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Network Epidemics

Section 10.3



14th Century – The Great Plague

4 years from France to Sweden

Limited by the speed of human travel

http://en.wikipedia.org/wiki/Black_Death
http://de.wikipedia.org/wiki/Schwarzer_Tod



Network Science: Robustness Cascades 

The approaches described above have not considered explicitly that the 
spreading takes place on a network– they assumed homogenous mixing, which 
means that each individual can infect any other individual.

In reality, epidemics spread along links in a network   we need to explicitly 
account for the role of the network in the epidemic process.

Section 10.3 Network Epidemics



SI model on a network: Degree Block Approximation

(Vespignani)
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Split nodes by their degrees

SI model:

Density of infected 
neighbors of nodes with 

degree k 

Proportional to 
k

I am susceptible with k 
neighbors, and Θk(t)

of my neighbors are infected.  

dik (t)

dt
= b(1- ik (t))kQk (t)



SIS model on a network: Degree Block Approximation
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Network Science: Robustness Cascades 

Network Epidemics

Early time behavior



Early time behavior of an epidemic

Why do we care about the early behavior of an epidemic?

• vaccines, cures, and other medical interventions take 
months to years to develop

• the best way to stop or slow down an epidemic:
 early quarantine

 early vaccination

• SI model is the most relevant for early stages 



Network Science: Robustness Cascades 

Network Epidemics: Early Time Behavior

  

dik (t)

dt
= b(1- ik (t))kQk (t) - mik (t)



Network Epidemics: Density Function



Network Epidemics: Density Function for SI Model

SPREADING PHENOMENA

The failure of the basic hypotheses prompted a fundamental revision of 

the epidemic modeling framework. This change began with the work of Ro-

mualdo Pastor-Satorras and Alessandro Vespignani, who in 2001 extended 

the basic epidemic models to incorporate in a self-consistent fashion the 

topological characteristics of the underlying contact network [9]. In this 

section we introduce this formalism, familiarizing ourselves with n etwork 

ep idem ics .

If a pathogen spreads on a network, individuals with more links are 

more likely to be in contact with an infected individual, hence they are 

more likely to be infected. Therefore the mathematical formalism must 

consider the degree of each node as an implicit variable. This is achieved 

by the degree block approxim ation , that distinguishes nodes based on their 

degree and  assumes that nodes with the same degree are statistically 

equivalent ( ). Therefore we denote with

          

the fraction of nodes with degree k  that are infected among all N k degree-k 

nodes in the network. The total fraction of infected nodes is the sum of all 

infected degree-k  nodes 

        .    

Given the diff erent node degrees, we write the SI model for each degree 

k separately: 

              .   

This equation has the same structure as : The  infection rate is pro-

portional to  and the fraction of degree-k nodes that are not yet infected, 

which is (1-i
k
). Yet, there are some key diff erences:

• The average degree k  in  is replaced with each node’s actual 

degree k.   

• The density function 
k
 represents the fraction of infected  

neighbors of node k.  In the homogenous mixing assumption 
k
 is 

simply the fraction of the infected nodes, i. In a network environ-

ment, however, the fraction of infected nodes in the vicinity of a 

node can depend on the node’s degree k.

• While  captures with a single equation the time dependent 

behavior of the whole system,  represents a system of k
m ax 

coupled equations, one equation for each degree present in the 

network. 

We start by exploring the early time behavior of i
k
, a choice driven by 

both theoretical interest and practical considerations. Indeed, developing 

vaccines, cures, and other medical interventions for a new pathogen can 

take months to years. If we lack a cure, the only way to alter the course of 

ik =
Ik

Nk

i =∑
k

P(k)ik

dik
dt

=β(1−ik)kΘk(t)

k= 1

k= 4 k= 2

k= 3

Figure 10.9
Degree Block Approximation

The epidemic models discussed in 
 grouped each node into compartments 

based on their infection state, placing them 
into susceptible, infected, or recovered com-
partments. To account for the role of the net-
work topology, the degree block approxim a -
tion  adds an additional set of compartments, 
placing all nodes that have the same degree 
into the same block. In other words, we as-
sume that nodes with the same degree behave 
similarly. This allows us to write a separate 
rate equation for each degree, as we did in 
Equation . The degree block approxi-
mation does not eliminate the compartments 
based on the health state of an individual: In-
dependent of its degree an individual can be 
susceptible to the disease (empty circles) or 
infected (full circles). 



