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Introduction

Section 1



RANDOM NETWORK MODEL



The random network model

Section 3.2



Erdös-Rényi model (1960)

Connect with probability p

p=1/6  N=10 

<k> ~ 1.5

Pál Erdös
(1913-1996)

Alfréd Rényi
(1921-1970)

RANDOM NETWORK MODEL



RANDOM NETWORK MODEL

Network Science: Random 

Definition:

 A random graph is a graph of N nodes where each pair of 
nodes is connected by probability p.



RANDOM NETWORK MODEL

p=1/6
 N=12

L=8
Prob=?

L=10
Prob=?

L=7
Prob=?



RANDOM NETWORK MODEL

p=0.03
 N=100



The number of links is variable

Section 3.3



RANDOM NETWORK MODEL

p=1/6
 N=12

L=8 L=10 L=7



Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

Network Science: Random Graphs 

P ( L)=((N
2)
L )pL (1 − p)

N (N − 1)
2

− L

The maximum number of links 
in a network of N nodes.

Number of different ways we can choose 
L links among all potential links.

Binomial distribution...



MATH TUTORIAL     Binomial Distribution: The bottom line

Network Science: Random Graphs 

http://keral2008.blogspot.com/2008/10/derivation-of-mean-and-variance-of.html

P ( x )=(N
x )px (1 − p)N − x

< x> = p N

< x2> = p (1 − p) N + p2 N 2

s x=(< x2> −< x >2)1/2
=[ p (1 − p) N ]1 /2



RANDOM NETWORK MODEL

P(L): the probability to have a network of exactly L links

Network Science: Random Graphs 

P ( L )=((N
2)
L )pL (1 − p)

N (N −1)
2

− L

< L>= ∑
L=0

N (N −1)
2

LP ( L )=p
N ( N −1)

2

• The average number of links <L> in a random graph

• The standard deviation

s2= p (1− p) N (N − 1)
2

< k >= 2 L /N=p ( N −1)



Degree distribution

Section 3.4



DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 

As the network size increases, the distribution becomes increasingly narrow — we are 
increasingly confident that the degree of a node is in the vicinity of <k>.

Select k 
nodes from N-1 probability of 

having k edges

probability of 
missing N-1-k
edges

P ( k )=(N − 1
k )pk (1 − p)(N −1)− k

< k >= p ( N −1) sk
2=p(1 − p) ( N − 1)

sk

<k >
=[ 1− p

p
1

( N − 1) ]
1 /2

→
1

( N −1)1/2



DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 

P ( k )=(N − 1
k )pk (1− p)(N −1)− k

< k >=p ( N −1) p=
  <k >
( N −1)

For large N and small k, we can use the following approximations:

(N −1
k )= ( N −1) !

k ! (N − 1− k ) !
=

( N −1) ( N −1 −1) ( N −1−2) .. .( N − 1− k+1) (N − 1− k ) !
k ! ( N −1− k )!

∼

(1− p )( N − 1)− k∼ e−< k >

P ( k )=(N − 1
k )pk (1 − p)(N −1)− k=

( N −1)k

k !
pk e− <k >=

( N −1)k

k ! (< k >
N −1)

k

e− <k >=e− <k > < k >k

k !

ln (1+x )=∑
n=1

∞ (−1 )n+1

n
xn=x −

x2

2
+ x3

3
− .. . for

  

x £1
  

ln[(1- p)(N -1)-k] = (N -1- k)ln(1-
< k >
N -1

) = -(N -1- k)
< k >
N -1

= - < k > (1-
k

N -1
) @ - < k >



POISSON DEGREE DISTRIBUTION

Network Science: Random Graphs 

P ( k )=(N − 1
k )pk (1 − p)(N −1)− k

< k >= p ( N −1) p=
  < k >
( N −1)

For large N and small k, we arrive at the Poisson distribution:

P ( k )=e− <k > < k>
k !



DEGREE DISTRIBUTION OF A RANDOM GRAPH

Network Science: Random Graphs 

P
(k

)
P ( k )=e-< k > < k>k

k !
<k>=50



DEGREE DISTRIBUTION OF A RANDOM NETWORK

Exact Result
-binomial distribution-

Large N limit
-Poisson distribution-
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Real Networks are not Poisson

Section 3.4



Section 3.5 Maximum and minimum degree 

kmax=1,185

<k>=1,000,  N=109

36

Solving (3.28) with N  = 109 and <k> = 1,000 we obtain  k
min

 = 816.  

