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Network Epidemics



14 Century — The Great Plague

Spread of Bubonic Plague
in Europe
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«conter of upricings  # city for orientation

4 years from France to Sweden

Limited by the speed of human travel

http://en.wikipedia.org/wiki/Black_Death
http://de.wikipedia.org/wiki/Schwarzer Tod



Section 10.3 Network Epidemics

The approaches described above have not considered explicitly that the

spreading takes place on a network— they assumed homogenous mixing, which
means that each individual can infect any other individual.

In reality, epidemics spread along links in a network - we need to explicitly
account for the role of the network in the epidemic process.



SI model on a network: Degree Block Approximation

Split nodes by their degrees
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| am susceptible with k
neighbors, and O,(t)

of my neighbors are infected.
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SIS model on a network: Degree Block Approximation

Split nodes by their degrees
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Network Epidemics

Early time behavior



Early time behavior of an epidemic

Why do we care about the early behavior of an epidemic?

* vaccines, cures, and other medical interventions take
months to years to develop

* the best way to stop or slow down an epidemic:
-> early quarantine
—> early vaccination

* Sl model is the most relevant for early stages



Network Epidemics: Early Time Behavior
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Network Epidemics: Density Function

The density function O,(t) provides the fraction of infected nodes in the

vicinity of a node with degree k

the probability that a link points from a node with degree k to a node with
degree k'is independent of k. Hence the probability that a randomly chosen
link points to a node with degree k' is the excess degree (7.3),
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At least one link of each infected node is connected to another infected
node, the one that transmitted the infection. Therefore the number of links
available for future transmission is (k'-1), allowing us to write

PRGES NG

a = 0(1). (10.34)

O, =
(1) 7

In other words, in the absence of degree correlations ©,(t) is indepen-
dent of k. Differentiating (10.34) we obtain

dow) _ 3 (k = Dpy diy(r) (10.35)
dt =~ (k) di



Network Epidemics: Density Function for SI Model

The density function O,(t) provides the fraction of infected nodes in the

vicinity of a node with degree k. do(r)
dt

k> —k
=5y %{1 — i (1O0), (1036)
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To predict the early behavior of the epidemics, we consider the fact that
d@( t) Z — 1) Di di k( l) for small t the fraction of infected individuals is much smaller than one.

Therefore we can neglect the second order terms in (10.36), obtaining

dt
k 2
460 _ B ) -1 ]e®. (10.37)
dl dt (k)
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dt B ( 1— lk )k @k( ) This has the solution
o) = Ce'™r, (10.38)
where
= L (10.39)
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Using the initial conditions @ =0)=C =, 7
we obtain the time dependent O(t) as
o) = i o =1 i, (10.40)
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Network Epidemics: Sl Model — Early Time Behavior

di,
— =B(1-1,)kO, (t
b =p1-iKe,0

%~ BRO,(1)

dr Tk

diy, (k-1 S
o = PR e 50 — ()

i = (1 + Kb (e’ = 1))




Network Epidemics: S| Model — Early Time Behavior
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Equation (10.17) predicts that the a pathogen
spreads with different speed on nodes with
different degrees. To be specific, we can write
I,=g(t)+kf(t), indicating that at any time the
fraction of high degree nodes that are infect-

25

1 d is higher than the fracti flow d
The higher the degree of a node, the more hodes. The figure shows the fraction of in-
Iikely that it becomes infected_ fected nodes with degrees k=1, 10 and 100 in

an Erdés-Rényi network with average degree
(k)=2. We find that at t=5 less than 1% of the
k=1 degree nodes are infected, but close to 10%
of the k=10 nodes and over 75% of the k=100
nodes.



Network Epidemics: S| Model - Random vs Scale-Free Network

(k) 1

TR k) ER = Bk

Random Network:

)

Scale-Free Networks

o Scale-free Network withy=3 Similar to random, with altered t

o Scale-free Networks with y<3 For N — «, we have (k*) - «andt— 0
Instantaneous spread! The hubs get the
disease fast, and distribute it to all.

o Inhomogenous Networks For N — =, as long as (k2) > (k)({(k) - 1),
we have a reduced 1 and higher speed.