Network Epidemics: SI Model – Early Time Behavior
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Network Epidemics: SI Model – Early Time Behavior

The higher the degree of a node, the more 
likely that it becomes infected. 



Network Epidemics: SI Model – Random vs Scale-Free Network

Random Network:

Scale-Free Networks

Similar to random, with altered τ

For N → ∞, we have k² → ∞ and τ → 0
Instantaneous spread!  The hubs get the
disease fast, and distribute it to all. 

For N → ∞, as long as k² > k(k - 1), 
we have a reduced  τ  and higher speed.



Network Epidemics: SIS model and the Vanishing Epidemic Threshold



Network Epidemics: SIS model and the Vanishing Epidemic Threshold



Degree distribution

SIS Model – Scale-free Exponents

  

P(k) = (1+ g )m1+gk -2-g

  

2 < g < 3
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4 < g

  

i(l) » l -
g - 3
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Only in this regime reduces to 
the homogenous mixing model.

Non- zero prevalence for all β/μ. 
The exponent 1/(3−γ ), is larger 

than one  for small β/μ the 
prevalence is growing very 

slowly, i.e. there exists a wide 
region of spreading rates in 

which i∞  1.≪

λc=0

Prevalence approaches zero in a 
continuous and smooth way, 

exhibiting an exponentially small 
value for a wide range of 
spreading rates (i∞  1).≪

λc=0

λc>0

λc>0



Network Epidemics: Summary



Contact Networks

Section 10.4



Section 10.4 Sexually Transmitted Diseases

Through interviews and questionnaires, researchers collected 

information from 4,781 randomly chosen Swedes of ages 18 to 74. 

The participants were not asked to reveal the identity of their 

sexual partners, but only to estimate the number of sexual partners 

they had during their lifetime.



Section 10.4 Are Sexual Hubs Real?

Wild Chamberlain, a Hall of Fame basketball player in the 1980s, who claimed having 

sex with a staggering number of 20,000 partners.

 “Yes, that’s correct, twenty thousand different ladies,

“At my age, that equals to having sex with 1.2 woman a day, every day, since I was 

fifteen years old.”

Within the AIDS literature the story of Geetan Dugas, a flight attendant 

with approximately 250 homosexual partners, is well documented.

SPREADING PHENOMENA

Are sexual hubs real? Anecdotal evidence suggests that they are. Take 

for example Wild Chamberlain, a Hall of Fame basketball player in the 

1980s, who claimed having sex with a staggering number of 20,000 

partners. “Yes, that’s correct, twenty thousand diff erent ladies,” he 

wrote in his autobiography [18]. “At my age, that equals to having sex 

with 1.2 woman a day, every day, since I was fi fteen years old.” Within 

the AIDS literature the story of Geetan Dugas, a fl ight attendant with 

approximately 250 homosexual partners, is well documented [19]. He 

is often called patien t  zero, being one of the fi rst homosexual men 

infected with HIV. Given his sexual habits and extensive travel, he be-

came a super-spreader for AIDS within the gay community. Hubs are 

observed even in high school romantic networks, as shown in 

.

Figure 10.14
Romantic Links in a High School

Romantic and sexual links between high 
school students in a study focusing on 
over 800 adolescents living in a midwest-
ern United States. Each circle represents a 
student and the links represent romantic 
relationships during the 6 months pre-
ceding the interview. The numbers indi-
cate the frequency of each subgraph: for 
example 63 pairs of individuals (couples) 
are isolated from the rest of the network. 
After [20].

Second, recent measurements using digital badges probe the local proper-

ties of the contact network, i.e. the number of individuals a person directly 

interacts with. 

Global Travel Network 
To predict the spread of airborne diseases, we must know how far can 

an infected individual travel. Our understanding of individual travel pat-

terns exploded with the use of mobile phones, that offer direct information 

about individual mobility [17-20]. In the context of epidemic phenomena, 

the most studied mobility data comes from air travel, the mode of transpor-

tation that determines the speed with which a pathogen moves around the 

globe. Consequently the air tran sportation  network , that connects airports 

with direct flights, plays a key role in modeling and predicting the spread 
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Section 10.4 Global Travel Network



Section 10.4 Local Contact Patterns: RFID

SPREADING PHENOMENA

Figure 10.16
Face-to-face Interactions

A face-to-face contact network mapped out 
using RFA tags, capturing interactions be-
tween 232 students and 10 teachers across 10 
classes in a school [31]. The structure of the ob-
tained map depends on the context in which 
it is collected: the school network shown here 
reveals the presence of clear communities. In 
contrast, a study capturing the interactions 
between individuals that visited a museum 
reveal an almost linear network [29]. Finally, 
a network of attendees of a small conference 
is rather dense, as most participants interact 
with most others [29]. After [31].

