
MO809/MC964
Tópicos em Computação Distribúıda

Sistemas de arquivos distribúıdos

Islene Calciolari Garcia

Instituto de Computação - Unicamp

Segundo Semestre de 2015

Sumário

Revisão de Arquiteturas

Sistemas de arquivos baseados em rede
Conceitos básicos
NFS
AFS
CODA
DFS
SMB
NFSv4

Referência:

Prof. Paul Krzyzanowski
Material do curso Distributed Systems
Rutgers University
Outono de 2014
http://www.cs.rutgers.edu/~pxk/417/

http://www.cs.rutgers.edu/~pxk/417/
http://www.cs.rutgers.edu/~pxk/417/

Revisão de Arquiteturas

Para pensarmos nos problemas de caching e acesso remoto

Building and classifying

parallel and distributed systems

September 8, 2014 15 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Flynn’s Taxonomy (1966)

SISD

– traditional uniprocessor system

SIMD

– array (vector) processor

– Examples:

• GPUs – Graphical Processing Units for video

• AVX: Intel’s Advanced Vector Extensions

• GPGPU (General Purpose GPU): AMD/ATI, NVIDIA

MISD

– Generally not used and doesn’t make sense

– Sometimes (rarely!) applied to classifying redundant systems

MIMD

– multiple computers, each with:

• program counter, program (instructions), data

– parallel and distributed systems

Number of instruction streams and number of data streams

September 8, 2014 16 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Subclassifying MIMD

memory

– shared memory systems: multiprocessors

– no shared memory: networks of computers, multicomputers

interconnect

– bus

– switch

delay/bandwidth

– tightly coupled systems

– loosely coupled systems

September 8, 2014 17 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Parallel Systems: Multiprocessors

• Shared memory

• Shared clock

• All-or-nothing failure

September 8, 2014 18 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Bus

Bus-based multiprocessors

CPU A

SMP: Symmetric Multi-Processing
All CPUs connected to one bus (backplane)

Memory and peripherals are accessed via shared bus. System looks the

same from any processor.

CPU B

memory
Device

I/O

The bus becomes a point of congestion … limits performance

September 8, 2014 19 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Bus-based multiprocessors

• The cache: great idea to deal with bus overload & memory contention

– Memory that is local to a processor

• CPU performs I/O to cache memory

– Access main memory only on cache miss

Bus

memory
Device

I/O

CPU A

cache

CPU B

cache

September 8, 2014 20 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Working with a cache

CPU A reads location 12345 from memory

12345:7
Device

I/O

CPU A

12345: 7

CPU B

Bus

September 8, 2014 21 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Working with a cache

CPU B reads location 12345 from memory

12345:7
Device

I/O

CPU A

12345: 3

CPU B

12345: 7

Gets old value

Memory not coherent!

Bus

September 8, 2014 23 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Write-through cache

Fix coherency problem by writing all values through bus to main

memory

12345:7
Device

I/O

CPU A

12345: 7

CPU B

CPU A modifies location 12345 – write-through

 main memory is now coherent

12345: 3
12345:3

Bus

September 8, 2014 24 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Write-through cache … continued

CPU B reads location 12345 from memory

 - loads into cache

12345:3
Device

I/O

CPU A

12345: 3

CPU B

12345: 3

Bus

September 8, 2014 25 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Write-through cache

CPU A modifies location 12345

 - write-through

12345:3
Device

I/O

CPU A

12345: 3

CPU B

12345: 3

Cache on CPU B not updated

Memory not coherent!

12345:0
12345: 0

Bus

September 8, 2014 26 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Snoopy cache

Add logic to each cache controller:

 monitor the bus for writes to memory

12345: 3
Device

I/O

CPU A

12345: 3

CPU B

12345: 3

write [12345] 0

12345: 3

Virtually all bus-based architectures use a snoopy cache

Bus

12345: 0
12345: 0

12345: 0

September 8, 2014 27 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Switched multiprocessors

• Bus-based architecture does not scale linearly to large

number of CPUs (e.g., beyond 8)

September 8, 2014 28 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Switched multiprocessors

Divide memory into groups and connect chunks of

memory to the processors with a crossbar switch

n2 crosspoint switches – expensive switching fabric

We still want to cache at each CPU – but we cannot snoop!

CPU

CPU

CPU

CPU

mem mem mem mem

September 8, 2014 29 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

UMA versus NUMA

Uniform Memory
Architecture Non-Uniform Memory Architecture

Fonte:
https://computing.llnl.gov/tutorials/parallel_comp

https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/parallel_comp

NUMA

• Hierarchical Memory System

• All CPUs see the same address space

• Each CPU has local connectivity to a region of memory

– fast access

• Access to other regions of memory – slower

• Placement of code and data becomes challenging

– Operating system has to be aware of memory allocation and CPU

scheduling

September 8, 2014 30 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

NUMA Cache Coherence NUMA: Intel Example

• Home Snoop: Home-based consistency protocol

– Each CPU is responsible for a region of memory

– It is the “home agent” for that memory

• Each home agent maintains a directory (table) that track of who has the latest

version

September 8, 2014 © 2014 Paul Krzyzanowski 32

CPU

1

CPU

2

CPU

3

CPU

4

Memory

Interface

Memory

Interface

Memory

Interface

Memory

Interface

Fonte: Prof. Paul Krzyzanowski

NUMA Cache Coherence NUMA: Intel Example

1. CPU sends request to home agent

2. Home agent requests status from

the CPU that may have a cached

copy (caching agent)

