Network Science

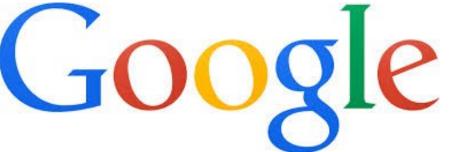
Class 6: Evolving Networks

Albert-László Barabási With Emma K. Towlson, Sebastian Ruf, Michael Danziger, and Louis Shekhtman

www.BarabasiLab.com

- 1. Bianconi-Barabasi Model
- 2. Bose-Einstein Condensation
- 3. Initial attractiveness
- 4. Role of internal links.
- 5. Node deletion.
- 6. Accelerated growth.

Introduction



EVOLVING NETWORK MODELS

The BA model is only a minimal model.

Makes the simplest assumptions:

- linear growth
- linear preferential attachment

 $\langle k \rangle = 2m$ $\Pi(k_i) \propto k_i$

Does not capture

variations in the shape of the degree distribution variations in the degree exponent the size-independent clustering coefficient

Hypothesis:

The BA model can be adapted to describe most features of real networks.

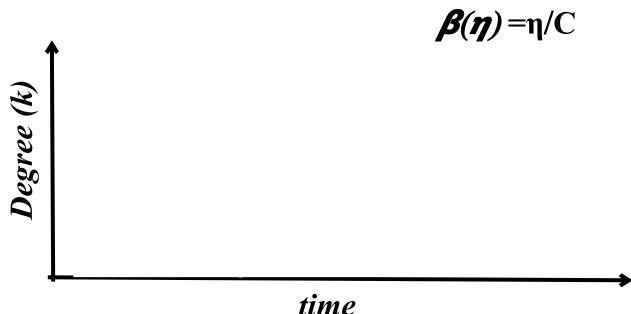
We need to incorporate mechanisms that are known to take place in real networks: addition of links without new nodes, link rewiring, link removal; node removal, constraints or optimization

Bianconi-Barabasi model

Can Latecomers Make It?

<u>SF model</u>: $k(t) \sim t^{\frac{1}{2}}$ (first mover advantage)

<u>Fitness model</u>: fitness (η) $\Pi(k_i) \cong \frac{\eta_i k_i}{\sum_j \eta_j k_j}$ $k(\eta, t) \sim t^{\beta(\eta)}$



Bianconi & Barabási, Physical Review Letters 2001; Europhys. Lett. 2001.

• Growth

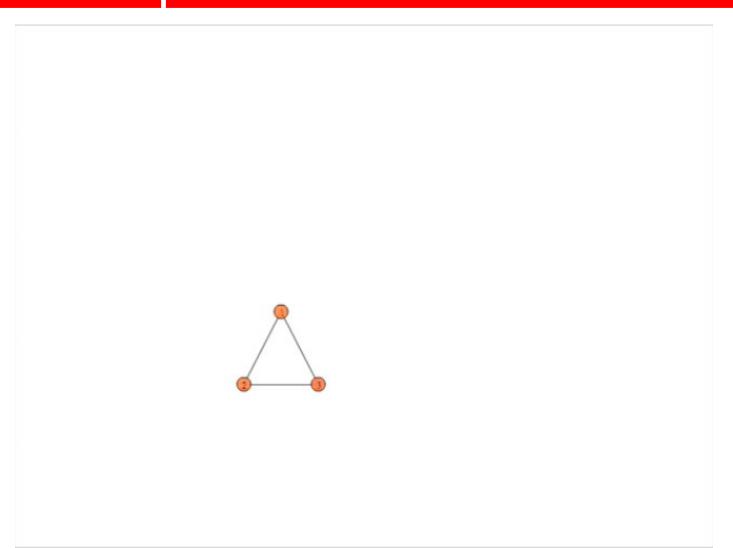
In each timestep a new node *j* with *m* links and fitness η_j is added to the network, where η_j is a random number chosen from a *fitness dis*-*tribution* $\rho(\eta)$. Once assigned, a node's fitness does not change.

