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ABSTRACT
Grid is an emerging infrastructure used to share resources
among virtual organizations in a seamless manner and to
provide breakthrough computing power at low cost. Nowa-
days there are dozens of academic and commercial products
that allow execution of isolated tasks on grids, but few prod-
ucts support the enactment of long-running processes in a
distributed fashion. In order to address such subject, this
paper presents a programming model and an infrastructure
that hierarchically schedules process activities using avail-
able nodes in a wide grid environment. Their advantages
are automatic and structured distribution of activities and
easy process monitoring and steering.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications

General Terms
Design, Performance, Management, Algorithms

Keywords
Grid computing, process support, distributed middleware

1. INTRODUCTION
Grid computing is a model for wide-area distributed and
parallel computing across heterogeneous networks in multi-
ple administrative domains. This research field aims to pro-
mote sharing of resources and provides breakthrough com-
puting power over this wide network of virtual organiza-
tions in a seamless manner [8]. Traditionally, as in Globus
[6], Condor-G [9] and Legion [10], there is a minimal infras-
tructure that provides data resource sharing, computational
resource utilization management, and distributed execution.

Specifically, considering distributed execution, most of the
existing grid infrastructures supports execution of isolated
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tasks, but they do not consider their task interdependencies
as in processes (workflows) [12]. This deficiency restricts
better scheduling algorithms, distributed execution coordi-
nation and automatic execution recovery.

There are few proposed middleware infrastructures that sup-
port process execution over the grid. In general, they model
processes by interconnecting their activities through con-
trol and data dependencies. Among them, WebFlow [1] em-
phasizes an architecture to construct distributed processes;
Opera-G [3] provides execution recovering and steering, Grid-
Flow [5] focuses on improved scheduling algorithms that take
advantage of activity dependencies, and SwinDew [13] sup-
ports totally distributed execution on peer-to-peer networks.
However, such infrastructures contain scheduling algorithms
that are centralized by process [1, 3, 5], or completely dis-
tributed, but difficult to monitor and control [13].

In order to address such constraints, this paper proposes a
structured programming model for process description and a
hierarchical process execution infrastructure. The program-
ming model employs structured control flow to promote con-
trolled and contextualized activity execution. Complemen-
tary, the support infrastructure, which executes a process
specification, takes advantage of the hierarchical structure
of a specified process in order to distribute and schedule
strong dependent activities as a unit, allowing a better exe-
cution performance and fault-tolerance and providing local-
ized communication.

The programming model and the support infrastructure,
named Xavantes, are under implementation in order to show
the feasibility of the proposed model and to demonstrate its
two major advantages: to promote widely distributed pro-
cess execution and scheduling, but in a controlled, struc-
tured and localized way.

Next Section describes the programming model, and Section
3, the support infrastructure for the proposed grid comput-
ing model. Section 4 demonstrates how the support infras-
tructure executes processes and distributes activities. Re-
lated works are presented and compared to the proposed
model in Section 5. The last Section concludes this paper
encompassing the advantages of the proposed hierarchical
process execution support for the grid computing area and
lists some future works.
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Figure 1: High-level framework of the programming
model

2. PROGRAMMING MODEL
The programming model designed for the grid computing
architecture is very similar to the specified to the Business
Process Execution Language (BPEL) [2]. Both describe pro-
cesses in XML [4] documents, but the former specifies pro-
cesses strictly synchronous and structured, and has more
constructs for structured parallel control. The rationale be-
hind of its design is the possibility of hierarchically distribute
the process control and coordination based on structured
constructs, differently from BPEL, which does not allow hi-
erarchical composition of processes.

In the proposed programming model, a process is a set of in-
terdependent activities arranged to solve a certain problem.
In detail, a process is composed of activities, subprocesses,
and controllers (see Figure 1). Activities represent simple
tasks that are executed on behalf of a process; subprocesses
are processes executed in the context of a parent process;
and controllers are control elements used to specify the exe-
cution order of these activities and subprocesses. Like struc-
tured languages, controllers can be nested and then deter-
mine the execution order of other controllers.

