
The Class Constrained Bin Packing Problem with applications to

Video-on-Demand.∗†

E. C. Xavier‡ F. K. Miyazawa§

February 28, 2008

Abstract

In this paper we present approximation results for the class constrained bin packing problem that has appli-
cations to Video-on-Demand Systems. In this problem we are given bins of size B with C compartments, and n

items of Q different classes, each item i ∈ {1, . . . , n} with class ci and size si. The problem is to pack the items
into bins, where each bin contains at most C different classes and has total items size at most B. We present
several approximation algorithms for offline and online versions of the problem.

1 Introduction

In this paper we study a class constrained version of the well known bin packing problem, which we denote by
CCBP (Class Constrained Bin Packing). In this problem we are given a tuple I = (L, s, c, C, Q, B) where L =
(a1, . . . , an) is a list of items, each item ai ∈ L with size 0 < sai ≤ B and class cai ∈ {1, . . . , Q}, and a set of
bins, each one with size B and C compartments. We also refer to B as the load capacity of the bin and C as its
storage capacity. This notation will be made clear in Section 2, when we relate this problem with a video-on-demand
problem. A packing P of L is a partition of the items, where each part has total items size at most B and the number
of different classes in each part is at most C. The problem is to find a packing of L into the minimum number of bins.
In the online version of the CCBP problem the items must be packed in the order (a1, . . . , an), where each item ai

must be packed without knowledge of further items. We assume that 1 < C < Q, otherwise the CCBP problem
can be solved as the original bin packing, since if C = 1 then items of different classes must be packed in different
bins and if C ≥ Q then the class constraints are irrelevant. We also consider the version of this problem with bins
of different sizes. In this case we have T different bins size. The input instance is a tuple I = (L, s, c, w, C, Q, B)
where w : {1, . . . , T} → R+ gives the bins size. We assume w.l.o.g that for each i ∈ {1, . . . , T}, w(i) ≤ B. In
this case, the problem is to pack all items into bins such that the total size of used bins is minimized. This problem
is denoted by VCCBP (Variable Class Constrained Bin Packing). Packing problems with class constraints have

1A preliminary version of this paper appeared as an extended abstract in COCOON 2006, LNCS 4112, pp. 439–448, 2006.
2This research was partially supported by CNPq (478470/06-1, 471460/04–4, 306526/04–2, and 490333/04–4) and ProNEx–

FAPESP/CNPq(Proc. 03/09925–5).
3Corresponding author: Escola de Artes, Ciências e Humanidades – Universidade de São Paulo – USP Leste Av. Arlindo Bettio, 1000.

Ermelino Matarazzo CEP: 03828-000, Brazil – ecx@usp.br
4Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 — Campinas–SP — Brazil,

fkm@ic.unicamp.br.

1

many applications in multimedia storage systems, resource allocation [23, 19, 8, 13, 22, 9, 21, 7] and in operations
research like manufacturing systems [12, 17, 5, 27, 26].

1.1 Notation

In the online case, the bins used to pack the items are classified as open or closed. An empty bin is declared open
when it receives its first item, and remains so until it is declared closed. Only open bins may receive items. Once
a bin is closed, it cannot be declared open again. We consider the bounded and unbounded space versions of the
online CCBP problem. In the l-bounded space problem, an algorithm must keep at any time during its execution at
most l open bins. In the unbounded version, an algorithm may keep an unbounded number of open bins.

Given an algorithmA for the CCBP problem and an instance I , we denote byA(I) the number of bins used by
the algorithm to pack this instance. We denote by OPT(I) the number of bins used by an optimum (offline) solution
to pack the instance I . The algorithm A has an absolute approximation factor α, for α ≥ 1, if for every I it satisfies
A(I) ≤ αOPT(I). It has an asymptotic approximation factor α if for every I , the algorithm produces a solution
such that A(I) ≤ αOPT(I) + β where β is a constant. Given an algorithm Aε, for some ε > 0, and an instance
I for some problem P we denote by Aε(I) the value of the solution returned by algorithm Aε when executed on
instance I . We say that Aε, for ε > 0, is an asymptotic polynomial time approximation scheme (APTAS) for the
problem CCBP if there exists a constant β such that Aε(I) ≤ (1 + ε)OPT(I) + β for any instance I . An online
algorithm A for a minimization problem is said to have a competitive ratio α, for α ≥ 1, if there exists a constant β

such that A(I) ≤ αOPT(I) + β for any instance I .
Let I be an instance of the CCBP problem and L be the list of items in I . We write that a ∈ I with the same

meaning of a ∈ L, and we denote s(I) = s(L) =
∑

ai∈L sai . Given an integer M , we denote by [M] the set
{1, . . . ,M}.

