On the facial structure of the Common Edge Subgraph polytope

Gordana Manić, Laura Bahiense and Cid de Souza

Universidade Estadual de Campinas, SP, Brazil and Universidade Federal do Rio de Janeiro, RJ, Brazil

CTW 2008

Summary

- Common Edge Subgraph problem
- Definition
- Applications

Summary

- Common Edge Subgraph problem
- Definition
- Applications
- Previous polyhedral study

Summary

- Common Edge Subgraph problem
- Definition
- Applications
- Previous polyhedral study
- Our contribution
- New integer programming formulation
- Valid inequalities and facets of the polytope

Summary

- Common Edge Subgraph problem
- Definition
- Applications
- Previous polyhedral study
- Our contribution
- New integer programming formulation
- Valid inequalities and facets of the polytope
- Preliminary computational results

Maximum Common Edge Subgraph Problem

Definition (Bokhari 81):

Given: two graphs with $\left|V_{G}\right|=\left|V_{H}\right|$
Find: a common subgraph of G and H, (not necessary induced) with the maximum number of EDGES.

Maximum Common Edge Subgraph Problem

Definition (Bokhari 81):

Given: two graphs with $\left|V_{G}\right|=\left|V_{H}\right|$
Find: a common subgraph of G and H, (not necessary induced) with the maximum number of EDGES.

We denote this problem by MSEC (Maximum Common Edge Subgraph).

Maximum Common Edge Subgraph Problem

Definition (Bokhari 81):

Given: two graphs with $\left|V_{G}\right|=\left|V_{H}\right|$
Find: a common subgraph of G and H, (not necessary induced) with the maximum number of EDGES.

We denote this problem by MSEC (Maximum Common Edge Subgraph).

G

H

MCES-Example

G

MCES-Application

Application 1: Parallel programming environments

G : task interaction graph (edges join pairs of tasks with communication demands)
H : processors graph (pair of processors being joined by an edge when they are directly connected).
Problem: Find mapping of tasks to processors s.t. number of neighboring tasks assigned onto connected processors is maximized.

MCES-Application

Application 1: Parallel programming environments

G : task interaction graph (edges join pairs of tasks with communication demands)
H : processors graph (pair of processors being joined by an edge when they are directly connected).
Problem: Find mapping of tasks to processors s.t. number of neighboring tasks assigned onto connected processors is maximized.

Application 2: Graph isomorphism problem
When $\left|E_{G}\right|=\left|E_{H}\right|$, there exists a common subgraph with $\left|E_{G}\right|$ edges, iff, G and H are isomorphic.

MCES-More applications and complexity

Application 3: Chemistry and biology
 Matching 2D and $3 D$ chemical structures Raymond 02

Preliminary computational results

MCES-More applications and complexity

Application 3: Chemistry and biology
Matching 2D and $3 D$ chemical structures Raymond 02

Complexity
MCES is NP-hard.

MCES-More applications and complexity

Application 3: Chemistry and biology
Matching 2D and $3 D$ chemical structures Raymond 02

Complexity
MCES is NP-hard.

Goal:

Find exact/optimal solution of MCESinstances using integer programming (IP) techniques and polyhedral combinatorics.

Previous polyhedral study

- Master's thesis Marenco 99 presented:

IP formulation for MCES
some valid inequalities and facets for corresponding polytope computational results.

Previous polyhedral study

- Master's thesis Marenco 99 presented:

IP formulation for MCES
some valid inequalities and facets for corresponding polytope computational results.

- Subsequent works by Marenco Marenco 02, Marenco 06 present new classes of valid inequalities for MCES, but no new computational experiments.

IP formulation for MCES

$$
y_{i k}:= \begin{cases}1 & \text { if } i \text { is mapped to } k \\ 0 & \text { otherwise. }\end{cases}
$$

$x_{i j}:= \begin{cases}1 & \text { if exists } k l \in E_{H} \text { such that } i \text { is mapped to } k \text { and } j \text { to } / \\ 0 & \text { othervise. }\end{cases}$
IP formulation presented by Marenco:

$$
\begin{gathered}
\max \sum_{i j \in E_{G}} x_{i j} \\
\sum_{k \in V_{H}} y_{i k}=1, \quad \forall i \in V_{G} \\
\sum_{i \in V_{G}} y_{i k}=1, \quad \forall k \in V_{H} \\
x_{i j}+y_{i k} \leq 1+\sum_{l \in N(k)} y_{j} l, \quad \forall i j \in E_{G}, \forall k \in V_{H} \\
y_{i k} \in\{0,1\}, \quad \forall i \in V_{G}, \forall k \in V_{H} ; \quad x_{i j} \in\{0,1\}, \quad \forall i j \in E_{G}
\end{gathered}
$$

IP formulation for MCES

Note:

Consider inequality

$$
x_{i j}+y_{i k} \leq 1+\sum_{l \in N(k)} y_{j l}, \quad \forall i j \in E_{G}, \forall k \in V_{H} .
$$

Let ij be a fixed edge in G, and k a fixed vertex from H. Then $x_{i j}=1$ iff j is mapped to a neighbour of k.

