Network Science

Class 3: Random Networks (Chapter 3 in textbook)

Albert-László Barabási with Emma K. Towlson, Michael Danziger, Sebastian Ruf, Louis Shekhtman

www.BarabasiLab.com

Clustering coefficient

CLUSTERING COEFFICIENT

Since edges are independent and have the same probability p,

$$< L_i > \cong p \frac{k_i(k_i - 1)}{2}$$
 $\square > = p = \frac{\langle k \rangle}{N}$

- The clustering coefficient of random graphs is small.
- For fixed degree C decreases with the system size N.
- C is independent of a node's degree k.

CLUSTERING COEFFICIENT

10°

10¹

10²

k

10³

104

Internet

100

10-2

10°

10¹

10²

k

10³

<u></u>(k) $=\frac{1}{k_{i}(k_{i}-1)}$

C decreases with the system size *N*.

C is independent of a node's degree k.

Network Science: Random Graphs

Watts-Strogatz Model

Real networks are not random

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

$$<\!d\!>\sim\!\frac{\log N}{\log\langle k\rangle}$$

Clustering Coefficient:

$$C_i = \frac{2\langle L_i \rangle}{k_i(k_i - \mathbf{I})} = p = \frac{\langle k \rangle}{N}.$$

Degree Distribution:

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

PATH LENGTHS IN REAL NETWORKS

CLUSTERING COEFFICIENT

 C_{rand} underestimates with orders of magnitudes the clustering coefficient of real networks.

THE DEGREE DISTRIBUTION

Prediction:

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 $P(k) \gg k^{-g}$

ARE REAL NETWORKS LIKE RANDOM GRAPHS?

As quantitative data about real networks became available, we can compare their topology with the predictions of random graph theory.

Note that once we have N and <k> for a random network, from it we can derive every measurable property. Indeed, we have:

Average path length:

$$<\!d\!>\sim\!\frac{\log N}{\log\langle k\rangle}$$

Clustering Coefficient:

$$C_{i} = \frac{2\langle L_{i} \rangle}{k_{i}(k_{i} - \mathbf{I})} = p = \frac{\langle k \rangle}{N}$$

Degree Distribution:

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

IS THE RANDOM GRAPH MODEL RELEVANT TO REAL SYSTEMS?

(B) Most important: we need to ask ourselves, are real networks random?

The answer is simply: NO

There is no network in nature that we know of that would be described by the random network model.

It is the reference model for the rest of the class.

It will help us calculate many quantities, that can then be compared to the real data, understanding to what degree is a particular property the result of some random process.

Patterns in real networks that are shared by a large number of real networks, yet which deviate from the predictions of the random network model.

In order to identify these, we need to understand how would a particular property look like if it is driven entirely by random processes.

While WRONG and IRRELEVANT, it will turn out to be extremly USEFUL!

Summary

Erdös-Rényi MODEL (1960)

HISTORICAL NOTE

1951, Rapoport and Solomonoff:

 \rightarrow first systematic study of a random graph.

 \rightarrow demonstrates the phase transition.

→natural systems: neural networks; the social networks of physical contacts (epidemics); genetics.

1959: G(N,p)

Anatol Rapoport 1911- 2007

Edgar N. Gilbert (b.1923)

Why do we call it the Erdos-Renyi random model?

Network Science: Random Graphs

NETWORK DATA: SCIENCE COLLABORATION NETWORKS

Erdos: 1,400 papers 507 coauthors

Einstein: EN=2 Paul Samuelson EN=5

ALB: EN: 3

. . . .

NETWORK DATA: SCIENCE COLLABORATION NETWORKS

Collaboration Network:

Nodes: Scientists Links: Joint publications

Physical Review: 1893 – 2009.

N=449,673 L=4,707,958

See also Stanford Large Network database http://snap.stanford.edu/data/#canets

Network Science: Graph Theory