 

RANDOM NETWORKS ADVANCED TOPICS 3.B
MAXIMUM AND MINIMUM DEGREES

(3.29)P k e
k

k
( )

!min
k

k

k

k

0

min

å=
á ñ-á ñ

=

The expected maximum degree of a network, 
kmax, is chosen so that there is at most one node 
whose degree is higher than kmax. This is often 
called the n atu ral u pper cu toff  of a degree dis-
tribution. To calculate it, we need to set kmax 
such that the area under the degree distribu-
tion p k for k ≥ kmax equals 1/ N , hence the total 
number of nodes expected in this region is 
exactly one.  We follow a similar argument to 
determine the expected smallest degree, k

min
.

Figure 3.16
Minimum and Maximum Degree

k

pk

kmin kmax

The area under the curve
should be less than 1/N.

.

<k>=1,000,  N=109

kmin=816



NO OUTLIERS IN A RANDOM SOCIETY

Network Science: Random Graphs 

 

The most connected individual has degree kmax~1,185
The least connected individual has degree kmin ~ 816

The probability to find an individual with degree k>2,000 is 10-27.  Hence the chance of 
finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually 
nonexistent in a random society.

A random society would consist of mainly average individuals, with everyone with roughly 
the same number of friends. 

It would lack outliers, individuals that are either highly popular or recluse.

  

P(k) = e-<k> < k >k

k!



FACING REALITY: Degree distribution of real networks

P ( k )=e− <k >< k>k

k !



The evolution of a random 
network

Section 6





<k>

EVOLUTION OF A RANDOM NETWORK

disconnected nodes    NETWORK. 

How does this transition happen? 



<kc>=1     (Erdos and Renyi, 1959)

EVOLUTION OF A RANDOM NETWORK

disconnected nodes    NETWORK. 

The fact that at least one link per node is necessary to have a giant component is 
not unexpected. Indeed, for a giant component to exist, each of its nodes must be 
linked to at least one other node.

 It is somewhat unexpected, however that one link is sufficient for the emergence of 
a giant component. 

It is equally interesting that the emergence of the giant cluster is not gradual, but 
follows what physicists call a second order phase transition at <k>=1.



Section 3.4



Section 3.4



<k>

EVOLUTION OF A RANDOM NETWORK

disconnected nodes    NETWORK. 

How does this transition happen? 



Phase transitions in complex systems I: Magnetism



Phase transitions in complex systems I: liquids

Water Ice



CLUSTER SIZE DISTRIBUTION

p( s)=e-< k> s

Probability that a randomly 
selected node belongs to a 
cluster of size s:

Network Science: Random Graphs 

At the critical point <k>=1
 

The distribution of cluster sizes  
          at the critical point, 
displayed in a log-log plot. The 
data represent an average over 
1000 systems of sizes 
The dashed line has a slope of

−t n =-2 .5

Derivation in Newman, 2010

⟨ k ⟩ s −1=exp [( s−1) ln ⟨ k ⟩ ]

p( s)= ss −1

s !
e− ⟨k ⟩ s+( s− 1) ln ⟨k ⟩

s !=√2 ps( s
e )

s

p( s) ~ s− 3/2 e− (⟨k ⟩− 1) s+( s −1) ln ⟨ k ⟩

p( s) ~ s− 3/2



I: 
Subcritical

<k> < 1

III: 
Supercritical 

<k> > 1

IV: 
Connected 
<k> >  ln N

II: 
Critical 
<k> = 1

<k>=0.5 <k>=1 <k>=3 <k>=5

N
=

1
0

0

<k>



I: 
Subcritical

<k> < 1
p < pc=1/N

<k>

No giant component.

N-L isolated clusters, cluster size distribution is exponential

The largest cluster is a tree, its size ~ ln N

p( s) ~ s− 3/2 e− (⟨k ⟩− 1) s+( s −1) ln ⟨ k ⟩



II: 
Critical 
<k> = 1

p=pc=1/N

<k>

Unique giant component: NG~ N2/3

 contains a vanishing fraction of all nodes, NG/N~N-1/3

 Small components are trees, GC has loops.