Given two sequences La = (a1, . . . , an) and Lb = (b1, . . . , bm), we denote the concatenation of these two lists
by La‖Lb, i.e, La‖Lb = (a1, . . . , an, b1, . . . , bm). Given a packing P we denote by |P| the number of bins in P .

In the Appendix A we provide a table containing the most used symbols to help the reader follow the reading of
this article.

Throughout this paper, we use the terms color and class with the same meaning. We say that a bin is colored if
it contains items of C different classes. In this case, this bin cannot pack any other item of a different class. A bin
is said to be full if the total size of the items packed inside it is equal to B.

1.2 Related Work

A special case of the CCBP problem is the Bin Packing problem, which is one of the most studied problems in
the literature. Some of the most famous algorithms for the bin packing problem are the algorithms FF, BF, FFD
and BFD, with asymptotic performance bounds 17/10, 17/10, 11/9 and 11/9, respectively. We refer the reader to
Coffman et al. [2] for a survey on approximation algorithms for bin packing problems. Fernandez de la Vega and
Lueker [6] presented an APTAS for the bin packing problem. The online bin packing is also a well studied problem.
There are many online algorithms presented in the literature for the bin-packing problem. The algorithms FF, NF,
and BF are online and were investigated by Ullman [24], Johnson [10] and Johnson et al. [11]. Subsequent papers
proposed algorithms with better approximation ratios that pack items according to interval sizes. Yao [28], and Lee
and Lee [15] presented the Harmonic and Refined Harmonic algorithms with competitive ratio 1.692 and 1.636

2

respectively. To our knowledge the best online algorithm, with a competitive ratio of 1.58889, was presented by
Seiden [18]. The best lower bound for this problem is 1.54014 due to van Vliet [25]. Recently the class-constrained
versions of packing problems have received attention. In [5, 4], Dawande et al. claimed an approximation scheme
for the offline VCCBP problem when the number of different classes Q in the input instance is bounded by a
constant. In [20], Shachnai and Tamir presented a dual polynomial time approximation scheme for the offline class
constrained bin packing problem (CCBP). They also used the assumption that the number of different classes in the
input instance is bounded by a constant. In this case, given an instance I , the problem is to find a packing of the items
in at most OPT(I) bins, each bin with size at most (1 + O(ε))B. In [19], Shachnai and Tamir presented theoretical
results for a Multiple Knapsack problem with class constraints where all items have unit size. They introduced this
problem with applications to video-on-demand servers. Subsequently to this work, Golubchik et al. [8] presented an
approximation scheme to the problem. Later, Kashyap and Khuller [13], also presented approximation algorithms
to the problem with variable item sizes. Shachnai and Tamir in [23], presented algorithms for the online CCBP
problem when all items have unit size. In this case they provided a lower bound of 2 to the problem and also
algorithms that have a competitive ratio of 2.

1.3 Results

In this paper we present practical approximation algorithms for the CCBP problem with applications to video-on-
demand problems. We also present algorithms for the online CCBP problem generalizing the work presented by
Shachnai and Tamir [23], since we assume that items can have different sizes. Finally we present an APTAS for the
VCCBP problem for fixed Q.

We note that the VCCBP problem was first studied by Dawande et al. [5, 4] where a tentative of an APTAS
was considered when Q is bounded by a constant. We observed that their algorithm does not lead to an APTAS as
claimed. First of all, they do a linear rounding step of the list of items L and then obtain an optimal packing for the
new list. Doing this they do not guarantee a packing for the original items because of the class constraints. To pack
the small items they use a First Fit strategy, and claim that each bin, perhaps a constant number of bins, is filled by
at least (1 − O(ε)), but this is also not true due to the class constraints. In our algorithm the linear rounding step
is done with items separated by colors. It then generates all possible packings for the rounded items. To pack the
small items we use another strategy.

Specifically our results are the following:

• For the offline CCBP problem when all items have unit size, we present an asymptotic (1+1/C)-approximation
algorithm. When items have size at most B/m, for some integer m, we show an algorithm with asymptotic
approximation factor (1 + 1/C + 1/ min{C,m}).

• We implemented these practical algorithms and present some experimental results for them. The experiments
show that the algorithms generate solutions of high quality and can be used in practice.

