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The random network model



RANDOM NETWORK MODEL

Pal Erdos
(1913-1996)

Alfréd Rényi
(1921-1970)

Erdos-Rényi model (1960)

Connect with probability p

p=1/6 N=10
<k>~1.5



RANDOM NETWORK MODEL

G(N, L) Model

N labeled nodes are connect-
Definition: ed with L randomly placed

links. Erdés and Rényi used

A random graph is a graph of N nodes where each pair of 1 & UTITRRIEIM N HaEhs SR

nodes is connected by probability p. of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes
is connected with probability
p, a model introduced by Gil-
bert [10].



RANDOM NETWORK MODEL

L=10
Prob="?




RANDOM NETWORK MODEL




The number of links Is variable



RANDOM NETWORK MODEL

p=1/6
N=12
o o o o
o @ O @
\\\ \
o \o o ?
o ® ® ®
o o ® ®
e o o o




Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

The maximum number of links
in a network of N nodes.

N N(N—-1)
PiL)=|\2)|p"-(1—p) *Z Binomial distribution...
L

\_'_I

Number of different ways we can choose
L links among all potential links.



MATH TUTORIAL | Binomial Distribution: The bottom line

1/2 1/2

s =(<x?*> —<x>? =[p(1-p)N]

http.://keral2008.blogspot.com/2008/10/derivation-of-mean-and-variance-of.html



RANDOM NETWORK MODEL

P(L): the probability to have a network of exactly L links

N N(N-—-1)_ .
p(L)=(\2)|p"(1—p) Z
1.
* The average number of links <L> in a random graph
N(N -1
2 —_ < = = —
o= Y LP(L)ZPN(N 1) k>=2L/N=p(N -1

L=0 2
* The standard deviation

N(N-1)

s'=p(1-p) >



Degree distribution



DEGREE DISTRIBUTION OF A RANDOM GRAPH

P(k):(Nk— 1)pk(1 N

// N

probability of

P(k)

<k> ﬁoeleecst krom - I missing N-1-k
[ SNt ol
<k>=p(N-1] s;=p(1-pJ(N-1)
s, _ 1-p 1 1/2 1
<k> p (N—l) (N_1)1/2

As the network size increases, the distribution becomes increasingly narrow — we are
increasingly confident that the degree of a node is in the vicinity of <k>.



DEGREE DISTRIBUTION OF A RANDOM GRAPH

N_ 1 - - <K>
P(k):( k )pk<1_p)(N 1) k<k>:p(N—1) p:(Nk_l)

For large N and small k, we can use the following approximations:

N-1\__(N-1)! _(N-1)(N-1-1)(N-1-2)..[N-1-k+1)(N-1-k)! _
k k!/(N-1-k)! kI(N-1-k)!
ln[(l—p)(N_l)_k]:(N—l—k)ln(l—<k>)——(N - k)<k> k>(1—L)~—<k>
N — N —
(N-1)-k —<k> = (—-1) x* x
(1-p) ~e n(1+x :Z =x- XX for |x|<1

2 3

_[N—-1\ « (N—l)—k_(N_l)k k —<k>_(N_1) <k> \* —<k>_ e <k>*
Pl k)= - = = —
(K] ( )p 1-p) ki P° kIl \N-1)¢ T¢ Tk



POISSON DEGREE DISTRIBUTION

P(k):(Nk_ I)Pk(l—P)(N_l)_k <k>=p(N—1) — <k>

For large N and small k, we arrive at the Poisson distribution:

_<k><k>

P(k):e T



DEGREE DISTRIBUTION OF A RANDOM GRAPH

k
-<k>< k>
<k>=50 P k _ e
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Binomial -
i |
0.075 : ?%h o
P N=10° 0
o 3
Sin.nS- N=10to|
N=10°"°V
0.025

................



DEGREE DISTRIBUTION OF A RANDOM NETWORK

Exact Result Large N limit
-binomial distribution- -Poisson distribution-
L] || | || | | ||
0.14 -
Binomial distribution Poisson distribution

. N =1 : _aa (K -

0.12 e pk(l — p)N-1-k e =™ (}

k k!
0.1 E

e

Peak at: /’_\

k= (k) =p(N - 1)
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0.08 |- k= (k)

(PDF)

Width (dispersion):
o = (k)1/?
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Real Networks are not Poisson



m Maximum and minimum degree

i <k>=1,000, N=10¢
N[l—P(kmax)} ~1.

kmax k o k kmax+|
o =k k! k_ +1)!

k=k,, ., H

<k>=1,000, N=10°

k.__=1,185

NP(k )=I.

