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1 Introduction  

Let's assume we have an object that moves only on a plane, then its motion is defined 

completely by 3 variables: translation on the x-axis, translation on the y-axis, and a rotation 

by an angle 𝜃 around the z-axis. If we want to track the movement of this object in a 

specified time interval T in the plane, we must know its pose (x,y, 𝜃) at every moment of 

time within the time interval T. We can measure the pose of this object at every instant of 

time. However; sensor's readings are usually noisy, and they can't give us an accurate value 

of the object's pose. One way to solve this problem is to use a Kalman filter to estimate the 

pose of the object at every time step in the time interval T.  

2 Developing a model 

To use Kalman filtering to track an object in a plane, we first need to model the movement 

of this object. We can't model accurately the object's movement, but we can have an 

acceptable approximation model of the object movement. Assuming that the motion on the 

x-axis is uncorrelated to the motion on the y-axis and the motion on both of the x-axis and y-

axis are uncorrelated to the angular rotation around the z-axis, and by ignoring the jerk and 

all the higher derivatives of the pose, we can write the following discrete equations that 

describe the object's movements as shown below:  

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑇𝑠𝑣𝑥(𝑘) +
𝑇𝑠

2

2
𝑎𝑥(𝑘) 

𝑦(𝑘 + 1) = 𝑦(𝑘) + 𝑇𝑠𝑣𝑦(𝑘) +
𝑇𝑠

2

2
𝑎𝑦(𝑘) 

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝑇𝑠𝜔(𝑘) +
𝑇𝑠

2

2
𝛼(𝑘) 

𝑣𝑥(𝑘 + 1) = 𝑣𝑥(𝑘) + 𝑇𝑠𝑎𝑥(𝑘) 

𝑣𝑦(𝑘 + 1) = 𝑣𝑦(𝑘) + 𝑇𝑠𝑎𝑦(𝑘) 

𝜔(𝑘 + 1) = 𝜔(𝑘) + 𝑇𝑠𝛼(𝑘) 

And we can write them as a state space model as following:  

𝑋(𝑘 + 1) =

[
 
 
 
 
 
 
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)

𝜃(𝑘 + 1)

𝑣𝑥(𝑘 + 1)

𝑣𝑦(𝑘 + 1)

𝜔(𝑘 + 1) ]
 
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 𝑇𝑠 0 0
0 1 0 0 𝑇𝑠 0
0 0 1 0 0 𝑇𝑠

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

𝑣𝑥(𝑘)

𝑣𝑦(𝑘)

𝜔(𝑘) ]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
𝑇𝑠

2

2
0 0

0
𝑇𝑠

2

2
0

0 0
𝑇𝑠

2

2
𝑇𝑠 0 0
0 𝑇𝑠 0
0 0 𝑇𝑠 ]

 
 
 
 
 
 
 
 
 

[

𝑎𝑥(𝑘)

𝑎𝑦(𝑘)

𝛼(𝑘)

] 
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And it can be written as:  

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑢(𝑘) 

to account for the uncertainty that results from the inaccuracy of the model or the 

inaccuracy of the values of the accelerations (the inputs), we introduce a white noise to the 

model:  

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑢(𝑘) + 𝑤 

assuming 𝑤 is a Gaussian distribution noise with a mean 0 and a variance 𝑄 = 𝐵𝑄𝑏𝐵𝑇 =

𝐵 [

𝜎𝑎𝑥
2 0 0

0 𝜎𝑎𝑦
2 0

0 0 𝜎𝛼
2

] 𝐵𝑇. In practice, the value of 𝑄 is unknown, and we will have to 

estimate it. Notice also how the off-diagonal elements of 𝑄𝐵 are zeros, this is due to our 

assumption that the motions on the x-axis and the y-axis, and the rotation around the z-axis 

are uncorrelated.  

Now, since we are measuring the x, y and 𝜃, we can write:  

𝑌(𝑘 + 1) = 𝐶𝑋(𝑘 + 1) + 𝑣 

where: 𝐶 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] and 𝑣 is the measurement noises that are introduced by 

the means of measurements. We assume the measurements noises as a Gaussian 

distribution with a mean of 0 and a variance 𝑅 = 𝐶𝐶𝑇𝑉 = 𝐶𝐶𝑇 [

𝜎𝑧𝑥
2 0 0

0 𝜎𝑧𝑦
2 0

0 0 𝜎𝑧𝜃
2

].  

3 Kalman filter 

3.1 The Kalman filter algorithm  

The Kalman filter has two main stages: Prediction stage, and a correction stage.  

For the prediction state, we predict the state of the object as well as the covariance matrix 

(you can think of it as an indication of how well our estimation is, or as an estimation error). 

Before mentioning any equations, the (-) superscript indicates a predicted value and the (+) 

superscript indicates an estimated value. The prediction stage is illustrated by the following 

equations: 

𝑋−(𝑘 + 1) = 𝐴𝑋+(𝑘) + 𝐵𝑢(𝑘) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 

𝑃−(𝑘 + 1) = 𝐴𝑃𝐴−1 + 𝑄 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

We need to calculate the values of the Kalman gains Before moving to the correction stage: 

𝐾 = 𝑃−𝐶−1𝑖𝑛𝑣(𝐶𝑃−𝐶−1 + 𝑅) 
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where: 𝑅 = 𝑉𝐶𝐶−1. 

 

The correction stage:  

𝑋+(𝑘 + 1) = 𝑋−(𝑘 + 1) + 𝐾[𝑌(𝑘 + 1) − 𝐶𝑋−(𝑘 + 1)] 

And to estimate the covariance matrix: 

𝑃+ = (𝐼 − 𝐾𝐶)𝑃− 

At the beginning of the process, the Kalman filter must be given a correct initial state and an 

initial covariance matrix. 

