Network Science Depth-First Search

Joao Meidanis

University of Campinas, Brazil

March 24, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Depth-First Search (DFS) Algorithm

Image: A matrix and A matrix

3

Depth-First Search (DFS) Algorithm

Needs:

adjacency lists

Provides:

- edge classification
- cycle detection
- topological sort

```
function DFS-VISIT(u, Adj)
for v in Adj[u] do
    if v not in parent then
        parent[v] ← u
        DFS-VISIT(v, Adj)
    end if
    end for
end function
```

```
function DFS(V, Adj)
parent ← {}
for v in V do
    if v not in parent then
        parent[v] ← None
        DFS-VISIT(v, Adj)
    end if
    end for
end function
```

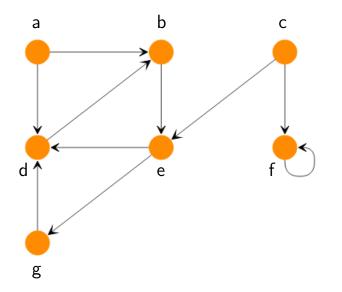

Meidanis (Unicamp)

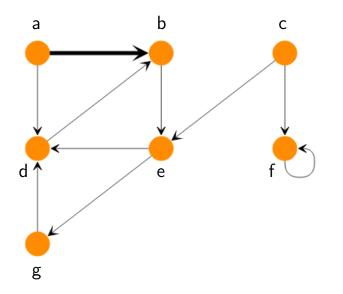
Network Science

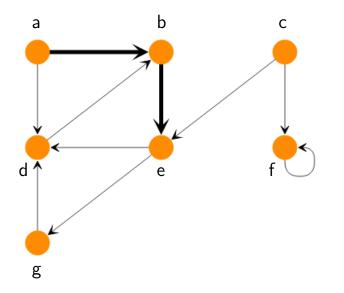
March 24, 2020 7 / 24

3

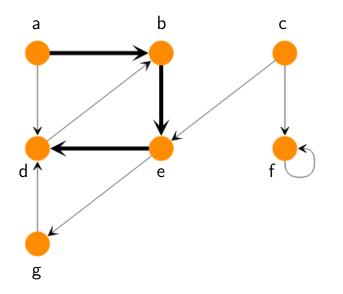
・ロト ・聞ト ・ヨト ・ヨト



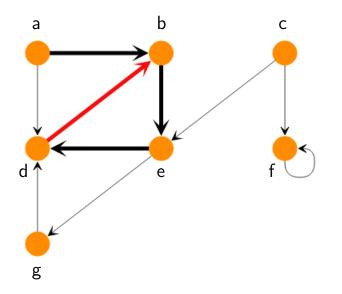


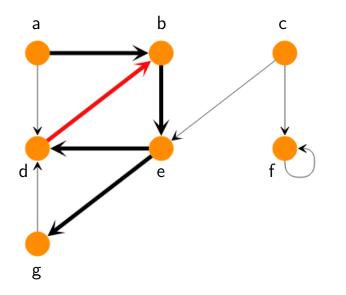


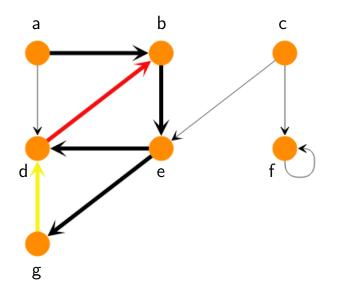
March 24, 2020 10 / 24

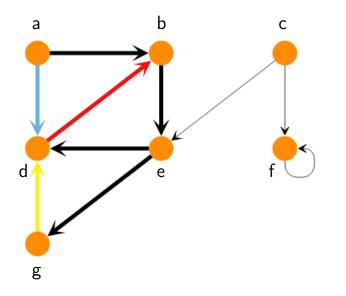


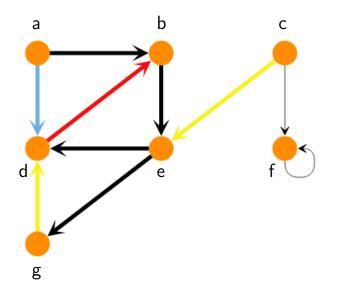
March 24, 2020 11 / 24

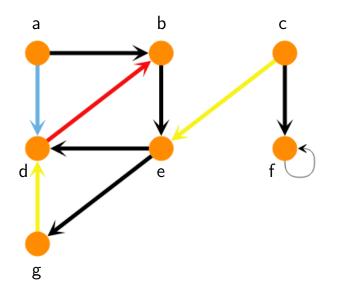


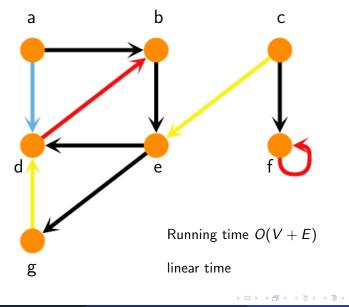












Applications

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

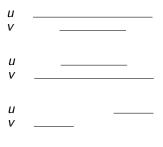
Depends on DFS itself, not just graph

Types of edges:

- tree edges
- forward edges
- backward edges
- cross edges

Algorithm additions

- Starting and ending times
 useful to classify edges
- forward edges: $u \rightarrow v$ with
- backward edges: $u \rightarrow v$ with
- cross edges: $u \rightarrow v$ with
- impossible:



- no forward edges
- no cross edges

3

Graph has a cycle \iff DFS has a backward edge

3

Premises:

- Acyclic graphs
- Tasks that depend on one another

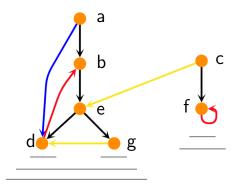
Results:

- Topological sort: Safe order for the tasks
- DFS: reverse order of finishing times

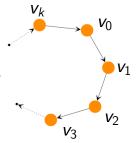
Cycle detection

DFS has a backward edge \Longrightarrow Graph has a cycle

backward edge: $u \rightarrow v$ with



u starts while v active \implies there is a path from v to u Graph has a cycle \Longrightarrow DFS has a backward edge



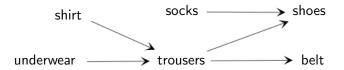
 v_0 : first visited vertex in cycle $v_1, v_2, v_3, \ldots, v_k$: start after v_0 $v_1, v_2, v_3, \ldots, v_k$: start before v_0 finishes Therefore, v_0 v_k _____

and $v_k
ightarrow v_0$ is a backward edge

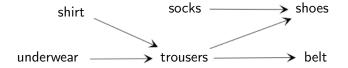
Topological sorting

Example: getting dressed

socks shoes trousers belt	socks \rightarrow shoes underwear \rightarrow trousers shirt \rightarrow trousers trousers \rightarrow belt
belt shirt	
underwear	trousers $ ightarrow$ shoes



Example: getting dressed



shoes, socks, belt, trousers, underwear, shirt

belt, shoes, trousers, shirt, socks, underwear