September 8, 2014 © 2014 Paul Krzyzanowski 33

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

1

2

Fonte: Prof. Paul Krzyzanowski

NUMA Cache Coherence NUMA: Intel Example

3. (a) Caching agent sends data update to

 new caching agent

(b) Caching agent sends status update to

 home agent

4. Home agent resolves any conflicts &

completes transaction

September 8, 2014 © 2014 Paul Krzyzanowski 34

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

3a

3b

New Caching Agent

4

Fonte: Prof. Paul Krzyzanowski

Networks of computers

• Eventually, other bottlenecks occur

– Network, disk

• We want to scale beyond multiprocessors

– Multicomputers

• No shared memory, no shared clock

• Communication mechanism needed

– Traffic much lower than memory access

– Network

September 8, 2014 35 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Bus-based multicomputers

Collection of workstations on a LAN

Interconnect

CPU

memory

LAN

connector

CPU

memory

LAN

connector

CPU

memory

LAN

connector

CPU

memory

LAN

connector

September 8, 2014 36 © 2014 Paul Krzyzanowski

A shared bus-based interconnect gives us the option of snooping

Fonte: Prof. Paul Krzyzanowski

Switched multicomputers

Collection of workstations on a LAN

CPU

memory

LAN

connector

LAN

switch

September 8, 2014 37 © 2014 Paul Krzyzanowski

A switched interconnect does not allow snooping

CPU

memory

LAN

connector

CPU

memory

LAN

connector

CPU

memory

LAN

connector

Fonte: Prof. Paul Krzyzanowski

Wide Area Distribution

CPU

memory

LAN

connector

LAN

switch

September 8, 2014 38 © 2014 Paul Krzyzanowski

CPU

memory

LAN

connector

CPU

memory

LAN

connector

CPU

memory

LAN

connector

LAN

switch

Router

Router

Don’t expect to snoop on data traffic

Fonte: Prof. Paul Krzyzanowski

What is a Distributed System?

A collection of independent, autonomous hosts connected

through a communication network.

– No shared memory (must use the network)

– No shared clock

September 8, 2014 39 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Sistemas de arquivos
baseados em rede

Distributed Systems
15. Network File Systems

Paul Krzyzanowski

Rutgers University

Fall 2014

1 October 29, 2014 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Accessing files

File sharing with socket-based programs

HTTP, FTP, telnet:

– Explicit access

– User-directed connection to access remote resources

We want more transparency

– Allow user to access remote resources just as local ones

NAS: Network Attached Storage

October 29, 2014 © 2014 Paul Krzyzanowski 2

Fonte: Prof. Paul Krzyzanowski

File service models

Upload/Download model

– Read file: copy file from server to client

– Write file: copy file from client to server

Advantage

– Simple

Problems

– Wasteful: what if client needs small

piece?

– Problematic: what if client doesn’t have

enough space?

– Consistency: what if others need to

modify the same file?

Remote access model

File service provides functional interface:

– create, delete, read bytes, write bytes, etc…

Advantages:

– Client gets only what’s needed

– Server can manage coherent view of file

system

Problem:

– Possible server and network congestion

• Servers are accessed for duration of file

access

• Same data may be requested repeatedly

October 29, 2014 © 2014 Paul Krzyzanowski 3

Fonte: Prof. Paul Krzyzanowski

Semantics of file sharing

Sequential Semantics

Read returns result of last write

Easily achieved if

– Only one server

– Clients do not cache data

BUT

– Performance problems if no cache

• Obsolete data

– We can write-through

• Must notify clients holding copies

• Requires extra state, generates

extra traffic

Session Semantics

Relax the rules

• Changes to an open file are

initially visible only to the process

(or machine) that modified it.

• Need to hide or lock file under

modification from other clients

• Last process to modify the file

wins.

October 29, 2014 © 2014 Paul Krzyzanowski 4

Fonte: Prof. Paul Krzyzanowski

Remote File Service

File Directory Service

– Maps textual names for file to internal locations that can be used by

file service

File service

– Provides file access interface to clients

Client module (driver)

– Client side interface for file and directory service

– if done right, helps provide access transparency

 e.g. implement the file system under the VFS layer

October 29, 2014 © 2014 Paul Krzyzanowski 5

Fonte: Prof. Paul Krzyzanowski

System design issues

October 29, 2014 © 2014 Paul Krzyzanowski 6

Fonte: Prof. Paul Krzyzanowski

Accessing Remote Files

For maximum transparency, implement the client module as a file

system type under VFS

System call interface

VFS

ext4 NTFS procfs
Remote

FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux

October 29, 2014 © 2014 Paul Krzyzanowski 7

Fonte: Prof. Paul Krzyzanowski

Stateful or Stateless design?

Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing

requests

• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Stateless

Server maintains no information on
client accesses

• Each request must identify file and
offsets

• Server can crash and recover

– No state to lose

• Client can crash and recover

• No open/close needed

– They only establish state

• No server space used for state

– Don’t worry about supporting many
clients

• Problems if file is deleted on server

• File locking not possible

October 29, 2014 © 2014 Paul Krzyzanowski 8

Fonte: Prof. Paul Krzyzanowski

Caching

Hide latency to improve performance for repeated

accesses

Four places

– Server’s disk

– Server’s buffer cache

– Client’s buffer cache

– Client’s disk

WARNING:
risk of cache

consistency problems

October 29, 2014 © 2014 Paul Krzyzanowski 9

Fonte: Prof. Paul Krzyzanowski

Approaches to caching

• Write-through
– What if another client reads its own (out-of-date) cached copy?

– All accesses will require checking with server

– Or … server maintains state and sends invalidations

• Delayed writes (write-behind)
– Data can be buffered locally

(watch out for consistency – others won’t see updates!)

– Remote files updated periodically

– One bulk wire is more efficient than lots of little writes

– Problem: semantics become ambiguous

October 29, 2014 © 2014 Paul Krzyzanowski 10

Fonte: Prof. Paul Krzyzanowski

Approaches to caching

• Read-ahead (prefetch)

– Request chunks of data before it is needed.

– Minimize wait when it actually is needed.

• Write on close

– Admit that we have session semantics.

• Centralized control

– Keep track of who has what open and cached on each node.

– Stateful file system with signaling traffic.

October 29, 2014 © 2014 Paul Krzyzanowski 11

Fonte: Prof. Paul Krzyzanowski

NFS
Network File System
Sun Microsystems

October 29, 2014 © 2014 Paul Krzyzanowski 12

Fonte: Prof. Paul Krzyzanowski

Artigo original (1988)

NFS Design Goals

Transport Protocol

Initially NFS ran over UDP using Sun RPC

Why was UDP chosen?

- Slightly faster than TCP

- No connection to maintain (or lose)

- NFS is designed for Ethernet LAN environment – relatively reliable

- UDP has error detection (drops bad packets) but no retransmission

 NFS retries lost RPC requests

October 29, 2014 © 2014 Paul Krzyzanowski 14

Fonte: Prof. Paul Krzyzanowski

Decisões de projeto

NFS Design Goals

• Any machine can be a client or server

• Must support diskless workstations

– Device files refer back to local drivers

• Heterogeneous systems

– Not 100% for all UNIX system call options

• Access transparency: normal file system calls

• Recovery from failure:

– Stateless, UDP, client retries

– Stateless → no locking!

• High Performance

– use caching and read-ahead

October 29, 2014 © 2014 Paul Krzyzanowski 13

Fonte: Prof. Paul Krzyzanowski

NFS Protocols

Mounting protocol

Request access to exported directory tree

Directory & File access protocol

Access files and directories

(read, write, mkdir, readdir, …)

October 29, 2014 © 2014 Paul Krzyzanowski 15

Fonte: Prof. Paul Krzyzanowski

Mounting Protocol

static mounting

– mount request contacts server

Server: edit /etc/exports

Client: mount fluffy:/users/paul /home/paul

October 29, 2014 © 2014 Paul Krzyzanowski 16

Fonte: Prof. Paul Krzyzanowski

Mounting Protocol

• Send pathname to server

• Request permission to access contents

• Server returns file handle

– File device #, inode #, instance #

client: parses pathname

 contacts server for file handle

client: create in-memory VFS inode at mount point.

 internally points to rnode for remote files

 - Client keeps state, not the server

October 29, 2014 © 2014 Paul Krzyzanowski 17

Fonte: Prof. Paul Krzyzanowski

Directory and file access protocol

• First, perform a lookup RPC

– returns file handle and attributes

• lookup is not like open

– No information is stored on server

• handle passed as a parameter for other file access

functions

– e.g. read(handle, offset, count)

October 29, 2014 © 2014 Paul Krzyzanowski 18

Fonte: Prof. Paul Krzyzanowski

Directory and file access protocol

NFS has 16 functions
– (version 2; six more added in version 3)

null

lookup

create

remove

rename

link

symlink

readlink

read

write

mkdir

rmdir

readdir

getattr

setattr

statfs

October 29, 2014 © 2014 Paul Krzyzanowski 19

Fonte: Prof. Paul Krzyzanowski

NFS Performance

• Usually slower than local

• Improve by caching at client
– Goal: reduce number of remote operations

– Cache results of
 read, readlink, getattr, lookup, readdir

– Cache file data at client (buffer cache)

– Cache file attribute information at client

– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache

– All NFS writes are write-through to disk to avoid unexpected data
loss if server dies

October 29, 2014 © 2014 Paul Krzyzanowski 20

Fonte: Prof. Paul Krzyzanowski

Inconsistencies may arise

Try to resolve by validation

– Save timestamp of file

– When file opened or server contacted for new block

• Compare last modification time

• If remote is more recent, invalidate cached data

• Always invalidate data after some time

– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:

– Marked dirty

– Scheduled to be written

– Flushed on file close

October 29, 2014 © 2014 Paul Krzyzanowski 21

Fonte: Prof. Paul Krzyzanowski

Improving read performance

• Transfer data in large chunks

– 8K bytes default (that used to be a large chunk!)

• Read-ahead

– Optimize for sequential file access

– Send requests to read disk blocks before they are requested by the

application

October 29, 2014 © 2014 Paul Krzyzanowski 22

Fonte: Prof. Paul Krzyzanowski

Problems with NFS

• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed to work

• Locking cannot work

– Separate lock manager added (but this adds stateful behavior)

• No reference counting of open files

– You can delete a file you (or others) have open!

