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Maximum Common Edge Subgraph Problem

Definition (Bokhari 81):

Given: two graphs with |VG | = |VH |
Find: a common subgraph of G and H, (not necessary induced)
with the maximum number of EDGES.

We denote this problem by MSEC (Maximum Common Edge
Subgraph).
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MCES-Application

Application 1: Parallel programming environments

G : task interaction graph (edges join pairs of tasks with
communication demands)
H: processors graph (pair of processors being joined by an edge
when they are directly connected).
Problem: Find mapping of tasks to processors s.t. number of
neighboring tasks assigned onto connected processors is maximized.

Application 2: Graph isomorphism problem

When |EG | = |EH |, there exists a common subgraph with |EG |
edges, iff, G and H are isomorphic.
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MCES-More applications and complexity

Application 3: Chemistry and biology

Matching 2D and 3D chemical structures Raymond 02

Complexity

MCES is NP-hard.

Goal:

Find exact/optimal solution of MCESinstances using integer
programming (IP) techniques and polyhedral combinatorics.
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Previous polyhedral study

Master’s thesis Marenco 99 presented:
IP formulation for MCES
some valid inequalities and facets for corresponding polytope
computational results.

Subsequent works by Marenco Marenco 02, Marenco 06 present
new classes of valid inequalities for MCES,
but no new computational experiments.
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IP formulation for MCES

yik :=

{
1 if i is mapped to k
0 otherwise.

xij :=

{
1 if exists kl ∈ EH such that i is mapped to k and j to l
0 otherwise.

IP formulation presented by Marenco:

max
∑

ij∈EG
xij∑

k∈VH
yik = 1, ∀i ∈ VG∑

i∈VG
yik = 1, ∀k ∈ VH

xij + yik ≤ 1 +
∑

l∈N(k) yjl , ∀ij ∈ EG ,∀k ∈ VH

yik ∈ {0, 1}, ∀i ∈ VG ,∀k ∈ VH ; xij ∈ {0, 1}, ∀ij ∈ EG
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IP formulation for MCES

Note:

Consider inequality

xij + yik ≤ 1 +
∑

l∈N(k) yjl , ∀ij ∈ EG ,∀k ∈ VH .

Let ij be a fixed edge in G , and k a fixed vertex from H.
Then xij = 1 iff j is mapped to a neighbour of k.

Theorem ( Marenco 99):

dim(conv(S)) = (|VG | − 1)2 + |EG |, where S is the set of feasible
integer solutions of the problem, and conv(S) its convex hull.
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New IP formulation

cijkl :=

{
1 if ij is mapped to kl
0 otherwise.

New IP formulation:

max
∑

ij∈EG

∑
kl∈EH

cijkl∑
k∈VH

yik ≤ 1, ∀i ∈ VG∑
i∈VG

yik ≤ 1, ∀k ∈ VH∑
kl∈EH

cijkl ≤
∑

k∈VH
yik , ∀ij ∈ EG∑

ij∈EG
cijkl ≤

∑
i∈VG

yik , ∀kl ∈ EH∑
j∈N(i) cijkl ≤ yik + yil , ∀i ∈ VG ,∀kl ∈ EH∑
l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH

cijkl ∈ {0, 1}, ∀ij ∈ EG ,∀kl ∈ EH

yik ∈ {0, 1}, ∀i ∈ VG ,∀k ∈ VHManić, Bahiense and Souza Common Edge Subgraph polytope
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New IP formulation

We decided to work with the monotonous model
since the proofs of facet-defining inequalities are easier than in the
model given in Marenco 99.

This is because the monotone polytope associated to the above
formulation can be easily shown to be full-dimensional.
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New IP formulation

Inequality ∑
kl∈EH

cijkl ≤
∑

k∈VH
yik , ∀ij ∈ EG :

forces that for a i ∈ VG and a kl ∈ EH , if some edge incident
to i is mapped to kl , then i is mapped either to k or to l .

