peak time depends on the arrival time of 

the fi rst infection and the demographic and the mobility character-

istics of each country. The observed peak time fell within the predic -

tion interval for 87% of the countries ( ). In the remaining 

cases the diff erence between the real and the predicted peak was at 

most two weeks.

• Early Peak 
GLEAM predicted that the  H1N1 epidemic will peak out in November, 

rather than in January or February, the typical peak time of influen-

za-like viruses. This unexpected prediction turned out to be correct, 

confirming the model’s predictive power. The early peak time was a 

consequence of the fact that H1N1 originated in Mexico, rather than 

South Asia (where many flu viruses come from), hence it took the 

virus less time to arrive to the northern hemisphere.

• The Impact of Vaccination  
Several countries implemented vaccination campaigns to accel-

erate the decline of the pandemic. The simulations indicated that 

these mass vaccination campaigns had only negligible impact on 

the course of the epidemic. The reason is that the timing of these 

campaigns was guided by the expectation of a January peak time, 

prompting the deployment of the vaccines after the November 2009 

peak [83], too late to have a strong eff ect.

By incorporating the time and nature of each containment and miti-

gation procedure, simulations can estimate the effi ciency of specific con-

tingency plans [73-75,77,84]. Next we discuss the impact of two such inter-

ventions.

• Travel Restrictions
Given the important role air travel plays in the spread of a pathogen, 

faced with a dangerous pandemic, like Ebola ( ), the fi rst 

instinct is to restrict travel. Yet, in a world where key resources trav-

el by air, a travel ban leads to economic collapse. Therefore before 

resorting to a travel ban, we must make sure that travel restrictions 

have beneficial eff ects on the pandemic.  For this we must realize 

that awareness of a viral outbreak results in self-imposed travel re-

Figure 10.29
Activity Peaks for H1N1

The predicted and the observed activity peaks 
for the H1N1 virus in several countries. The 
peak week corresponds to the week when 
most individuals are infected by the disease, 
and is measured in weeks after the beginning 
of the epidemic. The model predictions were 
obtained by analyzing 2,000 stochastic reali-
zations of the outbreak, generating the error 
bars in the figure. After [82].

Figure 10.28
The Deadliest Outbreak

With a fatality rate in the vicinity of 80%, 
the Ebola virus is one of the deadliest viruses 
known to humans. Its fi rst known incidence 
was in 1976 in Zaire, killing 280 of the 312 
infected individuals by hemorrhagic fever, a 
combination of high fever and bleeding disor-
der. The virus can be transmitted by contact 
with the blood or the secretion of an infected 
individual.
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With a fatality rate in the vicinity of 80%, 
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known to humans. Its first known incidence 
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Online Resource 10.6
The Speed of a Pandemic

 The spread of a pathogen, as predicted by 
GLEAM, from three initial outbreak locations. 
While the geographic spreading pattern is 
diffi cult to interpret, in the eff ective distance 
representation the pandemic follows a regular 
radial pattern. 

The observed spreading patterns prompt us to 
ask: What is the speed of a typical pathogen 
as it spreads around the globe? The speed de-
pends on three key parameters:  

1. The basic reporduction number R
0
, which 

is in the vicinity of 2 for influenza type vi-
ruses ( ).  

2. The recovery rate, which is approximately 
3 days for influenza. 

3. The mobility rate, which represents the 
total fraction of the population that travels 
during a day. This parameter is in the range 
of 0.01-0.001. 

Running GLEAM ( ) with these pa-
rameters we can compute the correlation be-
tween the arrival time and the geographic dis-
tance to the source of the epidemic, obtaining 
a speed of about 250-300 km/day. Therefore 
an influenza virus moves through a continent 
with the speed of a sports car or of a smaller 
airplane [89].

>

always emerged in the geographic proximity of the previous infections,     

between the time of the outbreak and the physical distance from the origin 

of the outbreak. 

Today, with airline travel, physical distance has lost its relevance for 

epidemic phenomena. A pathogen that emerges in Manhattan can just as 

easily travel to London than to Poughkeepsie, NY, a village an our drive 

from Manhattan. This prompts us to ask: Is there a better space to view the 

spread of an epidemic than the physical space? Such space does exist if we 

replace the conventional geographic distance with an eff ective distance 

derived from the mobility network [89]. The nodes of the mobility network 

are cities and the links represent the amount of travel between them. Each 

link is directed and weighted, characterized by a flux-fraction 0≤p
ij
≤1, that 

represents the fraction of travelers that leave node i and arrive at node j. 