>

Online Resource 10.2
Hospital Outbreaks

Bacteria resistant to current antibiotics pose 
an important threat to global health. Such 
bacteria are particularly prevalent in hospi-
tals and health care facilities. The Interactive 
Feature by Scientific American describes the 
tracking of baterical outbreaks in hospitals. 

>

by individuals that move regularly between them. Measurements com-

bined with agent-based simulations indicate that the location network is 

fat tailed [37]: malls, airports, schools or supermarkets act as hubs, being 

linked to an exceptionally large number of smaller locations, like homes 

and offi ces. Therefore, once the pathogen infects a hub, the disease can 

rapidly reach many other locations.

Digital viruses, that infect computers and smart phones, represent an 

increasingly important component of epidemic phenomena. As we discuss 

next, the relevent contact networks are determined by the spreading mode 

of the respective digital pathogen.

Computer Viruses
Computer viruses display just as much diversity as biological viruses: 

depending on the nature of the virus and its spreading mechanism, the 

relevant contact network can diff er dramatically. Some of the first com-

puter viruses spread as email attachments. Once a user opened the attach-

ment, the virus infected the user’s computer and mailed a copy of itself 

to all email addresses found in the computer. Hence the pertinent contact 

network is the email network, which, as we discussed in , is scale-

free [28]. More current viruses exploit various communication protocols, 

spreading on networks that reflect the Internet's pattern of interconnect-

edness, which is again scale-free ( ). Finally, some malware scan IP 

addresses, spreading on fully connected networks. 

Mobile Phone Viruses 
Mobile phone viruses spread via MMS and Bluetooth ( ). An 

MMS virus sends a copy of itself to all phone numbers found in the phone's 

contact list. Therefore MMS viruses exploit the social network behind 

mobile communications. As shown in , the mobile call network is 

scale-free with a high degree exponent. Mobile viruses can also spread via 

Bluetooth, passing a copy of themselves to all susceptible phones with a BT 

connection in their physical proximity. As discussed above, this co-loca-

tion network is also highly heterogenous [4].

In summary, most contact networks that support the spread of biologi -

cal or digital viruses show significant degree heterogeneity. Many of these, 

like the email network, the internet, or sexual networks, are scale-free. For 

others, like location or co-location networks, the degree distribution may 

not be fitted with a simple power law, yet they have a high k 2 . Therefore 

the analytical results obtained in the previous section are of direct rele-

vance to pathogens spreading on these networks as well, allowing even 

weakly virulent viruses to easily spread through the contact network.

SPREADING PHENOMENA
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Human sexual network
Email network

Liljeros et al., Nature (2001), 
Schneeberger et al. STD (2004)

Ebel et al. (2002)

Air transportation network

Colizza et al., PNAS 2006

SIS Model – Absence of Epidemic Threshold

Many networks will have vanishing epidemic threshold!Many networks will have vanishing epidemic threshold!

  

lc =
k

k 2 - k



Beyond the degree distribution

Section 10.5



Section 10.5 Temporal Networks



Section 10.5 Bursty Contact Patterns

For example, if the time between 
consecutive emails would follow a 
Poisson distribution, an email virus 
would follow
 i(t)~exp(–t/τ) 
with a decay time of
 τ 1 day.≃
 
In the real data, however, the 
decay time is
 τ 21 days,≃
 a much slower process, correctly 
predicted by the theory if we use 
power law inter- event times. 



Section 10.5 Link Weights and communities



Section 10.5 Complex contagion



Section 10.5 Complex contagion

SPREADING PHENOMENA

across communities, following a pattern similar to that encountered in bi-

ological pathogens. In general the more communities a meme reaches, the 

more viral it is ( ).

In summary, several network characteristics, from degree correlations 

to link weights, from the temporal patterns of the interactions to the burst-

iness of the contact pattern aff ect the spread of a pathogen in a network.  

Figure 10.20
Simple vs. Complex Contagion

The community structure of the Twitter fol-
lower network. Each circle corresponds to a 
community and its size is proportional to the 
number of tweets produced by the respective 
community. The color of a community rep-
resents the time when the studied hashtag 
(meme) is first used in the community. Light-
er colors denote the first communities to use a 
hashtag, darker colors denote the last commu-
nity to adapt it. 