S (oK <k>+0 o0 =<k>1?
F{kmin) = e_<k>z<kT>| . kmin=81 6 ‘ k
| 0, = 31.62.



NO OUTLIERS IN A RANDOM SOCIETY

k
_<k> < k >
k!

P(k)=e

The most connected individual has degree K;,.,~1,185
The least connected individual has degree k., ~ 816

The probability to find an individual with degree k>2,000 is 10-27. Hence the chance of
finding an individual with 2,000 acquaintances is so tiny that such nodes are virtually
nonexistent in a random society.

A random society would consist of mainly average individuals, with everyone with roughly
the same number of friends.

It would lack outliers, individuals that are either highly popular or recluse.



FACING REALITY: Degree distribution of real networks
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The evolution of a random
network






EVOLUTION OF A RANDOM NETWORK

disconnected nodes -> NETWORK.
3 T |
0.8 |-
0.6 |-
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<k>
How does this transition happen?




EVOLUTION OF A RANDOM NETWORK

disconnected nodes -> NETWORK.

<k_>=1 (Erdos and Renyi, 1959)

The fact that at least one link per node is necessary to have a giant component is

not unexpected. Indeed, for a giant component to exist, each of its nodes must be
linked to at least one other node.

It is somewhat unexpected, however that one link is sufficient for the emergence of
a giant component.

It is equally interesting that the emergence of the giant cluster is not gradual, but
follows what physicists call a second order phase transition at <k>=1.



Let us denote with u =1 - N /N the fraction of nodes that are not in the
giant component (GC), whose size we take to be N . If node i is part of the
GC, it must link to another node j, which must also be part of the GC. Hence
if i is not part of the GC, that could happen for two reasons:

¢ There is no link between i and j (probability for this is 1- p).

 There is a link between i and j, but j is not part of the GC (probability
for this is pu).

Therefore the total probability that i is not part of the GC via node j is
1- p + pu. The probability that i is not linked to the GC via any other node is
therefore (1- p + pu)V-%, as there are N - 1 nodes that could serve as potential S = | — e_<k>s .
links to the GC for nodei. As u is the fraction of nodes that do not belong to
the GC, for any p and N the solution of the equation

u=(-p+pu)t (3.30)

provides the size of the giant component via N, = N(1 - u). Using p = <k> /
(N -1) and taking the log of both sides, for <k> « N we obtain

~(N—Dinl1= & (3.31)
Inu =(N—-1)In{I N—I(I u) |-

Taking an exponential of both sides leads to u = exp[- <k>(1 - u)]. If we
denote with S the fraction of nodes in the giant component, S=N_ / N, then
S=1-uand (3.31) results in
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EVOLUTION OF A RANDOM NETWORK

disconnected nodes -> NETWORK.
3 T |
0.8 |-
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<k>
How does this transition happen?




Phase transitions in complex systems I: Magnetism

ordered phase

0.4

0.2
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Phase transitions in complex systems I: liquids

Water

Pressure (atm)

(0.01°C, 0.00603 atm)
I I
I I

0°C  100°C

Temperature

Ice



CLUSTER SIZE DISTRIBUTION

Probability that a randomly
selected node belongs to a
cluster of size s:

pls)=e

-<k>s

=3/2 _~((k)=1)s+[s-1]In{k)

pls)~s ¥ e

At the critical point <k>=1

-3/2

p(s)~s

Derivation in Newman, 2010

(k)* = exp[(s—1)1n<k>]

e

e

Pin}

- fcl

The distribution of cluster sizes
at the critical point,
displayed in a log-log plot. The
data represent an average over

1000 systems of sizes
The dashed line has a slope of

—t,=-2.5
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1 ¢
0.8
0.6 - |
Subcritical
04 L <k> <1
p<p-=1/N
0.2 |-
O ®

<k>

No giant component.

N-L isolated clusters, cluster size distribution is exponential p(s)~s >k -ts+ls 1k

The largest cluster is a tree, its size ~In N



1 T

0.8 |-

0.6 |- [F
Critical
<k> =1

0.4
p=p.=1/N

0.2 |-

O

<k>

Unique giant component: N~ N23
- contains a vanishing fraction of all nodes, N /N~N-13
- Small components are trees, GC has loops.

Cluster size distribution: p(s)~s?2

A jump in the cluster size:
N=1,000 = In N~ 6.9; N2*~95
N=7 10° = In N~ 22; N?3~3,659,250
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1l

Supercritical
<k>>1

p>p.=1/N o

<k>

Unique giant component: N~ (p-p,)N

- GC has loops.