IP formulation for MCES

Note:

Consider inequality

$$
x_{i j}+y_{i k} \leq 1+\sum_{l \in N(k)} y_{j l}, \quad \forall i j \in E_{G}, \forall k \in V_{H} .
$$

Let $i j$ be a fixed edge in G, and k a fixed vertex from H. Then $x_{i j}=1$ iff j is mapped to a neighbour of k.

Theorem (Marenco 99): $\operatorname{dim}(\operatorname{conv}(S))=\left(\left|V_{G}\right|-1\right)^{2}+\left|E_{G}\right|$, where S is the set of feasible integer solutions of the problem, and $\operatorname{conv}(S)$ its convex hull.

New IP formulation

$$
c_{i j k l}:= \begin{cases}1 & \text { if } i j \text { is mapped to } k l \\ 0 & \text { otherwise. }\end{cases}
$$

New IP formulation:

$$
\begin{gathered}
\max \sum_{i j \in E_{G}} \sum_{k l \in E_{H}} c_{i j k l} \\
\sum_{k \in V_{H}} y_{i k} \leq 1, \quad \forall i \in V_{G} \\
\sum_{i \in V_{G}} y_{i k} \leq 1, \quad \forall k \in V_{H} \\
\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{k \in V_{H}} y_{i k}, \quad \forall i j \in E_{G} \\
\sum_{i j \in E_{G}} c_{i j k l} \leq \sum_{i \in V_{G}} y_{i k}, \quad \forall k l \in E_{H} \\
\sum_{j \in N(i)} c_{i j k l} \leq y_{i k}+y_{i l}, \quad \forall i \in V_{G}, \forall k l \in E_{H} \\
\sum_{l \in N(k)} c_{i j k l} \leq y_{i k}+y_{j k}, \quad \forall i j \in E_{G}, \forall k \in V_{H} \\
c_{i j k l} \in\{0,1\}, \quad \forall i j \in E_{G}, \forall k l \in E_{H} \\
\text { Maníc, Bahiense and Souza }
\end{gathered}
$$

New IP formulation

We decided to work with the monotonous model since the proofs of facet-defining inequalities are easier than in the model given in Marenco 99.

Preliminary computational results

New IP formulation

We decided to work with the monotonous model since the proofs of facet-defining inequalities are easier than in the model given in Marenco 99.

This is because the monotone polytope associated to the above formulation can be easily shown to be full-dimensional.

New IP formulation

- Inequality

$$
\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{k \in V_{H}} y_{i k}, \quad \forall i j \in E_{G}:
$$

forces that for a $i \in V_{G}$ and a $k l \in E_{H}$, if some edge incident to i is mapped to $k l$, then i is mapped either to k or to l.

New IP formulation

- Inequality

$$
\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{k \in V_{H}} y_{i k}, \quad \forall i j \in E_{G}:
$$

forces that for a $i \in V_{G}$ and a $k l \in E_{H}$, if some edge incident to i is mapped to $k l$, then i is mapped either to k or to l.

- Can be shown that inequalities from our model

$$
\begin{array}{ll}
\sum_{j \in N(i)} c_{i j k l} \leq y_{i k}+y_{i l}, & \forall i \in V_{G}, \forall k l \in E_{H} \\
\sum_{l \in N(k)} c_{i j k l} \leq y_{i k}+y_{j k}, & \forall i j \in E_{G}, \forall k \in V_{H}
\end{array}
$$

force that if $i j$ is mapped to $k l$, then i is mapped to k and j to l, or vice versa.

Valid inequalities and facets of the polytope

- Facets and other valid inequalities for the polytope P given by the convex hull of the integer solutions of the our IP model.

Valid inequalities and facets of the polytope

- Facets and other valid inequalities for the polytope P given by the convex hull of the integer solutions of the our IP model.
- We present only the proofs of validity of the corresponding inequalities.