• Global UID space assumed

October 29, 2014 © 2014 Paul Krzyzanowski 23

Fonte: Prof. Paul Krzyzanowski

Problems with NFS

• File permissions may change

– Invalidating access to file

• No encryption

– Requests via unencrypted RPC

– Authentication methods available

• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

October 29, 2014 © 2014 Paul Krzyzanowski 24

Fonte: Prof. Paul Krzyzanowski

Improving NFS: version 2

• User-level lock manager

– Monitored locks: introduces state at server

(but runs as a separate user-level process)

• status monitor: monitors clients with locks

• Informs lock manager if host inaccessible

• If server crashes: status monitor reinstates locks on recovery

• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance

– Normally NFS must write to disk on server before responding to
client write requests

– Relax this rule through the use of non-volatile RAM

October 29, 2014 © 2014 Paul Krzyzanowski 25

Fonte: Prof. Paul Krzyzanowski

Improving NFS: version 2

• Adjust RPC retries dynamically

– Reduce network congestion from excess RPC retransmissions

under load

– Based on performance

• Client-side disk caching

– cacheFS

– Extend buffer cache to disk for NFS

• Cache in memory first

• Cache on disk in 64KB chunks

October 29, 2014 © 2014 Paul Krzyzanowski 26

Fonte: Prof. Paul Krzyzanowski

Support Larger Environments: Automounter

Problem with mounts

– If a client has many remote resources mounted, boot-time can be

excessive

– Each machine has to maintain its own name space

• Painful to administer on a large scale

Automounter

– Allows administrators to create a global name space

– Support on-demand mounting

October 29, 2014 © 2014 Paul Krzyzanowski 27

Fonte: Prof. Paul Krzyzanowski

Automounter

• Alternative to static mounting

• Mount and unmount in response to client demand

– Set of directories are associated with a local directory

– None are mounted initially

– When local directory is referenced

• OS sends a message to each server

• First reply wins

– Attempt to unmount every 5 minutes

• Automounter maps

– Describes how file systems below a mount point are mounted

October 29, 2014 © 2014 Paul Krzyzanowski 28

Fonte: Prof. Paul Krzyzanowski

Automounter maps

Example:
 automount /usr/src srcmap

srcmap contains:

cmd -ro doc:/usr/src/cmd

kernel -ro frodo:/release/src \

 bilbo:/library/source/kernel

lib -rw sneezy:/usr/local/lib

Access /usr/src/cmd: request goes to doc

Access /usr/src/kernel:

 ping frodo and bilbo, mount first response

October 29, 2014 © 2014 Paul Krzyzanowski 29

Fonte: Prof. Paul Krzyzanowski

The automounter

VFS

NFS

client

KERNEL

application automounter

NFS request

NFS mount
NFS

server

NFS request

October 29, 2014 © 2014 Paul Krzyzanowski 30

Fonte: Prof. Paul Krzyzanowski

More improvements… NFS v3

• Updated version of NFS protocol

• Support 64-bit file sizes

• TCP support and large-block transfers

– UDP caused more problems on WANs (errors)

– All traffic can be multiplexed on one connection

• Minimizes connection setup

– No fixed limit on amount of data that can be transferred between

client and server

• Negotiate for optimal transfer size

• Server checks access for entire path from client

October 29, 2014 © 2014 Paul Krzyzanowski 31

Fonte: Prof. Paul Krzyzanowski

More improvements… NFS v3

• New commit operation

– Check with server after a write operation to see if data is committed

– If commit fails, client must resend data

– Reduce number of write requests to server

– Speeds up write requests

• Don’t require server to write to disk immediately

• Return file attributes with each request

– Saves extra RPCs to get attributes for validation

October 29, 2014 © 2014 Paul Krzyzanowski 32

Fonte: Prof. Paul Krzyzanowski

AFS
Andrew File System
Carnegie Mellon University

 c. 1986(v2), 1989(v3)

October 29, 2014 © 2014 Paul Krzyzanowski 33

Fonte: Prof. Paul Krzyzanowski

AFS

• Design Goal

– Support information sharing on a large scale

e.g., 10,000+ clients

• History

– Developed at CMU

– Became a commercial spin-off: Transarc

– IBM acquired Transarc

– Open source under IBM Public License

– OpenAFS (openafs.org)

October 29, 2014 © 2014 Paul Krzyzanowski 34

Fonte: Prof. Paul Krzyzanowski

AFS Assumptions

• Most files are small

• Reads are more common than writes

• Most files are accessed by one user at a time

• Files are referenced in bursts (locality)

– Once referenced, a file is likely to be referenced again

October 29, 2014 © 2014 Paul Krzyzanowski 35

Fonte: Prof. Paul Krzyzanowski

AFS Design Decisions

Whole file serving

– Send the entire file on open

Whole file caching

– Client caches entire file on local disk

– Client writes the file back to server on close

• if modified

• Keeps cached copy for future accesses

October 29, 2014 © 2014 Paul Krzyzanowski 36

Fonte: Prof. Paul Krzyzanowski

AFS Design

• Each client has an AFS disk cache

– Part of disk devoted to AFS (e.g. 100 MB)

– Client manages cache in LRU manner

• Clients communicate with set of trusted servers

• Each server presents one identical name space to clients

– All clients access it in the same way

– Location transparent

October 29, 2014 © 2014 Paul Krzyzanowski 37

Fonte: Prof. Paul Krzyzanowski

AFS Server: cells

• Servers are grouped into administrative entities called cells

• Cell: collection of

– Servers

– Administrators

– Users

– Clients

• Each cell is autonomous but cells may cooperate and

present users with one uniform name space

October 29, 2014 © 2014 Paul Krzyzanowski 38

Fonte: Prof. Paul Krzyzanowski

AFS Server: volumes

Disk partition contains

 file and directories

Volume
– Administrative unit of organization

• E.g., user’s home directory, local source, etc.