32 —(k)=1)s+(s=1)In(k)
Cluster size distribution: exponential p (S) S €
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Network evolution in graph theory

A graph has a given property Q if the probability of having Q ap-
proaches 1as N — . That is, for a given z either almost every graph
has the property Q or almost no graph has it. For example, for z less

p-N
r 'R ] s &4 'l 1 FAN 3
* L ]
] L] & il A .
i . e L S - @
* ’ 0 g &
E - ® - @ . o @ ™ > * & @ @ » » P

p=<k>/(N-1)
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Real networks are supercritical



secton7 |

Internet . X -
voveria [T I
Science
Collaboration . X _
Actor Network . . -
voatiliond ]
Interactions . X
|

1 |
1 10 <k>

Network N [ <k> InN

Inbernet 192 244 609066 (634 1217

Power Grid 4,941 6,554 267 851

Science Collaboration 23133 1865936 |B.08 10.04

Actor Melwork 212,250 3,054 .27E| 2878 12.27

Yeast Protein Interactions 2,018 2,530 2.80 781




Small worlds



SIX DEGREES

Frigyes Karinthy, 1929
Stanley Milgram, 1967




SIX DEGREES 1929: Frigyes Kartinthy

1929: Minden masképpen van (Everything is Different)
Lancszemek (Chains)

‘Look, Selma Lagerlof just won the Nobel Prize for Literature,
thus she is bound to know King Gustav of Sweden, after all he is
the one who handed her the Prize, as required by tradition. King
Gustav, to be sure, is a passionate tennis player, who always
participates in international tournaments. He is known to have
played Mr. Kehrling, whom he must therefore know for sure, and
as it happens | myself know Mr. Kehrling quite well.”

"The worker knows the manager in the shop, who knows Ford;
Ford is on friendly terms with the general director of Hearst
Publications, who last year became good friends with Arpad
Pasztor, someone | not only know, but to the best of my
knowledge a good friend of mine. So | could easily ask him to
send a telegram via the general director telling Ford that he
should talk to the manager and have the worker in the shop
quickly hammer together a car for me, as | happen to need one."

Frigyes Karinthy (1887-1938)
Hungarian Writer
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SIX DEGREES | 1967: Stanley Milgram
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Network Science::Random Gr



SIX DEGREES 1991: John Guare

. Six Degrees of
. Separ
. | A pliay by
l} John Guare

"Everybody on this planet is separated by only six other people.
Six degrees of separation. Between us and everybody else on
this planet. The president of the United States. A gondolier in
Venice.... It's not just the big names. It's anyone. A native in a
rain forest. A Tierra del Fuegan. An Eskimo. | am bound to

| everyone on this planet by a trail of six people. It's a profound
thought. How every person is a new door, opening up into other
worlds."

|
:
|




Image by Matthew Hurst —
Blogosphere Network Science: Random Graphs




DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

<k> nodes at distance one (d=1).
<k>? nodes at distance two (d=2).
<k>3nodes at distance three (d =3).

<k>4nodes at distance d.

N=1+k)+(k)+.. . +(k)"™ = » (k)™ =) d



DISTANCES IN RANDOM GRAPHS

_logN
rnax_log<k>

In most networks this offers a better approximation to the average distance
between two randomly chosen nodes, (d), thantod__ .

d

_log N

9> 0g [k

We will call the small world phenomena the property that the average path
length or the diameter depends logarithmically on the system size. Hence,
"small” means that (d) is proportional to log N, rather than N.

The 1/log(k) term implies that denser the network, the smaller will be the
distance between the nodes.



DISTANCES IN RANDOM GRAPHS compare with real data

f ¥
e ' ; i Y
NETATIRK h L A 1} ad__ liog ik
| el
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dictor Melsark

ClaSon Mulwark

Fraler= inlerazlions

Given the huge differences in scope, size, and average degree, the agreement is excellent.



Why are small worlds surprising? Suprising compared to what?

1d lattice 2d lattice 1d |
(d) ~ N1/2 2d
3d

log {d)

RN —

Random Network (d) ~ log N

..-' -
N log N



Three, Four or Six Degrees?

