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Cascading failures:
Empirical Results
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Cascades: The Domino Effect

Large events triggered by small initial shocks
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Northeast Blackout of 2003

Consequences
More than 508 generating units at 265 
power plants shut down during the 
outage. In the minutes before the 
event, the NYISO-managed power 
system was carrying 28,700 MW of 
load. At the height of the outage, the 
load had dropped to 5,716 MW, a loss 
of 80%.

Origin
A 3,500 MW power surge (towards Ontario) 
affected the transmission grid at 4:10:39 p.m. 
EDT. (Aug-14-2003)

Before the blackout         After the blackout
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Cascades Size Distribution of Blackouts

Probability of energy 
unserved during North 
American blackouts 
1984 to 1998.

Source Exponent Quantity

North America 2.0 Power

Sweden 1.6 Energy

Norway 1.7 Power

New Zealand 1.6 Energy

China 1.8 Energy

Unserved energy/power magnitude (S) distribution 

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

P(S) ~ S −α, 1< α < 2P(S) ~ S −α, 1< α < 2
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Cascades Size Distribution of Earthquakes

P(S) ~ S −α,α ≈ 1.67P(S) ~ S −α,α ≈ 1.67

Earthquake size S distribution 

Y. Y. Kagan, Phys. Earth Planet. Inter.  135 (2–3), 173–209 (2003)

Earthquakes during 1977–2000.
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Information Cascades

p(s)∼s−α
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BOX 8.3
CASCADING FLIGHT CONGESTIONS

Flight delays in the U.S. have an economic impact of over $40 billion 

per year [28], caused by the need for enhanced operations, passenger 

loss of time, decreased productivity and missed business and leisure 

opportunities. A fl ight delay is the time diff erence between the expect-

ed and actual departure/ arrival times of a flight. Airline schedules 

include a buff er period between consecutive fl ights to accommodate 

short delays. When a delay exceeds this buff er, subsequent fl ights that 

use the same aircraft, crew or gate, are also delayed. Consequently a 

delay can propagate in a cascade-like fashion through the airline net-

work. 

While most fl ights in 2010 were on time, 37.5% arrived or departed 

late [22]. The delay distribution follows (8.14), implying that while most 

fl ights were delayed by just a few minutes, a few were hours behind 

schedule. These long delays induce correlated delay patterns, a signa-

ture of cascading congestions in the air transportation system (Figure 
8.19).

U.S. aviation map showing congested air-
ports as purple nodes, while those with nor-
mal traffi c as green nodes. The lines corre-
spond to the direct flights between them on 
March 12, 2010. The clustering of the con-
gested airports indicate that the dealys are 
not independent of each other, but cascade 
through the airport network. After [22].

Figure 8.19
Clusters of Congested Airports
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Section 8.6 Failure Propagation Model

D. Watts, PNAS 99, 5766-5771 (2002)

Initial Setup
• Random graph with N nodes
• Initially each node is functional.
Cascade
• Initiated by the failure of one node.
• fi : fraction of failed neighbors of node i. Node i 

fails if fi is greater than a global threshold φ.
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FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 

propagation model is frequently used to describe cascading failures as 

well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 

node contains an agent. An agent i can be in the state 0  (activ e or healthy ) 

or 1 (in act iv e  or failed ), and is characterized by a breakdown threshold 

i
.

All agents are initially in the healthy state 0. At time t  = 0 one agent 

switches to state 1, corresponding to an initial component failure or to 

the release of a new piece of information. In each subsequent time step 

we randomly pick an agent and update its state following a threshold 

rule:

•  If the selected agent i is in state 0, it inspects the state of its k
i
 neigh-

bors. The agent i adopts state 1 (i.e. it also fails) if at least a  fraction 

of its k
i
 neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a  fraction of its 

neighbors have failed. Depending on the local network topology, an ini-

tial perturbation can die out immediately, failing to induce the failure 

of any other node. It can also lead to the failure of multiple nodes, as il-

lustrated in Figure 8.20a,b. The simulations document three regimes with 

distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime
If  k  is high, changing the state of a node is unlikely to move other 

nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If  k  is small, fl ipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime most 

perturbations induce major breakdowns (purple symbols, Figure 
8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-

lanches have widely diff erent sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with  = 3/ 2 if the underlying network is 

random. 
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Figure 8.20
Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold  = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/ 2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially fl ip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion  and the average degree k of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the ( k , ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and  = 0.18, k  = 1.05 (green), k = 3.0 (pur-
ple), k = 5.76 (orange) and k = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent  = 3/ 2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].

