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m Hierarchy in networks

i. Nested Communities

It assumes that communities are organized in a hierarchical fashion,
i.e. small modules are nested into larger ones. This hierarchical nest-
ing is captured by the dendrogram (Figures 9.12a and 9.15¢). How do we
know, however, if such hierarchy is indeed present in a network? Could
this hierarchy be imposed by the algorithm, whether or not the under-
lying network has a nested community structure?

ii. Communities and the Scale-Free Property

The density hypothesis states that a network can be partitioned into a
collection of subgraphs that are only weakly linked to other subgraphs.
How can we have somewhat isolated communities in a scale-free net-
work, whose hubs inevitably connect to nodes that can belong to differ-
ent communities?



m Hierarchy in networks

(1) Scale-free property

The obtained network is scale-free, its
degree distribution following a power-
law with Inb5
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m Hierarchy in networks

(2) Clustering coefficient scaling with k

7 between k neighbors
B k(k—1)/2

C (k) ~ k™

C (k)

Small k nodes:

*high clustering
coefficient;

| *their neighbors tend to
link to each other in highly
interlinked, compact

. communities.

High k nodes (hubs):

- *small clustering coefficient;
*connect independent
communities.




m Hierarchy in networks

(3) Clustering coefficient independent
of N

C =0.743
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Section 4 Hierarchy in networks

1. Scale-free 2. Scaling clustering 3. Clustering coefficient
In5 coefficient (DGM) independent of N
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Section 4

Hierarchy in real networks
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m Ambiguity in Hierarchical clustering

Where to “cut”?
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Phylogenetic dendrograms

In bioinformatics, clusters and dendrograms have been studied for a long time.
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For example, the sequences of the same protein or gene in different species are
selected, and compared with each other.



Phylogenetic dendrograms

A similarity matrix is constructed between these sequences,
by looking at how many aminoacids/nucleotides stay in place
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Phylogenetic dendrograms

A similarity matrix is constructed between these sequences,
by looking at how many aminoacids/nucleotides stay in place
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Phylogenetic dendrograms
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Phylogenetic dendrograms
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Modularity



H4: Random Hypothesis

Randomly wired networks are not expected to have a community structure.
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Randomly wired networks are not expected to have a community structure.

Imagine a partition in n, communities  {C, ¢ =1, n}
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Modularity M (C.)=
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H4: Random Hypothesis

Randomly wired networks are not expected to have a community structure.

Imagine a partition in n, communities  {C, ¢ =1, n}
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H4: Random Hypothesis

Randomly wired networks are not expected to have a community structure.
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H4: Random Hypothesis

Randomly wired networks are not expected to have a community structure.

Imagine a partition in n. communities  {C, ¢ =1, n,}

N
Modularity M(CC):i.Z_: @ @@)

Original data Expected connections Relative to a specific
in a random model partition

k k.
— Random network p,;,=2Lp;p;,= 21LJ

— Modularity is a measure associated to a partition




Another way of writing M

1 < k k.
):_.Z (Aij_pij)é(ci_cj> p;=2Lp;p;= :

M(C,
2L i,j=1

We can rewrite the first term as

1 & o1 < L
EZA,.ja(Ci—CjFZzZAU:ZZ

ij=1 c=1 i,jec, c=1

where /. is the number of links within C. In a similar fashion, the second term becomes

1 nc ?’3,_.

Finally we get:




H5: Maximal Modularity Hypothesis

The partition with the maximum modularity M for a given network offers the
optimal community structure



H5: Maximal Modularity Hypothesis

The partition with the maximum modularity M for a given network offers the
optimal community structure

Goal

Find {C.c=1,n} that maximizes M



Which partition {C.c=1,n} ?

* Optimal partition, that

(2) OPTIMAL PARTITION (6)  SUBOPTIMAL PARTITION maximizes the modularity.
M =0.41 M =0.22

* Sub-optimal but positive
modularity.

* Negative Modularity: If we
assign each node to a different

community.
(c) SINGLE COMMUNITY (d) NEGATIVE MODULARITY

b =g I == et * Zero modularity: Assigning all
nodes to the same community,
independent of the network
structure.

* Modularity is size dependent




m Modularity based community identification

A greedy algorithm, which iteratively joins nodes if the move increases the new
partition’s modularity.