(a) Simple Contagion 

The evolution of the viral meme captured by 
the #ThoughtsDuringSchool hashtag from 
its early stage (30 tweets, left) to the late 
stage (200 tweets, right). The meme jumps 
easily between communities, infecting 
many of them, following a contagion pat-
tern characterizing pathogens as well. 

(b) Complex Contagion 

The evolution of a non-viral meme caputed 
by the #ProperBand hashtag from the ear-
ly stage (left) to the final stage (65 tweets, 
right). The tweet is trapped in a few of com-
munities, having diffi culty to escape them. 
This is a signature of reinforcement, an 
indication that the meme follows complex 
contagion. After [54].
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Section 10.5 Do our friends make us fat?

SPREADING PHENOMENA

Infectious diseases, like influenza, SARS, or AIDS, spread between in-

dividuals through the transmission of a pathogen. But could the so-

cial network aid the spread of noninfectious diseases as well? Recent 

measurements indicate that it does, impacting the spread of obesity, 

happiness, and behavioral patterns, like giving up smoking [65,66].

Obesity is diagnosed through an individual’s body-mass index (BMI), 

which is determined by numerous factors, from genetics to diet and 

exercise. The measurements show that our friends also play an im-

portant role. The analysis of the social network of 5,209 men and 

women has found that if one of our friends is obese, the risk that we 

too gain weight in the next two to four years increases by 57% [65]. The 

risk triples if our best friend is overweight: In this case, our chances 

of weight gain jumps by 171% ( ). For all practical purposes, 

obesity appears to be just as contagious as influenza or AIDS, despite 

lacking a pathogen that transmits it.

Figure 10.21
The Web of Obesity

The largest connected component of the 
social network capturing the friendship 
ties between 2,200 individuals enrolled 
in the Framingham Heart Study. Each 
node represents an individual; nodes 
with blue borders are men, those with 
red borders are women. The size of each 
node is proportional to the person's BMI 
and yellow nodes denote obese individu-
als (BMI ≥30). The link colors indicate the 
nature of each relationship: purple links 
are friendship or marital tie and orange 
links are family ties (e.g. siblings). Clus-
ters of obese and non-obese individuals 
are visible in the network. The analysis 
indicates that these clusters cannot be 
attributed to homophily, i.e. the fact that 
individuals of similar body size may be-
friend with each other. They document 
instead a complex contagion process, 
capturing the "spread" of obesity along 
the links of the social network. After 
[65].

Online Resource 10.3
Spreading in Social Networks 

“If your friends are obese, your risk of 
obesity is 45 percent higher. … If your 
friend’s friends are obese, your risk of 
obesity is 25 percent higher. … If your 
friend’s friend’s friend, someone you 
probably don’t even know, is obese, 
your risk of obesity is 10 percent higher. 
It’s only when you get to your friend’s 
friend’s friend’s friends that there’s no 
longer a relationship between that per-
son’s body size and your own body size.”

Wach Nicholas Christakis speaking at 
TED about the spreading of health pat-
terns in social networks.

>

>



Network Science: Robustness Cascades 

Immunization Strategies



• Transmission-reducing interventions: face masks, gloves, 
washing hands – may reduce the transmission rate below the 
epidemic-causing critical rate

• Contact-reducing interventions: quarantining a patient, closing 
schools – make the network sparser, may increase the critical 
transmission rate

• Vaccinations: remove nodes from the network

• Q: Who should be vaccinated for most effective control?

How to control the epidemic? 



Immunization strategies– Random Networks

  

b ®b(1 - g)

A fraction g of individuals are randomly chosen to be immunized. 

Immunized 



Immunization strategies

  

b ®b(1 - g)

  

b
m

(1- gc ) =
k

k 2

  

k 2 ®¥, random immunization cannot prevent the outbreak.If 

Immunized 

A fraction g of individuals are randomly chosen to be immunized. 



Vaccination strategies in scale-free networks
As hubs are responsible for the spread of the 
disease  cure the hubs.

Targeted immunization – immunize all nodes with 
degree k>k0.

 

Z. Dezso and A-L. Barabasi, Phys. Rev. E 65, 055103 (2002); 
R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65, 036104 (2002) 

With increasing critical point increases, it is harder for a virus to spread.