Cluster size distribution: p(s)~s-3/2

A jump in the cluster size:
N=1,000   ln N~ 6.9;  N2/3~95
N=7 109    ln N~ 22;   N2/3~3,659,250



<k>=3

<k>

Unique giant component: NG~ (p-pc)N

GC has loops.

Cluster size distribution: exponential

III: 
Supercritical 

<k> > 1
p > pc=1/N

p( s) ~ s− 3/2 e− (⟨k ⟩− 1) s+( s −1) ln ⟨ k ⟩



IV: 
Connected 
<k> >  ln N
p > (ln N)/N

<k>=5

<k>

Only one cluster: NG=N
GC is dense.
Cluster size distribution: None





Network evolution in graph theory

18RANDOM NETWORKS THE EVOLUTION OF A RANDOM NETWORK

BOX 3.5
NETWORK EVOLUTION IN GRAPH THEORY.

In the random graph literature it is often assumed that the connec-

tion probability p (N ) scales as N z, where z is a tunable parameter be-

tween -∞ and 0 [15]. In this language Erd s and Rényi discovered that 

as we vary z, key properties of random graphs appear quite suddenly. 

A graph has a given property Q if the probability of having Q ap-

proaches 1 as N   ∞. That is, for a given z either almost every graph 

has the property Q or almost no graph has it. For example, for z less 

than -3/ 2 almost all graphs contain only isolated nodes and pairs of 

nodes connected by a link. Once z exceeds -3/ 2, most networks will 

contain paths connecting three or more nodes (Figure 3.8). 

The threshold probabilities at which dif-
ferent subgraphs appear in a random 
graph, as defined by the exponent z in 
the p (N ) ~ N z relationship. For z < -3/ 2 the 
graph consists of isolated nodes and edges. 
When z passes -3/ 2 trees of order 3 appear, 
while at z = -4/3 trees of order 4 appear. At 
z = 1 trees of all orders are present, togeth -
er with cycles of all orders. Complete sub-
graphs of order 4 appear at z =-2/3, and as 
z increases further, complete subgraphs of 
larger and larger order emerge. After [19].

Figure 3.8
Evolution of a Random Graph

-3/2 -2/3 -1/2-4/3 -5/4

p~Nz

-1-2-z

p =< k > /(N -1)





Real networks are supercritical

Section 7



Section 7



Small worlds

Section 3.8



Frigyes Karinthy, 1929
Stanley Milgram, 1967

Peter

Jane

SarahRalph

SIX DEGREES       small worlds



SIX DEGREES       1929: Frigyes Kartinthy

Frigyes Karinthy (1887-1938)
Hungarian Writer Network Science: Random Graphs 

“Look, Selma Lagerlöf just won the Nobel Prize for Literature, 
thus she is bound to know King Gustav of Sweden, after all he is 
the one who handed her the Prize, as required by tradition. King 
Gustav, to be sure, is a passionate tennis player, who always 
participates in international tournaments. He is known to have 
played Mr. Kehrling, whom he must therefore know for sure, and 
as it happens I myself know Mr. Kehrling quite well.” 

"The worker knows the manager in the shop, who knows Ford; 
Ford is on friendly terms with the general director of Hearst 
Publications, who last year became good friends with Arpad 
Pasztor, someone I not only know, but to the best of my 
knowledge a good friend of mine. So I could easily ask him to 
send a telegram via the general director telling Ford that he 
should talk to the manager and have the worker in the shop 
quickly hammer together a car for me, as I happen to need one."

1929: Minden másképpen van (Everything is Different) 
Láncszemek (Chains)



SIX DEGREES       1967: Stanley Milgram

Network Science: Random Graphs 

HOW TO TAKE PART IN THIS STUDY

1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that 
the next person who receives this letter will know who it came from.

2. DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD UNIVERSITY. 
No stamp is needed. The postcard is very important. It allows us to keep track of the 
progress of the folder as it moves toward the target person.

3. IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL THIS 
FOLDER DIRECTLY TO HIM (HER). Do this only if you have previously met the target 
person and know each other on a first name basis.

4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO 
NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST 
CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY THAN 
YOU TO KNOW THE TARGET PERSON. You may send the folder to a friend, relative or 
acquaintance, but it must be someone you know on a first name basis.