(a)

(c)

(d)

(b)

25 MODELING CASCADING FAILURES

FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 

propagation model is frequently used to describe cascading failures as 

well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 

node contains an agent. An agent i can be in the state 0  (activ e or healthy ) 

or 1 (in activ e  or failed ), and is characterized by a breakdown threshold 

i
.

All agents are initially in the healthy state 0. At time t  = 0 one agent 

switches to state 1, corresponding to an initial component failure or to 

the release of a new piece of information. In each subsequent time step 

we randomly pick an agent and update its state following a threshold 

rule:

•  If the selected agent i is in state 0, it inspects the state of its k
i
 neigh-

bors. The agent i adopts state 1 (i.e. it also fails) if  at least a  fraction 

of its k
i
 neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a  fraction of its 

neighbors have failed. Depending on the local network topology, an ini-

tial perturbation can die out immediately, failing to induce the failure 

of any other node. It can also lead to the failure of multiple nodes, as il-

lustrated in Figure 8.20a,b. The simulations document three regimes with 

distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime
If k  is high, changing the state of a node is unlikely to move other 

nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If k  is small, fl ipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime most 

perturbations induce major breakdowns (purple symbols, Figure 
8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-

lanches have widely diff erent sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with  = 3/ 2 if the underlying network is 

random. 

NETWORK ROBUSTNESS

0

2

4

6

8

10

12

14

16 100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

!"

$"

f=1/2

f=1/2

f=2/3

f=0

SU B CRIT ICAL

SU PERCRIT ICAL

LOW ER CRIT ICAL P O IN T
U PPER CRIT ICAL P O IN T

SU B CRIT ICAL
SU PERCRIT ICAL

f=1/3f=1/2

=0.4

!"

k P(s)

A A
D D

E E

C
B B

C

0.1  0.12   0.14   0.16   0.18   0.2   0.22   0.24   0.26 s

0

2

4

6

8

10

12

14

16 100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

!"

$"

f=1/2

f=1/2

f=2/3

f=0

SU B CRIT ICAL

SU PERCRIT ICAL

LOW ER CR IT ICAL P O IN T
U PP ER CR IT ICAL P O IN T

SU B CR IT ICAL
SU P E R CR IT ICAL

f=1/3f=1/2

=0.4

!"

k P(s)

A A
D D

E E

C
B B

C

0.1  0.12   0.14   0.16   0.18   0.2   0.22   0.24   0.26 s
0

2

4

6

8

10

12

14

16 100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

!"

$"

f=1/2

f=1/2

f=2/3

f=0

SU BCRIT ICAL

SU PERCRIT ICAL

LO W ER CR IT ICAL PO IN T
U P P ER CR IT ICAL PO IN T

SU B CRIT ICAL
SU PER CRIT ICAL

f=1/3f=1/2

=0.4

!"

k P(s)

A A
D D

E E

C
B B

C

0.1  0.12   0.14   0.16   0.18   0.2   0.22   0.24   0.26 s

0

2

4

6

8

10

12

14

16 100

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

!"

$"

f=1/2

f=1/2

f=2/3

f=0

SU B CRIT ICAL

SU PERCRIT ICAL

LOW ER CRIT ICAL POIN T
U PPER CRIT ICAL POIN T

SU B CRIT ICAL
SU PERCRIT ICAL

f=1/3f=1/2

=0.4

!"

k P(s)

A A
D D

E E

C
B B

C

0.1  0.12   0.14   0.16   0.18   0.2   0.22   0.24   0.26 s
Figure 8.20
Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold  = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/ 2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially flip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion  and the average degree k of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the ( k , ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N  = 10,000 
and  = 0.18, k  = 1.05 (green), k = 3.0 (pur-
ple), k = 5.76 (orange) and k = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent  = 3/ 2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].
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Section 8.6 Failure Propagation Model

D. Watts, PNAS 99, 5766-5771 (2002)

Erdos-Renyi network

P(S) ~ S −3/2

Erdos-Renyi network

P(S) ~ S −3/2
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nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If k  is small, fl ipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime most 

perturbations induce major breakdowns (purple symbols, Figure 
8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-

lanches have widely diff erent sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with  = 3/ 2 if the underlying network is 

random. 
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Figure 8.20
Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold  = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/ 2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially flip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion  and the average degree k of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the ( k , ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and  = 0.18, k  = 1.05 (green), k = 3.0 (pur-
ple), k = 5.76 (orange) and k = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent  = 3/ 2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].
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25 MODELING CASCADING FAILURES

FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 

propagation model is frequently used to describe cascading failures as 

well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 

node contains an agent. An agent i can be in the state 0  (act iv e or h ealthy ) 

or 1 (in act iv e  or failed ), and is characterized by a breakdown threshold 

i
.

