A Note on a Maximum k-Subset Intersection Problem

Eduardo C. Xavier *
Institute of Computing
University of Campinas – UNICAMP
Campinas, SP, Brazil
eduardo@ic.unicamp.br
March 12, 2012

Abstract

Consider the following problem which we call Maximum k-Subset Intersection (MSI): Given a collection \(C = \{S_1, \ldots, S_m\} \) of \(m \) subsets over a finite set of elements \(E = \{e_1, \ldots, e_n\} \), and a positive integer \(k \), the objective is to select exactly \(k \) subsets \(S_j_1, \ldots, S_j_k \) from \(C \) whose intersection size \(|S_j_1 \cap \ldots \cap S_j_k| \) is maximum. In [2], Clifford and Popa studied a related problem and left as an open problem the status of the MSI problem. In this paper we show that this problem is hard to approximate.

Key Words: Approximation algorithms, Combinatorial problems, Subset Intersection

1 Introduction

In this paper we study the following problem: Given a collection \(C = \{S_1, \ldots, S_m\} \) of \(m \) subsets over a finite set of elements \(E = \{e_1, \ldots, e_n\} \), and a positive integer \(k \), the objective is to select exactly \(k \) subsets \(S_j_1, \ldots, S_j_k \) from \(C \) whose intersection size \(|S_j_1 \cap \ldots \cap S_j_k| \) is maximum. We call this problem Maximum k-Subset Intersection (MSI), which was left as an open problem by Clifford and Popa [2].

In this paper we present an inapproximability result for the MSI problem presenting a reduction from the Maximum Edge Biclique (MEB) problem. The MEB problem can be stated as follows: Given a bipartite graph \(G = (V_1, V_2, E) \), the problem is to find a biclique \(K_{x,y} \) subgraph of \(G \) whose number of edges \(xy \) is maximum.

The MEB problem was shown to be NP-hard by Peteers [5]. Later, Ambuhl et al in [1], proved that the MEB problem does not admit a \(1/N^\epsilon' \) approximation, where \(\epsilon' \) is a constant and \(N \) is the number of vertices, under the standard assumption that SAT has no probabilistic algorithm that runs in time \(2^{n^\epsilon} \), where \(n \) is the instance size and \(\epsilon > 0 \) can be made arbitrarily close to 0. They showed the following result:

Theorem 1 (Ambuhl et al [1]) Let \(\epsilon > 0 \) be an arbitrarily small constant. Assume that SAT does not have a probabilistic algorithm that decides whether a given instance of size \(n \) is satisfiable in time \(2^{n^\epsilon} \). Then there is no polynomial (possibly randomized) algorithm for Maximum Edge Biclique that achieves an approximation ratio of \(1/N^\epsilon' \) on graphs of size \(N \), where \(\epsilon' \) depends only on \(\epsilon \).

In this work we show an inapproximability result for the MSI problem using the inapproximability result of Theorem 1.

*Supported by CNPq
The MEB problem has applications in community detection [3] and in bioinformatics [4], among others. The biclustering problems involved in such applications can also be tackled as a MSI problem. Generally, we have in such applications a set of individuals/genes and associated interests/conditions. The main objective is to find a set of individuals/genes with the largest number of interests/conditions in common.

In Section 2 we present a Turing reduction showing the hardness of the MSI problem, and in Section 3 we prove the inapproximability of the MSI problem by showing that if there is an α-approximation algorithm for the MSI problem, then there is also an α-approximation algorithm for the MEB problem.

2 Hardness Result

In this section we present a Turing reduction from the MEB problem to the MSI problem, by presenting a polynomial time algorithm that can be used to solve the MEB problem if the MSI problem is solvable in polynomial time.

Theorem 2 MSI is NP-hard.

Proof. Let $G = (V_1, V_2, E)$ be an instance for the MEB problem, where $V_1 = \{v_1, \ldots, v_{n_1}\}$ and $V_2 = \{u_1, \ldots, u_{n_2}\}$. Create an instance for the MSI problem as follows: let the set of elements be the set V_2, i.e, $\mathcal{E} = V_2$, and for each vertex $v_i \in V_1$ create a set $v_i = \{u_j \in V_2 : (v_i, u_j) \in E\}$, i.e, this set contains all vertices of V_2 that are adjacent to v_i. The collection of subsets is $\mathcal{C} = \{v_1, \ldots, v_{n_1}\}$.