Can be shown that inequalities from our model∑
j∈N(i) cijkl ≤ yik + yil , ∀i ∈ VG ,∀kl ∈ EH∑
l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH

force that if ij is mapped to kl , then i is mapped to k and j to
l , or vice versa.
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Valid inequalities and facets of the polytope

Facets and other valid inequalities for the polytope P given by
the convex hull of the integer solutions of the our IP model.

We present only the proofs of validity of the corresponding
inequalities.
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Valid inequalities and facets: inequalities from model

Theorem 1:

Inequalities from model∑
kl∈EH

cijkl ≤
∑

k∈VH
yik , ∀ij ∈ EG∑

ij∈EG
cijkl ≤

∑
i∈VG

yik , ∀kl ∈ EH∑
j∈N(i) cijkl ≤ yik + yil , ∀i ∈ VG ,∀kl ∈ EH∑
l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH

define facets.

Proof:

Using standard techniques from Polyhedral Combinatorics.
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Valid inequalities that involve degrees of the vertices

Theorem 2:

Following inequality that involves degrees of the vertices is valid in
model given by Marenco 99.∑

j∈N(i) xij ≤
∑

k∈VH
min{dG (i), dH(k)}yik , for all i ∈ VG .
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Facets that involve degrees of the vertices

Theorem 2*:

Let
i be a fixed vertex from G ,
k a fixed vertex from H,
I ⊆ N(i) and
K ⊆ N(k).
Then, following inequalities are valid and define facets in our
model. ∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |.∑

j∈I

∑
l∈K cijkl ≤ |K |yik +

∑
p∈I ypk , if |I | > |K |.
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Facets that involve degrees of the vertices

Proof:

We prove that
∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |

is valid.
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Facets that involve degrees of the vertices

Proof:

We prove that
∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |

is valid.
If cijkl = 0 for every j ∈ I and l ∈ K then trivial.
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Proof:

We prove that
∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |

is valid.
If i is mapped to k =⇒
Num. of edges ij s.t. j ∈ I that can be mapped to edges kl from
H s.t. l ∈ K is at most min{|I |, |K |} = |I |.
Hence,

∑
j∈I

∑
l∈K cijkl ≤ |I | ≤ |I |yik +

∑
p∈K yip.
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Proof:

We prove that
∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |

is valid.
If i is mapped to a k ′ ∈ VH s.t. k ′ 6= k =⇒∑

j∈I

∑
l∈K cijkl ≤ 1.

If
∑

j∈I

∑
l∈K cijkl = 1 then i is mapped to a vertex from K (that

is, k ′ ∈ K ), and some j ∈ I must be mapped to k.
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Facets that involve degrees of the vertices

We obtained inequalities that generalize the result of Theorem 2*.

Manić, Bahiense and Souza Common Edge Subgraph polytope



Introduction
Previous polyhedral study

New IP formulation
Preliminary computational results

New IP formulation
Valid inequalities and facets

Facets that involve degrees of the vertices

We obtained inequalities that generalize the result of Theorem 2*.
Given an edge ij in G , and kl in H,sets
I ⊆ N(i) \ {j}, J ⊆ N(j) \ {i}, K ⊆ N(k) \ {l}, L ⊆ N(l) \ {k},
our inequality bounds the number of edges from the set
Eij := {ij} ∪ (δ(i) ∩ δ(I )) ∪ (δ(j) ∩ δ(J)) that can be mapped to
edges from the set Wkl := {kl} ∪ (δ(k) ∩ δ(K )) ∪ (δ(l) ∩ δ(L)).
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Benefit of having an extended formulation including variables cijkl :
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Benefit of having an extended formulation including variables cijkl :
We are able to express a simple inequality which can not be
written in the model given by Marenco 99.
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Facets that involve maximal matching in H

Benefit of having an extended formulation including variables cijkl :
We are able to express a simple inequality which can not be
written in the model given by Marenco 99.