Data are exchanged among process elements through param-
eters. They are passed by value, in case of simple objects,
or by reference, if they are remote objects shared among
elements of the same controller or process. External data
can be accessed through data sources, such as relational
databases or distributed objects.

2.1 Controllers
Controllers are structured control constructs used to define
the control flow of processes. There are sequential and par-
allel controllers.

The sequential controller types are: block, switch, for and
while. The block controller is a simple sequential construct,
and the others mimic equivalent structured programming
language constructs. Similarly, the parallel types are: par,
parswitch, parfor and parwhile. They extend the respec-
tive sequential counterparts to allow parallel execution of
process elements.

All parallel controller types fork the execution of one or more
process elements, and then, wait for each execution to finish.
Indeed, they contain a fork and a join of execution. Aiming
to implement a conditional join, all parallel controller types

contain an exit condition, evaluated all time that an element
execution finishes, in order to determine when the controller
must end.

The parfor and parwhile are the iterative versions of the
parallel controller types. Both fork executions while the it-
eration condition is true. This provides flexibility to deter-
mine, at run-time, the number of process elements to execute
simultaneously.

When compared to workflow languages, the parallel con-
troller types represent structured versions of the workflow
control constructors, because they can nest other controllers
and also can express fixed and conditional forks and joins,
present in such languages.

2.2 Process Example
This section presents an example of a prime number search
application that receives a certain range of integers and re-
turns a set of primes contained in this range. The whole
computation is made by a process, which uses a parallel
controller to start and dispatch several concurrent activities
of the same type, in order to find prime numbers. The por-
tion of the XML document that describes the process and
activity types is shown below.

<PROCESS_TYPE NAME="FindPrimes">

<IN_PARAMETER TYPE="int" NAME="min"/>

<IN_PARAMETER TYPE="int" NAME="max"/>

<IN_PARAMETER TYPE="int" NAME="numPrimes"/>

<IN_PARAMETER TYPE="int" NAME="numActs"/>

<BODY>

<PRE_CODE>

setPrimes(new RemoteHashSet());

parfor.setMin(getMin());

parfor.setMax(getMax());

parfor.setNumPrimes(getNumPrimes());

parfor.setNumActs(getNumActs());

parfor.setPrimes(getPrimes());

parfor.setCounterBegin(0);

parfor.setCounterEnd(getNumActs()-1);

</PRE_CODE>

<PARFOR NAME="parfor">

<IN_PARAMETER TYPE="int" NAME="min"/>

<IN_PARAMETER TYPE="int" NAME="max"/>

<IN_PARAMETER TYPE="int" NAME="numPrimes"/>

<IN_PARAMETER TYPE="int" NAME="numActs"/>

<IN_PARAMETER

TYPE="RemoteCollection" NAME="primes"/>

<ITERATE>

<PRE_CODE>

int range=

(getMax()-getMin()+1)/getNumActs();

int minNum = range*getCounter()+getMin();

int maxNum = minNum+range-1;

if (getCounter() == getNumActs()-1)

maxNum = getMax();

findPrimes.setMin(minNum);

findPrimes.setMax(maxNum);

findPrimes.setNumPrimes(getNumPrimes());

findPrimes.setPrimes(getPrimes());

</PRE_CODE>



<ACTIVITY

TYPE="FindPrimes" NAME="findPrimes"/>

</ITERATE>

</PARFOR>

</BODY>

<OUT_PARAMETER

TYPE="RemoteCollection" NAME="primes"/>

</PROCESS_TYPE>

<ACTIVITY_TYPE NAME="FindPrimes">

<IN_PARAMETER TYPE="int" NAME="min"/>

<IN_PARAMETER TYPE="int" NAME="max"/>

<IN_PARAMETER TYPE="int" NAME="numPrimes"/>

<IN_PARAMETER

TYPE="RemoteCollection" NAME="primes"/>

<CODE>

for (int num=getMin(); num<=getMax(); num++) {

// stop, required number of primes was found

if (primes.size() >= getNumPrimes())

break;

boolean prime = true;

for (int i=2; i<num; i++) {

if (num % i == 0) {

prime = false;

break;