Valid inequalities and facets: inequalities from model

Theorem 1:

Inequalities from model

$$
\begin{gathered}
\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{k \in V_{H}} y_{i k}, \quad \forall i j \in E_{G} \\
\sum_{i j \in E_{G}} c_{i j k l} \leq \sum_{i \in V_{G}} y_{i k}, \quad \forall k l \in E_{H} \\
\sum_{j \in N(i)} c_{i j k l} \leq y_{i k}+y_{i l}, \quad \forall i \in V_{G}, \forall k l \in E_{H} \\
\sum_{l \in N(k)} c_{j i k l} \leq y_{i k}+y_{j k}, \quad \forall i j \in E_{G}, \forall k \in V_{H},
\end{gathered}
$$

define facets.

Valid inequalities and facets: inequalities from model

Theorem 1:

Inequalities from model

$$
\begin{gathered}
\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{k \in V_{H}} y_{i k}, \quad \forall i j \in E_{G} \\
\sum_{i j \in E_{G}} c_{i j k l} \leq \sum_{i \in V_{G}} y_{i k}, \quad \forall k l \in E_{H} \\
\sum_{j \in N(i)} c_{i j k l} \leq y_{i k}+y_{i l}, \quad \forall i \in V_{G}, \forall k l \in E_{H} \\
\sum_{l \in N(k)} c_{i j k l} \leq y_{i k}+y_{j k}, \quad \forall i j \in E_{G}, \forall k \in V_{H}
\end{gathered}
$$

define facets.

Proof:

Using standard techniques from Polyhedral Combinatorics.

Valid inequalities that involve degrees of the vertices

Theorem 2:

Following inequality that involves degrees of the vertices is valid in model given by Marenco 99 .

$$
\sum_{j \in N(i)} x_{i j} \leq \sum_{k \in V_{H}} \min \left\{d_{G}(i), d_{H}(k)\right\} y_{i k}, \quad \text { for all } i \in V_{G} .
$$

Facets that involve degrees of the vertices

Theorem 2*:

Let
i be a fixed vertex from G,
k a fixed vertex from H,
$I \subseteq N(i)$ and
$K \subseteq N(k)$.
Then, following inequalities are valid and define facets in our model.

$$
\begin{aligned}
\sum_{j \in I} \sum_{l \in K} c_{i j k l} & \leq|I| y_{i k}+\sum_{p \in K} y_{i p}, \text { if }|I|<|K| . \\
\sum_{j \in I} \sum_{l \in K} c_{i j k l} & \leq|K| y_{i k}+\sum_{p \in I} y_{p k}, \text { if }|I|>|K| .
\end{aligned}
$$

Facets that involve degrees of the vertices

Proof:

We prove that $\sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}$, if $|I|<|K|$ is valid.

Facets that involve degrees of the vertices

Proof:

We prove that $\sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}$, if $|I|<|K|$ is valid.
If $c_{i j k I}=0$ for every $j \in I$ and $I \in K$ then trivial.

Facets that involve degrees of the vertices

Proof:

We prove that $\sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}$, if $|I|<|K|$ is valid.
If i is mapped to $k \Longrightarrow$
Num. of edges ij s.t. $j \in I$ that can be mapped to edges $k l$ from H s.t. $I \in K$ is at most $\min \{|I|,|K|\}=|I|$. Hence, $\sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| \leq|I| y_{i k}+\sum_{p \in K} y_{i p}$.

Facets that involve degrees of the vertices

Proof:

We prove that $\sum_{j \in I} \sum_{l \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}$, if $|I|<|K|$ is valid.
If i is mapped to a $k^{\prime} \in V_{H}$ s.t. $k^{\prime} \neq k \Longrightarrow$
$\sum_{j \in I} \sum_{l \in K} c_{i j k l} \leq 1$.
If $\sum_{j \in I} \sum_{l \in K} c_{i j k l}=1$ then i is mapped to a vertex from K (that is, $k^{\prime} \in K$), and some $j \in I$ must be mapped to k.

Facets that involve degrees of the vertices

We obtained inequalities that generalize the result of Theorem 2*.

Facets that involve degrees of the vertices

We obtained inequalities that generalize the result of Theorem 2*. Given an edge ij in G, and $k l$ in H,sets $I \subseteq N(i) \backslash\{j\}, J \subseteq N(j) \backslash\{i\}, K \subseteq N(k) \backslash\{l\}, L \subseteq N(I) \backslash\{k\}$, our inequality bounds the number of edges from the set $E_{i j}:=\{i j\} \cup(\delta(i) \cap \delta(I)) \cup(\delta(j) \cap \delta(J))$ that can be mapped to edges from the set $W_{k l}:=\{k /\} \cup(\delta(k) \cap \delta(K)) \cup(\delta(I) \cap \delta(L))$.