• We show that the bounded space online CCBP problem does not admit a constant competitive ratio algorithm.
Moreover if any item of the instance has size in (ε, B], where ε < min(B, 1/C), we show that any online
algorithm has competitive ratio in Ω(1/(Cε)).

• For the unbounded space online CCBP problem we present an online algorithm with competitive ratio in
[2.666, 2.75].

3

• We show the points where the algorithm presented in [5, 4] fails and present an APTAS for the offline VCCBP
problem for fixed Q.

Organization: In Section 2 we present the application of the CCBP problem to the data placement of videos. In
Section 3, motivated by the video-on-demand systems applications, we present practical approximation algorithms
for the CCBP problem assuming that all items have unit size. In Section 4, we present lower bounds for the
competitive ratio of any algorithm for the bounded space online CCBP problem. In this section, we also present an
online algorithm with a competitive ratio in [2.666, 2.75] for the unbounded problem. In Section 5 we present an
APTAS for the VCCBP problem when Q is bounded by a constant. In Section 6 we show experimental results of
the practical algorithms presented in Section 3.

2 Applications of the CCBP Problem to the Data Placement on Video-on-Demand
Servers

The first work to consider packing problems with class constraints as a data placement problem was the one of
Shachnai and Tamir [19]. They considered the multiple knapsack version of the CCBP problem. In this case N

bins are given, and the objective is to pack the maximum number of items satisfying the class constraints in each
bin. Suppose we have a server of videos with N disks, each disk j ∈ {1, . . . , N} with storage capacity Cj and
load capacity Bj . That is, each disk j can store Cj movies and can attend at most Bj simultaneously requests for
videos. The problem is to construct a server such that, based on expected requests for movies (computed by movies
popularity), the number of attended requests is maximized. This problem was shown to be NP -hard by Shachnai
and Tamir [19], and Golubchik et al. [8] show that even if all disks are equal, i.e, have same load and storage
capacities, the problem remains NP -hard.

The total load capacity of the server is BT =
∑N

j=1 Bj . The movies considered to be stored in the server are
F1, F2, . . . , Ff . Given popularity parameters we compute the number ri of expected requests for each movie i at
any time, such that

∑
ri = BT . Consider for example that we have a server with two hard disks (Disk 1 and Disk

2) each one with C = 2 and B = 6. There are three movies F1, F2 and F3 with expected requests r1 = 8, r2 = 2
and r3 = 2. One optimal solution is given in Figure 1. One copy of movie F1 is stored in disk 1 and disk 2, a copy
of movie F3 is stored in disk 1, and a copy movie F2 is stored in disk 2. Notice that in this case all load capacity of
the disks are used. We call a placement perfect when all load capacity is used, i.e, all requests are satisfied.

We can also consider the following problem: given a set of requests for a set of movies, construct a server using
the minimum number of disks such that all requests are satisfied. This problem is NP -hard since, given an instance
for the data placement with N disks, a perfect placement exists, if and only if we can find a packing for all requests
using at most N disks. When all disks are equal, we can see this data placement problem as a special case of the
CCBP problem. In this case we have an instance I = (L, s, c, C, Q, B), where each item i ∈ L is a request of class
ci ∈ Q (the movie type). All items have the same size and C is the storage capacity of the disks, i.e, the number of
different movies that the disk can store. In this case B is the maximum number of simultaneous requests that a disk
can attend, i.e, the load capacity. That is, we want to construct a video server storing the videos and distributing all
the requests minimizing the number of used disks.

4

Figure 1: An optimal solution for the given video server.

3 Practical Approximation Algorithms

In this section we consider the problem where all items have unit size. As we saw, this problem is NP -hard and has
applications in the data placement problem for video-on-demand. In this case, we can assume that items are given
as a list of sets U1, . . . , UQ, where each set Ui has ni items of unit size with class i. Each bin packs at most B items
of at most C different sets. The problem is to pack all sets of items in the minimum number of bins.

We adapt here an algorithm known as Moving-Window (MW) first presented by Shachnai and Tamir [19] and
also used later by Golubchik et al. [8] and Kashyap and Khuller [13]. In these previous works the algorithm was
considered for the knapsack version of the problem, where one wishes to pack the maximum number of items in a
given number of bins.