SIX DEGREES       1967: Stanley Milgram

Network Science: Random Graphs 



SIX DEGREES       1991: John Guare

Network Science: Random Graphs 

"Everybody on this planet is separated by only six other people. 
Six degrees of separation. Between us and everybody else on 
this planet. The president of the United States. A gondolier in 
Venice…. It's not just the big names. It's anyone. A native in a 
rain forest. A Tierra del Fuegan. An Eskimo. I am bound to 
everyone on this planet by a trail of six people. It's a profound 
thought.  How every person is a new door, opening up into other 
worlds."



WWW: 19 DEGREES OF SEPARATION

Image by Matthew Hurst
Blogosphere Network Science: Random Graphs 



DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

Network Science: Random Graphs 

dmax=
log N
log ⟨ k ⟩N=1+⟨ k ⟩+ ⟨k ⟩2+. ..+ ⟨k ⟩d max=

⟨k ⟩d max+1
− 1

⟨k ⟩− 1
» ⟨k ⟩d max



DISTANCES IN RANDOM GRAPHS

Network Science: Random Graphs 

dmax=
log N
log ⟨ k ⟩

d >=
log N
log ⟨k ⟩

We will call the small world phenomena the property that the average path 
length or the diameter depends logarithmically on the system size. Hence, 
”small” means that d  is proportional to log N, rather than N. ⟨ ⟩

In most networks this offers a better approximation to the average distance 
between two randomly chosen nodes, d , than to d⟨ ⟩ max .

The 1/log k  term implies that denser the network, the smaller will be the ⟨ ⟩
distance between the nodes. 



Given the huge differences in scope, size, and average degree, the agreement is excellent.

DISTANCES IN RANDOM GRAPHS        compare with real data



Why are small worlds surprising? Suprising compared to what?

Network Science: Random Graphs 



Three, Four or Six Degrees? 

For the globe’s  social networks:

⟨k   10⟩ ≃ 3

 N  7 × 10≃ 9 for the world’s population. 

d >=
ln ( N )
ln ⟨ k ⟩

=3 . 28



Image by Matthew Hurst
Blogosphere



Clustering coefficient

Section 9



Since edges are independent and have the same probability p, 

• The clustering coefficient of random graphs is small.

• For fixed degree C decreases with the system size N.

• C is independent of a node’s degree k.

CLUSTERING COEFFICIENT



C decreases with the system size N.

C is independent of a node’s degree k.

Network Science: Random Graphs 

CLUSTERING COEFFICIENT



Image by Matthew Hurst
Blogosphere

Watts-Strogatz Model



Real networks are not random

Section 10



As quantitative data about real networks became available, we can

compare their topology with the predictions of random graph theory.

Note that once we have  N and  <k> for a random network, from it we can derive every 

measurable property. Indeed, we have:

Average path length:

Clustering Coefficient: 

Degree Distribution:

lrand >»
log N
log ⟨ k ⟩

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

Network Science: Random Graphs 

P ( k )=e
-< k >k ❑k ❑

k !



Real networks have short distances
like random graphs. 

Prediction: 

PATH LENGTHS IN REAL NETWORKS

Network Science: Random Graphs 

d >=
log N
log ⟨k ⟩



Prediction: 

Crand underestimates with orders of magnitudes 
the clustering coefficient of real networks. 

CLUSTERING COEFFICIENT

Network Science: Random Graphs 



P ( k ) » k− g

Prediction: 

Data:

THE DEGREE DISTRIBUTION

Network Science: Random Graphs 

P ( k )=e
-< k >k ❑k ❑

k !



As quantitative data about real networks became available, we can

compare their topology with the predictions of random graph theory.

Note that once we have  N and  <k> for a random network, from it we can derive every 

measurable property. Indeed, we have:

Average path length:

Clustering Coefficient: 

Degree Distribution:

lrand >»
log N
log ⟨ k ⟩

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

Network Science: Random Graphs 

P ( k )=e
-< k >k ❑k ❑

k !



(B) Most important: we need to ask ourselves, are real networks random?

The answer is simply: NO

There is no network in nature that we know of that would 
be described by the random network model.

IS THE RANDOM GRAPH MODEL RELEVANT TO REAL SYSTEMS?

Network Science: Random Graphs 



It is the reference model for the rest of the class.  

It will help us calculate many quantities, that can then be compared to the real 
data, understanding to what degree is a particular property the result of some 
random process.

Patterns in real networks that are shared by a large number of real networks, 
yet which deviate from the predictions of the random network model.

In order to identify these, we need to understand how would a particular property 
look like if it is driven entirely by random processes.