Theorem 3:

Let G ′ be an induced subgraph of G s.t. |VG ′ | = 2p + 1 and G ′

has an hamiltonian cycle.
Let M be a maximal matching in H.
Then inequality ∑

ij∈EG ′

∑
kl∈M cijkl ≤ p

is valid.
If |M| ≥ p + 1, then the inequality above defines a facet.
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Facets that involve maximal matching in H

Proof:

Proof that
∑

ij∈EG ′

∑
kl∈M cijkl ≤ p is valid, where

G ′is induced subgraph of G s.t. |VG ′ | = 2p + 1 and G ′ has an
hamiltonian cycle.
M is a maximal matching in H.

Since |VG ′ | = 2p + 1, there are at most p vertex-disjoint edges in
G ′.
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Inequalities that explore the structure of the graphs

Instances that serves to test our implementation of the B&C
algorithm present a high degree of simmetry.

For example, task interaction graph of most of the instances are
regular grids.

That is why, we tried to find valid inequalities that explore the
structure of the input graphs, in order to obtain better upper
bounds for the problem.
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Inequalities that explore the structure of the graphs

Theorem 4

Let
kG : max. num. of edge disjoint k-cycles in G
kH : max. num. of edge disjoint k-cycles in H.
If kG ≥ kH , then the following inequality is valid.∑

e∈EG

∑
w∈EH

cew ≤ |EG | − (kG − kH), if |EG | ≤ |EH |.
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Inequalities that explore the structure of the graphs

kG (resp. kH): max. num. of edge disjoint k-cycles in G (resp. H)∑
e∈EG

∑
w∈EH

cew ≤ |EG | − (kG − kH), if |EG | ≤ |EH |.

(a) G is a 4-regular grid. It has 6 edge disjoint triangles (highlited
edges). (b) H has no triangles.∑

e∈EG

∑
w∈EH

cew ≤ |EG | − (kG − kH) = 36− (6− 0) = 30.
Obtained lower bound for this instance is 30 =⇒ optimal sol. is 30.
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Inequalities that explore the structure of the graphs

kG (resp. kH): max. num. of edge disjoint k-cycles in G (resp. H)∑
e∈EG

∑
w∈EH

cew ≤ |EG | − (kG − kH), if |EG | ≤ |EH |.

Note: above inequality can be generalized:
Given any special graph, say S, above inequality is valid for
numbers
kG : max. num. of edge disjoint subgraphs in G , s.t. each of those
subgraphs is isomorphic to S, and
kH : max. num. of edge disjoint subgraphs in H, s.t. each of those
subgraphs is isomorphic to S.
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Other inequalities

By lifting technique, we obtained a few stronger valid inequalities
than given in Marenco 99.
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Other inequalities

Consider inequality:

xij ≤
∑

u∈U(yiu + yju), for all ij ∈ EG . (1)

where U is a vertex cover of graph H.

Above inequality defines a facet in model given in Marenco 99, if U
is a minimal vertex cover of H.

However, this inequality does not define a facet in our model.
It is dominated by inequality from model:∑

l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH (2)

Indeed, let ij be a fixed edge from G , and U be a minimal vertex
cover of H.
By summing inequalities (2) for all u ∈ U we get∑

kl∈EH
cijkl ≤

∑
u∈U

∑
l∈N(u) cijul ≤

∑
u∈U(yiu + yju).

Manić, Bahiense and Souza Common Edge Subgraph polytope



Introduction
Previous polyhedral study

New IP formulation
Preliminary computational results

New IP formulation
Valid inequalities and facets

Other inequalities

Consider inequality:

xij ≤
∑

u∈U(yiu + yju), for all ij ∈ EG . (1)

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U
is a minimal vertex cover of H.

However, this inequality does not define a facet in our model.
It is dominated by inequality from model:∑

l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH (2)

Indeed, let ij be a fixed edge from G , and U be a minimal vertex
cover of H.
By summing inequalities (2) for all u ∈ U we get∑

kl∈EH
cijkl ≤

∑
u∈U

∑
l∈N(u) cijul ≤

∑
u∈U(yiu + yju).