}

}

if (prime) {

primes.add(new Integer(num));

}

}

</CODE>

</ACTIVITY_TYPE>

Firstly, a process type that finds prime numbers, named
FindPrimes, is defined. It receives, through its input pa-
rameters, a range of integers in which prime numbers have
to be found, the number of primes to be returned, and the
number of activities to be executed in order to perform this
work. At the end, the found prime numbers are returned as
a collection through its output parameter.

This process contains a PARFOR controller aiming to execute
a determined number of parallel activities. It iterates from 0

to getNumActs() - 1, which determines the number of ac-
tivities, starting a parallel activity in each iteration. In such
case, the controller divides the whole range of numbers in
subranges of the same size, and, in each iteration, starts a
parallel activity that finds prime numbers in a specific sub-
range. These activities receive a shared object by reference
in order to store the prime numbers just found and control
if the required number of primes has been reached.

Finally, it is defined the activity type, FindPrimes, used to
find prime numbers in each subrange. It receives, through
its input parameters, the range of numbers in which it has
to find prime numbers, the total number of prime numbers
to be found by the whole process, and, passed by reference,
a collection object to store the found prime numbers. Be-
tween its CODE markers, there is a simple code to find prime
numbers, which iterates over the specified range and veri-
fies if the current integer is a prime. Additionally, in each
iteration, the code verifies if the required number of primes,
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Figure 2: Infrastructure architecture

inserted in the primes collection by all concurrent activities,
has been reached, and exits if true.

The advantage of using controllers is the possibility of the
support infrastructure determines the point of execution the
process is in, allowing automatic recovery and monitoring,
and also the capability of instantiating and dispatching pro-
cess elements only when there are enough computing re-
sources available, reducing unnecessary overhead. Besides,
due to its structured nature, they can be easily composed
and the support infrastructure can take advantage of this
in order to distribute hierarchically the nested controllers to
different machines over the grid, allowing enhanced scalabil-
ity and fault-tolerance.

3. SUPPORT INFRASTRUCTURE
The support infrastructure comprises tools for specification,
and services for execution and monitoring of structured pro-
cesses in highly distributed, heterogeneous and autonomous
grid environments. It has services to monitor availability
of resources in the grid, to interpret processes and schedule
activities and controllers, and to execute activities.

3.1 Infrastructure Architecture
The support infrastructure architecture is composed of groups
of machines and data repositories, which preserves its ad-
ministrative autonomy. Generally, localized machines and
repositories, such as in local networks or clusters, form a
group. Each machine in a group must have a Java Virtual
Machine (JVM) [11], and a Java Runtime Library, besides
a combination of the following grid support services: group
manager (GM), process coordinator (PC) and activity man-
ager (AM). This combination determines what kind of group
node it represents: a group server, a process server, or sim-
ply a worker (see Figure 2).

In a group there are one or more group managers, but only
one acts as primary and the others, as replicas. They are re-
sponsible to maintain availability information of group ma-
chines. Moreover, group managers maintain references to
data resources of the group. They use group repositories to
persist and recover the location of nodes and their availabil-
ity.

To control process execution, there are one or more process
coordinators per group. They are responsible to instantiate
and execute processes and controllers, select resources, and
schedule and dispatch activities to workers. In order to per-
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sist and recover process execution and data, and also load
process specification, they use group repositories.

Finally, in several group nodes there is an activity manager.
It is responsible to execute activities in the hosted machine
on behalf of the group process coordinators, and to inform
the current availability of the associated machine to group
managers. They also have pendent activity queues, contain-
ing activities to be executed.