Facets that involve maximal matching in H

Benefit of having an extended formulation including variables $c_{i j k l}$:

Facets that involve maximal matching in H

Benefit of having an extended formulation including variables $c_{i j k l}$: We are able to express a simple inequality which can not be written in the model given by Marenco 99.

Facets that involve maximal matching in H

Benefit of having an extended formulation including variables $c_{i j k l}$: We are able to express a simple inequality which can not be written in the model given by Marenco 99.

Theorem 3:

Let G^{\prime} be an induced subgraph of G s.t. $\left|V_{G^{\prime}}\right|=2 p+1$ and G^{\prime} has an hamiltonian cycle.
Let M be a maximal matching in H.
Then inequality

$$
\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p
$$

is valid.
If $|M| \geq p+1$, then the inequality above defines a facet.

Facets that involve maximal matching in H

Proof:

Proof that $\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p$ is valid, where G^{\prime} is induced subgraph of G s.t. $\left|V_{G^{\prime}}\right|=2 p+1$ and G^{\prime} has an hamiltonian cycle.
M is a maximal matching in H.

Facets that involve maximal matching in H

Proof:

Proof that $\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p$ is valid, where G^{\prime} is induced subgraph of G s.t. $\left|V_{G^{\prime}}\right|=2 p+1$ and G^{\prime} has an hamiltonian cycle.
M is a maximal matching in H.
Since $\left|V_{G^{\prime}}\right|=2 p+1$, there are at most p vertex-disjoint edges in G^{\prime}.

Facets that involve maximal matching in H

Proof:

Proof that $\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p$ is valid, where G^{\prime} is induced subgraph of G s.t. $\left|V_{G^{\prime}}\right|=2 p+1$ and G^{\prime} has an hamiltonian cycle.
M is a maximal matching in H.
Since $\left|V_{G^{\prime}}\right|=2 p+1$, there are at most p vertex-disjoint edges in G^{\prime}.

Inequalities that explore the structure of the graphs

Instances that serves to test our implementation of the $\mathbf{B} \& \mathbf{C}$ algorithm present a high degree of simmetry.

Inequalities that explore the structure of the graphs

Instances that serves to test our implementation of the $\mathbf{B} \& \mathbf{C}$ algorithm present a high degree of simmetry.

For example, task interaction graph of most of the instances are regular grids.

Inequalities that explore the structure of the graphs

Instances that serves to test our implementation of the $\mathbf{B} \& \mathbf{C}$ algorithm present a high degree of simmetry.

For example, task interaction graph of most of the instances are regular grids.

That is why, we tried to find valid inequalities that explore the structure of the input graphs, in order to obtain better upper bounds for the problem.

Inequalities that explore the structure of the graphs

Theorem 4

Let
k_{G} : max. num. of edge disjoint k-cycles in G
k_{H} : max. num. of edge disjoint k-cycles in H. If $k_{G} \geq k_{H}$, then the following inequality is valid.

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

Inequalities that explore the structure of the graphs

k_{G} (resp. k_{H}): max. num. of edge disjoint k-cycles in G (resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right| .
$$

Inequalities that explore the structure of the graphs

k_{G} (resp. k_{H}): max. num. of edge disjoint k-cycles in G (resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right| .
$$

(a)

(b)

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right| .
$$

(a)

(b)
(a) G is a 4-regular grid. It has 6 edge disjoint triangles (highlited edges). (b) H has no triangles.

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

(a)

(b)
(a) G is a 4-regular grid. It has 6 edge disjoint triangles (highlited edges). (b) H has no triangles.
$\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right)=36-(6-0)=30$.

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in G (resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

(a)

(b)
(a) G is a 4-regular grid. It has 6 edge disjoint triangles (highlited edges). (b) H has no triangles.
$\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right)=36-(6-0)=30$.
Obtained lower bound for this instance is $30 \Longrightarrow$ optimal sol. is 30 .

