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Section 4 Hierarchy in networks

(2) Clustering coefficient scaling with k

Small k nodes:
*high clustering 
coefficient; 
*their neighbors tend to 
link to each other in highly 
interlinked, compact 
communities.

High k nodes (hubs):
*small clustering coefficient; 
*connect independent 
communities.

E. Ravasz & A.-L. Barabási, PRE 67 (2003).
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(3) Clustering coefficient independent 
of N
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2. Scaling clustering 
      coefficient (DGM)

1. Scale-free 3. Clustering  coefficient
    independent of N
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Section 4 Hierarchy in real networks

POWER GRID INTERNET



Section 4 Ambiguity in Hierarchical clustering

A.-L. Barabási, Network Science: Communities.

Where to “cut”?



Phylogenetic dendrograms

In bioinformatics, clusters and dendrograms have been studied for a long time.

For example, the sequences of the same protein or gene in different species are
selected, and compared with each other.



Phylogenetic dendrograms

A similarity matrix is constructed between these sequences, 
by looking at how many aminoacids/nucleotides stay in place
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Imagine a partition in nc communities
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Imagine a partition in nc communities

Modularity

Original data Expected connections 
in a random model

Relative to a specific 
partition

Modularity is a measure associated to a partition

Random network

H4: Random Hypothesis

Randomly wired networks are not expected to have a community structure. 

M (C c)=
1

2 L
∑

i , j=1

N

(A ij−pij)δ (C i−C j)

pij=2 L pi p j=
k i k j
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Section 4 Modularity

Another way of writing M

MEJ Newman, PNAS 103 (2006).
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where lC is the number of links within C. In a similar fashion, the second term becomes

We can rewrite the first term as

Finally we get:

M (C c)=
1

2 L
∑

i , j=1

N

(A ij−p ij)δ (C i−C j) pij=2 L pi p j=
k i k j

2 L

M (C c)=∑
c=1

nc [ lc

L
−( k c

2 L )
2]
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H5: Maximal Modularity Hypothesis

The partition with the maximum modularity M for a given network offers the 
optimal community structure
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H5: Maximal Modularity Hypothesis

The partition with the maximum modularity M for a given network offers the 
optimal community structure

Find

Goal

that maximizes M



Section 4 Modularity

• Optimal partition, that 
maximizes the modularity.

• Sub-optimal  but positive 
modularity.

• Negative Modularity: If we 
assign each node to a different 
community.

• Zero modularity: Assigning all 
nodes to the same community, 
independent of the network 
structure. 

• Modularity is size dependent

Which partition                       ?

A.-L. Barabási, Network Science: Communities.



Section 4 Modularity based community identification

A greedy algorithm, which iteratively joins nodes if the move increases the new 
partition’s modularity. 

Step 1. Assign each node to a community of its own. Hence we start with N 
communities.

Step 2. Inspect each pair of communities connected by at least one link and 
compute the modularity variation obtained if we merge these two communities.

Step 3. Identify the community pairs for which ΔM is the largest and merge them. 
Note that modularity of a particular partition is always calculated from the full 
topology of the network.

Step 4. Repeat step 2 until all nodes are merged into a single community.

Step 5. Record for each step and select the partition for which the modularity is 
maximal.

MEJ Newman, PRE 69  (2004).

A.-L. Barabási, Network Science: Communities.



Section 4 Modularity

Which partition                       ?

A.-L. Barabási, Network Science: Communities.

Modularity can be used to compare different partitions provided by 
other algorithms, like hierarchical clustering

It can be used to design new algorithms, aiming at maximizing M
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Computational complexity:

• Step 1-2 (calculation of ΔM for L links ): 
• Step 3 (matrix update): 
• Step 4 (N-1 community merges): 

for sparse networks
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kA and kB total degree in A and B

If                       and  

Assuming 

Modularity has a resolution limit, as it cannot detect communities smaller than 
this size.

A B

We merge A and B to 
maximize modularity. 

Resolution limit



Section 4 Limits of Modularity 
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One maximum?



Section 4 Limits of Modularity 

Null models

Expected connections 
in a random model

can take into account weights

can take into account directions

can take into account attributes or space

S. Fortunato, Phys. Rep. 486 (2010)

S. Fortunato, Phys. Rep. 486 (2010)

P. Expert el al., PNAS 108 (2011)

M (C c)=
1

2 L
∑

i , j=1

N

(A ij−pij)δ (C i−C j)

pij

pij

pij



Section 5 Online Resources (Modularity)

Gephi

NetworkX

R assigns self-loops to nodes to increase or decrease the aversion of nodes to form communities

Finds the partition that maximizes modularity 
(considers weights and direction)

Calculates the modularity of the partition you 
provide



Section 4 Online Resources (1)

The greedy algorithm is neither particularly fast nor particularly successful at 
maximizing M.

Scalability: Due to the sparsity of the adjacency matrix, the update of the matrix  
involves a large number of useless operations. The use of data structures for 
sparse matrices can decrease the complexity of the computational algorithm to , 
which allows us to analyze is of networks up to  nodes. See
"Fast Modularity" Community Structure Inference Algorithm
 http://cs.unm.edu/~aaron/research/fastmodularity.htm for the code.

A fast greedy algorithm was proposed by Blondel and collaborators, that can 
process networks with millions of nodes. For the description of the algorithm see
Louvain method: Finding communities in large networks
https://sites.google.com/site/findcommunities/  for the code.