Network Epidemics: SIS model and the Vanishing Epidemic Threshold
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dt
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There is a small but important difference in the density function of the
SIS model. For the SI and the SIR models, if a node is infected, then at
least one of its neighbors must also be infected or recovered, hence at
most (k-1) of its neighbors are susceptible, the origin of the (-1) term
in the paranthesis of (10.34) . However, in the SIS model the previously
infected neighbor can become susceptible again, therefore all k links
of a node can be available to spread the disease. Hence we modify the
definition (10.34) to obtain

Z k' piiy
0581 = kT = Og(1). (10.49)

Again keeping only the first order terms we obtain

—- = pk@, (1) — i, (10.50)

di
dt

Multiplying the equation with (k-1)p,/<k) and summing over k we have

o) [ (k)
= </3W —ﬂ>@(r). (10.51)

This again has the solution

o) = Ce'", (10.52)



Network Epidemics: SIS model and the Vanishing Epidemic Threshold

di, . . (k)
d1 Rk ¢ B(k2) — (k)

A global outbreak is possible if 7>0, which yields the critical spreading
rate

A

bk (10.54)
o (k?) SCALE-FREE

J

and the epidemic threshold for the SIS model as (Table 10.3)

0 (10.55)
C (k)



SIS Model - Scale-free Exponents

Degree distribution
P(k)=(1+y)m"7k>7

2<y<3
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O(4) ~(m4) prevalence is growing very
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region of spreading rates in
K which je~ < 1.
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Network Epidemics: Summary

Model

]

SIS

SIR

Continuum Equation
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Contact Networks



Section 10.4 Sexually Transmitted Diseases
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Section 10.4 Are Sexual Hubs Real?

Wild Chamberlain, a Hall of Fame basketball player in the 1980s, who claimed havir

sex with a staggering number of 20,000 partners. \%

“Yes, that’s correct, twenty thousand different ladies,

“At my age, that equals to having sex with 1.2 woman a day, every day, since | was

fifteen years old.” %

Within the AIDS literature the story of Geetan Dugas, a flight attendant

Y/

with approximately 250 homosexual partners, is well documented.

school students in a study focusing on

over 800 adolescents living in a midwest-

ern United States. Each circlerepresents a

student and the links represent romantic

relationships during the 6 months pre-

ceding the interview. The numbers indi-

cate the frequency of each subgraph: for 63 I
example 63 pairs of individuals (couples)

are isolated from the rest of the network. @ Male <

After [20]. « Female 2] e

Romantic and sexual links between high //<
<




Section 10.4 Global Travel Network
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m, . 3 tion network is well approximated by a pow-
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Section 10.4 Local Contact Patterns: RFID

A face-to-face contact network mapped out
using RFA tags, capturing interactions be-
tween 232 students and 10 teachers across 10
classes in aschool [31]. The structure of the ob-
tained map depends on the context in which
it is collected: the school network shown here
reveals the presence of clear communities. In
contrast, a study capturing the interactions
between individuals that visited a museum
reveal an almost linear network [29]. Finally,
a network of attendees of a small conference
is rather dense, as most participants interact
with most others [29]. After [31].




SIS Model - Absence of Epidemic Threshold
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Many networks will have vanishing epidemic threshold!




Beyond the degree distribution
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(a) Temporal Network

(b) AGGREGATED
NETWORK

The timeline of the interactions between
four individuals. Each vertical line marks
the moment when two individuals come
into contact with each other. If A is the first
to be infected, the pathogen can spread
from A to B and then to C, eventually reach-
ing D. If, however, D is the first to be infect-
ed, the disease can reach C and B, but not
A. This is because there is a temporal path
from A to D.

(b) Aggregated Network

The network obtained by merging the tem-
poral interactions shown in (a). If we only
have access to this aggregated representa-
tion, the pathogen can reach all individuals,
independent of its starting point. After [40].



m Bursty Contact Patterns
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For example, if the time between
consecutive emails would follow a
Poisson distribution, an email virus
would follow

i(t)~exp(-t/T)

with a decay time of

=1 day.

In the real data, however, the
decay time is

=21 days,

a much slower process, correctly
predicted by the theory if we use
power law inter- event times.



m Link Weights and communities
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Simple contagion is the process we explored so far: It is sufficient to
come into contact with an infected individual to be infected. The spread of
behavior is often described by complex contagion, capturing the fact that
most individuals do not adopt a new behavioral pattern at the first contact.
Rather, adoption requires reinforcement [64], i.e. contact with several in-
dividuals who have already adopted. For example, the higher is the frac-
tion of a person’s friends that have a mobile phone, the more likely that
she also buys one.



