Network Science

Class 4: Scale-free property

Albert-László Barabási with Emma K. Towlson, Michael M. Danziger, Sebastian Ruf and Louis Shekhtman

www.BarabasiLab.com

- 1. From the WWW to Scale-free networks. Definition.
- 2. Discrete and continuum formalism. Explain its meaning.
- 3. Hubs and the maximum degree.
- 4. What does 'scale-free' mean?
- 5. Universality. Are all networks scale-free?
- 6. From small worlds to ultra small worlds.
- 7. The role of the degree exponent.

Introduction

WORLD WIDE WEB

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

Power laws and scale-free networks

WORLD WIDE WEB

Nodes: WWW documents Links: URL links

Over 3 billion documents

ROBOT: collects all URL's found in a document and follows them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

Discrete Formalism

As node degrees are always positive integers, the discrete formalism captures the probability that a node has exactly k links:

Continuum Formalism

In analytical calculations it is often convenient to assume that the degrees can take up any positive real value:

$$p_{k} = Ck^{-\gamma}. \qquad p(k) = Ck^{-\gamma}.$$

$$\sum_{k=1}^{\infty} p_{k} = 1. \qquad \int_{k_{\min}}^{\infty} p(k)dk = 1$$

$$C\sum_{k=1}^{\infty} k^{-\gamma} = 1 \qquad C = \frac{1}{\sum_{k=1}^{\infty} k^{-\gamma}} = \frac{1}{\zeta(\gamma)}, \qquad C = \frac{1}{\int_{k_{\min}}^{\infty} k^{-\gamma}dk} = (\gamma - 1)k_{\min}^{\gamma-1}$$

$$p_{k} = \frac{k^{-\gamma}}{\zeta(\gamma)} \qquad p(k) = (\gamma - 1)k_{\min}^{\gamma-1}k^{-\gamma}.$$
INTERPRETATION: $p_{k} \qquad \int_{k_{1}}^{k_{2}} p(k)dk$

80/20 RULE

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, political scientist and philosopher, who had important contributions to our understanding of income distribution and to the analysis of individuals choices. A number of fundamental principles are named after him, like Pareto efficiency, Pareto distribution (another name for a power-law distribution), the Pareto principle (or 80/20 law).

Hubs

The difference between a power law and an exponential distribution

Let us use the WWW to illustrate the properties of the high-*k* regime. The probability to have a node with $k \sim 100$ is

- About $p_{100} \simeq 10^{-30}$ in a Poisson distribution
- About $p_{100} \simeq 10^{-4}$ if p_k follows a power law.
- Consequently, if the WWW were to be a random network, according to the Poisson prediction we would expect 10⁻¹⁸ k>100 degree nodes, or none.

$$N_{k>100} = 10^9$$

• For a power law degree distribution, we expect about k>100 degree nodes

Network Science: Scale-Free Property

The size of the biggest hub

All real networks are finite \rightarrow let us explore its consequences. \rightarrow We have an expected maximum degree, k_{max}

Estimating k_{max-}

Why: the probability to have a node larger than k_{max} should not exceed the prob. to have one node, i.e. 1/N fraction of all nodes

$$\int_{k_{\max}}^{\infty} P(k) dk = (\gamma - 1) k_{\min}^{\gamma - 1} \int_{k_{\max}}^{\infty} k^{-\gamma} dk = \frac{(\gamma - 1)}{(-\gamma + 1)} k_{\min}^{\gamma - 1} \left[k^{-\gamma + 1} \right]_{k_{\max}}^{\infty} = \frac{k_{\min}^{\gamma - 1}}{k_{\max}^{\gamma - 1}} \approx \frac{1}{N}$$

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}}$$

The size of the biggest hub

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}}$$

To illustrate the difference in the maximum degree of an exponential and a scale-free network let us return to the WWW sample of Figure 4.1, consisting of $N \simeq 3 \times 10^5$ nodes. As $k_{min} = 1$, if the degree distribution were to follow an exponential, (4.17) predicts that the maximum degree should be $k_{max} \simeq$ 13. In a scale-free network of similar size and $\gamma =$ 2.1, (4.18) predicts $k_{max} \simeq 85,000$, a remarkable difference. Note that the largest in-degree of the WWW map of Figure 4.1 is 10,721, which is comparable to k_{max} predicted by a scale-free network. This reinforces our conclusion that *in a random* network hubs are effectivelly forbidden, while in scale-free networks they are naturally present.