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

Note: above inequality can be generalized:

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

Note: above inequality can be generalized:
Given any special graph, say \mathcal{S}, above inequality is valid for numbers

Inequalities that explore the structure of the graphs

$k_{G}\left(\right.$ resp. $\left.k_{H}\right)$: max. num. of edge disjoint k-cycles in $G($ resp. H)

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

Note: above inequality can be generalized:
Given any special graph, say \mathcal{S}, above inequality is valid for numbers
k_{G} : max. num. of edge disjoint subgraphs in G, s.t. each of those subgraphs is isomorphic to \mathcal{S}, and
k_{H} : max. num. of edge disjoint subgraphs in H, s.t. each of those subgraphs is isomorphic to \mathcal{S}.

Other inequalities

By lifting technique, we obtained a few stronger valid inequalities than given in Marenco 99.

Other inequalities

Consider inequality:

$$
\begin{equation*}
x_{i j} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right), \quad \text { for all } i j \in E_{G} \tag{1}
\end{equation*}
$$

where U is a vertex cover of graph H.

Other inequalities

Consider inequality:

$$
\begin{equation*}
x_{i j} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right), \quad \text { for all } i j \in E_{G} \tag{1}
\end{equation*}
$$

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U is a minimal vertex cover of H.

Other inequalities

Consider inequality:

$$
\begin{equation*}
x_{i j} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right), \quad \text { for all } i j \in E_{G} \tag{1}
\end{equation*}
$$

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U is a minimal vertex cover of H.
However, this inequality does not define a facet in our model.

Other inequalities

Consider inequality:

$$
\begin{equation*}
x_{i j} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right), \quad \text { for all } i j \in E_{G} \tag{1}
\end{equation*}
$$

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U is a minimal vertex cover of H.
However, this inequality does not define a facet in our model. It is dominated by inequality from model:

$$
\begin{equation*}
\sum_{l \in N(k)} c_{i j k l} \leq y_{i k}+y_{j k}, \quad \forall i j \in E_{G}, \forall k \in V_{H} \tag{2}
\end{equation*}
$$

Other inequalities

Consider inequality:

$$
\begin{equation*}
x_{i j} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right), \quad \text { for all } i j \in E_{G} \tag{1}
\end{equation*}
$$

where U is a vertex cover of graph H.
Above inequality defines a facet in model given in Marenco 99, if U is a minimal vertex cover of H.
However, this inequality does not define a facet in our model.
It is dominated by inequality from model:

$$
\begin{equation*}
\sum_{l \in N(k)} c_{i j k l} \leq y_{i k}+y_{j k}, \quad \forall i j \in E_{G}, \forall k \in V_{H} \tag{2}
\end{equation*}
$$

Indeed, let $i j$ be a fixed edge from G, and U be a minimal vertex cover of H.
By summing inequalities (2) for all $u \in U$ we get $\sum_{k l \in E_{H}} c_{i j k l} \leq \sum_{u \in U} \sum_{l \in N(u)} c_{i j u l} \leq \sum_{u \in U}\left(y_{i u}+y_{j u}\right)$.

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99
- 16 instances are very small $\left(\left|V_{G}\right|<10\right)$, 19 having 20 vertices each 9 having at least 30 vertices. The largest instance has 36 vertices.

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99
- 16 instances are very small $\left(\left|V_{G}\right|<10\right)$, 19 having 20 vertices each 9 having at least 30 vertices. The largest instance has 36 vertices.
- All graphs are sparse and highly symmetric, most of them being regular.

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99
- 16 instances are very small $\left(\left|V_{G}\right|<10\right)$,

19 having 20 vertices each
9 having at least 30 vertices.
The largest instance has 36 vertices.

- All graphs are sparse and highly symmetric, most of them being regular.
- We used: Pentium IV com $2.66 \mathrm{GHz}, 1 \mathrm{~GB}$ de RAM;

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99
- 16 instances are very small $\left(\left|V_{G}\right|<10\right)$,

19 having 20 vertices each
9 having at least 30 vertices.
The largest instance has 36 vertices.

- All graphs are sparse and highly symmetric, most of them being regular.
- We used: Pentium IV com $2.66 \mathrm{GHz}, 1 \mathrm{~GB}$ de RAM;
- We used Xpress-Optimizer v17.01.02 as the IP solver;

Preliminary computational results

- Our polyhedral investigation was the starting point of our branch-and-bound (B\&B) and branch-and-cut (B\&C) algorithms.
- We used the same 71 instances from Marenco 99
- 16 instances are very small $\left(\left|V_{G}\right|<10\right)$,

19 having 20 vertices each
9 having at least 30 vertices.
The largest instance has 36 vertices.

