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1. What are degree correlations? Why do we want to study
correlations?

2. What is the degree correlation matrix? What do we expect it to look
like for random, assortative and disassortative networks? Why?

3. What is the degree correlation function? What do we expect to see
for random, assortative and disassortative networks? Why?

4. What is the degree correlation coefficient r? What values do we
expect for random, assortative and disassortative networks?
Why?

5. What is structural disassortativity? What kind of network is
affected and how can we detect it?

6. What is the impact of the degree correlations? Why do we study
them? Why does the threshold for the phase transition in Fig. 7.15
change?

. Summary

. Differences between undirected and directed networks.

o ~



TOPOLOGY OF THE PROTEIN NETWORK

Nodes: proteins
LINKS: physical interactions (binding)

Puzzling pattern:
Hubs tend to link to small degree nodes.

Why is this puzzling?

In a random network, the probability
that a node with degree k links to a

node with degree k’is: KK
Puc = E

k=50, k'=13, N=1,458, L=1746

Paiek

Pso;3 =0.15 Yet, we see many links between degree 2 and 1 nodes, and no
p,>; =0.0004  links between the hubs.
H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)



DEGREE CORRELATIONS IN NETWORKS

Assortative: Neutral: Disassortative:
hubs show a tendency to nodes connect to each Hubs tend to avoid
link to each other. other with the expected linking to each other.

random probabilities.

Quantifying degree correlations (three approaches):
—> full statistical description (Maslov and Sneppen, Science 2001)
—> degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
—> correlation coefficient (Newman, PRL 2002)




STATISTICAL DESCRIPTION

e, probability to find a node with degree j and degree k at the two ends of a randomly
selected edge

Zejk =1 Zejk =gy
J

jﬂk

q,. the probability to have a degree k node at the end of a link.

] . kpk Probability to find a node at the end of a link is biased towards the more connected
Where: qi = <k> nodes, i.e. q,=Ckp, where C is a normalization constant . After normalization we

find C=1/<k>, or q,=kp,/<k>

If the network has no Deviations from this prediction are a
degree correlations: € = 4,4y signature of degree correlations.

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



EXAMPLE: e, FOR A SCALE-FREE NETWORK

k
20

Assortative:
More strength in
the diagonal,
hubs tend to link
to each other.

k
5 10 15 20 25 30 35 40

Neutral Disassortative:

Hubs tend to
connect to small
nodes.

Each matrix is the average of 100 independent scale-free networks,
generated using the static model with N=104, y=2.5 and <k>=3.



EXAMPLE: e, FOR A SCALE-FREE NETWORK

Perfectly assortative Assortative:
5_/ More strength in
network: the diagonal,
hubs tend to link
€,=0,9; to each other.
) ) 5 10 15 20 25 30 35 40 —0.01
Disassortative: s[TF L oo
Pel’feCt/y Hubs tend to 10 L 10.008
dlS&SSOI’tatIVG Connect to Sma” 15 I 10.007
network: nodes. @ o
: Sl

35

40

Each matrix is the average of 100 independent scale-free networks,
generated using the static model with N=104, y=2.5 and <k>=3.




REAL-WORLD EXAMPLES

Astrophysics co-authorship network Yeast PPI
k k
50100 150 200 250 350 X (1)0‘5 10 20 30 40 50 oo
19 5 i
50 0.009
18 10 10.008
100 17 15
10.007
6 20
150 JE 25 10.006 o
a— 15 a— L i
200 |8 € ik 30 0.005 © jk
14 35 10.004
250 13 40 10.003
45 1
300 0.002
50 0.001
350 55
0
Assortative: . Disassortative: s | ..
More strength in o Hubs tend to . e
the diagonal, o connect to small  _* v
hubs tend to o nodes. o
||nk tO eaCh 0.002 0.002

0.001

0.001

other.



PROBLEM WITH THE FULL STATISTICAL DESCRIPTION

(1) Difficult to extract (2) Based on g, and hence requires a large

information from a visual number of elements to inspect:
inspection of a matrix.