. . The community structure of the Twitter fol-
Old New Less Dominant More Dominant lower network. Each circle corresponds to a

T community and its size is proportional to the
number of tweets produced by the respective
community. The color of a community rep-
resents the time when the studied hashtag
(meme) is first used in the community. Light-
er colors denote thefirst communities tousea
hashtag, darker colors denotethelast commu-
nity to adapt it.

#ThoughtsDuringSchool

(a) Simple Contagion

Theevolution of theviral meme captured by
the #ThoughtsDuringSchool hashtag from
its early stage (30 tweets, left) to the late
stage (200 tweets, right). The meme jumps
easily between communities, infecting
many of them, following a contagion pat-
tern characterizing pathogens as well.

Early Stage

#ProperBand

(b)
=t

Early Stage

(b) Complex Contagion

The evolution of a non-viral meme caputed
by the #ProperBand hashtag from the ear-
ly stage (left) to the final stage (65 tweets,
right). Thetweet is trapped in a few of com-
munities, having diffi culty to escape them.
This is a signature of reinforcement, an
indication that the meme follows complex
contagion. After [54].
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Immunization Strategies



How to control the epidemic?

Transmission-reducing interventions: face masks, gloves,
washing hands — may reduce the transmission rate below the
epidemic-causing critical rate

Contact-reducing interventions: quarantining a patient, closing
schools — make the network sparser, may increase the critical
transmission rate

Vaccinations: remove nodes from the network

Q: Who should be vaccinated for most effective control?



Immunization strategies— Random Networks

A fraction g of individuals are randomly chosen to be immunized.

Immunized

SCALE-FREE

p— p1-g)

Consequently, if vaccination increases the fraction of immu-
nized individuals above g , it pushes the spreading rate under the
epidemic threshold A . In this case T becomes negative and the
pathogen dies out naturally. This explains why health official




Immunization strategies

A fraction g of individuals are randomly chosen to be immunized.

Immunized

SCALE-FREE

SAl-g) Laogy-W (k)
ﬂ ﬁ( g) ,U( g.) <k2> gczl_%m.

2
If <k > —» 00, random immunization cannot prevent the outbreak.



Vaccination strategies in scale-free networks

As hubs are responsible for the spread of the
disease > cure the hubs.

Targeted immunization — immunize all nodes with
degree k>k,

2_
_vy—2 kjin

Y

50 100

c T 3y (k;mx)y‘3'

With increasing critical point increases, it is harder for a virus to spread.

Z. Dezso and A-L. Barabasi, Phys. Rev. E 65, 055103 (2002);
R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65, 036104 (2002)



Immunization strategies — without global knowledge

In many cases, you cannot figure out who are the hubs.

Can we effectively immunize the population when we don’t know the node degrees?

>4 e

~ P(k) ~ kP (k)

If you follow an edge, you are likely to meet high-degree nodes!

Select a random individual, then immunize one of its RANDOMLY CHOSEN FRIENDs.

R. Cohen et al., PRL 91, 247901 (2003)



A local method for vaccination effective in
scale-free networks

Contact network described by
scale-free random graph 1 & 5

=

0g RANDOM VACCINATION
Immunization strategy: select

a node randomly, immunize a 06 i
randomly selected neighbor of dc ,
it. 0.4 2

SELECTIVE IMMUNIZATION

. . 0.2/'/—.\\
Use theory and simulations to , ]

determine the critical 0 ‘ | ‘ | ‘
. . ; . 2 2.5 Y 3 3.5
immunization fraction for each

transmissibility value

R. Cohen et al, Phys. Rev. Lett 91, 247901 (2003)



Robustness and Immunisation




Robustness and Immunisation

Eradication is the complete elimination of a
pathogen from the population.

Eradication campaigns had mixed success: smallpox and rinderpest were

successfully eradicated, but programs targeting hookworm, malaria, and Eradicating Smallpox

. Rahima Banu, the last smallpox infect-
yellow fever have failed. ed patient in Bangladesh in 1976. After

[68].