Manić, Bahiense and Souza Common Edge Subgraph polytope



Introduction
Previous polyhedral study

New IP formulation
Preliminary computational results

New IP formulation
Valid inequalities and facets

Other inequalities

Consider inequality:

xij ≤
∑

u∈U(yiu + yju), for all ij ∈ EG . (1)

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U
is a minimal vertex cover of H.

However, this inequality does not define a facet in our model.

It is dominated by inequality from model:∑
l∈N(k) cijkl ≤ yik + yjk , ∀ij ∈ EG ,∀k ∈ VH (2)

Indeed, let ij be a fixed edge from G , and U be a minimal vertex
cover of H.
By summing inequalities (2) for all u ∈ U we get∑

kl∈EH
cijkl ≤

∑
u∈U

∑
l∈N(u) cijul ≤

∑
u∈U(yiu + yju).
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Our polyhedral investigation was the starting point of our
branch-and-bound (B&B) and branch-and-cut (B&C)
algorithms.

We used the same 71 instances from Marenco 99

16 instances are very small (|VG | < 10),
19 having 20 vertices each
9 having at least 30 vertices.
The largest instance has 36 vertices.

All graphs are sparse and highly symmetric, most of them
being regular.

We used: Pentium IV com 2.66 GHz, 1 GB de RAM;

We used Xpress-Optimizer v17.01.02 as the IP solver;

We used MOSEL language to code our programs
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Manić, Bahiense and Souza Common Edge Subgraph polytope



Introduction
Previous polyhedral study

New IP formulation
Preliminary computational results

Preliminary computational results

Preliminary computational results

Our polyhedral investigation was the starting point of our
branch-and-bound (B&B) and branch-and-cut (B&C)
algorithms.

We used the same 71 instances from Marenco 99

16 instances are very small (|VG | < 10),
19 having 20 vertices each
9 having at least 30 vertices.
The largest instance has 36 vertices.

All graphs are sparse and highly symmetric, most of them
being regular.

We used: Pentium IV com 2.66 GHz, 1 GB de RAM;

We used Xpress-Optimizer v17.01.02 as the IP solver;

We used MOSEL language to code our programs
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Fast polynomial time algorithm was designed to separate
inequalities that involve degrees of vertices:∑

j∈I

∑
l∈K cijkl ≤ |I |yik +

∑
p∈K yip, if |I | < |K |.∑

j∈I

∑
l∈K cijkl ≤ |K |yik +

∑
p∈I ypk , if |I | > |K |.

Separation routine to inequality that involve maximal
matching in H was implemented for p = 1, 2:∑

ij∈EG ′

∑
kl∈M cijkl ≤ p

Inequalities that explore the structure of the graphs∑
e∈EG

∑
w∈EH

cew ≤ |EG | − (kG − kH), if |EG | ≤ |EH |.

were added a priori for k = 3, 4, 5.
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Simple, though efficient, heuristic based on the solutions of
the linear relaxations computed during the enumeration.

B&C algorithm outperformed the standard B&B algorithm.

Using B&C algorithm, we solved 39 instances
( Marenco 99 solved 31).

Among unsolved instances:

1 19 have duality gap of at most 10%,
2 11 have gap between 10 and 20%,
3 only 2 have gap greater than 20%.

Algorithm is quite fast:
only few instances required more than 10 minutes to be solved
and the execution time never exceeded 14 minutes.
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Manić, Bahiense and Souza Common Edge Subgraph polytope



Introduction
Previous polyhedral study

New IP formulation
Preliminary computational results

Preliminary computational results

Preliminary computational results

Simple, though efficient, heuristic based on the solutions of
the linear relaxations computed during the enumeration.

B&C algorithm outperformed the standard B&B algorithm.

Using B&C algorithm, we solved 39 instances
( Marenco 99 solved 31).

Among unsolved instances:

1 19 have duality gap of at most 10%,
2 11 have gap between 10 and 20%,
3 only 2 have gap greater than 20%.

Algorithm is quite fast:
only few instances required more than 10 minutes to be solved
and the execution time never exceeded 14 minutes.
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