Network Science

Class 2: Graph Theory (Ch2)

Albert-László Barabási with

Emma K. Towlson. Sebastian Ruf, Michael
Danziger, and Louis Shekhtman

Section 1

The Bridges of Konigsberg

THE BRIDGES OF KONIGSBERG

Can one walk across

 the seven bridges and never cross the same bridge twice?
THE BRIDGES OF KONIGSBERG

Can one walk across the seven bridges and never cross the same bridge twice?

1735: Euler's theorem:

a) If a graph has more than two nodes of odd degree, there is no path.
b) If a graph is connected and has no odd degree nodes, it has at least one path.

Section 2

Networks and graphs

COMPONENTS OF A COMPLEX SYSTEM

NETWORKS OR GRAPHS?

network often refers to real systems

- www,
- social network
- metabolic network.

Language: (Network, node, link)
graph: mathematical representation of a network

- web graph,
- social graph (a Facebook term)

Language: (Graph, vertex, edge)
We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably.

A COMMON LANGUAGE

CHOOSING A PROPER REPRESENTATION

The choice of the proper network representation determines our ability to use network theory successfully.

In some cases there is a unique, unambiguous representation. In other cases, the representation is by no means unique.

For example, the way we assign the links between a group of individuals will determine the nature of the question we can study.

CHOOSING A PROPER REPRESENTATION

CHOOSING A PROPER REPRESENTATION

CHOOSING A PROPER REPRESENTATION

If you connect individuals based on their first name (all Peters connected to each other), you will be exploring what?

It is a network, nevertheless.

Section 2.3

Degree, Average Degree and Degree Distribution

NODE DEGREES

Node degree: the number of links connected to the node.

$$
k_{A}=1 \quad k_{B}=4
$$

In directed networks we can define an in-degree and out-degree. The (total) degree is the sum of in- and out-degree.

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

Source: a node with $k^{\text {in }}=0$; Sink: a node with $k^{\text {out }}=0$.

A BIT OF STATISTICS

BRIEF STATISTICS REVIEW

Four key quantities characterize a sample of N values x_{1}, \ldots, x_{N} :

Average (mean):
$\langle x\rangle=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

The $n^{\text {th }}$ moment:
$\left\langle x^{n}\right\rangle=\frac{x_{1}^{n}+x_{2}^{n}+\ldots+x_{N}^{n}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{n}$

Standard deviation:

$$
\sigma_{x}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}
$$

Distribution of x :

$$
p_{x}=\frac{1}{N} \sum_{i} \delta_{x, x_{i}}
$$

where p_{x} follows

$$
\sum_{i} p_{x}=1\left(\int p_{x} d x=1\right)
$$

AVERAGE DEGREE

Average Degree

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L	$\langle k\rangle$
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325.729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4.941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103.731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

DEGREE DISTRIBUTION

Degree distribution

$\mathrm{P}(\mathrm{k})$: probability that a randomly chosen node has degree k

$N_{k}=$ \# nodes with degree k

$$
P(k)=N_{k} / N \quad \rightarrow \text { plot }
$$

DEGREE DISTRIBUTION

a)

Imaqe 2.4 b

DEGREE DISTRIBUTION

Discrete Representation: $\mathbf{p}_{\mathbf{k}}$ is the probability that a node has degree \mathbf{k}.

Continuum Description: $\mathbf{p (k)}$ is the pdf of the degrees, where

$$
\int_{k_{1}}^{k_{2}} p(k) d k
$$

represents the probability that a node's degree is between \mathbf{k}_{1} and \mathbf{k}_{2}.
Normalization condition:

$$
\sum_{0}^{\infty} p_{k}=1 \quad \int_{K_{\min }}^{\infty} p(k) d k=1
$$

where $\mathrm{K}_{\text {min }}$ is the minimal degree in the network.

UNDIRECTED VS. DIRECTED NETWORKS

Undirected

Links: undirected (symmetrical)
Graph:

Undirected links:
coauthorship links
Actor network
protein interactions

Directed

Links: directed (arcs).
Digraph = directed graph:

An undirected link is the superposition of two opposite directed links.

