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Cascading failures:
Empirical Results



Cascades: The Domino Effect

Large events triggered by small initial shocks




Northeast Blackout of 2003

Origin

A 3,500 MW power surge (towards Ontario)
affected the transmission grid at 4:10:39 p.m.
EDT. (Aug-14-2003)

the blackout the blackout

Consequences

More than 508 generating units at 265
power plants shut down during the
outage. In the minutes before the
event, the NYISO-managed power
system was carrying 28,700 MW of
load. At the height of the outage, the
load had dropped to 5,716 MW, a loss
of 80%.




» Denial of Service Attacks (Internet)
If a router fails to transmit the packets received by it, the Internet
protocols will alert the neighboring routers to avoid the troubled
equipment by re-routing the packets using alternative routes. Conse-
quently a failed router increases traffic on other routers, potentially
inducing a series of denial of service attacks throughout the Internet
[13].

» Financial Crises
Cascading failures are common in economic systems. For example,
the drop in the house prices in 2008 in the U.S. has spread along the
links of the financial network, inducing a cascade of failed banks,
companies and even nations [14, 15, 16]. It eventually caused the
worst global financial meltdown since the 1930s Great Depression.
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Cascadjng disaster in Japan

Blast shakes a
- second reacton
death toll soar

By Martin Fackler
and Mark McDonald
NEW YORK TIMES

SENDAI, Japan — Japan reel
from a rapidly unfolding disaster
epic scale yesterday, pummeled by |
death toll, destruction, and homele
ness caused by the earthquake a
tsunami and new hazards from da
aged nuclear reactors. The prime m
ister called it Japan’s worst crisis si1
World War I1.

Japan’s §5 trillion economy, t
world’s third largest, was threatern
with severe disruptions and partial |
ralysis as many industries shut do
temporarily. The armed forces and v
unteers mobilized for the far more
gent crisis of finding survivors, eva
ating residents near the strick
power plants and caring for the v
tims of the record 8.9 magnitu
quake that struck on Friday.

The disaster haa left more th

01 Cheepagshor
lef\.\ and mi purn without water, pc

F o er heat or transnortation




Cascades Size Distribution of Blackouts

Unserved energy/power magnitude (S) distribution
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Cascades Size Distribution of Earthquakes
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Information Cascades
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Section 8.5 Empirical Results

Cascading failures are documented in many other environments:

* The consequences of bad weather or mechanical failures can cas-

cade through airline schedules, delaying multiple flights anc

stranding thousands of passengers ( ) [22].

» The disappearance of a species can cascade through the food web
of an ecosystem, inducing the extinction of numerous species and
altering the habitat of others [23, 24, 25, 26].

» The shortage of a particular component can cripple supply chains.
For example, the 2011 floods in Thailand have resulted in a chron- U.S. aviation map showing congested air-
ic shortage of car components that disrupted the production chain ports as purple nodes, while those with nor-

mal traffi c as green nodes. The lines corre-

spond to thedirect flights between them on

March 12, 2010. The clustering of the con-

worldwide insurance claims reaching $20 billion [27]. gested airports indicate that the dealys are

not independent of each other, but cascade
through theairport network. After [22].

of more than 1,000 automotive factories worldwide. Therefore the
damage was not limited to the flooded factories, but resulted in



Section 8.5 Empirical Results: Summary

SOURCE EXPONENT CASCADE
Power grid (North America) 2.0 Power
Power grid (Sweden) 1.6 Energy
Power grid (Norway) 1.7 Power
Power grid (New Zealand) 1.6 Energy
Power grid (China) 1.8 Energy
Twitter Cascades 1.75 Retweets

Earthquakes 1.67 Seismic Wave



Modeling Cascading failures



(i) The system is characterized by some flow over a network, like the
flow of electric current in the power grid or the flow of information
in communication systems.

(ii) Each component has a local breakdown rule that determines when it
contributes to a cascade, either by failing (power grid, earthquakes)
or by choosing to pass on a piece of information (Twitter).