While WRONG and IRRELEVANT, it will turn out to be extremly USEFUL!

IF IT IS WRONG AND IRRELEVANT, WHY DID WE DEVOT TO IT A FULL CLASS?

Network Science: Random Graphs 



Summary

Section 11



Erdös-Rényi MODEL (1960) 

Network Science: Random Graphs 



1951, Rapoport and Solomonoff: 

 first systematic study of a random 
graph. 
demonstrates the phase transition.

natural systems: neural networks; the 
social networks of physical contacts 
(epidemics); genetics.

Why do we call it the Erdos-Renyi random model?

Network Science: Random Graphs 

HISTORICAL NOTE

Anatol Rapoport
 1911- 2007 Edgar N. Gilbert 

(b.1923)

1959: G(N,p)



HISTORICAL NOTE

Network Science: Random Graphs 



NETWORK DATA: SCIENCE COLLABORATION NETWORKS

Network Science: Random Graphs 

Erdos:
1,400 papers
 507 coauthors 

Einstein: EN=2
Paul Samuelson EN=5

….

ALB: EN: 3



NETWORK DATA: SCIENCE COLLABORATION NETWORKS

Network Science: Random Graphs 

Collaboration Network:
Nodes: Scientists
Links: Joint publications

Physical Review:
1893 – 2009.

N=449,673
L=4,707,958

See also Stanford Large Network 
database 
http://snap.stanford.edu/data/#canets.



Network Science: Graph Theory 

Scale-free Hierarchical



Network Science: Graph Theory 



FINAL PROJECTS



PROJECT PAIRS

1. NETSI PHD STUDENTS
You will complete your projects individually.

2. EVERYONE ELSE 
Work in pairs; we are sharing a spreadsheet to help 
identify mutual interests.
Find someone who shares a DIFFERENT academic 
background to you! 



COMPONENTS OF THE PROJECT

1. DATA ACQUISITION
Downloading the data and putting it in a usable 
format

2. NETWORK RESPRESENTATION
What are the nodes and links

3. NETWORK ANALYSIS
What questions do you want to answer with this 
network, and which tools/measurements will you 
use?



DATA ACQUISITION

• Many online data sources will have an API (application 
programming interface) that allows querying and 
downloading the data in a targeted way
• Example: What are all movies from 1984-1995 starring 

Kevin Bacon and distributed by Paramount Pictures?
• This is done either through a web interface or through 

a library within a programming language

• Other sources will provide raw bulk data (e.g., Excel 
spreadsheets) that require processing, either manually or 
through a program you will write



NETWORK RECONSTRUCTION

• Most datasets will admit more than one representation 
as a network

• Some representations will be more or less informative 
than others

• Figuring out the “network” that’s buried in your data is 
part of your project!



NETWORK RECONSTRUCTION

Suppose you have a list of students and the courses they are registered for

One possible network Another possibility

JoeJoe
PHYS 
5116
PHYS 
5116

BIO
1234
BIO

1234

JaneJane

SamSam

JoeJoe

JaneJane SamSam



Mobility: Figayou

• Mobility data (various settings: 
social, conferences…)

• Metadata
• Representative (Hamid 

Benbrahim) in Boston willing to 
work with you



fMRI

• FMRI timeseries 
for human brain

• Healthy and 
patient data

• Collaborators at 
NEU



Infrastructure networks

• Eg Cambridge water distribution
• Partially embedded



Boston 311



Measure: N(t), L(t) [t- time if you have a time dependent system);  P(k) (degree distribution);  <l> average 
path length;  C (clustering coefficient), Crand, C(k); Visualization/communities; P(w) if you have a weighted 
network; network robustness (if appropriate); spreading (if appropriate).

It is not sufficient to measure things– you need to discuss the insights they offer:
What did you learn from each quantity you measured?
What was your expectation? 
How do the results compare to your expectations? 

Time frame will be strictly enforced.  Approx 12min + 3 min questions;
No need to write a report—you will hand in the presentation.
Send us an email with names/titles/program.
Come earlier and try out your slides with the projector.  Show an entry of the data source—just to have a 
sense of how the source looks like. On the slide, give your program/name.

Grading criteria: 
Use of network tools (completeness/correctness); 
Ability to extract information/insights from your data using the network tools; 
Overall quality of the project/presentation.

Final project guidelines
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