Directed links:
URLs on the www phone calls metabolic reactions

Section 2.2

Reference Networks

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L
Internet	Routers	Internet connections	Undirected	192,244	609,066
WWW	Webpages	Links	Directed	325.729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email addresses	Emails	Directed	57,194	103,731
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908
Citation Network	Paper	Citations	Directed	449,673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930

Question 4

Q4: Adjacency Matrices

Adjacency matrix

$\mathbf{A}_{\mathrm{ij}}=\mathbf{1}$ if there is a link between node i and j
$\mathbf{A}_{\mathrm{ij}}=\mathbf{0}$ if nodes i and j are not connected to each other.

$$
A_{i j}=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A_{i j}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Note that for a directed graph (right) the matrix is not symmetric.
$A_{i j}=1$ if there is a link pointing from node j and i
$A_{i j}=0$ if there is no link pointina from i to i.

ADJACENCY MATRIX AND NODE DEGREES

$$
A_{i j}=\begin{array}{cc}
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array} & \begin{array}{l}
k_{i}^{i n}=\sum_{j=1}^{N} A_{i j} \\
k_{j}^{\text {out }}=\sum_{i=1}^{N} A_{i j} \\
A_{i j} \neq A_{j i} \\
A_{i i}=0
\end{array} \\
L=\sum_{i=1}^{N} k_{i=1}^{\prime n}=\sum_{j=1}^{N} k_{j}^{\text {out }}=\sum_{i, j}^{N} A_{i j}
\end{array}
$$

ADJACENCY MATRIX

(accccccc

ADJACENCY MATRICES ARE SPARSE

Section 4

Real networks are sparse

COMPLETE GRAPH

The maximum number of links a network of N nodes can have is: $L_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}$

A graph with degree $L=L_{\text {max }}$ is called a complete graph, and its average degree is $\langle\mathrm{k}>=\mathbf{N}-\mathbf{1}$

Most networks observed in real systems are sparse:

$$
\begin{gathered}
\mathrm{L} \ll \mathrm{~L}_{\max } \\
\quad \text { or } \\
<\mathrm{k}>\ll \mathrm{N}-1 .
\end{gathered}
$$

WWW (ND Sample):	$\mathrm{N}=325,729 ;$	$\mathrm{L}=1.410^{6}$	$\mathrm{~L}_{\max }=10^{12}$	$<\mathrm{k}>=4.51$
Protein (S. Cerevisiae):	$\mathrm{N}=1,870 ;$	$\mathrm{L}=4,470$	$\mathrm{~L}_{\max }=10^{7}$	$<\mathrm{k}>=2.39$
Coauthorship (Math):	$\mathrm{N}=70,975 ;$	$\mathrm{L}=210^{5}$	$\mathrm{~L}_{\max }=310^{10}$	$<\mathrm{k}>=3.9$
Movie Actors:	$\mathrm{N}=212,250 ;$	$\mathrm{L}=610^{6}$	$\mathrm{~L}_{\max }=1.810^{13}$	$<\mathrm{k}>=28.78$

ADJACENCY MATRICES ARE SPARSE

METCALFE'S LAW

Section 2.6

WEIGHTED AND UNWEIGHTED NETWORKS

$$
A_{i j}=w_{i j}
$$

METCALFE'S LAW

Section 2.7

BIPARTITE NETWORKS

BIPARTITE GRAPHS

bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.

GENE NETWORK - DISEASE NETWORK

Disease network

HUMAN DISEASE NETWORK

Ingredient-Flavor Bipartite Network

A Ingredients Flavor compounds B Flavor network

		1-penten-3-ol 2-hexenal 2 -isobutyl thiazole 2,3-diethylpyrazine 2,4-nonadienal 3-hexen-1-ol 4-hydroxy-5-methyl... 4-methylpentanoic acid acetylpyrazine allyl 2 -furoate alpha-terpineol Deta-cyclodextrin cis-3-hexenal dihydroxyacetone dimethyl succinate ethyl propionate hexyl alcohol isoamyl alcohol isobutyl acetate Isobutyl alcohol lauric acid limonene (d-l- l , and di-) l-malic acid methyl butyrate methyl hexanoate methyl propyl trisulfide nonanoic acid phenethyl alcohol propenyl propyl disultide propionaldehyde propyl disulfide p-mentha-1,3-diene p-menth-1-ene-9-al terpinyl acetate tetrahydrofurfuryl alcohol trans, trans-2,4-hexadiena

