Network Science

Class 4: Scale-free property

Albert-László Barabási

with Emma K. Towlson, Michael M. Danziger, Sebastian Ruf and Louis Shekhtman

ADVANCED TOPICS 4.B

PLOTTING POWER LAWS

HUMAN INTERACTION NETWORK

Rual et al. Nature 2005; Stelzl et al. Cell 2005

LINEAR SCALE

LINEAR BINNING

CUMULATIVE

Use a Log-Log Plot

 Avoid Linear Binning
Use Logarithmic Binning

Use Cumulative Distribution

HUMAN INTERACTION DATA BY RUAL ET AL.

$$
\begin{aligned}
& P(k) \sim\left(k+k_{0}\right)^{-r} \\
& k_{0}=1.4, \gamma=2.6 .
\end{aligned}
$$

COMMON MISCONCEPTIONS

Http://www.nd.edu/~networks

$$
\begin{gathered}
p_{k}=a\left(k+k_{s a t}\right)^{-\gamma} \exp \left(-\frac{k}{k_{c u t}}\right) \\
\widetilde{p_{k}}=p_{k} \exp \left(\frac{k}{k_{c u t}}\right) \\
\widetilde{k}=k+0^{-1} \\
\widetilde{p_{k}} \sim \widetilde{k}^{-\gamma} \\
\tilde{p}_{k} \\
\\
\\
\\
\\
\\
\end{gathered}
$$

Section 8

Generating networks with a pre-defined p_{k}

Configuration mode

(a)

$$
k_{1}=3 \quad k_{2}=2 \quad k_{3}=2 \quad k_{4}=1
$$

40.0
(b)

(c)

(d)

(1) Degree sequence: Assign a degree to each node, represented as stubs or half-links. The degree sequence is either generated analytically from a pre-selected distribution (Box 4.5), or it is extracted from the adjacency matrix of a real network. We must start from an even number of stubs, otherwise we will be left with unpaired stubs.(2) Network assembly: Randomly select a stub pair and connect them. Then randomly choose another pair from the remaining stubs and connect them. This procedure is repeated until all stubs are paired up. Depending on the order in which the stubs were chosen, we obtain different networks. Some networks include cycles (2a), others self-edges (2b) or multi-edges (2c). Yet, the expected number of self- and multi-edges goes to zero in the limit.

$$
p_{i j}=\frac{k_{i} k_{j}}{2 L-1}
$$

Degree Preserving randomization

FULL
RANDOMIZATION

ORIGINAL NETWORK

DEGREE-PRESERVING RANDOMIZATION

Hidden parameter model

(a) $p_{1,3}=0.4 \quad p_{3.4}=0.2$

$$
\langle\eta\rangle=1.25
$$

(b)

(c)

$$
\begin{aligned}
& \left\{\eta_{1}, \eta_{2}, \ldots, \eta_{N}\right\} \\
& P_{k}=\frac{I}{N} \sum_{j} \frac{e^{-\eta_{j}} \eta_{j}^{k}}{k!} .
\end{aligned}
$$

$$
\eta_{j}=\frac{c}{i^{\alpha}}, i=1, \ldots, N \quad p_{k} \sim k^{-\left(1+\frac{1}{\alpha}\right)}
$$

(a)

$$
p_{1,3}=0.4
$$

$$
p_{3.4}=0.2
$$

$$
\langle\boldsymbol{\eta}\rangle=1.25
$$

(b)

$$
p_{k}=\int \frac{e^{-\eta} \eta^{k}}{k!} p(\eta) d \eta
$$

Start with N isolated nodes and assign to each node a "hidden parameter" η, which can be randomly selected from a $\rho(\eta)$ distribution. We next connect each node pair with probability

$$
p\left(\eta_{i}, \eta_{j}\right)=\frac{\eta_{i} \eta_{j}}{\langle\eta\rangle N}
$$

For example, the figure shows the probability to connect nodes $(1,3)$ and $(3,4)$. After connecting the nodes, we end up with
the networks shown in (b) or (c), representing two independent realizations generated by the same hidden parameter sequence (a). The expected number of links in the obtained network is

$$
L=\frac{1}{2} \sum_{N}^{i, j} \frac{\eta_{i} \eta_{j}}{\langle\eta\rangle N}=\frac{1}{2}\langle\eta\rangle N
$$

$$
\eta_{j}=\frac{c}{i^{\alpha}}, i=1, \ldots, N
$$

$$
\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{N}\right\} \quad p_{k}=\frac{1}{N} \sum_{j} \frac{\mathrm{e}^{-\eta_{j}} \eta_{j}^{k}}{k!} . \quad p_{k} \sim k^{-\left(1+\frac{1}{\alpha}\right)}
$$

Decision tree

NETWORK OR DEGREE SEQUENCE

$$
k_{1}, k_{2}, \ldots, k_{N}
$$

FORBID
MULTI-LINKS

DEGREE DISTRIBUTION

ALLOW MULTI-LINKS

FORBID MULTI-LINKS

DEGREE-PRESERVING RANDOMIZATION

CONFIGURATION MODEL

HIDDEN PARAMETER MODEL

Case Study: PPI Network Distance Distribution

We have: $\langle d\rangle=5.61 \pm 1.64$ (original), $\langle d\rangle=7.13 \pm$ 1.62 (full randomization), $\langle d\rangle=5.08 \pm 1.34$ (de-gree-preserving randomization).

Something to keep in mind

summary

Section 9

DEGREE DISTRIBUTION
Discrete form:
$p_{k}=\frac{k^{-\gamma}}{\zeta(\gamma)}$
Continuous form:
$p(k)=(\gamma-I) k_{\text {min }}^{\gamma-1} k^{-\gamma}$
SIZE OF THE LARGEST HUB
$k_{\text {max }} \sim k_{\text {min }} N^{\frac{1}{y-1}}$
MOMENTS OF p_{k} for $\boldsymbol{N} \rightarrow \infty$
$2<\mathrm{Y}<3:\langle k\rangle$ finite, $\left\langle k^{2}\right\rangle$ diverges.
$Y>3:\langle k\rangle$ and $\left\langle k^{2}\right\rangle$ finite.

DISTANCES
$\langle d\rangle \sim \begin{cases}\text { const. } & \gamma=2, \\ \frac{\ln \ln N}{\ln (\gamma-\mathrm{I})} & 2<\gamma<3, \\ \frac{\ln N}{\ln \ln N} & \gamma=3, \\ \ln N & \gamma>3 .\end{cases}$

Bounded Networks

We call a network bounded if its degree distribution decrease exponentially or faster for high k. As a consequence $\left\langle k^{2}\right\rangle$ is smaller than $\left.<k\right\rangle$, implying that we lack significant degree variations. Examples of p_{k} in this class include the Poisson, Gaussian, or the simple exponential distribution (Table 4.2). The Erdős-Rényi and the Watts-Strogatz networks are the best known network models belonging to this class. Bounded networks lack outliers, consequently most nodes have comparable degrees. Real networks in this class include highway networks and the power grid.

Unbounded Networks

We call a network unbounded if its degree distribution has a fat tail in the high-k region. As a consequence $\left\langle k^{2}\right\rangle$ is much larger than $\langle k\rangle$, resulting in considerable degree variations. Scale-free networks with a power-law degree distribution (4.1) offer the best known example of networks belonging to this class. Outliers, or exceptionally high-degree nodes, are not only allowed but are expected in these networks. Networks in this class include the WWW, the Internet, the protein interaction networks, and most social and online networks.