SPREADING PHENOMENA

k>k'
m ax

 are absent, the epidemic threshold changes to (

)

         .   

Therefore, for <3, the more hubs we cure (i.e. the smaller is k'
m ax

), the larg-

er will be the epidemic threshold ( ). By immunizing a suffi cient 

fraction of the hubs we can increase  above 
c
. This procedure is equiva-

lent with altering the underlying network: by immunizing the hubs, we are 

fragmenting the contact network, making more diffi cult for the pathogen 

to reach the nodes in other components ( ).

This strategy represents a perspective change in immunization: In a 

scale-free network, instead of trying to decrease the spreading rate using 

random immunization, we must alter the topology of the contact network, 

increasing 
c
 above the biologically determined = / µ.

The problem with a hub-based immunization strategy is that for most 

epidemic processes we lack a detailed map of the contact network. Indeed, 

we do not know the number of sexual partners each individual has in a 

population, nor can we accurately identify the super-spreaders during an 

influenza outbreak. In other words it is diffi cult to identify the hubs. Yet, 

we can still exploit the network topology to design more effi cient immu-

nization strategies. To do so, we rely on the friendship paradox, the fact 

that on average the neighbors of a node have higher degree than the node 

itself ( ). Therefore, by immunizing the acquaintances of a randomly 

selected individual, we target the hubs without having to know precisely 

which individuals are hubs. The procedure consists of the following steps 

[71]: 

1) Choose randomly a p  fraction of nodes, like we do during random im-

munization. Call these nodes Group 0.

2) Select randomly a link for each node in Group 0. We call Group 1 the 

set of nodes to which these links connect to. For example, we ask each 

individual from Group 0 to nominate one of its acquaintance with 

λ′c ≈
γ −2
3−γ

k2−γ
min

(k ′max)
γ−3

Figure 10.24
Robustness and Immunization

Scale-free networks show a remarkable resil-
ience to random node and link failures (Chap-
ter 8). At the same time, they are vulnerable 
to attacks: If we remove their most connected 
nodes, scale-free networks break apart. This 
phenomena has many similarities to the im-
munization problem: Random immunization 
is not eff ective in eradicating a disease, but 
selective immunization, that targets the hubs, 
can restore a finite critical threshold, helping 
us eradicate the disease. The analogy is not 
accidental, as the robustness and the immu-
nization problem can be both linked to the di-
verging k2 . Indeed, the vanishing epidemic 
threshold is equivalent with the finding that 
the percolation threshold under random node 
removal problem converges to one (Advanced 
Topics 10.D). Similarly, the re-emergence of 
the epidemic threshold under hub immuniza-
tion is equivalent with the small percolation 
threshold characterizing a scale-free network 
under attack. Therefore, the attack and tar-
geted immunization problems represent two 
sides of the same coin. 

To illustrate the equivalence between attacks 
and targeted immunization, consider the net-
work in (a). An attack that removes its five 
largest hubs breaks the network into many 
isolated islands, as shown in (b). Targeted im-
munization plays the same role: by making 
the hubs immune to the disease,  the network 
on which the pathogen spreads becomes the 
fragmented network in (b). As the immu-
nized network is broken into small islands, 
the pathogen will be stuck in one of the small 
clusters, unable to reach the nodes in the oth-
er clusters. 

(a) (b)



R. Cohen et al., PRL 91, 247901 (2003)

If you follow an edge, you are likely to meet high-degree nodes!

Immunization strategies – without global knowledge

In many cases, you cannot figure out who are the hubs. 

Can we effectively immunize the population when we don’t know the node degrees?

  

~ P(k)

  

~ kP(k)

Select a random individual, then immunize one of its RANDOMLY CHOSEN FRIENDs.Select a random individual, then immunize one of its RANDOMLY CHOSEN FRIENDs.



A local method for vaccination effective in 
scale-free networks

Contact network described by 
scale-free random graph

Immunization strategy: select
a node randomly, immunize a
randomly selected neighbor of 
it. 

Use theory and simulations to 
determine the critical 
immunization fraction for each
transmissibility value 

 R. Cohen et al, Phys. Rev. Lett 91, 247901 (2003) 



Robustness and Immunisation



Robustness and Immunisation

Eradication is the complete elimination of a 
pathogen from the population. 

Eradication campaigns had mixed success: smallpox and rinderpest were 

successfully eradicated, but programs targeting hookworm, malaria, and 

yellow fever have failed.