– Each volume is a directory tree (one root)

– Assigned a name and ID number

– A server will often have 100s of volumes

Grouped into volumes

October 29, 2014 © 2014 Paul Krzyzanowski 39

Fonte: Prof. Paul Krzyzanowski

Namespace management

Clients get information via cell directory server (Volume

Location Server) that hosts the Volume Location Database

(VLDB)

Goal:

 everyone sees the same namespace

 /afs/cellname/path

 /afs/mit.edu/home/paul/src/try.c

October 29, 2014 © 2014 Paul Krzyzanowski 40

Fonte: Prof. Paul Krzyzanowski

Communication with the server

• Communication is via RPC over UDP

• Access control lists used for protection

– Directory granularity

– UNIX permissions ignored (except execute)

October 29, 2014 © 2014 Paul Krzyzanowski 41

Fonte: Prof. Paul Krzyzanowski

AFS cache coherence

On open:

– Server sends entire file to client

 and provides a callback promise:

– It will notify the client when any other process modifies the file

If a client modified a file:

– Contents are written to server on close

When a server gets an update:

– it notifies all clients that have been issued the callback promise

– Clients invalidate cached files

October 29, 2014 © 2014 Paul Krzyzanowski 42

Fonte: Prof. Paul Krzyzanowski

AFS cache coherence

If a client was down

– On startup, contact server with timestamps of all cached files to

decide whether to invalidate

If a process has a file open

– It continues accessing it even if it has been invalidate

– Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)

October 29, 2014 © 2014 Paul Krzyzanowski 43

Fonte: Prof. Paul Krzyzanowski

AFS replication and caching

• Read-only volumes may be replicated on multiple servers

• Whole file caching not feasible for huge files

– AFS caches in 64KB chunks (by default)

– Entire directories are cached

• Advisory locking supported

– Query server to see if there is a lock

• Referrals

– An administrator may move a volume to another server

– If a client accesses the old server, it gets a referral to the new one

October 29, 2014 © 2014 Paul Krzyzanowski 44

Fonte: Prof. Paul Krzyzanowski

AFS key concepts

• Single global namespace

– Built from a collection of volumes

– Referrals for moved volumes

– Replication of read-only volumes

• Whole-file caching

– Offers dramatically reduced load on servers

• Callback promise

– Kkeeps clients from having to poll the server to invalidate cache

October 29, 2014 © 2014 Paul Krzyzanowski 45

Fonte: Prof. Paul Krzyzanowski

AFS summary

AFS benefits

– AFS scales well

– Uniform name space

– Read-only replication

– Security model supports mutual authentication, data encryption

AFS drawbacks

– Session semantics

– Directory based permissions

– Uniform name space

October 29, 2014 © 2014 Paul Krzyzanowski 46

Fonte: Prof. Paul Krzyzanowski

CODA
COnstant Data Availability
Carnegie-Mellon University

c. 1990-1992

October 29, 2014 © 2014 Paul Krzyzanowski 47

Fonte: Prof. Paul Krzyzanowski

CODA Goals

Descendant of AFS

 CMU, 1990-1992

Goals

1. Provide better support for replication than AFS

 – support shared read/write files

2. Support mobility of PCs

October 29, 2014 © 2014 Paul Krzyzanowski 48

Fonte: Prof. Paul Krzyzanowski

CODA

Veja também: http://www.coda.cs.cmu.edu/about.html

http://www.coda.cs.cmu.edu/about.html

Mobility

• Goal: Improve fault tolerance

• Provide constant data availability in disconnected

environments

• Via hoarding (user-directed caching)

– Log updates on client

– Reintegrate on connection to network (server)

October 29, 2014 © 2014 Paul Krzyzanowski 49

Fonte: Prof. Paul Krzyzanowski

Modifications to AFS

• Support replicated file volumes

• Extend mechanism to support disconnected operation

• A volume can be replicated on a group of servers

– Volume Storage Group (VSG)

• Replicated volumes

– Volume ID used to identify files is a Replicated Volume ID

– One-time lookup

• Replicated volume ID list of servers and local volume IDs

• Cache results for efficiency

– Read files from any server

– Write to all available servers

October 29, 2014 © 2014 Paul Krzyzanowski 50

Fonte: Prof. Paul Krzyzanowski

CODA

Veja também: http://www.coda.cs.cmu.edu/about.html

http://www.coda.cs.cmu.edu/about.html

Disconnected volume servers

AVSG: Accessible Volume Storage Group

– Subset of VSG

What if some volume servers are down?