All agents are initially in the healthy state 0. At time t  = 0 one agent 

switches to state 1, corresponding to an initial component failure or to 

the release of a new piece of information. In each subsequent time step 

we randomly pick an agent and update its state following a threshold 

rule:

•  If the selected agent i is in state 0, it inspects the state of its k
i
 neigh-

bors. The agent i adopts state 1 (i.e. it also fails) if at least a  fraction 

of its k
i
 neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a  fraction of its 

neighbors have failed. Depending on the local network topology, an ini-

tial perturbation can die out immediately, failing to induce the failure 

of any other node. It can also lead to the failure of multiple nodes, as il-

lustrated in Figure 8.20a,b. The simulations document three regimes with 

distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime
If k  is high, changing the state of a node is unlikely to move other 

nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If k  is small, fl ipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime most 

perturbations induce major breakdowns (purple symbols, Figure 
8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-

lanches have widely diff erent sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with  = 3/ 2 if the underlying network is 

random. 
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Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold  = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/ 2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially flip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion  and the average degree k of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the ( k , ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and  = 0.18, k  = 1.05 (green), k = 3.0 (pur-
ple), k = 5.76 (orange) and k = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent  = 3/ 2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].
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FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 

propagation model is frequently used to describe cascading failures as 

well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 

node contains an agent. An agent i can be in the state 0  (activ e or healthy ) 

or 1 (in act iv e  or failed), and is characterized by a breakdown threshold 

i
.

All agents are initially in the healthy state 0. At time t  = 0 one agent 

switches to state 1, corresponding to an initial component failure or to 

the release of a new piece of information. In each subsequent time step 

we randomly pick an agent and update its state following a threshold 

rule:

•  If the selected agent i is in state 0, it inspects the state of its k
i
 neigh-

bors. The agent i adopts state 1 (i.e. it also fails) if at least a  fraction 

of its k
i
 neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a  fraction of its 

neighbors have failed. Depending on the local network topology, an ini-

tial perturbation can die out immediately, failing to induce the failure 

of any other node. It can also lead to the failure of multiple nodes, as il-

lustrated in Figure 8.20a,b. The simulations document three regimes with 

distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime
If k  is high, changing the state of a node is unlikely to move other 

nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime
If k  is small, fl ipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime most 

perturbations induce major breakdowns (purple symbols, Figure 
8.20c,d).

•   Critical Regime
At the boundary of the subcritical and supercritical regime the ava-

lanches have widely diff erent sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with  = 3/ 2 if the underlying network is 

random. 
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Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold  = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/ 2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially fl ip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion  and the average degree k of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the ( k , ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and  = 0.18, k  = 1.05 (green), k = 3.0 (pur-
ple), k = 5.76 (orange) and k = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent  = 3/ 2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].
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BRANCHING MODEL
Given the complexity of the failure propogation model, it is hard to an-

alytically predict the scaling behavior of the obtained avalanches. To 

understand the power-law nature of p(s) and to calculate the avalanche 

exponent , we turn to the branching model. This is the simplest model 

that still captures the basic features of a cascading event.

The model builds on the observation that each cascading failure follows 

a branching process. Indeed, let us call the node whose initial failure 

triggers the avalanche the root of the tree. The branches of the tree are 

the nodes whose failure was triggered by this initial failure. For exam-

ple, in Figures 8.20a,b, the breakdown of node A  starts the avalanche, 

hence A is the root of the tree. The failure of A  leads to the failure of B 

and E, representing the two branches of the tree. Subsequently E induc-

es the failure of D and B leads to the failure of C (Figure 8.21a).

