## Network Science

## Class 8: Network Robustness

##  <br> Albert-László Barabási with <br> Emma K. Towlson, Sebastian Ruf, Michael <br> Danziger, and Louis Shekhtman

www.BarabasiLab.com

## Section 8.5

## Cascading failures: Empirical Results

## Cascades: The Domino Effect

Large events triggered by small initial shocks

Origin
A 3,500 MW power surge (towards Ontario) affected the transmission grid at 4:10:39 p.m. EDT. (Aug-14-2003)
Before the blackout


After the blackout

$\because$
皿

Consequences
More than 508 generating units at 265 power plants shut down during the outage. In the minutes before the event, the NYISO-managed power system was carrying $28,700 \mathrm{MW}$ of load. At the height of the outage, the load had dropped to $5,716 \mathrm{MW}$, a loss of $80 \%$.

- Denial of Service Attacks (Internet)

If a router fails to transmit the packets received by it, the Internet protocols will alert the neighboring routers to avoid the troubled equipment by re-routing the packets using alternative routes. Consequently a failed router increases traffic on other routers, potentially inducing a series of denial of service attacks throughout the Internet [13].

- Financial Crises

Cascading failures are common in economic systems. For example, the drop in the house prices in 2008 in the U.S. has spread along the links of the financial network, inducing a cascade of failed banks, companies and even nations [14, 15, 16]. It eventually caused the worst global financial meltdown since the 1930s Great Depression.


Blast shakes a second reactor death toll soar

By Martin Fackler and Mark McDonald NEW YORE TIMES

## Cascades Size Distribution of Blackouts

## Unserved energy/power magnitude $(S)$ distribution


I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

## Cascades Size Distribution of Earthquakes

(c)

Earthquakes during 1977-2000.

Preliminary Determination of Epicenters 358,214 Events, 1963-1998


Earthquake size $S$ distribution

$$
P(S) \sim S^{-\alpha}, \alpha \approx 1.67
$$

Y. Y. Kagan, Phys. Earth Planet. Inter. 135 (2-3), 173-209 (2003)

## Information Cascades



$$
p(s) \sim s^{-\alpha}
$$

(b)


$$
\alpha \simeq 1.75
$$

## Section 8.5

## Empirical Results

Cascading failures are documented in many other environments:

- The consequences of bad weather or mechanical failures can cascade through airline schedules, delaying multiple flights and stranding thousands of passengers (BOX 8.3) [22].
- The disappearance of a species can cascade through the food web of an ecosystem, inducing the extinction of numerous species and altering the habitat of others [23, 24, 25, 26].
- The shortage of a particular component can cripple supply chains. For example, the 2011 floods in Thailand have resulted in a chronic shortage of car components that disrupted the production chain of more than 1,000 automotive factories worldwide. Therefore the damage was not limited to the flooded factories, but resulted in worldwide insurance claims reaching \$20 billion [27].

> U.S. aviation map showing congested airports as purple nodes, while those with normal traffic as green nodes. The lines correspond to the direct flights between them on March 12, 2010. The clustering of the congested airports indicate that the dealys are not independent of each other, but cascade through the airport network. After [22].


## Section 8.5

## Empirical Results: Summary

| SOURCE | EXPONENT | CASCADE |
| :--- | :---: | :--- |
| Power grid (North America) | 2.0 | Power |
| Power grid (Sweden) | 1.6 | Energy |
| Power grid (Norway) | 1.7 | Power |
| Power grid (New Zealand) | 1.6 | Energy |
| Power grid (China) | 1.8 | Energy |
| Twitter Cascades | 1.75 | Retweets |
| Earthquakes | 1.67 | Seismic Wave |

## Section 8.6

Modeling Cascading failures
(i) The system is characterized by some flow over a network, like the flow of electric current in the power grid or the flow of information in communication systems.
(ii) Each component has a local breakdown rule that determines when it contributes to a cascade, either by failing (power grid, earthquakes) or by choosing to pass on a piece of information (Twitter).
(iii) Each system has a mechanism to redistribute the traffic to other nodes upon the failure or the activation of a component.

## Section 8.6 Failure Propagation Model


$\mathbf{( a , b})$ The development of a cascade in a small network in which each node has the same breakdown threshold $\varphi=0.4$. Initially all nodes are in state 0 , shown as green circles. After node A changes its state to 1 (purple), its neighbors $B$ and $E$ will have a fraction $f=1 / 2>0.4$ of their neighbors in state 1. Consequently they also fail, changing their state to 1 , as shown in (b). In the next time step $C$ and $D$ will also fail, as both have $f>$ 0.4. Consequently the cascade sweeps the whole network, reaching a size $s=5$. One can check that if we initially flip node $B$, it will not induce an avalanche.

## Initial Setup

- Random graph with $N$ nodes
- Initially each node is functional.


## Cascade

- Initiated by the failure of one node.
- $f_{i}$ : fraction of failed neighbors of node $i$. Node $i$ fails if $f_{i}$ is greater than a global threshold $\phi$.


