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Questions

1) What is a community (intuitively)? Examples from the real world. 
Zachary’s Karate Club.
2) Fundamental hypotheses H1 and H2. Basic definitions (strong, 
weak, cliques). Clearly define “community” vs. “partition”.
3) Graph partitioning and its computational complexity. The Bell 
number. Why is delineating communities hard?
4) Hierarchical clustering: the Ravasz algorithm and its 
computational complexity.
5) Hierarchical clustering: the Girvan-Newman algorithm and its 
complexity.
6) Hierarchy in real networks.
7) Modularity. Hypotheses H3 and H4. The greedy algorithm and its 
complexity. 



Introduction

Section 1



Section 1 Introduction: Belgium



Section 1 Introduction: Belgium

Same area as Massachusetts (~12,000 sq miles)
Same population as Ohio (~11.5 millions )



Section 1 Introduction: Belgium

V.D. Blondel et al, J. Stat. Mech. P10008 (2008).

A.-L. Barabási, Network Science: Communities.



Examples of communities

Section 2



Section 2 Zachary’s Karate Club

W.W. Zachary, J. Anthropol. Res. 33:452-473 (1977).

A.-L. Barabási, Network Science: Communities.



Section 2 Zachary’s Karate Club

Citation history 
of the Zachary’s Karate club paper

W.W. Zachary, J. Anthropol. Res. 33:452-473 (1977).

A.-L. Barabási, Network Science: Communities.



Section 2 Zachary Karate Club Club

The first scientist at any conference on networks 
who uses Zachary's karate club as an example is 
inducted into the Zachary Karate Club Club, and 
awarded a prize.

Chris Moore (9 May 2013).
Mason Porter (NetSci, June 2013).
Yong-Year Ahn  (Oxford University, July 2013)
Marián Boguñá (ECCS, September 2013).
Mark Newman (Netsci, June 2014)

http://networkkarate.tumblr.com/)



Section 2 Auxiliary information

 Karate Club: 
Breakup of the club

 Belgian Phone Data:
Language spoken



Section 2 Biological Modules 

E. Ravasz et al., Science 297 (2002).

A.-L. Barabási, Network Science: Communities.



Basics of communities

Section 3



Section 2 Communities

A.-L. Barabási, Network Science: Communities.

We focus on the mesoscopic scale of the network

Microscopic Mesoscopic Macroscopic



Section 2 Fundamental Hypothesis

A.-L. Barabási, Network Science: Communities.

H1: A network’s community structure is 
uniquely encoded in its wiring diagram



Section 3 Basics of Communities

H2: Connectedness Hypothesis 

A community corresponds to a connected 
subgraph. 

H3: Density Hypothesis

Communities correspond to locally dense 
neighborhoods of a network. 

A.-L. Barabási, Network Science: Communities.
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Section 3 Basics of Communities

Cliques as communities

A clique is a complete subgraph of k-nodes

R.D. Luce & A.D. Perry, Psychometrika 14 (1949) 

A.-L. Barabási, Network Science: Communities.



Section 3 Basics of Communities

• Triangles are frequent; larger cliques are 
rare. 

• Communities do not necessarily 
correspond to complete subgraphs, as 
many of their nodes do not link directly 
to each other. 

• Finding the cliques of a network is 
computationally rather demanding, 
being a so-called NP-complete problem.

Cliques as communities



Section 3 Basics of Communities

Consider a connected subgraph C of Nc nodes

Internal degree, ki
int : number of links of node i that 

connect to other nodes within the same community C.

External degree ki
ext:  number of links of node i that 

connect to the rest of the network.  

If ki
ext=0: all neighbors of i belong to C, and C is a good 

community for i.

If ki
int=0, all neighbors of i belong to other communities, 

then i should be assigned to a different community. 

Strong and weak communities

A.-L. Barabási, Network Science: Communities.



Section 3 Basics of Communities

Strong community: 
Each node of C has more links within the 
community than with the rest of the graph. 

Weak community: 
The total internal degree of C exceeds its 
total external degree, 

Clique Strong Weak
A.-L. Barabási, Network Science: Communities.
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Section 3 Number of Partitions 

How many ways can we partition a network into 2 communities? 

Divide a network into two equal non-overlapping subgraphs, such that the 
number of links between the nodes in the two groups is minimized.

Two subgroups of size n1 and n2. Total number of combinations:

N=10  256 partitions (1 ms)

N=100 1026 partitions (1021 years)

Graph bisection

A.-L. Barabási, Network Science: Communities.



Section 3 Graph Partitions (history)

2.5 billion transistors

partition the full wiring diagram of an 
integrated circuit into smaller 
subgraphs, so that they minimize the 
number of connections between them.

Graph Partitioning



Section 3 Graph Partitions (history)

Kernighan-Lin Algorithm for graph bisection

• Partition a network into two groups of 
predefined size. This partition is called cut.