The branching model captures the essential features of avalanche prop-

agation (Figure 8.21). The model starts with a single active node. In the 

next time step each active node produces k off springs, where k is select-

ed from a p
k
 distribution. If a node selects k = 0, that branch dies out 

(Figure 8.21b). If it selects k > 0, it will have k  new active sites. The size 

of an avalanche corresponds to the size of the tree when all active sites 

died out (Figure 8.21c).

MODELING CASCADING FAILURESNETWORK ROBUSTNESS

(a) The branching process mirroring the prop-
agation of the failure shown in Figure 
8.20a,b. The perturbation starts from node 
A , whose failure flips B and E, which in turn 
flip C and D, respectively.

(b) An elementary branching process. Each ac-
tive link (green) can become inactive with 
probability p

0
 = 1/ 2 (top) or give birth to two 

new active links with probability p
2
 = 1/ 2 

(bottom).

(c) To analytically calculate p(s) we map the 
branching process into a diff usion prob-
lem. For this we show the number of active 
sites, x(t), in function of time t. A nonze-
ro x(t) means that the avalanche persists. 
When x(t) becomes zero, we loose all active 
sites and the avalanche ends. In the exam-
ple shown in the image this happens at t = 5, 
hence the size of the avalanche is t

m ax
 + 1 = 6. 

An exact mapping between the branching 
model and a one dimensional random walk 
helps us calculate the avalanche exponent. 
Consider a branching process starting from 
a stub with one active end. When the active 
site becomes inactive, it decreases the num-
ber of its active sites, i.e. x x  − 1. When the 
active site branches, creates two active sites, 
i.e. x  x  + 1. This maps the avalanche size s 
to the time it takes for the walk that starts at 
x  = 1 to reach x  = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/ 2 
[32]. For branching process corresponding 
to scale-free p

k
, the avalanche exponent de-

pends on , as shown in Figure 8.22.

(d,e,f) Typical avalanches generated by the branch-
ing model in the subcritical (d), supercriti-
cal (e) and critical regime (f). The green node 
in each cascade marks the root of the tree, 
representing the first perturbation. In (d) 
and (f) we show multiple trees, while in (e) 
we show only one, as each tree (avalanche)
grows indefinitely.

Figure 8.21
Branching Model
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BRANCHING MODEL
Given the complexity of the failure propogation model, it is hard to an-

alytically predict the scaling behavior of the obtained avalanches. To 

understand the power-law nature of p(s) and to calculate the avalanche 

exponent , we turn to the branching model. This is the simplest model 

that still captures the basic features of a cascading event.

The model builds on the observation that each cascading failure follows 

a branching process. Indeed, let us call the node whose initial failure 

triggers the avalanche the root of the tree. The branches of the tree are 

the nodes whose failure was triggered by this initial failure. For exam-

ple, in Figures 8.20a,b, the breakdown of node A  starts the avalanche, 

hence A  is the root of the tree. The failure of A  leads to the failure of B 

and E, representing the two branches of the tree. Subsequently E induc-

es the failure of D and B leads to the failure of C (Figure 8.21a).

The branching model captures the essential features of avalanche prop-

agation (Figure 8.21). The model starts with a single active node. In the 

next time step each active node produces k  off springs, where k is select-

ed from a p
k
 distribution. If a node selects k = 0, that branch dies out 

(Figure 8.21b). If it selects k  > 0, it will have k new active sites. The size 

of an avalanche corresponds to the size of the tree when all active sites 

died out (Figure 8.21c).
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(a) The branching process mirroring the prop-
agation of the failure shown in Figure 
8.20a,b. The perturbation starts from node 
A, whose failure flips B and E, which in turn 
flip C and D, respectively.

(b) An elementary branching process. Each ac-
tive link (green) can become inactive with 
probability p

0
 = 1/ 2 (top) or give birth to two 

new active links with probability p
2
 = 1/2 

(bottom).

(c) To analytically calculate p(s) we map the 
branching process into a diff usion prob-
lem. For this we show the number of active 
sites, x(t), in function of time t . A nonze-
ro x(t) means that the avalanche persists. 
When x(t) becomes zero, we loose all active 
sites and the avalanche ends. In the exam-
ple shown in the image this happens at t = 5, 
hence the size of the avalanche is t

m ax
 + 1 = 6. 