Step 1. Assign each node to a community of its own. Hence we start with N
communities.

Step 2. Inspect each pair of communities connected by at least one link and
compute the modularity variation obtained if we merge these two communities.

Step 3. Identify the community pairs for which AM is the largest and merge them.
Note that modularity of a particular partition is always calculated from the full
topology of the network.

Step 4. Repeat step 2 until all nodes are merged into a single community.

Step 5. Record for each step and select the partition for which the modularity is
maximal.



Which partition {C.,c=1,n} ?

— |t can be used to design new algorithms, aiming at maximizing M

Modularity can be used to compare different partitions provided by

” other algorithms, like hierarchical clustering



m Modularity based community identification

(a)

Physics E-print Archive, 56276 vertices (b) " mostly condensed matter, 9350 vertices () ] subgroup, 134 vertices
1009
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e o single research group” :

L e 28 vertices —— | "\ |

+ 600 smaller communities ~-- - power-law distribution of group sizes - - ..

Computational complexity:

* Step 1-2 (calculation of AM for L links ): O (L)

. Step 3 (matrix update): O (N) for sparse networks|

* Step 4 (N-1 community merges). O ((L + N) N)
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m Limits of Modularity

Resolution limit

L
A~ B ABT T o2
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k, and k, total degree in A and B



m Limits of Modularity

Resolution limit

L
A~ B ABT T o2
P

————

k, and k, total degree in A and B

If kAkB

<1 and L >1



m Limits of Modularity

Resolution limit

A B AMyp = . 212’
—

————

k, and k, total degree in A and B
kakp

If <1 and L >1 m AMyp >0 WemergeAandBto

maximize modularity.



m Limits of Modularity

Resolution limit

L
A B AB= T T 5!
P

————

k, and k, total degree in A and B
kakp

If <1 and L >1 m AMyp >0 WemergeAandBto

maximize modularity.

Assuming kqa ~ kg =k wmh k< V2L



m Limits of Modularity

Resolution limit

L
A B AB™ T T p2”
e ——

—m—

k, and k, total degree in A and B

kakp

If <1 and L >1 m AMyp >0 WemergeAandBto

maximize modularity.

Assuming kANkB:k - kg\/ﬁ

Modularity has a resolution limit, as it cannot detect communities smaller than
this size.



m Limits of Modularity

One maximum?
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m Limits of Modularity

Null models

1 &
C. _ﬁljzzll Aijé(ci_cj)

Expected connections
in a random model

—_— pij can take into account weights
_— pij can take into account directions

—_— pij can take into account attributes or space



m Online Resources (Modularity)

- -
806 Modularity settings

—>  Gephi mr

Community detection algorithm.

(¥ Randomize Produce a better decompaosition but increases computation time

@ Use weights Use edge weight

Resolution: Lower to get more communities (smaller ones) and higher than 1.0 to get less
e communities (bigger ones).
1.0

[ Gonce |
- ..

R assigns self-loops to nodes to increase or decrease the aversion of nodes to form communities

—  NetworkX

community.best_partition(graph, partition=None) 1

Compute the partition of the graph nodes which maximises the modularity {or try..) using the Louvain heuristices F”’]ds the part|t|0n that maX|m|ZeS mOdUIarlty
This is the partition of highest modularity, i.e. the highest partition of the dendogram generated by the Louvain (COI”ISIdGI‘S WEIghtS and dlreCtlon)

algorithm.

ity.modularit rtition, h . ..
COmmEnEEY Ylpartition, graph) Calculates the modularity of the partition you
Compute the modularity of a partition of a graph provide



m Online Resources (1)

The greedy algorithm is neither particularly fast nor particularly successful at
maximizing M.

Scalability: Due to the sparsity of the adjacency matrix, the update of the matrix
involves a large number of useless operations. The use of data structures for
sparse matrices can decrease the complexity of the computational algorithm to ,
which allows us to analyze is of networks up to nodes. See

"Fast Modularity” Community Structure Inference Algorithm
http://cs.unm.edu/~aaron/research/fastmodularity.htm for the code.

A fast greedy algorithm was proposed by Blondel and collaborators, that can
process networks with millions of nodes. For the description of the algorithm see
Louvain method: Finding communities in large networks
https://sites.google.com/site/findcommunities/ for the code.