• Inspect each a pair of nodes, one from each 
group. Identify the pair that results in the 
largest reduction of the cut size (links 
between the two groups) if we swap them

• Swap them. 
• If no pair reduces the cut size, we swap the 

pair that increases the cut size the least. 
• The process is repeated until each node is 

moved once.



Section 3 Number of communities

Community detection 

The number and size of the communities are unknown at the beginning.

Partition
Division of a network into groups of nodes, so that each node belongs to one group. 

Bell Number: number of possible partitions 
of N nodes

A.-L. Barabási, Network Science: Communities.



Hierarchical Clustering

Section 4



Section 4 Hierarchical Clustering

Agglomerative algorithms merge nodes and communities with high 
similarity. 

Divisive algorithms split communities by removing links that connect 
nodes with low similarity. 

1. Build a similarity matrix for the network

2. Similarity matrix: how similar two nodes are to each other  we need to 
determine  from the adjacency matrix

3. Hierarchical clustering iteratively identifies groups of nodes with high similarity, 
following one of two distinct strategies:

Hierarchical tree or dendrogram: visualize the history of the merging or splitting 
process the algorithm follows. Horizontal cuts of this tree offer various 
community partitions.

4.



Section 4 Agglomerative Algorithms 

Step 1: Define the Similarity Matrix (Ravasz algorithm)

• High for node pairs that likely belong to the same 
community, low for those that likely belong to different 
communities. 

• Nodes that connect directly to each other and/or share 
multiple neighbors are more likely to belong to the same 
dense local neighborhood, hence their similarity should 
be large.

    Topological overlap matrix:

JN(i,j): number of common 
neighbors of node i and j;  
(+1) if there is a direct link 
between i and j;

E. Ravasz et al., Science 297 (2002).

A.-L. Barabási, Network Science: Communities.

Agglomerative algorithms merge nodes and communities with high similarity. 



Section 4 Agglomerative Algorithms 

E. Ravasz et al., Science 297 (2002).

A.-L. Barabási, Network Science: Communities.

Step 2: Decide Group Similarity 

• Groups are merged based on their mutual similarity through single, complete or 
average cluster linkage



Section 4 Agglomerative Algorithms 

Step 3: Apply Hierarchical Clustering 

• Assign each node to a community of its own and evaluate the similarity 
for all node pairs. The initial similarities between these “communities” are 
simply the node similarities.

• Find the community pair with the highest similarity and merge them to 
form a single community.

• Calculate the similarity between the new community and all other 
communities.

• Repeat from Step 2 until all nodes are merged into a single community.

Step 4: Build Dendrogram 

• Describes the precise order in which the nodes are assigned to 
communities. 

E. Ravasz et al., Science 297 (2002).

A.-L. Barabási, Network Science: Communities.



Section 4 Agglomerative Algorithms 

Computational complexity:

• Step 1 (calculation similarity matrix): 
• Step 2-3 (group similarity): 
• Step 4 (dendrogram): 

E. Ravasz et al., Science 297 (2002).

A.-L. Barabási, Network Science: Communities.



Section 4 Divisive Algorithms

Step 1: Define a Centrality Measure
             (Girvan-Newman algorithm)

• Link betweenness is the number of shortest paths 
between all node pairs that run along a link. 

• Random-walk betweenness. A pair of nodes m and n are 
chosen at random. A walker starts at m, following each 
adjacent link with equal probability until it reaches n. 
Random walk betweenness xij is the probability that the 
link i→j was crossed by the walker after averaging over 
all possible choices for the starting nodes m and n 

Divisive algorithms split communities by removing links that connect nodes 
with low similarity. 

M. Girvan & M.E.J. Newman, PNAS 99 (2002).

A.-L. Barabási, Network Science: Communities.

Examples of centrality measures:



Section 4 Divisive Algorithms

M. Girvan & M.E.J. Newman, PNAS 99 (2002).

A.-L. Barabási, Network Science: Communities.

Step 2: Hierarchical Clustering

a) Compute of the centrality  of 
each link.

b) Remove the link with the 
largest centrality; in case of a 
tie, choose one randomly.

c) Recalculate the centrality of 
each link for the altered 
network.

d) Repeat until all links are 
removed (yields a 
dendrogram).



Section 4 Divisive Algorithms

M. Girvan & M.E.J. Newman, PNAS 99 (2002).

A.-L. Barabási, Network Science: Communities.
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Section 4 Divisive Algorithms

M. Girvan & M.E.J. Newman, PNAS 99 (2002).

A.-L. Barabási, Network Science: Communities.

Computational complexity:

• Step 1a (calculation betweenness 
centrality): 

• Step 1b (Recalculation of betweenness 
centrality for all links): 

for sparse networks