An exact mapping between the branching 
model and a one dimensional random walk 
helps us calculate the avalanche exponent. 
Consider a branching process starting from 
a stub with one active end. When the active 
site becomes inactive, it decreases the num-
ber of its active sites, i.e. x x  − 1. When the 
active site branches, creates two active sites, 
i.e. x  x  + 1. This maps the avalanche size s 
to the time it takes for the walk that starts at 
x  = 1 to reach x  = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/ 2 
[32]. For branching process corresponding 
to scale-free p
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, the avalanche exponent de-

pends on , as shown in Figure 8.22.

(d,e,f) Typical avalanches generated by the branch-
ing model in the subcritical (d), supercriti-
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representing the first perturbation. In (d) 
and (f) we show multiple trees, while in (e) 
we show only one, as each tree (avalanche)
grows indefinitely.
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BRANCHING MODEL
Given the complexity of the failure propogation model, it is hard to an-

alytically predict the scaling behavior of the obtained avalanches. To 

understand the power-law nature of p(s) and to calculate the avalanche 

exponent , we turn to the branching model. This is the simplest model 

that still captures the basic features of a cascading event.

The model builds on the observation that each cascading failure follows 

a branching process. Indeed, let us call the node whose initial failure 

triggers the avalanche the root of the tree. The branches of the tree are 

the nodes whose failure was triggered by this initial failure. For exam-

ple, in Figures 8.20a,b, the breakdown of node A  starts the avalanche, 

hence A  is the root of the tree. The failure of A  leads to the failure of B 

and E, representing the two branches of the tree. Subsequently E induc-

es the failure of D and B leads to the failure of C (Figure 8.21a).

The branching model captures the essential features of avalanche prop-

agation (Figure 8.21). The model starts with a single active node. In the 

next time step each active node produces k off springs, where k is select-

ed from a p
k
 distribution. If a node selects k = 0, that branch dies out 

(Figure 8.21b). If it selects k > 0, it will have k new active sites. The size 

of an avalanche corresponds to the size of the tree when all active sites 

died out (Figure 8.21c).
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(a) The branching process mirroring the prop-
agation of the failure shown in Figure 
8.20a,b. The perturbation starts from node 
A, whose failure flips B and E, which in turn 
flip C and D, respectively.

(b) An elementary branching process. Each ac-
tive link (green) can become inactive with 
probability p

0
 = 1/2 (top) or give birth to two 

new active links with probability p
2
 = 1/2 

(bottom).

(c) To analytically calculate p(s) we map the 
branching process into a diff usion prob-
lem. For this we show the number of active 
sites, x(t), in function of time t . A nonze-
ro x(t) means that the avalanche persists. 
When x(t) becomes zero, we loose all active 
sites and the avalanche ends. In the exam-
ple shown in the image this happens at t = 5, 
hence the size of the avalanche is t

m ax
 + 1 = 6. 

An exact mapping between the branching 
model and a one dimensional random walk 
helps us calculate the avalanche exponent. 
Consider a branching process starting from 
a stub with one active end. When the active 
site becomes inactive, it decreases the num-
ber of its active sites, i.e. x  x  − 1. When the 
active site branches, creates two active sites, 
i.e. x   x  + 1. This maps the avalanche size s 
to the time it takes for the walk that starts at 
x  = 1 to reach x  = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/ 2 
[32]. For branching process corresponding 
to scale-free p

k
, the avalanche exponent de-

pends on , as shown in Figure 8.22.

(d,e,f) Typical avalanches generated by the branch-
ing model in the subcritical (d), supercriti -
cal (e) and critical regime (f). The green node 
in each cascade marks the root of the tree, 
representing the first perturbation. In (d) 
and (f) we show multiple trees, while in (e) 
we show only one, as each tree (avalanche)
grows indefinitely.
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BUILDING ROBUSTNESS
SECTION 8.7

Can we enhance a network’s robustness? In this section we show that 

the insights we gained about the factors that influence robustness allows 

us to design networks that can simultaneously resist random failures and 

attacks. We also discuss how to stop a cascading failure, allowing us to en-

hance a system’s dynamical robustness. Finally, we apply the developed 

tools to the power grid, linking its robustness to its reliability.

Designing Robust Networks
Designing networks that are simultaneously robust to attacks an d  ran-

dom failures appears to be a conflicting desire [36, 37, 38, 39]. For exam-

ple, the hub-and-spoke network of Figure 8.23a is robust to random fail-

ures, as only the failure of its central node can break the network into 

isolated components. Therefore, the probability that a random failure 

will fragment the network is 1/ (N  − 1), which is negligible for large N . 

