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Um pouco sobre mim...

I Formação e filiação
I Instituto de Computação—Unicamp

I Interesses de pesquisa
I Sistemas distribuı́dos
I Sistemas operacionais



Programação

15/06 MapReduce (Islene)
I Introdução a Computação em Nuvens e Big Data
I História
I HDFS
I MapReduce
I WordCount e outras aplicações
I Experimento prático (OpenStack e Hadoop)

16/06 Virtualização (Luiz)
24/06 Computação em nuvens (Luiz)
01/07 Spark (Islene)

Critério de avaliação: um experimento por aula, pesos iguais



Computação em Nuvem

O que você associa ao termo computação em nuvem?

I Pontos positivos?
I Pontos negativos?

Fonte: https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Cloud_computing_icon.svg

https://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Cloud_computing_icon.svg


Computação em Nuvem e Big Data

I Foco da aula de hoje:
Processamento de grandes massas de dados na nuvem

Fonte: https://blog.jejualan.com/wp-content/uploads/2018/03/cloud-computing-1924338_1280.png

https://blog.jejualan.com/wp-content/uploads/2018/03/cloud-computing-1924338_1280.png


Hadoop e a importância de um framework

Tom White

Hadoop
The Definitive Guide
STOR AGE AND ANALYSIS AT INTERNET SC ALE

4th Edition

Revised & Updated

Exemplo retirado do livro
Hadoop—The Definitive Guide

I Achar a temperatura
máxima por ano em um
conjunto de arquivos texto

I Codificar todo o trabalho
em Unix...



Weather dataset
Dados crus, comentários ilustrativos

Example 2-1. Format of a National Climate Data Center record

0057
332130   # USAF weather station identifier
99999    # WBAN weather station identifier
19500101 # observation date
0300     # observation time
4
+51317   # latitude (degrees x 1000)
+028783  # longitude (degrees x 1000)
FM-12
+0171    # elevation (meters)
99999
V020
320      # wind direction (degrees)
1        # quality code
N
0072
1
00450    # sky ceiling height (meters)
1        # quality code
C
N
010000   # visibility distance (meters)
1        # quality code
N
9
-0128    # air temperature (degrees Celsius x 10)
1        # quality code
-0139    # dew point temperature (degrees Celsius x 10)
1        # quality code
10268    # atmospheric pressure (hectopascals x 10)
1        # quality code

Datafiles are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

% ls raw/1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz

Since there are tens of thousands of weather stations, the whole dataset is made up of
a large number of relatively small files. It’s generally easier and more efficient to process
a smaller number of relatively large files, so the data was preprocessed so that each
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Weather dataset
Organização dos arquivos
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Weather dataset
Código em awk e saı́da

year’s readings were concatenated into a single file. (The means by which this was
carried out is described in Appendix C.)

Analyzing the Data with Unix Tools
What’s the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline and a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script
to calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

#!/usr/bin/env bash
for year in all/*
do
  echo -ne `basename $year .gz`"\t"
  gunzip -c $year | \
    awk '{ temp = substr($0, 88, 5) + 0;
           q = substr($0, 93, 1);
           if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }
         END { print max }'
done

The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer
by adding 0. Next, a test is applied to see whether the temperature is valid (the value
9999 signifies a missing value in the NCDC dataset) and whether the quality code
indicates that the reading is not suspect or erroneous. If the reading is OK, the value is
compared with the maximum value seen so far, which is updated if a new maximum
is found. The END block is executed after all the lines in the file have been processed,
and it prints the maximum value.

Here is the beginning of a run:

% ./max_temperature.sh
1901    317
1902    244
1903    289
1904    256
1905    283
...

The temperature values in the source file are scaled by a factor of 10, so this works out
as a maximum temperature of 31.7°C for 1901 (there were very few readings at the
beginning of the century, so this is plausible). The complete run for the century took
42 minutes in one run on a single EC2 High-CPU Extra Large Instance.
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Weather dataset
Como paralelizar?

I Múltiplas threads e múltiplos computadores?
I Um computador ou thread por ano?
I Como atribuir trabalho igual para todos?
I Como juntar os resultados parcias?
I Como lidar com as falhas?



Weather dataset
Como paralelizar de maneira mais simples?

I Criar uma infraestrutura que gerencie
I distribuição
I escalabilidade
I tolerância a falhas

I Criar um modelo genérico para big data
I Conjuntos chave-valor
I Operações map e reduce



Weather dataset
Dados crus e conjuntos chave-valor

Our map function is simple. We pull out the year and the air temperature because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, −11])

Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later
in this chapter when we look at Hadoop Streaming.
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Weather dataset
Função map
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Weather dataset
Pré-processamento e função reduce

Our map function is simple. We pull out the year and the air temperature because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, −11])

Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later
in this chapter when we look at Hadoop Streaming.