Kk
100 10 200 250 300 350 @
C [ il

Nr. of
1008 kmax (kmax o 1) 1 k independent
150 R / 2 LT R elements
250 Undirected network: \ _ \ _
300 k xk matrix , € I . Zejk U
max max J ,k J =1>kmax
Constraints

We need to find a way to reduce the information contained in e,

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



Measuring Degree Correlations



Average next neighbor degree

k.. (k): average degree of the first
neighbors of nodes with degree K.

(b) POWER GRID
10 |
k. (k)=Y k'P(k’ | k) f
Iz
[
- ‘i ----- b...
< TV e T F - - -
e Neutral Network E knn(k) .
For a neutral network (7.3)-(7.5) predict =
P(kl | k) — ekk' — ekk' — Qk’qk — qk,. o
Zekk/ q, q, Random prediction —
% ~K004  aaa
This allows us to express k_ (k) as .
k'p(k’)  {k*) 10° 10’ k 102
k (k)y=) k'q,=) k’ = .
; ' 2 (ky (k)

R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)



Average next neighbor degree

(a) SCIENTIFIC COLLABORATION
102 [ T T T
k. (k). average degree of the first ? B
neighbors of nodes with degree k. w kK| ﬂ{.
% SSSPTT. #’:l
(%] o = ° o,
k. (k)=Y k'P(k’ | k) < L |
kK Random prediction —
~k0'37
e Assortative Network ST
10° 10’ 102 k108

In assortative networks hubs tend to connect to other hubs, hence the
higher is the degree k of a node, the higher is the average degree of

its nearest neighbors. Consequently for assortative networks k_(k) () - _METABOLIC NETWORK
10° o ‘ T
increases with k, as observed for scientific collaboration networks RN
(Figure 7.6a). I “iom
g 102 F ® oo ‘
| | ¢ o LY
e Disassortative Network = i ol
: : : & kn(k) | v
In disassortative network hubs prefer to link to low-degree nodes. @ i ‘e
<< .~ °,
Consequently k_ (k) decreases with k, as observed for the metabolic 2 100 £ N
network (Figure 7.6¢). Random prediction —
I o ]




Average next neighbor degree

@ A
— 4L H ; .
k (k)= ak f o
o Assortative Networks: > 0 wk (K | @y
= nn S °
A fit to k_ (k) for the science collaboration network provides u = 0.37 = ,4.." .
. E - oo 3
+ 0.11 (Figure 7.6a). = P .
2 L] ¢ ‘ :
0" ¢ .
e Neutral Networks: p=0 i Random prediction — |
According to (7.9) k_ (k) is independent of k. Indeed, for the power grid I ~ko7
we obtain u = 0.04 + 0.05, which is indistinguishable from zero (Figure . T w%‘ow T 1(;2 | k ‘1‘53
7.6b).
. . (© METABOLIC NETWORK
o Disassortative Networks: p<0 8 fT T
For the metabolic network we obtain y = - 0.76 + 0.04 (Figure 7.6¢). “ “\~
(b) POWER GRID I N
10 [ . Rt Y
> 10° : *
° E E ﬁ.’.:
=k (k) | iv
@ m | ,~ o
2 3 .,
5 knn(k) . g 10° 7 s‘s 7
z J
Random prediction — |
Random prediction — m""k'n% e

~KO0 e

10° 10' k 102




Degree Correlation Coefficient

If there are degree correlations, e, will differ from g,q,. The magnitude of the correlation is
captured by <jk>-<j><k> difference, which is:

2 jk(ey —q,q,)

<jk>-<j><k> is expected to be: I
positive for assortative networks,
zero for neutral networks,

negative for dissasortative networks

To compare different networks, we should normalize it with its maximum value; the
maximum Is reached for a perfectly assortative network, i.e. €,=q,0,

normalization: o = maijk(ejk —-q,q,) = ij(quJ-k -q,q;)

Jk jk
2. jke % —4q,q) r<0 disassortative
_ _Jk -1<r<i r=0 neutral
" o8 r>0 assortative

r

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



REAL NETWORKS

Social networks
are assortative

r>0: assortative network:
Hubs tend to connect to other hubs.