 On first download, contact everyone you can and get a

version timestamp of the file

October 29, 2014 © 2014 Paul Krzyzanowski 51

Fonte: Prof. Paul Krzyzanowski

Reconnecting disconnected servers

If the client detects that some servers have old versions

– Some server resumed operation

– Client initiates a resolution process

• Updates servers: notifies server of stale data

• Resolution handled entirely by servers

• Administrative intervention may be required

(if conflicts)

October 29, 2014 © 2014 Paul Krzyzanowski 52

Fonte: Prof. Paul Krzyzanowski

AVSG = Ø

• If no servers are accessible

– Client goes to disconnected operation mode

• If file is not in cache

– Nothing can be done… fail

• Do not report failure of update to server

– Log update locally in Client Modification Log (CML)

– User does not notice

October 29, 2014 © 2014 Paul Krzyzanowski 53

Fonte: Prof. Paul Krzyzanowski

Reintegration

Upon reconnection

– Commence reintegration

Bring server up to date with CML log playback

– Optimized to send latest changes

Try to resolve conflicts automatically

– Not always possible

October 29, 2014 © 2014 Paul Krzyzanowski 54

Fonte: Prof. Paul Krzyzanowski

Support for disconnection

Keep important files up to date

– Ask server to send updates if necessary

Hoard database

– Automatically constructed by monitoring the user’s activity

– And user-directed prefetch

October 29, 2014 © 2014 Paul Krzyzanowski 55

Fonte: Prof. Paul Krzyzanowski

CODA summary

• Session semantics as with AFS

• Replication of read/write volumes

– Clients do the work of writing replicas (extra bandwidth)

– Client-detected reintegration

• Disconnected operation

– Client modification log

– Hoard database for needed files

• User-directed prefetch

– Log replay on reintegration

October 29, 2014 © 2014 Paul Krzyzanowski 56

Fonte: Prof. Paul Krzyzanowski

DFS

Distributed File System

Open Group

October 29, 2014 © 2014 Paul Krzyzanowski 57

Fonte: Prof. Paul Krzyzanowski

DFS

• Goal

– AFS: scalable performance but session semantics were hard to live with

– Create a file system similar to AFS but with a strong consistency model

• History

– Part of Open Group’s Distributed Computing Environment

– Descendant of AFS - AFS version 3.x

– Development stopped c. 2005

– Dead for all practical purposes (but its ideas live on)

• Assume (like AFS):

– Most file accesses are sequential

– Most file lifetimes are short

– Majority of accesses are whole file transfers

– Most accesses are to small files

 October 29, 2014 © 2014 Paul Krzyzanowski 58

Fonte: Prof. Paul Krzyzanowski

DFS Tokens

Cache consistency

maintained by tokens

Token

–Guarantee from server that a

client can perform certain

operations on a cached file

• Open tokens
– Allow token holder to open a file

– Token specifies access
(read, write, execute, exclusive-write)

• Data tokens
– Applies to a byte range

– read token - can use cached data

– write token - write access, cached
writes

• Status tokens
– read: can cache file attributes

– write: can cache modified attributes

• Lock tokens
– Holder can lock a byte range of a file

October 29, 2014 © 2014 Paul Krzyzanowski 59

Fonte: Prof. Paul Krzyzanowski

Living with tokens

• Server grants and revokes tokens

– Multiple read tokens OK

– Multiple read and a write token or multiple write tokens not OK if

byte ranges overlap

• Revoke all other read and write tokens

• Block new request and send revocation to other token holders

October 29, 2014 © 2014 Paul Krzyzanowski 60

Fonte: Prof. Paul Krzyzanowski

DFS key points

• Caching

– Token granting mechanism

• Allows for long term caching and strong consistency

– Caching sizes: 8K – 256K bytes

– Read-ahead (like NFS)

• Don’t have to wait for entire file before using it as with AFS

• File protection via access control lists (ACLs)

• Communication via authenticated RPCs

• Essentially AFS v2 with server-based token granting

– Server keeps track of who is reading and who is writing files

– Server must be contacted on each open and close operation to

request token

October 29, 2014 © 2014 Paul Krzyzanowski 61

Fonte: Prof. Paul Krzyzanowski

SMB
Server Message Blocks
Microsoft

c. 1987

October 29, 2014 © 2014 Paul Krzyzanowski 62

Fonte: Prof. Paul Krzyzanowski

SMB Goals

• File sharing protocol for Windows

9x/NT/20xx/ME/XP/Vista/Windows 7/Windows 8/Windows 10

…

• Protocol for sharing:

Files, devices, communication abstractions (named pipes), mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design Priority:

locking and consistency over client caching

October 29, 2014 © 2014 Paul Krzyzanowski 63

Fonte: Prof. Paul Krzyzanowski

SMB Design

• Request-response protocol
– Send and receive message blocks

• name from old DOS system call structure

– Send request to server (machine with resource)

– Server sends response

• Connection-oriented protocol
– Persistent connection – “session”

• Each message contains:
– Fixed-size header

– Command string (based on message) or reply string

October 29, 2014 © 2014 Paul Krzyzanowski 64

Fonte: Prof. Paul Krzyzanowski

Message Block

• Header: [fixed size]

– Protocol ID

– Command code (0..FF)

– Error class, error code

– Tree ID – unique ID for resource in use by client (handle)

– Caller process ID

– User ID

– Multiplex ID (to route requests in a process)

• Command: [variable size]