The values of p
ij
 can be extracted from airline schedules, having p

ij
>0 only 

if there is direct travel from i to j.

Given the multiple routes a person can take between any two cities, a 

pathogen can follow multiple paths on the mobility network. Yet, its spread 

is dominated by the most probable trajectories predicted by the mobility 

matrix p
ij
. This allows us to define the effectiv e distan ce d

ij
 between two 

connected locations i and j, as

              .      

If p
ij
 is small, implying that only a small fraction of individuals that 

leave from i travel to j, then the eff ective distance between i and j is large. 

Note that d
ij 

≠d
ji
: For a small village i located near a metropolis j we expect 

d
ij
 to be small, as most travelers from i go to j. Yet, d

ji
 is large as only a small 

fraction of travelers leaving the metropolis head to the small village. The 

logarithm in  accounts for the fact that eff ective distances are addi-

tive, whereas probabilities along multi-step paths are multiplicative.  

As  indicates (see also ), if we use  

to represent the distance of each city from the source of an epidemic, the 

pathogen follows circular wave fronts. This is in contrast with the complex 

spreading pattern we observe if we view the pandemic in the geographical 

space. Furthermore, while the arrival time of H1N1 appears to be random if 

plotted in function of the physical distance, it correlates strongly with the 

eff ective distance ( ). We can therefore use the eff ective distance 

to determine the speed of a pathogen ( ).

A surprising but welcome aspect of epidemic forecast is that the pre-

dictions of diff erent models are rather similar, despite the fact that they 

use diff erent mobility data (airline schedules [90] or dollar bill movement 

[24]) and diff erent assumptions about the epidemic parameters (recovery 

rate, transmission rate, etc). The eff ective distance helps us understand 

why their predictions converge. Indeed, we can write the arrival time of a 

pathogen to location a as [89]

dij =(1−logpij) ≥0
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Summary

Section 10.8
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Case Study 2: Mobile 
Phone Viruses



How do Mobile viruses spread?
Bluetooth and MMS viruses

Wang, Gonzalez, Barabasi, Science, 2009 



Onella et al, PNAS (2007); Palla et al, Nature (2007).

Social Network (MMS 
virus)

González, Hidalgo and A-L.B., Nature 453, 779 (2008)

Human Mobility
(Bluetooth virus)

MMS and Bluetooth Viruses

Onella et al, PNAS 2007; Palla, A.-L. B & Vicsek, Nature 446, 664(2007).



Spreading Patterns of Bluetooth and MMS viruses

Bluetooth Virus MMS Virus

m: market share of the OS and/or handset the virus can infect.

SmartPhones together m=0.05 (5%) of the whole mobile market
Largest OS: Symbian, ~70% of all SmartPhones: mmax~0.03



The impact of market share (m) on MMS viruses

Market share induced fragmentation of the call network.

Wang, Gonzalez, Barabasi, Science, 2009 



Prediction: 
Once the market share of an MMS virus reaches mc~0.1 (10%), MMS viruses will 
become a serious concern

Currently: mmax~0.03 <<mc

Percolation phase transition limits the spread of MMS viruses



Spatial Spreading patterns of Bluetooth and MMS viruses 

Bluetooth Virus MMS Virus

Driven by Human Mobility:
Slow, but can reach all users with time.

Driven  by the Social Network:
Fast, but can reach only a finite fraction 
of users (the giant component).
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Case Study 3: The 
spread of information at 

workplace
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Improving Information Flow
Manufacturing company with about 800 
employees 
Issues: 
(1)Information gaps and gossip about 

organizational changes;   
(2) Strategic decisions miss-understood;  
(3) Lack of trust in management

Aim:  
Reduce time for accepting changes; 
Gossip management; 
Build trust

Easy-to-
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 between 
management 
levels
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Links are indicating 
information flow between 
individuals about 
organizational changes. 



Top Management

Middle Management
Factory Managers

Production 
Managers



EHS Manager

Production 
Managers

Middle Management
Factory Managers

Top Management



Improving Information Flow
Manufacturing company with about 800 employees 
Issues: (1)  Information gaps and gossip about 
organizational changes;   (2) Strategic decisions 
miss-understood;   (3) Lack of trust in management

Solution:

Aim:  Reduce time for accepting changes;  Gossip 
management; Build trust

Findings:
Robust communication between mid and senior 
management BUT Lack of information flow between 
mid-management and management of manufacturing 
sites.
Main source of information for Factory Management: 
EHS Manager – no connection to management, no 
career plan and frustrated about own possibilitiesEasy-to-

recognize gap
 between 
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The end

Network Science: Evolving Network Models 