Finite scale-free networks

Expected maximum degree, k_{max}

$$k_{\max} = k_{\min} N^{rac{1}{\gamma-1}}$$

- k_{max}, increases with the size of the network
 →the larger a system is, the larger its biggest hub
 - For $\gamma>2 k_{max}$ increases slower than N \rightarrow the largest hub will contain a decreasing fraction of links as N increases.
 - For γ =2 k_{max}~N.
 - \rightarrow The size of the biggest hub is O(N)
 - For γ<2 k_{max} increases faster than N: condensation phenomena
 → the largest hub will grab an increasing fraction of links. Anomaly!

The size of the largest hub

The meaning of scale-free

Definition:

Networks with a power law tail in their degree distribution are called 'scale-free networks'

Where does the name come from?

Critical Phenomena and scale-invariance (a detour)

Phase transitions in complex systems I: Magnetism

Scale-free behavior in space

 $\xi \sim |T - T_c|^{-\nu}$

At T = Tc:

correlation length diverges

Fluctuations emerge at all scales:

scale-free behavior

Scale invariance at the critical point

by Douglas Ashton

www.kineticallyconstrained.com

- Correlation length diverges at the critical point: the whole system is correlated!
- Scale invariance: there is no characteristic scale for the fluctuation (scale-free behavior).
- Universality: exponents are independent of the system's details.

Divergences in scale-free distributions

$$P(k) = Ck^{-\gamma} \quad k = [k_{\min}, \infty) \qquad \int_{k_{\min}}^{\infty} P(k)dk = 1 \qquad C = \frac{1}{\int_{k_{\min}}^{\infty} k^{-\gamma} dk} = (\gamma - 1)k_{\min}^{\gamma - 1}$$
$$P(k) = (\gamma - 1)k_{\min}^{\gamma - 1}k^{-\gamma}$$

$$< k^{m} >= \int_{k_{\min}}^{\infty} k^{m} P(k) dk \qquad < k^{m} >= (\gamma - 1) k_{\min}^{\gamma - 1} \int_{k_{\min}}^{\infty} k^{m - \gamma} dk = \frac{(\gamma - 1)}{(m - \gamma + 1)} k_{\min}^{\gamma - 1} \left[k^{m - \gamma + 1} \right]_{k_{\min}}^{\infty}$$

If m-
$$\gamma$$
+1<0: $< k^m >= -\frac{(\gamma - 1)}{(m - \gamma + 1)}k_{\min}^m$

If $m-\gamma+1>0$, the integral diverges.

For a fixed y this means that all moments with m>y-1 diverge.

DIVERGENCE OF THE HIGHER MOMENTS

$$< k^{m} >= (\gamma - 1)k_{\min}^{\gamma - 1} \int_{k_{\min}}^{\infty} k^{m - \lambda} dk = \frac{(\gamma - 1)}{(m - \gamma + 1)} k_{\min}^{\gamma - 1} \left[k^{m - \gamma + 1} \right]_{k_{\min}}^{\infty}$$

For a fixed λ this means all moments m>y-1 diverge.

Network	Size	$\langle k \rangle$	ĸ	γ_{out}	Vin
www	325 729	4.51	900	2.45	2.1
www	4×10^{7}	7		2.38	2.1
www	2×10^8	7.5	4000	2.72	2.1
WWW, site	260 000				1.94
Internet, domain*	3015-4389	3.42 - 3.76	30-40	2.1 - 2.2	2.1 - 2.2
Internet, router*	3888	2.57	30	2.48	2.48
Internet, router*	150 000	2.66	60	2.4	2.4
Movie actors*	212 250	28.78	900	2.3	2.3
Co-authors, SPIRES*	56 627	173	1100	1.2	1.2
Co-authors, neuro.*	209 293	11.54	400	2.1	2.1
Co-authors, math.*	70 975	3.9	120	2.5	2.5
Sexual contacts*	2810			3.4	3.4
Metabolic, E. coli	778	7.4	110	2.2	2.2
Protein, S. cerev.*	1870	2.39		2.4	2.4
Ythan estuary*	134	8.7	35	1.05	1.05
Silwood Park*	154	4.75	27	1.13	1.13
Citation	783 339	8.57			3
Phone call	53×10^{6}	3.16		2.1	2.1
Words, co-occurrence*	460 902	70.13		2.7	2.7
Words, synonyms*	22 311	13.48		2.8	2.8

Many degree exponents are smaller than 3

 \rightarrow <k²> diverges in the N \rightarrow ∞ limit!!!

The meaning of scale-free

Random Network

Randomly chosen node: $k = \langle k \rangle \pm \langle k \rangle^{1/2}$ Scale: $\langle k \rangle$

Scale-Free Network

Randomly chosen node: $k = \langle k \rangle \pm \infty$ Scale: none

The meaning of scale-free

 $k = \langle k \rangle \pm \sigma_k$