3.2 Some notes on the Kalman filter 

Unlike other kinds of filters such as Markov filter, the Kalman filter requires us to provide it 

with a correct initial state of the object and a correct initial covariance. Therefore, if you 

can't provide an accurate initial pose and a covariance matrix for the Kalman filter, it will fail. 

This is considered a problem when dealing with an object that starts at a random unknown 

pose, or with an object which has a sudden and a great change in its pose, for example: 

someone carried the object away and put it in another place, this problem is known as the 

kidnapped robot problem.  

4 Matlab Code for an example with results 

4.1 The code 

Ts=0.1; %define the sample time 

A=[1 0 0 Ts 0 0; 0 1 0 0 Ts 0; 0 0 1 0 0 Ts; 0 0 0 1 0 0 

; 0 0 0 0 1 0; 0 0 0 0 0 1]; %define the state matrix 

C=[1 0 0 0 0 0 ; 0 1 0 0 0 0 ; 0 0 1 0 0 0]; %define the 

output matrix 

B=[0.5*Ts^2 0 0;0 0.5*Ts^2 0;0 0 0.5*Ts^2;Ts 0 0;0 Ts 0; 

0 0 Ts]; %define the input matrix 

x0=[0;0;0;0;0;0]; %define the initial conditions 

sys =ss(A,B,eye(6),[],Ts); %define a system to generate 

true data 

t=0:Ts:40; %define the time interval 

%assuming that the uncertanities in the accelerations are 

equal, we define 

%them as follow: 

segmaux=5; %standard deviation ax 

segmauy=5; %standard deviation ay 

segmaualpha=5; %standard deviation angular acceleration 

%In practice, these values are determined experimentally. 

%define the input(accelerations): 
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ux=[zeros(1,30) 25*ones(1,20) -20*ones(1,20) 

15*ones(1,length(t)-70)]+normrnd(0,segmaux,1,length(t)); 

uy=[zeros(1,10) 60*ones(1,60) -20*ones(1,length(t)-

70)]+normrnd(0,segmauy,1,length(t)); 

ualpha=[zeros(1,30) 25*ones(1,20) -20*ones(1,20) 

15*ones(1,length(t)-

70)]+normrnd(0,segmaualpha,1,length(t)); 

u=[ux;uy;ualpha]; 

%generating the true data: 

Xtrue=lsim(sys,u,t,x0); 

xtrue=Xtrue(:,1); 

ytrue=Xtrue(:,2); 

thtrue=Xtrue(:,3); 

vxtrue=Xtrue(:,4); 

vytrue=Xtrue(:,5); 

wtrue=Xtrue(:,6); 

%defining V: 

measurmentsV=[200.^2 0 0; 0 200.^2 0; 0 0 300.^2]; 

%generating measurment data by adding noise to the true 

data: 

xm=xtrue+normrnd(0,200,length(xtrue),1); 

ym=ytrue+normrnd(0,200,length(ytrue),1); 

thm=thtrue+normrnd(0,300,length(ytrue),1); 

%initializing the matricies for the for loop (this will 

make the matlab run 

%the for loop faster. 

Xest=zeros(6,length(t)); 

Xest(:,1)=x0; 

%defining R and Q 

R=measurmentsV*C*C'; 

Q=[segmaux.^2 0 0 ; 0 segmauy.^2 0 ;0 0 segmaualpha.^2]; 

%Initializing P  

P=B*Q*B'; 

for(i=2:1:length(t)) 

P=A*P*A'+B*Q*B'; %predicting P 

Xest(:,i)=A*Xest(:,i-1)+B*u(:,i-1); %Predicitng the state 

K=P*C'/(C*P*C'+R); %calculating the Kalman gains 

Xest(:,i)=Xest(:,i)+K*([xm(i); ym(i); thm(i)]-

C*Xest(:,i)); %Correcting: estimating the state 

P=(eye(6)-K*C)*P; %Correcting: estimating P 

end 

subplot(311) 

%plot(t,Xest(2,:),'r',t,vtrue,'b') 

%xlabel('time [sec]'); 

%ylabel('velocity [m/s]'); 

%title('Velocity'); 

%legend('estimated velocity','true velocity') 

plot(t,Xest(1,:),'r',t,xm,'g',t,xtrue,'b') 

xlabel('time [sec]'); 

ylabel('displacementx [m/s]'); 

title('displacementx'); 
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legend('estimated displacementx','measured 

displacementx','true displacementx'); 

subplot(312) 

plot(t,Xest(2,:),'r',t,ym,'g',t,ytrue,'b') 

xlabel('time [sec]'); 

ylabel('displacementy [m/s]'); 

title('displacementy'); 

legend('estimated displacementy','measured 

displacementy','true displacementy'); 

t=0:0.1:40; 

subplot(313) 

plot(t,Xest(3,:),'r',t,thm,'g',t,thtrue,'b') 

xlabel('time [sec]'); 

ylabel('angle'); 

title('angle theta'); 

legend('estimated angle theta','measured angle 

theta','true angle theta'); 

t=0:0.1:40; 

figure 

hold on  

%simple animation: 

for i=1:1:length(t) 

axis([min(xtrue)-500 max(xtrue)+500 min(ytrue)-500 

max(ytrue)+500]); 

%viscircles([xtrue(i) ytrue(i)],20,'color','b') 

%viscircles([Xest(1,i) Xest(2,i)],20,'color','r') 

plot(xtrue(i),ytrue(i),'bo'); 

plot(Xest(1,i),Xest(2,i),'rx'); 

pause(0.1) 

end 
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4.2 Results 