– Param count, params, #bytes data, data

October 29, 2014 © 2014 Paul Krzyzanowski 65

Fonte: Prof. Paul Krzyzanowski

SMB commands

• Files

– Get disk attributes

– create/delete directories

– search for file(s)

– create/delete/rename file

– lock/unlock file area

– open/commit/close file

– get/set file attributes

• Print-related

– Open/close spool file

– write to spool

– Query print queue

• User-related

– Discover home system for user

– Send message to user

– Broadcast to all users

– Receive messages

October 29, 2014 © 2014 Paul Krzyzanowski 66

Fonte: Prof. Paul Krzyzanowski

Protocol Steps

• Establish connection

October 29, 2014 © 2014 Paul Krzyzanowski 67

Fonte: Prof. Paul Krzyzanowski

Protocol Steps

• Establish connection

• Negotiate protocol

– negprot SMB

– Responds with version number of protocol

October 29, 2014 © 2014 Paul Krzyzanowski 68

Fonte: Prof. Paul Krzyzanowski

Protocol Steps

• Establish connection

• Negotiate protocol

• Authenticate/set session parameters

– Send sesssetupX SMB with username, password

– Receive NACK or UID of logged-on user

– UID must be submitted in future requests

October 29, 2014 © 2014 Paul Krzyzanowski 69

Fonte: Prof. Paul Krzyzanowski

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource (similar to mount)

– Send tcon (tree connect) SMB with name of shared resource

– Server responds with a tree ID (TID) that the client will use in future

requests for the resource

October 29, 2014 © 2014 Paul Krzyzanowski 70

Fonte: Prof. Paul Krzyzanowski

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs

October 29, 2014 © 2014 Paul Krzyzanowski 71

Fonte: Prof. Paul Krzyzanowski

Caching and Server Communication

• Increase effective performance with

– Caching

• Safe if multiple clients reading, nobody writing

– read-ahead

• Safe if multiple clients reading, nobody writing

– write-behind

• Safe if only one client is accessing file

• Minimize times client informs server of changes

October 29, 2014 © 2014 Paul Krzyzanowski 72

Fonte: Prof. Paul Krzyzanowski

Oplocks

Server grants opportunistic locks (oplocks) to client
– Oplock tells client how/if it may cache data

– Similar to DFS tokens (but more limited)

Client must request an oplock
– oplock may be

• Granted

• Revoked by the server at some future time

• Changed by server at some future time

October 29, 2014 © 2014 Paul Krzyzanowski 73

Fonte: Prof. Paul Krzyzanowski

Level 1 oplock (exclusive access)

– Client can open file for exclusive access

– Arbitrary caching

– Cache lock information

– Read-ahead

– Write-behind

If another client opens the file, the server has former client

break its oplock:

– Client must send server any lock and write data and acknowledge

that it does not have the lock

– Purge any read-aheads

October 29, 2014 © 2014 Paul Krzyzanowski 74

Fonte: Prof. Paul Krzyzanowski

Level 2 oplock (one writer)

• Level 1 oplock is replaced with a Level 2 lock if another

process tries to read the file

• Request this if expect others to read

• Multiple clients may have the same file open as long as

none are writing

• Cache reads, file attributes

– Send other requests to server

• Level 2 oplock revoked if another client opens the file for

writing

October 29, 2014 © 2014 Paul Krzyzanowski 75

Fonte: Prof. Paul Krzyzanowski

Batch oplock (remote open even if local closed)

• Client can keep file open on server even if a local process

that was using it has closed the file

– Exclusive R/W open lock + data lock + metadata lock

• Client requests batch oplock if it expects programs may

behave in a way that generates a lot of traffic (e.g.

accessing the same files over and over)

– Designed for Windows batch files

• Batch oplock revoked if another client opens the file

October 29, 2014 © 2014 Paul Krzyzanowski 76

Fonte: Prof. Paul Krzyzanowski

Filter oplock (allow preemption)

• Open file for read or write

• Allow clients with filter oplock to be suspended while

another process preempted file access.

– E.g., indexing service can run and open files without causing

programs to get an error when they need to open the file

• Indexing service is notified that another process wants to access the file.

• It can abort its work on the file and close it or finish its indexing and then

close the file.

October 29, 2014 © 2014 Paul Krzyzanowski 77

Fonte: Prof. Paul Krzyzanowski

No oplock

• All requests must be sent to the server

• Can work from cache only if byte range was locked by

client

October 29, 2014 © 2014 Paul Krzyzanowski 78

Fonte: Prof. Paul Krzyzanowski

Naming

• Multiple naming formats supported:

– N:\junk.doc

– \\myserver\users\paul\junk.doc

– file://grumpy.pk.org/users/paul/junk.doc

October 29, 2014 © 2014 Paul Krzyzanowski 79

Fonte: Prof. Paul Krzyzanowski

Microsoft Dfs

• “Distributed File System”

– Provides a logical view of files & directories

– Organize multiple SMB shares into one file system

– Provide location transparency & redundancy

• Each computer hosts volumes

 \\servername\dfsname

Each Dfs tree has one root volume and one level of leaf volumes.