Prevalence

Shared compounds
Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási Flavor network and the principles

Categories
fruits
dairy
spices
alcoholic beverages
nuts and seeds
seafoods
meats
plant derivatives
vegetables
flowers
animal products
plants
cereal
revalence
mo \%

Shared

 compounds
PATHOLOGY

PATHS

A path is a sequence of nodes in which each node is adjacent to the next one
$P_{i 0, i n}$ of length n between nodes i_{0} and i_{n} is an ordered collection of $n+1$ nodes and n links

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

- In a directed network, the path can follow only the direction of an arrow.

The distance (shortest path, geodesic path) between two nodes is defined as the number of edges along the shortest path connecting them.
*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.
Thus in a digraph the distance from node A to B (on an $A B$ path) is generally different from the distance from node B to A (on a BA path).

\mathbf{N}_{ij}, number of paths between any two nodes i and j :

Length $n=1$: If there is a link between i and j, then $\mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{A}_{\mathrm{ij}}=0$ otherwise.
Length $\boldsymbol{n}=$ 2: If there is a path of length two between i and j, then $A_{i k} A_{k j}=1$, and $A_{i k} A_{k j}=0$ otherwise. The number of paths of length 2 :

$$
N_{i j}^{(2)}=\sum_{k=1}^{N} A_{i k} A_{k j}=\left[A^{2}\right]_{i j}
$$

Length n: In general, if there is a path of length n between i and j, then $A_{i k} \ldots A_{i j}=1$ and $\mathrm{A}_{\mathrm{ik}} \ldots \mathrm{A}_{\mathrm{ij}}=0$ otherwise.
The number of paths of length n between i and j is ${ }^{*}$

$$
N_{i j}^{(n)}=\left[A^{n}\right]_{i j}
$$

[^0]
FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1. Start at 0.

FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1. Start at 0.
2. Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.

FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1. Start at 0 .
2. Find the nodes adjacent to 0 . Mark them as at distance 1 . Put them in a queue.
3. Take the first node out of the queue. Find the unmarked nodes adjacent to it in the graph. Mark them with the label of 2 . Put them in the queue.

FINDING DISTANCES: BREADTH FIRST SEARCH

Distance between node 0 and node 4:

1. Repeat until you find node 4 or there are no more nodes in the queue.
2. The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

NETWORK DIAMETER AND AVERAGE DISTANCE

Diameter: $\boldsymbol{d}_{\max }$ the maximum distance between any pair of nodes in the graph.

Average path length/distance, <d>, for a connected graph:

$$
\langle d\rangle \equiv \frac{1}{2 L_{\text {max }}} \sum_{i, j \neq i} d_{i j}
$$

where $d_{i j}$ is the distance from node i to node j

In an undirected graph $d_{i j}=d_{j i}$, so we only need to count them once:

$$
\langle d\rangle \equiv \frac{1}{L_{\max }} \sum_{i, j>i} d_{i j}
$$

Shortest Path

A path with the shortest length between two nodes (distance).

Diameter

Average Path Length

The length of a longest shortest path in a graph

The average length of the shortest paths for all pairs of nodes.

Cycle

A path with the same start and end node.

Self-avoiding Path

A path that does not intersect itself.

Eulerian Path

Hamiltonian Path

A path that traverses each
link exactly once.

A path that visits each node exactly once.

Section 2.9

CONNECTEDNESS

CONNECTIVITY OF UNDIRECTED GRAPHS

Connected (undirected) graph: any two vertices can be joined by a path. A disconnected graph is made up by two or more connected components.

Largest Component: Giant Component

The rest: Isolates

Bridge: if we erase it, the graph becomes disconnected.

CONNECTIVITY OF UNDIRECTED GRAPHS

Adjacency Matrix

The adjacency matrix of a network with several components can be written in a blockdiagonal form, so that nonzero elements are confined to squares, with all other elements being zero:
(a)

$\left(\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)$
(b)

CONNECTIVITY OF DIRECTED GRAPHS

Strongly connected directed graph: has a path from each node to every other node and vice versa (e.g. AB path and BA path). Weakly connected directed graph: it is connected if we disregard the edge directions.