3.2 Inter-group Relationships
In order to model real grid architecture, the infrastructure
must comprise several, potentially all, local networks, like
Internet does. Aiming to satisfy this intent, local groups are
connected to others, directly or indirectly, through its group
managers (see Figure 3).

Each group manager deals with requests of its group (rep-
resented by dashed ellipses), in order to register local ma-
chines and maintain correspondent availability. Addition-
ally, group managers communicate to group managers of
other groups. Each group manager exports coarse availabil-
ity information to group managers of adjacent groups and
also receives requests from other external services to fur-
nish detailed availability information. In this way, if there
are resources available in external groups, it is possible to
send processes, controllers and activities to these groups in
order to execute them in external process coordinators and
activity managers, respectively.

4. PROCESS EXECUTION
In the proposed grid architecture, a process is specified in
XML, using controllers to determine control flow; referenc-
ing other processes and activities; and passing objects to
their parameters in order to define data flow. After speci-
fied, the process is compiled in a set of classes, which repre-
sent specific process, activity and controller types. At this
time, it can be instantiated and executed by a process coor-
dinator.

4.1 Dynamic Model
To execute a specified process, it must be instantiated by
referencing its type on a process coordinator service of a
specific group. Also, the initial parameters must be passed
to it, and then it can be started.

The process coordinator carries out the process by executing
the process elements included in its body sequentially. If the
element is a process or a controller, the process coordinator

can choose to execute it in the same machine or to pass
it to another process coordinator in a remote machine, if
available. Else, if the element is an activity, it passes to an
activity manager of an available machine.

Process coordinators request the local group manager to find
available machines that contain the required service, process
coordinator or activity manager, in order to execute a pro-
cess element. Then, it can return a local machine, a machine
in another group or none, depending on the availability of
such resource in the grid. It returns an external worker (ac-
tivity manager machine) if there are no available workers in
the local group; and, it returns an external process server
(process coordinator machine), if there are no available pro-
cess servers or workers in the local group. Obeying this rule,
group managers try to find process servers in the same group
of the available workers.

Such procedure is followed recursively by all process coor-
dinators that execute subprocesses or controllers of a pro-
cess. Therefore, because processes are structured by nest-
ing process elements, the process execution is automatically
distributed hierarchically through one or more grid groups
according to the availability and locality of computing re-
sources.

The advantage of this distribution model is wide area execu-
tion, which takes advantage of potentially all grid resources;
and localized communication of process elements, because
strong dependent elements, which are under the same con-
troller, are placed in the same or near groups. Besides, it
supports easy monitoring and steering, due to its structured
controllers, which maintain state and control over its inner
elements.

4.2 Process Execution Example
Revisiting the example shown in Section 2.2, a process type
is specified to find prime numbers in a certain range of num-
bers. In order to solve this problem, it creates a number of
activities using the parfor controller. Each activity, then,
finds primes in a determined part of the range of numbers.

Figure 4 shows an instance of this process type executing
over the proposed infrastructure. A FindPrimes process in-
stance is created in an available process coordinator (PC),
which begins executing the parfor controller. In each it-
eration of this controller, the process coordinator requests
to the group manager (GM) an available activity manager
(AM) in order to execute a new instance of the FindPrimes

activity. If there is any AM available in this group or in an
external one, the process coordinator sends the activity class
and initial parameters to this activity manager and requests
its execution. Else, if no activity manager is available, then
the controller enters in a wait state until an activity manager
is made available, or is created.