MNetwork " r
Physics coauthorship (a) 32909 (L363
Biology coauthorship (a) 1520251 0.127
Mathematics coauthorship (b) 253339 0120
Film actor collaborations (c) 449913 (.208
Company directors (d) T673 0.276
Internet (e} 10697 —(L I89
World-Wide Web () 269 504 —0.063
FProtein interactions (g) 2115 —(. 156
Neural network (h) 307 —0.163
Marine food web (i) 134 —0.247
Freshwater food web (j) 92 —0.276
Eandom graph (u) 0
Callaway et al. (v) a/(l +248)
Barabdsi and Albert (w) 0

r<0: disassortative network:
Hubs tend to connect to small nodes.

Biological,
technological
networks are
disassortative



Structural cutoffs



Example: Degree sequence introduces disassortativity

Scale-free network generated with the
configuration model (N=300, L=450, y=2.2).

The measured r=-0.19! = Dissasortative!

Purple hub: 55 neighbors.
White hub: 46 neighbors.

Calculation of the expected number of links
between purple node (k=55) and white node
(k=46) for uncorrelated networks:

\ P
: k ~ | I 1 /

>>300" *°300
Ess46 = <k>N €s5.46 = 900- 32 ~2.8>1

/ In order for the network to be neutral, we
<k> need 2.8 links between these two hubs.



k (N~ ((KYN)™, k N

max
100 Fo 10
.
« No Stuctural Cutoff 102 F q i
For random networks and scale-free networks with y = 3 the exponent "x. 102 L ]
of k__issmallerthan1/2, hencek _ isalwayssmaller than k_. In oth- 10+ Y iy S
er words the node size at which the structural cutoff turns on exceeds P ' KK
the size of the biggest hub. Consequently we have no nodes for which 0 r .’”.‘ i 100 |
E, > 1. For these networks we do not have a conflict between degree 0 | ”’0..,.. 1
correlations and the simple network requirement.
10 ‘ ‘ R 10° ‘ ‘ ‘
« Stuctural Disassortativity 10° 10' 102 kK 10° 104 10° 10! 102 k 10° 104
For scale-fee networks with y < 3 we have 1/(y-1) > 1/2, i.e. k, can be
smaller than k__.Consequently nodes whose degree is between k_and
k__ canviolate E,,,> 1. In other words the network has fewer links be- (a,b) If we generate a scale-free network with
tween its hubs than (7.14) would predict. These networks will therefore the power-law degree distribution shown
become disassortative, a phenomenon we call structural disassorta- in (a), and we forbid self-loops and multi-
tivity. This is illustrated in Figures 7.8a.b that show a simple scale-free links, the network displays structural dis-
network generated by the configuration model. The network shows assortativity, as indicated by k_ (k) in (b).
disassortative scaling, despite the fact that we did not impose degree In this case, we lack a sufficient number
correlations during its construction. of links between the high-degree nodes

to maintain the neutral nature of the net-
work, hence for high k the k_ (k) function
must decay.



Section 7.5 Correlations in Real Networks

a. POWER GRID b INTERNET

10" [ A A A N R 10° TR e -ty o power Grid
® s |.J=-0.04 | ] For the power grid k (k) is flat and indistinguishable from its ran-
domized version, indicating a lack of degree correlations (Figure 7.10a).
;: . 102 Hence the power grid is neutral.
“:8:° g, » ]
I(nn(k) I ’ ° | k_ (k) « Internet
= For small degrees (k < 30) k_(k) shows a clear assortative trend, an

® Real Network (lo g-bin) 1 10 effect that levels off for high degrees (Figure 7.10b). The degree correla-
Real Network (lin-bin) tions vanish in the randomized version of the Internet map. Hence
& R-S the Internet is assortative, but structural cutoffs eliminate the effect
10° Sl sn alks o ed aaa 10° for high k.

10° 10° k 15* ] sl 6 & 102 k 10° 10



Section 7.5 Correlations in Real Networks

C.
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107
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SCIENTIFIC COLLABORATION

« s u=0.16

¢ Social Networks

The three networks capturing social interactions, the mobile phone
network, the science collaboration network and the actor network, all
have an increasing k_ (k), indicating that they are assortative (Figures
7.10c-e). Hence in these networks hubs tend to link to other hubs and
low-degree nodes tend to link to low-degree nodes. The fact that the
observed k_ (k) differs from the k®$(k), indicates that the assortative
nature of social networks is not due to their scale-free the degree dis-
tribution.