- All graphs are sparse and highly symmetric, most of them being regular.
- We used: Pentium IV com $2.66 \mathrm{GHz}, 1 \mathrm{~GB}$ de RAM;
- We used Xpress-Optimizer v17.01.02 as the IP solver;
- We used MOSEL language to code our programs

Preliminary computational results

- Fast polynomial time algorithm was designed to separate inequalities that involve degrees of vertices:

$$
\begin{aligned}
& \sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}, \text { if }|I|<|K| . \\
& \sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|K| y_{i k}+\sum_{p \in I} y_{p k}, \text { if }|I|>|K| .
\end{aligned}
$$

Preliminary computational results

- Fast polynomial time algorithm was designed to separate inequalities that involve degrees of vertices:

$$
\begin{aligned}
& \sum_{j \in I} \sum_{l \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}, \text { if }|I|<|K| . \\
& \sum_{j \in I} \sum_{l \in K} c_{i j k l} \leq|K| y_{i k}+\sum_{p \in I} y_{p k}, \text { if }|I|>|K| .
\end{aligned}
$$

- Separation routine to inequality that involve maximal matching in H was implemented for $p=1,2$:

$$
\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p
$$

Preliminary computational results

- Fast polynomial time algorithm was designed to separate inequalities that involve degrees of vertices:

$$
\begin{aligned}
& \sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|I| y_{i k}+\sum_{p \in K} y_{i p}, \text { if }|I|<|K| . \\
& \sum_{j \in I} \sum_{I \in K} c_{i j k l} \leq|K| y_{i k}+\sum_{p \in I} y_{p k}, \text { if }|I|>|K| .
\end{aligned}
$$

- Separation routine to inequality that involve maximal matching in H was implemented for $p=1,2$:

$$
\sum_{i j \in E_{G^{\prime}}} \sum_{k l \in M} c_{i j k l} \leq p
$$

- Inequalities that explore the structure of the graphs

$$
\sum_{e \in E_{G}} \sum_{w \in E_{H}} c_{e w} \leq\left|E_{G}\right|-\left(k_{G}-k_{H}\right), \text { if }\left|E_{G}\right| \leq\left|E_{H}\right|
$$

were added a priori for $k=3,4,5$.

Preliminary computational results

- Simple, though efficient, heuristic based on the solutions of the linear relaxations computed during the enumeration.

Preliminary computational results

- Simple, though efficient, heuristic based on the solutions of the linear relaxations computed during the enumeration.
- $\mathbf{B} \& \mathbf{C}$ algorithm outperformed the standard $\mathbf{B} \& \mathbf{B}$ algorithm.

Preliminary computational results

- Simple, though efficient, heuristic based on the solutions of the linear relaxations computed during the enumeration.
- $\mathbf{B} \& \mathbf{C}$ algorithm outperformed the standard $\mathbf{B} \& \mathbf{B}$ algorithm.
- Using B\&C algorithm, we solved 39 instances (Marenco 99 solved 31).

Preliminary computational results

- Simple, though efficient, heuristic based on the solutions of the linear relaxations computed during the enumeration.
- B\&C algorithm outperformed the standard $\mathbf{B} \& \mathbf{B}$ algorithm.
- Using B\&C algorithm, we solved 39 instances (Marenco 99 solved 31).
- Among unsolved instances:
(1) 19 have duality gap of at most 10%,
(2) 11 have gap between 10 and 20%,
(3) only 2 have gap greater than 20%.

Preliminary computational results

- Simple, though efficient, heuristic based on the solutions of the linear relaxations computed during the enumeration.
- B\&C algorithm outperformed the standard $\mathbf{B} \& \mathbf{B}$ algorithm.
- Using B\&C algorithm, we solved 39 instances (Marenco 99 solved 31).
- Among unsolved instances:
(1) 19 have duality gap of at most 10%,
(2) 11 have gap between 10 and 20%,
(3) only 2 have gap greater than 20%.
- Algorithm is quite fast:
only few instances required more than 10 minutes to be solved and the execution time never exceeded 14 minutes.
［1］S．Bokhari．On the mapping problem．
IEEE Trans．Comput．，C－30（3）， 1981.
围
［ 2 ］J．Marenco．Un algoritmo branch－and－cut para el problema de mapping．
Master＇s thesis，Universidade de Buenos Aires， 1999.
Supervisor：I．Loiseau．
圊［3］J．Marenco New facets of the mapping polytope．
In CLAIO， 2006.
园
［ 4 ］J．W．Raymond and P．Willett．Maximum common
subgraph isomorphism algorithms for the matching of chemical structures．
J．of Computer－Aided Molecular Design，16：521－533， 2002.