Analyzing the Data with Hadoop | 21

Our map function is simple. We pull out the year and the air temperature because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, −11])

Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later
in this chapter when we look at Hadoop Streaming.

Analyzing the Data with Hadoop | 21

Fonte: Hadoop—The Definitive Guide, Tom White



Weather dataset
Fluxo de dados

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later in
this chapter when we look at Hadoop Streaming.

Figure 2-1. MapReduce logical data flow

Java MapReduce
Having run through how the MapReduce program works, the next step is to express it
in code. We need three things: a map function, a reduce function, and some code to run
the job. The map function is represented by the Mapper class, which declares an abstract
map() method. Example 2-3 shows the implementation of our map function.

Example 2-3. Mapper for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper

    extends Mapper<LongWritable, Text, Text, IntWritable> {

  private static final int MISSING = 9999;

  

  @Override

  public void map(LongWritable key, Text value, Context context)

      throws IOException, InterruptedException {

    

    String line = value.toString();

    String year = line.substring(15, 19);

    int airTemperature;

    if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs

      airTemperature = Integer.parseInt(line.substring(88, 92));

    } else {

      airTemperature = Integer.parseInt(line.substring(87, 92));

    }

    String quality = line.substring(92, 93);
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Projeto Apache Hadoop

I Sistema real! Software livre!
I Big Data: Volume, Velocity, Variety, Veracity
I Computação distribuı́da escalável e confiável
I Altamente relevante: usado por empresas como Amazon,

Facebook, LinkedIn e Yahoo! Veja mais em
Powered by Apache Hadoop?

http://hadoop.apache.org
http://wiki.apache.org/hadoop/PoweredBy


Um pouco da história do projeto Hadoop

I 2002-2004: Doug Cutting e Mike Cafarella trabalham no
projeto Nutch.

I Nutch deveria indexar a web e permitir buscas
I Alternativa livre ao Google

I 2003-2004: Google publica artigo sobre o Google File
System e MapReduce

I 2004: Doug Cutting adiciona o DFS e MapReduce ao
projeto Nutch

I 2006: Doug Cutting começa a trabalhar no Yahoo!
I 2008: Hadoop se torna um projeto Apache



Arquitetura do HDFS

Fonte: http://www.glennklockwood.com/data-intensive/hadoop/overview.html

http://www.glennklockwood.com/data-intensive/hadoop/overview.html


Arquitetura do HDFS

Fonte: http://hadoop.apache.org

http://hadoop.apache.org


HDFS e réplicas

Fonte: http://hadoop.apache.org

http://hadoop.apache.org


HDFS
Leitura de arquivo

Data Flow

Anatomy of a File Read
To get an idea of how data flows between the client interacting with HDFS, the name‐
node, and the datanodes, consider Figure 3-2, which shows the main sequence of events
when reading a file.

Figure 3-2. A client reading data from HDFS

The client opens the file it wishes to read by calling open() on the FileSystem object, 
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2).
DistributedFileSystem calls the namenode, using remote procedure calls (RPCs), to
determine the locations of the first few blocks in the file (step 2). For each block, the
namenode returns the addresses of the datanodes that have a copy of that block. Fur‐
thermore, the datanodes are sorted according to their proximity to the client (according
to the topology of the cluster’s network; see “Network Topology and Hadoop” on page

70). If the client is itself a datanode (in the case of a MapReduce task, for instance), the

client will read from the local datanode if that datanode hosts a copy of the block (see
also Figure 2-2 and “Short-circuit local reads” on page 308).

The DistributedFileSystem returns an FSDataInputStream (an input stream that
supports file seeks) to the client for it to read data from. FSDataInputStream in turn
wraps a DFSInputStream, which manages the datanode and namenode I/O.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
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HDFS
Escrita em arquivo

Anatomy of a File Write
Next we’ll look at how files are written to HDFS. Although quite detailed, it is instructive
to understand the data flow because it clarifies HDFS’s coherency model.

We’re going to consider the case of creating a new file, writing data to it, then closing
the file. This is illustrated in Figure 3-4.

Figure 3-4. A client writing data to HDFS

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a
new file in the filesystem’s namespace, with no blocks associated with it (step 2). The
namenode performs various checks to make sure the file doesn’t already exist and that
the client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
IOException. The DistributedFileSystem returns an FSDataOutputStream for the
client to start writing data to. Just as in the read case, FSDataOutputStream wraps a
DFSOutputStream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), the DFSOutputStream splits it into packets, which it
writes to an internal queue called the data queue. The data queue is consumed by the
DataStreamer, which is responsible for asking the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline, and here we’ll assume the replication level is three, so there are three nodes in
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HDFS
Pipeline

Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes in the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topology
into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

Figure 3-5. A typical replica pipeline

Overall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model
A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:

    Path p = new Path("p");

    fs.create(p);

    assertThat(fs.exists(p), is(true));
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HDFS
Tolerância a falhas

I Heartbeats
I Block reports
I Alta disponibilidade do NameNode
I Réplicas ou Erasure Coding?