Email Network

While the email network is often seen as a social network, its k (k)
decreases with k, documenting a clear disassortative behavior (Figure
7.10f). The randomized k**°(k) also decays, indicating that we are ob-
serving structural disassortativity, a consequence of the network’s
scale-free nature.



Section 7.5 Correlations in Real Networks

Jd.  PROTEN h.  wemasoLic
102 el TR et B B e T TRl
e [J=-0.10 1 ’ === | y=-0. . .
Pl ] . e * Biological Networks
knn(k) I T T | The protein interaction and the metabolic network both have a nega-
SRR Ty 8 b 4 ‘e o tive y, suggesting that these networks are disassortative. Yet, the scal-
0t .8 e ce. gk (K) . ing of k> (k) is indistinguishable from k_ (k), indicating that we are
] 100 F ' 3’_: observing structural disassortativity, rooted in the scale-free nature
"1 ofthese networks (Figure 7.10 g.h).
100 JL—A_A_]_I_‘I_J‘M 100 w

10° 10! k 102 109 10" k102 103



Section 7.5 Correlations in Real Networks

5 : e WWW
I. WWw J CITATION The decaying k_ (k) implies disassortative correlations (Figure 7.10i).
104 [ ' T ' ' 3 ' T T The randomized k** (k) also decays, but not as rapidly as k (k). Hence
i « e+ u=-0.82 - « o s 4=-0.18 1 the disassortative nature of the WWW is not fully explained by its de-
. - gree distribution.
10° | & o9 10 | ]
‘ : .'_. "% g = =- " u_W g" .. A wL sy ] C.t t' N t k
k(K ey e 1k K[ ,* Wagt-s. "o 1 Amon e WOR
nn E .. "o 1 nmn | o ® 5.9 .0 . This network displays a puzzling behavior: for k < 20 the degree cor-
102 | .‘0-. 0 ® o ] ? 2 relation function k (k) shows a clear assortative trend; for k > 20,
3 3 however, we observe disassortative scaling (Figure 7.10j). Such mixed
i behavior can emerge in networks that display extreme assortativity
100 Lo oud uvamtin o b, (V1) IR WREIUTRIINY W (Figure 7.13b). This suggests that the citation network is strongly as-
10° 10" 102 103 K 10% 10° 10° 10" 10 k 10° 104 sortative, but its scale-free nature induces structural disassortativity,

changing the slope of k (k) for k » k..



Section 7.7 The Impact of Degree Correlations

» Assortative Networks
For assortative networks the phase transition point moves to a lower
(k), hence a giant component emerges for (k) < 1. The reason is that it
is easier to start a giant component if the high-degree nodes seek out

each other. :
08 I- Assortative -
o . Neutral ==
e Disassortative Networks SIN Disassortative —e—

0.6 [

The phase transition is delayed in disassortative networks, as in these
. 0.4
the hubs tend to connect to small degree nodes. Consequently, disas-

sortative networks have difficulty forming a giant component. o2

e Giant Component
For large <k) the giant component is smaller in assortative networks
than in neutral or disassortative networks. Indeed, assortativity forc-
es the hubs to link to each other, hence they fail to attract to the giant
component the numerous small degree nodes.



Section 7.7 The Impact of Degree Correlations

« Figure 7.16 shows the path-length distribution of a random network re- 0-3 ' ' ' '
wired to display different degree correlations. It indicates that in as- 0.25 - Assortative .
sortative networks the average path length is shorter than in neutral oo | Disasst‘ret:gvael _T_ |
networks. The most dramatic difference is in the network diameter, P,
d__, which is significantly higher for assortative networks. Indeed, 0.15
assortativity favors links between nodes with similar degree, result- 01
ing in long chains of k= 2 nodes, enhancing d__ (Figure 7.13c).
0.05
» Degree correlations influence a system'’s stability against stimuli and
perturbations [26] as well as the synchronization of oscillators placed 0

on a network [27, 28].