• A volume can consist of multiple shares

– Alternate path: load balancing (read-only)

– Similar to Sun’s automounter

• Dfs = SMB + naming/ability to mount server shares on other server shares

 80 October 29, 2014 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

Redirection via referrals

• A share can be replicated (read-only) or moved through

Microsoft’s Dfs

• Client opens old location:

– Receives STATUS_DFS_PATH_NOT_COVERED

– Client requests referral:

 TRANS2_DFS_GET_REFERRAL

– Server replies with new server

October 29, 2014 © 2014 Paul Krzyzanowski 81

Fonte: Prof. Paul Krzyzanowski

SMB (CIFS) Summary

• Stateful model with strong consistency

• Oplocks offer flexible control for distributed consistency

– Oplocks mechanism supported in base OS: Windows

NT/XP/Vista/7/8.9, 20xx

• Dfs offers namespace management

October 29, 2014 © 2014 Paul Krzyzanowski 82

Fonte: Prof. Paul Krzyzanowski

SMB2 and SMB3

• SMB was…

– Chatty: common tasks often required multiple round trip messages

– Not designed for WANs

• SMB 2

– Protocol dramatically cleaned up

– New capabilities added

– SMB2 is the default network file system in Apple Mavericks (10.9)

• SMB3

– Added RDMA and multichannel support; end-to-end encryption

– Windows 8 / Windows Server 2012: SMB 3.0

– SMB3 default on Apple Yosemite (10.10)

October 29, 2014 © 2014 Paul Krzyzanowski 83

Fonte: Prof. Paul Krzyzanowski

SMB2 Additions

• Reduced complexity

– From >100 commands to 19

• Pipelining support

– Send additional commands before the response to a previous one

is received

– Credit-based flow control

• Goal: keep more data in flight and use available network bandwidth

• Server starts with a small # of “credits” and scales up as needed

• Server sends credits to client

• Client needs credits to send a message and decrements credit balance

• Allows server to control buffer overflow

• Note: TCP uses congestion control, which yields to data loss and wild

oscillations in traffic intensity

October 29, 2014 © 2014 Paul Krzyzanowski 84

Fonte: Prof. Paul Krzyzanowski

SMB2 Additions

• Compounding support

– Avoid the need to have commands that combine operations

– Send an arbitrary set of commands in one request

– E.g., instead of RENAME:

• CREATE (create new file or open existing)

• SET_INFO

• CLOSE

• Larger reads/writes

• Caching of folder & file properties

• “Durable handles”

– Allow reconnection to server if there was a temporary loss of

connectivity

October 29, 2014 © 2014 Paul Krzyzanowski 85

Fonte: Prof. Paul Krzyzanowski

Benefits

• Transfer 10.7 GB over 1 Gbps WAN link with 76 ms RTT

– SMB: 5 hours 40 minutes: rate = 0.56 MB/s

– SMB2: 7 minutes, 45 seconds: rate = 25 MB/s

October 29, 2014 © 2014 Paul Krzyzanowski 86

Fonte: Prof. Paul Krzyzanowski

SMB3

• Key features

– Multichannel support for network scaling

– Transparent network failover

– “SMBDirect” – support for Remote DMA in clustered environments

• Enables direct, low-latency copying of data blocks from remote memory

without CPU intervention

– Direct support for virtual machine files

• Volume Shadow Copy

• Enables volume backups to be performed while apps continue to write to

files.

– End-to-end encryption

October 29, 2014 © 2014 Paul Krzyzanowski 87

Fonte: Prof. Paul Krzyzanowski

NFS version 4

Network File System

Sun Microsystems

October 29, 2014 © 2014 Paul Krzyzanowski 88

Fonte: Prof. Paul Krzyzanowski

NFS version 4 enhancements

• Stateful server

• Compound RPC

– Group operations together

– Receive set of responses

– Reduce round-trip latency

• Stateful open/close operations

– Ensures atomicity of share reservations for windows file sharing

(CIFS)

– Supports exclusive creates

– Client can cache aggressively

October 29, 2014 © 2014 Paul Krzyzanowski 89

Fonte: Prof. Paul Krzyzanowski

NFS version 4 enhancements

• create, link, open, remove, rename

– Inform client if the directory changed during the operation

• Strong security

– Extensible authentication architecture

• File system replication and migration

– Mirror servers can be configured

– Administrator can distribute data across multiple servers

– Clients don’t need to know where the data is: server will send

referrals

• No concurrent write sharing or distributed cache coherence

October 29, 2014 © 2014 Paul Krzyzanowski 90

Fonte: Prof. Paul Krzyzanowski

NFS version 4 enhancements

• Improved caching

– Server can delegate specific actions on a file to enable more

aggressive client caching

– Similar to CIFS oplocks

• Callbacks

– Notify client when file/directory contents change

October 29, 2014 © 2014 Paul Krzyzanowski 91

Fonte: Prof. Paul Krzyzanowski

Review: Core Concepts

• NFS
– RPC-based access – initially stateless

– large block reads, read-ahead

• AFS
– Long-term caching

• CODA
– Read/write replication & disconnected operation

• DFS
– AFS + tokens for consistency and efficient caching

• SMB
– RPC-like access with strong consistency

– Oplocks (tokens) to support caching

– Dfs: add-on to provide a consistent view of volumes (AFS-style)

92 October 29, 2014 © 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

	Revisão de Arquiteturas
	Sistemas de arquivos baseados em rede
	Conceitos básicos
	NFS
	AFS
	CODA
	DFS
	SMB
	NFSv4