For the globe’s social networks: S
(k) ~ 108 =
N =~ 7 x 10° for the world’s population. SRR BRI S B BRI
NUMBER OF INTERMEDIARIES
0.7 T :
0.6 - World B
Inl N ol _
d>: ( ) :3.28 pdo'i_ ]
In (k) N




“The worker knows the manager in
the shop, who knows Ford; Ford is
on friendly terms with the general
director of Hearst Publications, who
last year became good friends with
Arpdd Pdsztor, someone I not only
know, but to the best of my
knowledge a good friend of mine.”

Karinthy, 1929

MILESTONES wwil

PUBLICATION _._.—.*.
DATE

1945

1929

1935 1940

“Everybody on this planet is separated by only six other people.
Six degrees of separation. Between us and everybody else on this
planet. The president of the United States. A gondolier in Venice.
It’s not just the big names. It's anyone. A native in a rain forest.
A Tierra del Fuegan. An Eskimo. I am bound to everyone on this
planet by a trail of six people. It’s a profound thought. How
every person is a new door, opening up into other worlds.”

| Guare, 1991
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Frigyes Karinthy (1887-1938)
Hungarian writer, journalist and
playwright, the first to describe the
small world property. In his short
story entitled ‘Lancszemek’ (Chains)
he links a worker in Ford's factory
to himself [23, 24].

Manfred Kochen (1928-1989],

Ithiel de Sola Pool (1917-1984)
Scientific interest in small worlds
started with a paper by political
scientist Ithiel de Sola Pool and
mathematician Manfred Kochen.
Written in 1958 and published in
1978, their work addressed in
mathematical detail the small
world effect, predicting that most
individuals can be connected via
two to threee acquaintances.
Their paper inspired the experi-
ments of Stanley Milgram.

Stanley Milgram (1933-1984)
American social psychologist who
carried out the first experiment
testing the small-world phenomena.
(BOX 3.6).

John Guare (1938)

The phrase ‘six degrees of separa-
tion” was introduced by the
playwright John Guare, who used it
as the title of his Broadway play.

The Facebook Data Team
measures the average
distance between its users,
finding "4 degrees” (BOX 3.6).

Duncan J. Watts (1971),

Steven Strogatz (1959)

A new wave of interest in small
worlds followed the study of Watts
and Strogatz, finding that the small
world property applies to natural
and technological networks as well.




Clustering coefficient



CLUSTERING COEFFICIENT

RN X

C;=1/2

Since edges are independent and have the same probability p,

2AL) (k)
o = €= k(k —1) PN

* The clustering coefficient of random graphs is small.
* For fixed degree C decreases with the system size N.

* Cis independent of a node’s degree k.



CLUSTERING COEFFICIENT

(a) All Networks (b) Internet
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Network Science: Random Graphs



Watts-Strogatz Model
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Real networks are not random



ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every
measurable property. Indeed, we have:

log N
Average path length: log>» ——F
log (k)
c 2Ly (k)
Clustering Coefficient: P = —ki(ki oy P="N"
Degree Distribution: <k>k Dk%



PATH LENGTHS IN REAL NETWORKS

Prediction: 15 . . . .
Wiocod webs &
H-reural network
-, poweer grid
AcolBboration networks
Rt
a 10 FEmetabolic networks .
4o logN g ot ot -
log (k) = e
5 L ok ¥ i
- ,.-*"'F
e
Um”' 1|:|:E 1|:|:* 1n|:|'5 1n|:|E= 10"
M
Real networks have short distances ‘
like random graphs. '



CLUSTERING COEFFICIENT

Prediction: O
A A
g ~ Fy 3
107 | h"‘:." " i
. Ao a
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2<L:> <k> % io* L #neural network “a ]
i =p=—"- S W metabolic networks .
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Y F i collaboration networks .
N .. ]
£ | L |
e 10° 10* 16 10
M

C..., underestimates with orders of magnitudes
the clustering coefficient of real networks.



THE DEGREE DISTRIBUTION

Prediction:
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ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can
compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every
measurable property. Indeed, we have:

log N

Average path length: [ >»n ="
J> | o rand log < k>

2L,) (k)

Clustering Coefficient: C = m =p= N i]

Degree Distribution:




IS THE RANDOM GRAPH MODEL RELEVANT TO REAL SYSTEMS?

(B) Most important: we need to ask ourselves, are real networks random?

The answer is simply: NO

There is no network in nature that we know of that would
be described by the random network model.



IF IT IS WRONG AND IRRELEVANT, WHY DID WE DEVOT TO IT A FULL CLASS?

It is the reference model for the rest of the class.
It will help us calculate many quantities, that can then be compared to the real

data, understanding to what degree is a particular property the result of some
random process.