At the same time this network is vulnerable to attacks, as the removal 

of a single node, its central hub, breaks the network into isolated nodes.

We can enhance this network’s attack tolerance by connecting its pe-

ripheral nodes (Figure 8.23b), so that the removal of the hub does not 

fragment the network. There is a price, however, for this enhanced ro-

bustness: it requires us to double the number of links. If we define the 

cost to build and maintain a network to be proportional to its average 

degree k , the cost of the network of Figure 8.23b is 24/ 7, double of the 

cost 12/ 7 of the network of Figure 8.23a. The increased cost prompts us to 

refine our question: Can we maximize the robustness of a network to 

both random failures and targeted attacks without changing the cost?

A network’s robustness against random failures is captured by its per-

colation threshold  f
c
, which is the fraction of the nodes we must remove 

for the network to fall apart. To enhance a network's robustness we 

must increase f
c
. According to (8.7) f

c
 depends only on k  and k 2 . Conse-

quently the degree distribution which maximizes  f
c
 needs to maximize 

k2  if we wish to keep the cost k  fixed. This is achieved by a bimodal 

distribution, corresponding to a network with only two kinds of nodes, 

NETWORK ROBUSTNESS

(a) A hub-and-spoke network is robust to ran-
dom failures but has a low tolerance to an 
attack that removes its central hub. 

(b) By connecting some of the small degree 
nodes, the reinforced network has a high-
er tolerance to targeted attacks. This in-
creases the cost measured by k , which is 
higher for the reinforced network. 

(c)  Random, f
c
rand, targeted  f

c
targ and total f

c
tot 

percolation thresholds for scale-free net-
works in function of the degree exponent 
 for a network with k

m in
 = 3.

Figure 8.23
Enhancing Robustness
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with degrees k
m in

 and k
m ax

 (Figure 8.23a,b).

If we wish to simultaneously optimize the network topology against 

both random failures and attacks, we search for topologies that maxi-

mize the sum (Figure 8.24c)

A combination of analytical arguments and numerical simulations in-

dicate that this too is best achieved by the bimodal degree distribution 

[36, 37, 38, 39]

describing a network in which an r fraction of nodes have degree k
m ax  

and the remaining (1 − r) fraction have degree k
m in

. 

As we show in ADVANCED TOPICS 8.G, the maximum of f
c
tot is obtained 

when r = 1/ N , i.e. when there is a single node with degree k
m ax

 and the 

remaining nodes have degree k
m in

. In this case the value of k
m ax

 depends 

on the system size as 

In other words, a network that is robust to both random failures and 

attacks has a single hub with degree (8.18), and the rest of the nodes have 

the same degree k
m in

. This  hub-and-spoke topology is obviously robust 

against random failures as the chance of removing the central hub is 

1/ N , tiny for large N . 

The obtained network may appear to be vulnerable to an attack that re-

moves its hub, but it is not necessarily so. Indeed, the network’s giant 

component is held together by both the central hub as well as by the 

many nodes with degree k
m in

, that for k
m in

 > 1 form a giant component 

on their own. Hence while the removal of the k
m ax

 hub causes a major 

one-time loss, the remaining low degree nodes are robust against sub-

sequent targeted removal (Figure 8.24c).

NETWORK ROBUSTNESS

(8.16)

(8.17)

(8.18)

fc
tot fc

rand fc
targ

pk (1 r) (k kmin ) + r (k kmax )

kmax = AN 2/3

The figure illustrates the optimal network to-
pologies predicted by (8.16) and (8.17), consist-
ing of a single hub of size (8.18) and the rest 
of the nodes have the same degree k

m in
 deter-

mined by k . The left panels show the network 
topology for N  = 300; the right panels show 
the failure/ attack curves for N  = 10,000.

(a) For small k the hub holds the network 
together. Once we remove this central hub 
the network breaks apart. Hence the attack 
and error curves are well separated, indi-
cating that the network is robust to ran-
dom failures but fragile to attacks.

(b) For larger k a giant component emerges, 
that exists even without the central hub. 
Hence while the hub enhances the system’s 
robustness to random failures, it is no lon-
ger essential for the network. In this case 
both the attack f

c
targ and error f

c
ran d are large.