Preferential Attachment

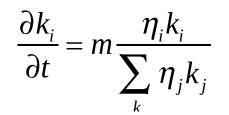
The probability that a link of a new node connects to node *i* is proportional to the product of node *i*'s degree k_i and its fitness η_i ,

$$\Pi_i = \frac{\eta_i k_i}{\sum_j \eta_j k_j}$$
 (6.1)

Section 2



Bianconi-Barabasi Model (Analytical)



$$k_{\eta_i}(t,t_i) = m \left(\frac{t}{t_i}\right)^{\beta(\eta_i)}.$$
 (6.3)

over all possible realizations of the quenched fitnesses η . Since each node is born at a different time t_o , we can write the sum over j as an integral over t_o

 $\sum \eta_j k_j$

$$\left\langle \sum_{j} \eta_{j} k_{j} \right\rangle = \int d\eta \rho(\eta) \eta \int_{1}^{t} dt_{0} k_{\eta}(t, t_{0}).$$
(6.34)

By replacing $k_o(t, t_o)$ with (6.3) and performing the integral over t_o , we obtain

$$\left\langle \sum_{j} \eta_{j} k_{j} \right\rangle = \int d\eta \rho(\eta) \eta m \frac{t - t^{\beta(\eta)}}{1 - \beta(\eta)} .$$
(6.35)

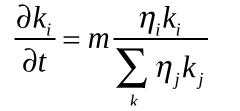
The dynamic exponent $\beta(\eta)$ is bounded, i.e. $0 < \beta(\eta) < 1$, because a node can only increase its degree with time $(\beta(\eta) > 0)$ and $k_i(t)$ cannot increase faster than t ($\beta(\eta) < 1$). Therefore in the limit $t \rightarrow \infty$ in (6.35) the term $t^{\beta(n)}$ can be neglected compared to t, obtaining

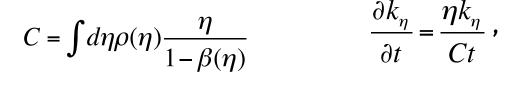
$$\left\langle \sum_{j} \eta_{j} k_{j} \right\rangle^{t \to \infty} = Cmt(1 - O(t^{-\varepsilon})) , \qquad (6.36)$$

where $\varepsilon = (1 - \max_{\eta} \beta(\eta)) > 0$ and

$$C = \int d\eta \rho(\eta) \frac{\eta}{1 - \beta(\eta)}$$
 (6.37)

Bianconi-Barabasi Model (Analytical)





$$k_{\eta_i}(t,t_i) = m \left(\frac{t}{t_i}\right)^{\beta(\eta_i)}. \qquad \beta(\eta) = \frac{\eta}{C}$$

To complete the calculation we need to determine *C* from (6.37). After substituting $\beta(n)$ with η/C , we obtain

$$1 = \int_{0}^{\eta_{\text{max}}} d\eta \rho(\eta) \frac{1}{\frac{C}{\eta} - 1} , \qquad (6.40)$$

where η_{max} is the maximum possible fitness in the system. The integral (6.40) is singular. However, since $\beta(\eta)=\eta/C<1$ for any η , we have $C > \eta_{max}$, thus the integration limit never reaches the singularity. Note also that since

$$Cmt = \sum_{j} \eta_{j} k_{j} \le \eta_{\max} \sum_{j} k_{j} = 2mt \eta_{\max}$$
(6.41)

we have $C \leq 2\eta_{max}$

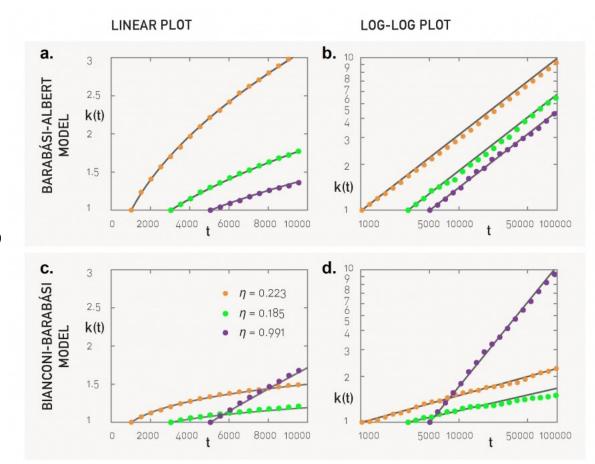
Fitness Model

BA model:

(first mover advantage)

 $k(t) \sim t^{\frac{1}{2}}$

<u>BB model</u>: $k(\eta,t) \sim t^{\beta(\eta)}$ (fit-gets-richer) $\beta(\eta) = \eta/C$



Fitness Model-Degree distribution

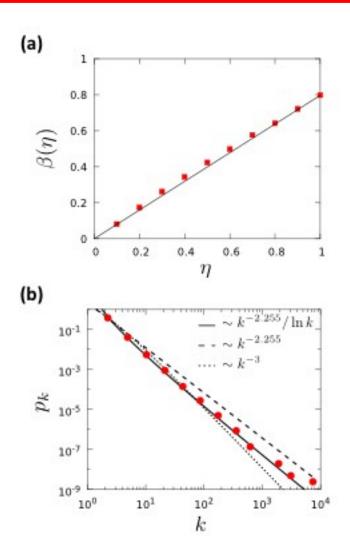
$$p_k \sim C \int d\eta \frac{\rho(\eta)}{\eta} \left(\frac{m}{k}\right)^{\frac{C}{\eta}+1}$$

Uniform fitness distribution:

fitness uniformly distributed in the [0,1] interval.

$$p_k \sim \int_{1}^{0} d\eta \frac{C^*}{\eta} \frac{1}{k^{1+C^*/\eta}} \sim \frac{k^{-(1+C^*)}}{\ln k},$$

$$C^* = 1.255$$
 $\gamma = 2.255$



Bianconi-Barabasi Model (Analytical)

$$k_{\eta_i}(t,t_i) = m \left(\frac{t}{t_i}\right)^{\beta(\eta_i)}$$
, $\beta(\eta) = \frac{\eta}{C}$,

$$p_k \sim C \int d\eta \, \frac{\rho(\eta)}{\eta} \left(\frac{m}{k}\right)^{\frac{C}{\eta}+1}$$

If there is a single dynamic exponent β , the degree distribution follows the power law $p_k \sim k^{-\gamma}$ with degree exponent $\gamma=1/\beta+1$. In the Bianconi-Barabási model we have a spectrum of dynamic exponents $\beta(\eta)$, thus p_k is a weighted sum over different power-laws. To calculate p_k we need to determine the cumulative probability that a randomly chosen node's degree satisfies $k_n(t)>k$. This cumulative probability is

$$P(k_{\eta}(t) > k) = P\left(t_0 < t\left(\frac{m}{k}\right)^{C/\eta}\right) = t\left(\frac{m}{k}\right)^{C/\eta}.$$
(6.42)

Thus, the degree distribution is given by the integral

$$p_{k} = \int_{\eta_{max}}^{0} d\eta \frac{\partial P(k_{\eta}(t) > k)}{\partial t} \propto \int d\eta \rho(\eta) \frac{C}{\eta} \left(\frac{m}{k}\right)^{\frac{C}{\eta}+1},$$
(6.43)

• Equal Fitnesses

When all fitnesses are equal, the Bianconi-Barabási model reduces to the Barabási-Albert model. Indeed, let us use $\rho(\eta) = \delta(\eta - 1)$, capturing the fact that each node has the same fitness $\eta = 1$. In this case (6.5) yields C = 2. Using (6.4) we obtain $\beta = 1/2$ and (6.6) predicts $p_k \sim k^{-3}$, the known scaling of the degree distribution in the Barabási-Albert model.

$$C = \int d\eta \rho(\eta) \frac{\eta}{1 - \beta(\eta)}$$

$$\beta(\eta) = \frac{\eta}{C} ,$$

$$p_k \sim C \int d\eta \frac{\rho(\eta)}{\eta} \left(\frac{m}{k}\right)^{\frac{C}{\eta}+1}$$

• Uniform Fitness Distribution

The model's behavior is more interesting when nodes have different fitnesses. Let us choose η to be uniformly distributed in the [0,1] interval. In this case *C* is the solution of the transcendental equation (6.5)

$$\exp(-2/C) = 1 - 1/C$$
, (6.7)

whose numerical solution is $C^* = 1.255$. Consequently, (6.4) predicts that each node *i* has a different dynamic exponent, $\beta(\eta_i) = \eta_i / C^*$.