. . Distance distribution for a random network
» Degree correlations have a fundamental impact on the vertex cover with size N = 10, 000 and ¢k = 3. Correlations

problem [29], a much-studied problem in graph theory that requires are induced using the Xalvi-Brunet & Sokolov
us to find the minimal set of nodes (cover) such that each link is con- algorithm with p = 0.5 (Figure 7.14). The plots
show that as we move from disassortative to
assortative networks, the average path length
decreases, indicated by the gradual move of
the peaks to the left. At the same time the di-
ameter, d__, grows. Each curve represents an
average over 10 independent networks.

nected to at least one node in the cover ( ).

» Degree correlations impact our ability to control a network, altering
the number of input signals one needs to achieve full control [30].



Section 7.7 The Impact of Degree Correlations

Imagine that you are the director of an open-air museum located in a

large park. You wish to place guards on the crossroads to observe each
path. Yet, to save cost you want to use as few guards as possible. How
many guards do you need?

Let N be the number of crossroads and m < N is the number of guards
you can afford to hire. While there are () ways of placing the m guards
at N crossroads, most configurations leave some paths unsupervised
[31].

The number of trials one needs to place the guards so that they cover
all paths grows exponentially with N. Indeed, this is one of the six ba-
sic NP-complete problems, called the vertex cover problem. The vertex
cover of a network is a set of nodes such that each link is connected
to at least one node of the set (Figure 7.17). NP-completeness means
that there is no known algorithm which can identify a minimal vertex
cover substantially faster than using as exhaustive search, i.e. check-
ing each possible configuration individually. The number of nodes in
the minimal a vertex cover depends on the network topology, being
affected by the degree distribution and degree correlations [29].



Assortative mating reflects the tendency of individuals to date or marry
individuals that are similar to them. For example, low-income individuals
marry low-income individuals and college graduates marry college grad-
uates. Network theory uses assortativity in the same spirit, capturing the
degree-based similarities between nodes: In assortative networks hubs
tend to connect to other hubs and small-degree nodes to other small-de-
gree nodes. In a network environment we can also encounter the tradition-
al assortativity, when nodes of similar properties link to each other (Figure
7.18).

Disassortative mixing, when individuals link to individuals wo are unlike
them, is also common in some social and economic systems. Sexual net-
works are perhaps the best example, as most sexual relationships are be-
tween individuals of different gender. In economic settings trade typically
takes place between individuals of different skills: the baker does not sell
bread to other bakers, and the shoemaker rarely fixes other shoemaker's
shoes.

Degree Correlation Matrix e,

Neutral networks:

kipk,-kjpkj
(k)?

€ =949 =
Degree Correlation Function
k, (k)= k'p(k'l k)
T

Neutral networks:
(k*)
(k)
Scaling Hypothesis

k,, (k)=

k,, (k) ~ k"

u > 0: Assortative
u = 0: Neutral
U < 0: Disassortative

Degree Correlation Coefficient

ik(e., —q.
r=ZJ (e 2qr,q?k)
Jk o

7

r> 0: Assortative
r = 0: Neutral
r < 0: Disassortative



Section 7.8

\ A\ N\ e
2 W

é;‘%s?: %
K“ NS

The network behind the US political
blogosphere illustrates the presence of
assortative mixing, as used in sociolo-
gy, meaning that nodes of similar char-
acteristics tend to link to each other. In
the map each blue node corresponds to
liberal blog and red nodes are conserva-
tive. Blue links connect liberal blogs, red
links connect conservative blogs, yellow
links go from liberal to conservative, and
purple from conservative to liberal. As
the image indicates, very few blogs link
across the political divide, demonstrating
the strong assortativity of the political
blogosphere.




DEGREE CORRELATIONS IN NETWORKS

Assortative: Neutral: Disassortative:
hubs show a tendency to nodes connect to each Hubs tend to avoid
link to each other. other with the expected linking to each other.

random probabilities.

Quantifying degree correlations (three approaches):
—> full statistical description (Maslov and Sneppen, Science 2001)
—> degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
—> correlation coefficient (Newman, PRL 2002)




Section 7.8 Directed networks: knn
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