(c) For even larger k the error and the at-
tack curves are indistinguishable, indicat-
ing that the network's response to attacks 
and random failures is indistinguishable. 
In this case the network is well connected 
even without its central hub.

Figure 8.24
Optimizing Attack and Failure Tolerance
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with degrees k
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with degrees k
m in

 and k
m ax

 (Figure 8.23a,b).

If we wish to simultaneously optimize the network topology against 

both random failures and attacks, we search for topologies that maxi-

mize the sum (Figure 8.24c)
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tot is obtained 
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m in

. In this case the value of k
m ax

 depends 

on the system size as 

In other words, a network that is robust to both random failures and 

attacks has a single hub with degree (8.18), and the rest of the nodes have 

the same degree km in. This  hub-and-spoke topology is obviously robust 

against random failures as the chance of removing the central hub is 
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Section 8.7 Halting Cascading Failures

Simulations indicate that to limit the size of the cascades we must remove 

nodes with small loads and links with large excess load in the vicinity of the 

initial failure. The mechanism is similar to the method used by firefighters, 

who set a controlled fire in the fire- line to consume the fuel in the path of a 

wildfire.



Section 8.7 Lazarus Effect
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mous cost of each node and link, it is unlikely that we would ever be given 

a chance to rebuild them. 

NETWORK ROBUSTNESS

Following [27], we translate the problem of intentional
attack to an equivalent random failure problem. The
removal of a fractionf of nodes with the highest de-
gree is then equivalent to the random removal of those
links connecting theremainingnodes to thosealreadyre-
moved. Thus, theprobability that aspecific link leads to
a deleted node will be given by:

p̃=
K̃

K

kP(k)
k

dk (13)

theaveragedegreeof the undamagedgraph. It
cult to show that this gives:

p̃=
K̃
γ

+1 e K̃/ γ (14)

Using equation (12) it is straightforward to see that:

p̃=(ln pc 1)pc (15)

where we assume thatK is large enough to ignore the
K/ γ). Thus, an equivalent network with

maximal degreeK̃ hasbeen built after arandomremoval
nodesdueto thefact that theabsenceof correlations

implies a random failure of links. In order to obtain the
degree distribution of the damaged graph, such a fail-
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(a) The power grid is a complex infrastruc-
ture consisting of (1) power generators, (2) 
switching units, (3) the high voltage trans-
mission grid, (4) transformers, (5) low volt-
age lines, (6) consumers, like households or 
businesses. When we study the network be-
hind the power grid, many of these details 
are ignored. 

(b,c,d) The Italian power grid with the details of 
production and consumption. Once we 
strip these details from the network, we ob-
tain the spatial network shown in (c). Once 
the spatial information is also removed, we 
arrive to the network (d), which is the typi-
cal object of study at the network level.

(e) The cumulative degree distribution P
k
 of 

the European power grid. The plot shows 
the data for the full network (UCTE) and 
separately for Italy, and the joint network 
of UK and Ireland, indicating that the na-
tional grid’s Pk also follows (8.19).

(f) The phase space (f
c
targ ,k) of exponential un-

correlated networks under attack, where 
f

c
targ

 
is the fraction of hubs we must remove 

to fragment the network. The continuous 
curve corresponds to the critical bound-
ary for attacks, below which the network 
retains its giant component. The plot also 
shows the estimated f

c
targ( k ) for attacks 

for the thirty-three national power grids 
within EU, each shown as a separate cir-
cle. The plot indicates the presence of two 
classes of power grids. For countries with 
k  > 1.5 (Group 1), the analytical prediction 

for f
c
targ

 
agrees with the numerically ob-

served values. For countries with k < 1.5 
(Group 2) the analytical prediction under-
estimates the numerically observed values. 
Therefore, Group 2 national grids show 
enhanced robustness to attacks, meaning 
that they are more robust than expected 
for a random network with the same de-
gree sequence. After [42].
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classes of power grids. For countries with 
k  > 1.5 (Group 1), the analytical prediction 

for f
c
targ

 
agrees with the numerically ob-

served values. For countries with k < 1.5 
(Group 2) the analytical prediction under-
estimates the numerically observed values. 
Therefore, Group 2 national grids show 
enhanced robustness to attacks, meaning 
that they are more robust than expected 
for a random network with the same de-
gree sequence. After [42].

Figure 8.26
The Power Grid
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Group 2: these networks are more robust to attacks than expected based 

on their degree distribution. 
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