Arquivo: A B
Réplicas simples: A A B B
Erasure coding: A B A+B A+2*B



Testando o HDFS

I Hadoop: Setting up a Single Node Cluster
I Interface web: http://<ip>:50070/
I Alguns comandos

$ bin/hdfs namenode -format

$ sbin/start-dfs.sh

$ bin/hdfs dfs -put <arquivo_local> <arquivo_no_hdfs>

$ bin/hdfs dfs -get <arquivo_no_hdfs> <arquivo_local>

$ bin/hdfs dfs -ls <diretorio_no_hdfs>

$ bin/hdfs dfs -rm <arquivo_no_hdfs>

$ bin/hdfs dfs -rm -r <diretorio_no_hdfs>

$ sbin/stop-dfs.sh

http://hadoop.apache.org/docs/r2.8.4/hadoop-project-dist/hadoop-common/SingleCluster.html
http://<ip>:50070/


HDFS + MapReduce
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http://www.glennklockwood.com/data-intensive/hadoop/overview.html


MapReduce
Processamento deve ficar perto dos dados...

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

Reduce tasks don’t have the advantage of data locality; the input to a single reduce task
is normally the output from all mappers. In the present example, we have a single reduce
task that is fed by all of the map tasks. Therefore, the sorted map outputs have to be
transferred across the network to the node where the reduce task is running, where they
are merged and then passed to the user-defined reduce function. The output of the
reduce is normally stored in HDFS for reliability. As explained in Chapter 3, for each
HDFS block of the reduce output, the first replica is stored on the local node, with other
replicas being stored on off-rack nodes for reliability. Thus, writing the reduce output
does consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted
boxes indicate nodes, the dotted arrows show data transfers on a node, and the solid
arrows show data transfers between nodes.
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MapReduce
Visão colorida
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Mapreduce
Várias fases

© 2014 MapR Technologies 12 

MapReduce Processing Model 

• Define mappers 

• Shuffling is automatic 

• Define reducers 

• For complex work, chain jobs together 

– Use a higher level language or DSL that does this for you 
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Typical MapReduce Workflows 
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Carol McDonald: An Overview of Apache Spark



Word Count
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Combiners

Learning Big Data with Amazon Elastic MapReduce, Vijay Rayapati and Amarkant Singh



Testando o MapReduce

Pacote de exemplos prontos.

$ bin/hadoop dfs -put <dir_local_input> <dir_hdfs_input>

$ bin/hadoop jar \

share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.4.jar \

wordcount <dir_hdfs_input> <dir_hdfs_output>

$ bin/hadoop dfs -get <dir_hdfs_output> <dir_local_output>



Hadoop Streaming

cat input.txt | ./mapper.py | sort | ./reducer.py > output.txt

Fonte: https://acadgild.com/blog/writing-mapreduce-in-python-using-hadoop-streaming/

$ bin/hdfs dfs -put input /input

$ bin/hadoop jar \

share/hadoop/tools/lib/hadoop-streaming-2.8.4.jar \

-mapper ../wc-python/mapper.py \

-reducer ../wc-python/reducer.py \

-input input.txt -output output

https://acadgild.com/blog/writing-mapreduce-in-python-using-hadoop-streaming/


Experimento
Familiarização com o ambiente Hadoop

Descrição detalhada em http://www.ic.unicamp.br/~islene/

2018-inf550/explorando-mapreduce.html

I Parte fixa: (i) instanciar máquina virtual com o Hadoop (ii)
testar HDFS e a Hadoop Streaming com Python.

I Parte livre: procurar um tema para a base de dados
(futebol, música, etc), fazer uma pequena alteração no
mapper e/ou reducer.

I Escrever um relatório sobre o experimento, comentando
resultados e eventuais dificuldades encontradas.

I O trabalho pode ser feito em duplas; apenas uma pessoa
precisa entregá-lo via Moodle.

I Em caso de fraude, poderá ser atribuı́da nota zero à
disciplina.

http://www.ic.unicamp.br/~islene/2018-inf550/explorando-mapreduce.html
http://www.ic.unicamp.br/~islene/2018-inf550/explorando-mapreduce.html


Conclusão

I MapReduce
I Grande revolução
I Pontos fracos foram surgindo

I Spark: busca por melhor desempenho
I Necessidade de camadas mais altas de abstração



Principais referências

I Projeto Apache Hadoop
I Hadoop: The Definitive Guide, Tom White, 4th Edition,

O’Reilly Media

http://hadoop.apache.org
http://shop.oreilly.com/product/0636920033448.do
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