Strongly connected components can be identified, but not every node is part of a nontrivial strongly connected component.

In-component: nodes that can reach the scc, Out-component: nodes that can be reached from the scc.

FINDINO THE CONNECTED COMPONENTS OF A NETWORK

1. Start from a randomly chosen node i and perform a BFS (BOX 2.5). Label all nodes reached this way with $n=1$.
2. If the total number of labeled nodes equals N, then the network is connected. If the number of labeled nodes is smaller than N, the network consists of several components. To identify them, proceed to step 3.
3. Increase the label $n \rightarrow n+1$. Choose an unmarked node j, label it with n. Use BFS to find all nodes reachable from j, label them all with n. Return to step 2.

Section 10

Clustering coefficient

CLUSTERING COEFFICIENT

* Clustering coefficient:

what fraction of your neighbors are connected?

* Node i with degree k_{i}
* C_{i} in $[0,1]$

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$C_{i}=1$

$C_{i}=1 / 2$

$C_{i}=0$

CLUSTERING COEFFICIENT

* Clustering coefficient:

what fraction of your neighbors are connected?

* Node i with degree k_{i}
* C_{i} in $[0,1]$

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$$
\langle C\rangle=\frac{13}{42} \approx 0.310
$$

$$
C=\frac{3}{8}=0.375
$$

summary

Degree distribution: $\quad \mathbf{P}(k)$
Path length:
<d>

Clustering coefficient:

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

Undirected

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} A_{i j}=A_{j i} .
$$

Directed

$$
A_{i i}=0 \quad A_{i j} \neq A_{j i}
$$

$$
L=\sum_{i, j=1}^{N} A_{i j} \quad<k>=\frac{L}{N}
$$

WWW, citation networks

Unweighted

 (undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} \quad A_{i j}=A_{j i} .
$$

Weighted

(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{cccc}
0 & 2 & 0.5 & 0 \\
2 & 0 & 1 & 4 \\
0.5 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right) \\
\left.L=\frac{A_{i j}}{2}=A_{j i} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad<k\right\rangle=\frac{2 L}{N}
\end{gathered}
$$

[^1]
Self-interactions

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
L=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}+\sum_{i=1}^{N} A_{i i} \quad A_{i j}=A_{j i}
\end{gathered}
$$

Multigraph

(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} \quad A_{i j}=A_{j i} \quad\left(\begin{array}{l}
1 \\
2
\end{array} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad<k\right\rangle=\frac{2 L}{N} .
$$

Social networks, collaboration networks

GRAPHOLOGY

Complete Graph

 (undirected)

$$
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

$$
A_{i i}=0 \quad A_{i \neq j}=1
$$

$L=L_{\text {max }}=\frac{N(N-1)}{2} \quad<k>=N-1$

Protein Interactions > undirected unweighted with self-interactions

Collaboration network >

 undirected multigraph or weighted
Mobile phone calls >

Facebook Friendship links >
directed, weighted
undirected, unweighted

THREE CENTRAL QUANTITIES IN NETWORK SCIENCE

A. Degree distribution:
\mathbf{p}_{k}
B. Path length:
C. Clustering coefficient:
$C_{i}=\frac{\langle d\rangle}{k_{i}\left(k_{i}-1\right)}$ \qquad

GENOME

protein-gene interactions

PROTEOME

protein-protein interactions

METABOLISM

Bio-chemical reactions

Metabolic Network

Protein Interactions

A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

Undirected network $\mathrm{N}=2,018$ proteins as nodes $\mathrm{L}=2,930$ binding interactions as links. Average degree <k>=2.90.

Not connected: 185 components the largest (giant component) 1,647 nodes

A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

$\mathbf{p}_{\mathbf{k}}$ is the probability that a node has degree \mathbf{k}.
$\mathrm{N}_{\mathrm{k}}=$ \# nodes with degree k
$p_{k}=N_{k} / N$

A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

$$
\begin{aligned}
& d_{\max }=14 \\
& \langle d\rangle=5.61
\end{aligned}
$$

A CASE STUDY: PROTEIN-PROTEIN INTERACTION NETWORK

$C_{i}=0$

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$<C>=0.12$

[^0]: *holds for both directed and undirected networks.

[^1]: Call Graph, metabolic networks