Considering the construction above, we claim that for any given biclique subgraph $K_{x,y}$ of G, there are x subsets in the corresponding instance of the MSI problem such that their intersection size is at least y. Let $V'_1 \subseteq V_1$ and $V'_2 \subseteq V_2$ be the vertices of the biclique $K_{x,y}$. Since every vertex in V'_1 is adjacent to all vertices in V'_2, then all vertices of V'_2 will belong to each subset corresponding to each vertex of V'_1. The intersection of these subsets contains V'_2.

On the other hand, we claim that if we find k subsets $V'_1 = \{v'_1, \ldots, v'_k\}$ of maximum intersection $v'_1 \cap \ldots \cap v'_k = V'_2 \subseteq V_2$, then there is a biclique subgraph in G with $k|V'_2|$ edges. From the construction of the MSI instance, every vertex v'_i is adjacent to all vertices in V'_2. Then the induced subgraph given by the corresponding vertices in V'_1 and V'_2 form a biclique of size $k|V'_2|$. Suppose there is a polynomial time algorithm $\mathcal{A}(\mathcal{C}, k, \mathcal{E})$ that solves the MSI problem, and returns (\mathcal{C}', I), where $\mathcal{C}' \subset \mathcal{C}$ contains k subsets, and I contains the elements of the intersection of these subsets. Then Algorithm 1 solves the MEB problem.

Algorithm 1 Alg $G = (V_1, V_2, E)$

1: Given G, create the collection \mathcal{C}, and elements \mathcal{E} for the MSI problem.
2: Let $K_{x,y}$ be an empty biclique.
3: for $k = 1, \ldots, n_1$ do
4: let $(V'_1, V'_2) \leftarrow \mathcal{A}(\mathcal{C}, k, \mathcal{E})$.
5: let $K'_{x',y'}$ be the biclique subgraph of G with the corresponding vertices from (V'_1, V'_2).
6: if $x'y < x'y'$ then
7: $K_{x,y} \leftarrow K'_{x',y'}$.
8: end if
9: end for
10: Return $K_{x,y}$.

Let $K^*_{x',y'}$ be an optimal solution for the MEB problem. We know that when we run $\mathcal{A}(\mathcal{C}, x^*, \mathcal{E})$, the algorithm will return a solution corresponding to vertices that form a biclique subgraph of G with at least x^*y^* edges. Since the algorithm tries all values of $k = 1, \ldots, n_1$, and returns the biclique with maximum number of edges, it will return an optimal solution.
3 Inapproximability Result

In this section we show that if there is an α-approximation algorithm $A(C, k, E)$ for the MSI problem then we can construct another algorithm A' which is an α-approximation algorithm for the MEB problem.

Lemma 3 Let A be an α-approximation algorithm for the MSI problem. Then there is an α-approximation algorithm A' for the MEB problem.

Proof. Let $G = (V_1, V_2, E)$ be an instance of the MEB problem, where $n_1 = |V_1|$ and $n_2 = |V_2|$. We construct an instance for the MSI problem as was done in Theorem 2.

Suppose that $K_{x,y}$ is a maximum edge biclique of G. If we construct an instance for the MSI problem as stated above, and run $A(C, x, E)$ we know that the algorithm is going to find x subsets v_{i_1}, \ldots, v_{i_x}, whose intersection size is at least αy. Notice that the vertices v_{i_1}, \ldots, v_{i_x} from V_1 and the vertices in the corresponding intersection of their subsets, form a biclique with at least αxy edges.

Suppose we run $A(C, k, E)$, for $k = 1, \ldots, n_1$. We can then find the solution $v'_{i_1}, \ldots, v'_{i_k}$ that maximizes the value $k'T$ where $T = |v'_{i_1} \cap \ldots \cap v'_{i_k}|$, among all these executions of the algorithm. Notice that the corresponding vertices $v'_{i_1}, \ldots, v'_{i_k}$ from V_1 and vertices in $v'_{i_1} \cap \ldots \cap v'_{i_k}$ from V_2, form a biclique of size $k'T \geq \alpha xy$. Then we have an α-approximation solution for the given instance G of the MEB problem.

Using Theorem 1 and Lemma 3 we have the following result.

Theorem 4 Let $\epsilon > 0$ be an arbitrarily small constant. Assume that SAT does not have a probabilistic algorithm that decides whether a given instance of size n is satisfiable in time $2^{n^{\epsilon}}$. Then there is no polynomial time algorithm for the Maximum k-Subset Intersection problem that achieves an approximation ratio of $1/N^{\epsilon'}$ where N is the size of the instance, and ϵ' depends only on ϵ.

References