(iii) Each system has a mechanism to redistribute the traffic to other
nodes upon the failure or the activation of a component.



Section 8.6 Failure Propagation Model

Initial Setup
* Random graph with N nodes
* Initially each node is functional.

(a,b) The development of a cascade in a small Cascade
network in which each node has the same * |nitiated by the failure of one node.
breakdown threshold ¢ = 0.4. Initially all . . . . .
nodes arein state 0, shown as green circles. * -f: : fraction of failed nelghbors of node i. Node i
After node A changes its state to 1 (purple), . .
its neighbors B and E will have a fraction fails If_fiIS greater than a gIObaI threshold (I)

f =1/2 >0.4 of their neighbors in state 1.
Consequently they also fail, changing their
state to 1, as shown in (b). In the next time
step C and D will also fail, as both have f >
0.4. Consequently the cascade sweeps the
whole network, reaching a size s =5. One
can check that if weinitially flip node B, it
will notinducean avalanche.

D. WattS, PNAS 99, 5766-5771 (2002) Network Science: Robustness Cascades



Section 8.6 Failure Propagation Model
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Section 8.6 Branching Model




Section 8.6 Branching Model
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Section 8.6 Branching Model
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Section 8.6 Branching Model
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Section 8.6 Branching Model
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Building Robustness



Section 8.7 Building Robustness

(a) (b)

k) =12/7 (k) =24/7

Can we maximize the robustness of a network to both random failures and

targeted attacks without changing the cost?



Section 8.7 Building Robustness

A network’s robustness against random failures is captured by its per-
colation threshold f_, which isthefraction of thenodes wemust remove
for the network to fall apart. To enhance a network's robustness we
mustincreasef_. According to (87)f _depends only on <k) and <k?). Conse-
quently the degree distribution which maximizes f_needs to maximize
(k?) if we wish to keep the cost <k) fixed. This is achieved by a bimodal
distribution, corresponding to a network with only two kinds of nodes,
with degreesk . andk__ (Figure 823ah).

d
fctot — fcran + fctarg



Section 8.7 Building Robustness
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Section 8.7 Halting Cascading Failures

(i) Initial failure is the breakdown of the first node or link, repre-
senting the source of the subsequent cascade.

(ii) Propagation is when the initial failure induces the failure of ad-
ditional nodes and starts cascading through the network.

Simulations indicate that to limit the size of the cascades we must remove
nodes with small loads and links with large excess load in the vicinity of the
initial failure. The mechanism is similar to the method used by firefighters,
who set a controlled fire in the fire- line to consume the fuel in the path of a

wildfire.



Section 8.7 Lazarus Effect
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Section 8.7 Case Study: Power Grid

(d)




Section 8.7 Case Study: Power Grid
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Section 8.8
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AT A GLANCE: NETWORK ROBUSTNESS

Malloy-Reed criteria:

A giant component exists if
()
(k)

Random failures:

>2

1
il
@,

(k)
Random Network: /. =1— 0

Enhanced robustness: J.> chR

Attacks:

2+2_—7kmm(ﬁ1—7 —1)
3-y

Cascading failures:

N
T
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Il

p(s)~s™*
3/2 Y>3
“=1 2<y<3
y—1

Robustness

A system is robust if it can maintain
its basic functions in the presence
of internal and external errors. In a
network context robustness refers
to the system's ability to carry out
its basic functions even when some
of its nodes and links may be miss-
ing.

Resilience

A system is resilient if it can adapt
to internal and external errors by
changing its mode of operation,
without losing its ability to func-
tion. Hence resilience is a dynami-
cal property that requires a shift in
the system's core activities.

Redundancy

Redundancy implies the presence
of parallel components and func-
tions that, if needed, can replace a
missing component or funciton.
Networks show considerable redun-
dancy in their ability to navigate
information between two nodes,
thanks to the multiple independent
paths between most node pairs.
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The end