In parallel, whenever an activity finishes, its result is sent
back to the process coordinator, which records it in the
parfor controller. Then, the controller waits until all ac-
tivities that have been started are finished, and it ends. At
this point, the process coordinator verifies that there is no
other process element to execute and finishes the process.
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5. RELATED WORK
There are several academic and commercial products that
promise to support grid computing, aiming to provide in-
terfaces, protocols and services to leverage the use of widely
distributed resources in heterogeneous and autonomous net-
works. Among them, Globus [6], Condor-G [9] and Legion
[10] are widely known. Aiming to standardize interfaces
and services to grid, the Open Grid Services Architecture
(OGSA) [7] has been defined.

The grid architectures generally have services that manage
computing resources and distribute the execution of inde-
pendent tasks on available ones. However, emerging archi-
tectures maintain task dependencies and automatically exe-
cute tasks in a correct order. They take advantage of these
dependencies to provide automatic recovery, and better dis-
tribution and scheduling algorithms.

Following such model, WebFlow [1] is a process specification
tool and execution environment constructed over CORBA
that allows graphical composition of activities and their dis-
tributed execution in a grid environment. Opera-G [3], like
WebFlow, uses a process specification language similar to
the data flow diagram and workflow languages, but furnishes
automatic execution recovery and limited steering of process
execution.

The previously referred architectures and others that enact
processes over the grid have a centralized coordination. In
order to surpass this limitation, systems like SwinDew [13]
proposed a widely distributed process execution, in which
each node knows where to execute the next activity or join
activities in a peer-to-peer environment.

In the specific area of activity distribution and scheduling,
emphasized in this work, GridFlow [5] is remarkable. It uses
a two-level scheduling: global and local. In the local level,
it has services that predict computing resource utilization
and activity duration. Based on this information, GridFlow
employs a PERT-like technique that tries to forecast the
activity execution start time and duration in order to better
schedule them to the available resources.

The architecture proposed in this paper, which encompasses
a programming model and an execution support infrastruc-

ture, is widely decentralized, differently from WebFlow and
Opera-G, being more scalable and fault-tolerant. But, like
the latter, it is designed to support execution recovery.

Comparing to SwinDew, the proposed architecture contains
widely distributed process coordinators, which coordinate
processes or parts of them, differently from SwinDew where
each node has a limited view of the process: only the activity
that starts next. This makes easier to monitor and control
processes.

Finally, the support infrastructure breaks the process and its
subprocesses for grid execution, allowing a group to require
another group for the coordination and execution of process
elements on behalf of the first one. This is different from
GridFlow, which can execute a process in at most two levels,
having the global level as the only responsible to schedule
subprocesses in other groups. This can limit the overall
performance of processes, and make the system less scalable.

6. CONCLUSION AND FUTURE WORK
Grid computing is an emerging research field that intends to
promote distributed and parallel computing over the wide
area network of heterogeneous and autonomous administra-
tive domains in a seamless way, similar to what Internet
does to the data sharing. There are several products that
support execution of independent tasks over grid, but only a
few supports the execution of processes with interdependent
tasks.

In order to address such subject, this paper proposes a pro-
gramming model and a support infrastructure that allow the
execution of structured processes in a widely distributed and
hierarchical manner. This support infrastructure provides
automatic, structured and recursive distribution of process
elements over groups of available machines; better resource
use, due to its on demand creation of process elements;
easy process monitoring and steering, due to its structured
nature; and localized communication among strong depen-
dent process elements, which are placed under the same
controller. These features contribute to better scalability,
fault-tolerance and control for processes execution over the
grid. Moreover, it opens doors for better scheduling algo-
rithms, recovery mechanisms, and also, dynamic modifica-
tion schemes.

The next work will be the implementation of a recovery
mechanism that uses the execution and data state of pro-
cesses and controllers to recover process execution. After
that, it is desirable to advance the scheduling algorithm to
forecast machine use in the same or other groups and to
foresee start time of process elements, in order to use this
information to pre-allocate resources and, then, obtain a
better process execution performance. Finally, it is interest-
ing to investigate schemes of dynamic modification of pro-
cesses over the grid, in order to evolve and adapt long-term
processes to the continuously changing grid environment.
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