Using (6.6) we obtain

$$p_{k} \sim \int_{0}^{1} d\eta \frac{C^{*}}{\eta} \frac{1}{k^{1+C^{*}/\eta}} \sim \frac{k^{-(1+C^{*})}}{\ln k},$$
 (6.8)

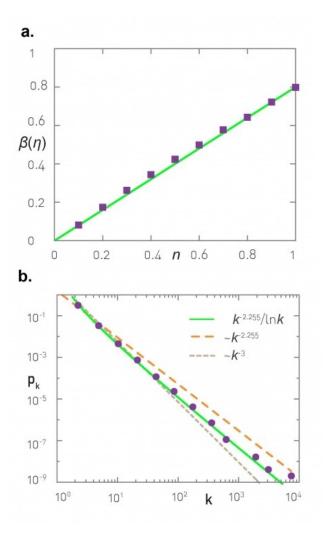
predicting that the degree distribution follows a power law with degree exponent γ = 2.255. Yet, we do not expect a perfect power law, but the scaling is affected by an inverse logarithmic correction 1/lnk.

 $C = \int d\eta \rho(\eta) \frac{\eta}{1 - \beta(\eta)}$

 $\beta(\eta) = \frac{\eta}{C} ,$

 $p_k \sim C \int d\eta \, \frac{\rho(\eta)}{\eta} \left(\frac{m}{k}\right)^{\frac{C}{\eta}+1}$

Uniform Fitnesses

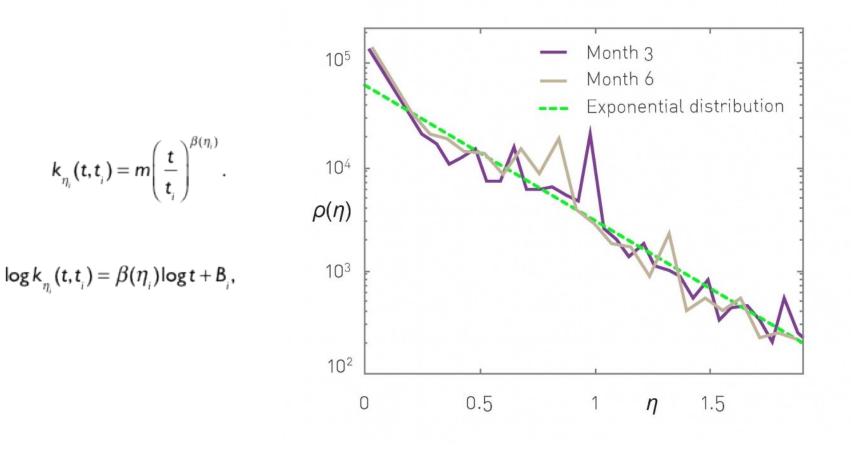


$$\beta(\eta_i) = \eta_i / C^*.$$

$$p_k \sim \int_0^1 d\eta \frac{C^*}{\eta} \frac{1}{k^{1+C^*/\eta}} \sim \frac{k^{-(1+C^*)}}{\ln k},$$

Measuring Fitness

Measuring Fitness: Web documents



Section 3

$$\Pi_{i} \sim \eta_{i} k_{i} P_{i}(t)$$

$$P_{i}(t) = \frac{1}{\sqrt{2\pi\sigma_{i}t}} e^{\frac{(\ln t - \mu_{i})^{2}}{2\sigma_{i}^{2}}}.$$

$$k_{i}(t) = m \left(e^{\frac{\beta\eta_{i}}{A} \Phi\left(\frac{\ln(t) - \mu_{i}}{\sigma_{i}}\right)} - 1 \right)$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^{2}/2} dy$$
and a constrained at the second sec

Section 3