## Section 8.6 Failure Propagation Model


(c)



$$
\begin{aligned}
& \text { Erdos-Renyi network } \\
& P(S) \sim S^{-3 / 2}
\end{aligned}
$$

D. Watts, PNAS 99, 5766-5771 (2002)

Section 8.6 Branching Model



SUBCRITICAL
(d)


SUPERCRITICAL


CRITICAL


## Section 8.6 Branching Model

$$
\alpha=\left\{\begin{array}{rc}
3 / 2, & \gamma \geq 3 \\
\gamma /(\gamma-1), & 2<\gamma<3 .
\end{array}\right.
$$



## Section 8.6 Branching Model

| SOURCE | EXPONENT | CASCADE |
| :--- | :---: | :--- |
| Power grid (North America) | 2.0 | Power |
| Power grid (Sweden) | 1.6 | Energy |
| Power grid (Norway) | 1.7 | Power |
| Power grid (New Zealand) | 1.6 | Energy |
| Power grid (China) | 1.8 | Energy |
| Twitter Cascades | 1.75 | Retweets |
| Earthquakes | 1.67 | Seismic Wave |



$$
\alpha=\left\{\begin{array}{rc}
3 / 2, & \gamma \geq 3 \\
\gamma /(\gamma-1), & 2<\gamma<3 .
\end{array}\right.
$$

## Building Robustness



Can we maximize the robustness of a network to both random failures and targeted attacks without changing the cost?

A network's robustness against random failures is captured by its percolation threshold $f_{c^{\prime}}$ which is the fraction of the nodes we must remove for the network to fall apart. To enhance a network's robustness we must increase $f_{c}$. According to (8.7) $f_{c}$ depends only on $\langle k\rangle$ and $\left\langle k^{2}\right\rangle$. Consequently the degree distribution which maximizes $f_{c}$ needs to maximize $\left\langle k^{2}\right\rangle$ if we wish to keep the cost $\langle k\rangle$ fixed. This is achieved by a bimodal distribution, corresponding to a network with only two kinds of nodes, with degrees $k_{\text {min }}$ and $k_{\text {max }}$ (Figure 8.23a,b).

$$
f_{c}^{\text {tot }}=f_{c}^{\text {rand }}+f_{c}^{\text {targ }}
$$

## Building Robustness

$$
\begin{aligned}
& f_{c}^{\text {tot }}=f_{c}^{\text {rand }}+f_{c}^{\text {targ }} \\
& p_{k} \equiv(1-r) \delta\left(k-k_{\min }\right)+r \delta\left(k-k_{\max }\right), \\
& k_{\max }=A N^{2 / 3} .
\end{aligned}
$$

a. $\quad\langle k\rangle=2$


$$
f_{c}^{t o t}=f_{c}^{r a n d}+f_{c}^{t a r g}
$$

$$
p_{k} \equiv(1-r) \delta\left(k-k_{\min }\right)+r \delta\left(k-k_{\max }\right),
$$

$$
k_{\max }=A N^{2 / 3} .
$$



## Section 8.7

## Halting Cascading Failures

(i) Initial failure is the breakdown of the first node or link, representing the source of the subsequent cascade.
(ii) Propagation is when the initial failure induces the failure of additional nodes and starts cascading through the network.

Simulations indicate that to limit the size of the cascades we must remove nodes with small loads and links with large excess load in the vicinity of the initial failure. The mechanism is similar to the method used by firefighters, who set a controlled fire in the fire- line to consume the fuel in the path of a wildfire.


## Case Study: Power Grid

(a)

(c)

(b)

(d)


## Case Study: Power Grid


(f)


$$
p_{k}=\frac{e^{-k /\langle k\rangle}}{\langle k\rangle}
$$

Group 2: these networks are more robust to attacks than expected based on their degree distribution.

## Section 8.8

## Summary



## Section 8.8

## Summary

AT A GLANCE: NETWORK ROBUSTNESS

## Malloy-Reed criteria:

A giant component exists if

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}>2
$$

Random failures:

$$
f_{c}=1-\frac{1}{\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1}
$$

Random Network: $f_{c}^{E R}=1-\frac{1}{\langle k\rangle}$
Enhanced robustness: $\quad f_{c}>f_{c}^{E R}$

## Attacks:

$$
f_{c}^{\frac{2-\gamma}{1-\gamma}}=2+\frac{2-\gamma}{3-\gamma} k_{\min }\left(f_{c}^{\frac{3-\gamma}{1-\gamma}}-1\right)
$$

Cascading failures:

$$
\begin{aligned}
& p(s) \sim s^{-\alpha} \\
& \alpha=\left\{\begin{array}{cc}
3 / 2 & \gamma>3 \\
\frac{\gamma}{\gamma-1} & 2<\gamma<3
\end{array}\right.
\end{aligned}
$$

## Robustness

A system is robust if it can maintain its basic functions in the presence of internal and external errors. In a network context robustness refers to the system's ability to carry out its basic functions even when some of its nodes and links may be missing.

## Resilience

A system is resilient if it can adapt to internal and external errors by changing its mode of operation, without losing its ability to function. Hence resilience is a dynamical property that requires a shift in the system's core activities.

## Redundancy

Redundancy implies the presence of parallel components and functions that, if needed, can replace a missing component or funciton. Networks show considerable redundancy in their ability to navigate information between two nodes, thanks to the multiple independent paths between most node pairs.

## Section 8.8

## Achilles' Heel



The end