Patterns in real networks that are shared by a large number of real networks,
yet which deviate from the predictions of the random network model.

In order to identify these, we need to understand how would a particular property
look like if it is driven entirely by random processes.

While WRONG and IRRELEVANT, it will turn out to be extremly USEFUL!



Summary



Erdés-Rényi MODEL (1960)

200 -
~*Erdos-Renyi 1960
“®Erdos-Renyi 1959
150
100
50
ﬂ =
1960 1965 1970 1975 1920 1985 1880 1995 2000 2005 2010

Network Science: Random Graphs



HISTORICAL NOTE

1951, Rapoport and Solomonoff:

—> first systematic study of a random
graph.
—>demonstrates the phase transition.

—>natural systems: neural networks; the
social networks of physical contacts
(epidemics); genetics.

1959: G(N,p)

Anatol Rapoport
1911- 2007 Edgar N. Gilbert

(b.1923)

Why do we call it the Erdos-Renyi random model?



Network Science: Random Graphs




NETWORK DATA: SCIENCE COLLABORATION NETWORKS
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Erdos:
1,400 papers
507 coauthors

Einstein: EN=2
Paul Samuelson EN=5

ALB: EN: 3

Network Science: Random Graphs



NETWORK DATA:

SCIENCE COLLABORATION NETWORKS
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Collaboration Network:

Nodes: Scientists
Links: Joint publications

Physical Review:
1893 — 2009.

N=449,673
L=4,707,958

See also Stanford Large Network
database
http://snap.stanford.edu/data/#canets
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FINAL PROJECTS



PROJECT PAIRS

1. NETSI PHD STUDENTS
You will complete your projects individually.

2. EVERYONE ELSE
Work in pairs; we are sharing a spreadsheet to help
identify mutual interests.
Find someone who shares a DIFFERENT academic
background to you!



COMPONENTS OF THE PROJECT

1. DATA ACQUISITION
Downloading the data and putting it in a usable
format

2. NETWORK RESPRESENTATION
What are the nodes and links

3. NETWORK ANALYSIS
What questions do you want to answer with this
network, and which tools/measurements will you
use?



DATA ACQUISITION

* Many online data sources will have an API (application
programming interface) that allows querying and
downloading the data in a targeted way

* Example: What are all movies from 1984-1995 starring
Kevin Bacon and distributed by Paramount Pictures?

* This is done either through a web interface or through
a library within a programming language

* Other sources will provide raw bulk data (e.g., Excel
spreadsheets) that require processing, either manually or
through a program you will write



“GRAPH” # “NETWORK”

* Most datasets will admit more than one representation
as a network

* Some representations will be more or less informative
than others

* Figuring out the “network” that’s buried in your data is
part of your project!



NETWORK RECONSTRUCTION

“‘GRAPH” # “NETWORK”

Suppose you have a list of students and the courses they are registered for

One possible network Another possibility

g %



Mobility: Figayou
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* Mobility data (various settings:
| social, conferences...)
* Metadata
RS s * Representative (Hamid
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* FMRI timeseries
for human brain

* Healthy and
patient data

* Collaborators at

L~
histological or 3 anatomical parcellation recording sites / 3 time series data

imaging data
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connectome

network analysis



Infrastructure networks

* Eg Cambridge water distribution
* Partially embedded



S
Boston 311

ANALYZE BOSTON DATASETS NEWS TIPS LOGIN SIGN UP

Welcome to

ANALYZE BOSTON

Analyze Boston is.the*City of Boston's open data hub. We invite you to-explore our datasets, read about us, ox: see ourstips for users.

Search from 141 Datasets




Final project guidelines

Measure: N(t), L(t) [t- time if you have a time dependent system); P(k) (degree distribution); <I> average
path length; C (clustering coefficient), C___. C(k); Visualization/communities; P(w) if you have a weighted

network; network robustness (if appropriate); spreading (if appropriate).

rand,

It is not sufficient to measure things— you need to discuss the insights they offer:
What did you learn from each quantity you measured?

What was your expectation?

How do the results compare to your expectations?

Time frame will be strictly enforced. Approx 12min + 3 min questions;

No need to write a report—you will hand in the presentation.

Send us an email with names/titles/program.

Come earlier and try out your slides with the projector. Show an entry of the data source—just to have a
sense of how the source looks like. On the slide, give your program/name.

Grading criteria:

Use of network tools (completeness/correctness);

Ability to extract information/insights from your data using the network tools;
Overall quality of the project/presentation.
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