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1. Bianconi-Barabasi Model
2. Bose-Einstein Condensation
3. Initial attractiveness
4. Role of internal links.
5. Node deletion.
6. Accelerated growth.
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Section 1



The BA model is only a minimal model.

Makes the simplest assumptions:

•  linear growth

•  linear preferential attachment

Does not capture
 variations in the shape of the degree distribution

variations in the degree  exponent
the size-independent clustering coefficient

Hypothesis: 
The BA model can be adapted to describe most features of real networks. 

We need to incorporate mechanisms that are known to take place in real 
networks: addition of links without new nodes, link rewiring,  link removal; 
node removal, constraints or optimization
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Bianconi-Barabasi model

Section 6.2



SF model:       k(t)~t ½      (first mover advantage)

Fitness model:     fitness  (η )                        k(η,t)~tβ(η) 

( )β η  =η/C    
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Section 6.2        Bianconi-Barabasi Model (definition)

4EVOLVING NETWORKS

THE BIANCONI-BARABÁSI
MODEL

SECTION 6.2

Some people have a knack for turning each random encounter into a 

lasting social link; some companies turn each consumer into a loyal part-

ner; some webpages turn visitors into addicts. A common feature of these 

successful nodes is some intrinsic property that propels them ahead of the 

pack. We will call this property fitn ess . 

Fitness is an individual’s gift to turn a random encounter into a last-

ing friendship; it is a company’s knack to acquire consumers relative to 

its competition; it is a webpage’s ability to bring us back on a daily basis 

despite the many other pages that compete for our attention. Fitness may 

have genetic roots in people, it may be related to innovativeness and man-

agement quality in companies and may depend on the content off ered by 

a website. 

In the Barabási-Albert model we assumed that a node’s growth rate is 

determined solely by its degree. To incorporate the role of fi tness we as-

sume that preferential attachment is driven by the product of a node’s fi t-

ness, , and its degree k. The resulting model, called the Bian con i-Barabási 

or the fitn ess m odel, consists of the following two steps [2, 3]:

• Growth 

In each timestep a new node j with m  links and fi tness 
j
 is added to 

the network, where 
j
 is a random number chosen from a fitn ess dis-

tribu tion  . Once assigned, a node’s fi tness does not change.

• Preferential Attachment 
The probability that a link of a new node connects to node i is propor-

tional to the product of node i’s degree k
i and its fi tness 

i
,

In (6.1) the dependence of 
i
 on k

i
 captures the fact that higher-de-

gree nodes have more visibility, hence we are more likely to link to them. 

EVOLVING NETWORKS

The movie shows a growing network in which 
each new node acquires a randomly chosen fit-
ness parameter at birth, indicated by the color 
of the node. Each new node chooses the nodes 
it links to following generalized preferential 
attachment (6.1), making a node’s growth rate 
proportional to its fitness. The node size is pro-
portional to its degree, illustrating that with 
time the nodes with the highest fitness turn 
into the largest hubs. Video cou rtesy  of Dashu n  
W an g.

Online Resource 6.1
The Bianconi-Barabási Model
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Section 2 Fitness Model



Section 6.2        Bianconi-Barabasi Model (Analytical)
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The dependence of 
i
 on 

i
 implies that between two nodes with the same 

degree, the one with higher fi tness is selected with a higher probability. 

Hence, (6.1) assures that even a relatively young node, with initially only a 

few links, can acquire links rapidly if it has larger fi tness than the rest of 

the nodes.

DEGREE DYNAMICS
We can use the continuum theory to predict each node’s temporal evo-

lution. According to (6.1), the degree of node i changes at the rate

Let us assume that the time evolution of k
i
 follows a power law with a 

fi tness-dependent exponent (
i 
) (Figure 6.2),

Inserting (6.3) into (6.2) we find that the dy n am ic expon en t  satisfies (AD-
VANCED TOPICS 6.A)

with

In the Barabási-Albert model we have  = 1/2, hence the degree of each 

node increases as a square root of time. According to (6.4), in the Bian-

coni-Barabási model the dynamic exponent is proportional to the node’s 

fitness, , hence each node has its own dynamic exponent. Consequently, 

a node with a higher fitness will increase its degree faster. Given suffi -

cient time, the fitter node will leave behind nodes with a smaller fitness 

(Figure 6.2). Facebook is a poster child of this phenomenon: a latecomer 

(a) In the Barabási-Albert model all nodes in-
crease their degree at the same rate, hence the 
earlier a node joins the network, the larger is 
its degree at any time. The figure shows the 
time dependent degree of nodes that arrived 
at diff erent times (t

i
 = 1,000, 3000, 5000), 

demonstrating that the later nodes are unable 
to pass the earlier nodes [4, 5].

(b) Same as in (a) but in a log-log plot, demon-
strating that each node follows the same 
growth law (5.7) with identical dynamical ex-
ponents  = 1/2.

(c) In the Bianconi-Barabási model nodes in-
crease their degree at a rate that is determined 
by their individual fi tness. Hence a latecomer 
node with a higher fitness (purple symbols) 
can overcome the earlier nodes.

(d) Same as in (c) but on a log-log plot, demon-
strating that each node increases its degree 
following a power law with its own fitness-de-
pendent dynamical exponent , as predicted 
by (6.3) and (6.4).

In (a)-(d) each curve corresponds to average 
over independent runs using the same fitness 
sequence.

Figure 6.2
Competition in the Bianconi-Barabási Model
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Section 6.2        Bianconi-Barabasi Model (Analytical)
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Section 2 Fitness Model

BA model:        k(t)~t ½     

 (first mover advantage)

BB model:      k(η,t)~tβ(η) 

(fit-gets-richer) 

( )β η  =η/C    



Section 2 Fitness Model-Degree distribution

Uniform fitness distribution: 
fitness uniformly distributed in the [0,1] interval.

C* = 1.255

pk∼C∫dη
ρ (η)
η (m

k )
C

η
+1



Section 6.2        Bianconi-Barabasi Model (Analytical)
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Section 6.2        Same Fitness

pk∼C∫dη
ρ (η)
η (m

k )
C

η
+1



Section 6.2        Uniform Fitnesses
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Section 6.2        Uniform Fitnesses



Measuring Fitness

Section 6.3



Section 6.3 Measuring Fitness: Web documents



Section 3 The Fitness of a scientific publication

Φ(x)= 1

√2π ∫
−∞

x

e− y2 /2dy

k i(t )=m(e

β η i

A
Φ( ln (t )−μ i

σ i
)
−1)

Πi∼η i k i Pi(t)



Section 3 The Fitness of a scientific publication

Ultimate Impact: t  ∞

Φ(x)= 1

√2π ∫
−∞

x

e− y2 /2dy

k i(∞)=m(e
βη i

A −1)

k i(t )=m(e

β η i

A
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