Moving-Window (MW): The algorithm keeps a vector R = (R[1], R[2], . . . , R[Q]) representing non-packed
items in such a way that R[i] is the number of remaining items to be packed of some set Uj . The vector is maintained
in non-decreasing order of the values R[i] during all the execution of the algorithm. If at any given moment, it packs
part of the items represented by R[i], then the vector must be reordered.

In any iteration of the algorithm, it tries to pack C different sets creating a new bin. For that, the algorithm keeps
a window of C sets. At first, the window goes from R[1] to R[C]. If

∑C
i=1 R[i] ≥ B then the algorithm packs the

corresponding sets of R[1], R[2], . . . , R[j], where j ≤ C is the first index such that
∑j

i=1 R[i] ≥ B. Notice that
R[j] may be partially packed. The totally packed sets are removed from the vector. If

∑C
i=1 R[i] < B then the

algorithm moves the window to the right, until the first time that the window includes C sets such that their total
size is greater than or equal to B. If this is the case, the C sets are packed and the vector R is reordered (if the last
considered set was partially packed). Then the algorithm restarts. If in some iteration, the window reaches the end
of the vector R, i.e, the C largest sets have total size smaller than B, then the algorithm generates bins by packing
entirely C sets in each bin, with exception perhaps in the last bin that can pack less than C sets.

Let B1, . . . , BN be the bins created by the algorithm MW in the order they were created. Let NF be the number
of full bins and NC be the number of bins that are not full which we call colored. Let N = NF + NC . Notice that
bins B1, . . . , BNF

, are the full bins since when the algorithm creates the first non-full bin, when the window reaches
the end of R and the C largest sets have total size smaller than B, then all other generated bins becomes non-full
having C different sets each except perhaps the last.

The following two lemmas for the CCBP problem are a direct extension of the work of Golubchik et al. [8]

5

done for the knapsack version of the problem.

Lemma 3.1 If any of the first NF bins produced by the algorithm MW packs less than C different sets (classes),
then the algorithm produces an optimal solution.

Proof. Let Bi be the first bin, among the first NF bins, that packs less than C different sets. In this case, the
window must start from R[1] and goes until R[j′] for some j′ ≤ C − 1. The vector R is ordered such that
R[j′] ≤ R[j′ + 1] ≤ . . . ≤ R[Q]. Therefore, any C − 1 remaining sets have total size greater than B. That is,
even if the set R[j′] was partially packed, all other created bins must be full (except perhaps the last), because the
remaining items of a partially packed set with C − 1 sets have total size greater than B.

This way, we assume that for each one of the NF first bins, the algorithm packs in each iteration, exactly C

different sets and that at most one of these sets is partially packed. Clearly, for the remaining NC bins, all of them
packs totally C different sets except perhaps the last bin.

Let OPT(I) be the number of bins used by an optimal solution to pack instance I . We assume that NF ≤
OPT(I)− 1, otherwise the algorithm generated an optimal solution. We have the following result.

Lemma 3.2 After the MW algorithm has created the first OPT(I) bins, there exists at most NF sets to be packed.

Proof. Notice that the number of different sets must satisfy Q ≤ OPT(I)C. Since each one of the full bins packs
C different sets, where one of these may be partially packed, then the algorithm partially packs at most NF sets.
These partially packed sets can be seen as new sets that are considered by the algorithm during its execution. That
is, we can assume that the algorithm packs at most Q + NF different sets. Also remember that each one of the
NC colored bins packs entirely C different sets. Since each one of the first OPT(I) bins packs C different sets and
Q ≤ OPT(I)C we conclude that it remains at most NF sets that are packed in extra colored bins.

With this result we can give the approximation factor of the MW algorithm.

Theorem 3.3 The MW algorithm has an asymptotic approximation factor of (1 + 1
C) for the CCBP problem when

all items have unit size.

Proof. Let I be an instance for the CCBP problem where all items have unit size. From Lemma 3.2, after the
algorithm generates the first OPT(I) bins, it remains at most NF sets to be packed. Since each one of the generated
bins packing these sets is colored, each bin entirely packs C different sets and then, the number of extra bins created
can be bounded by ⌈

NF

C

⌉
≤ OPT(I)− 1

C
+ 1 =

OPT(I)
C

− 1/C + 1.

We can bound the number of generated bins by OPT(I) + OPT(I)/C + 1.

Proposition 3.4 The bound of Theorem 3.3 is tight.

Proof. Consider an input instance I having N(C − 2) big sets with 2p + 2 items each, and 2N small sets with p

items each. The bin load capacity is B = (C − 2)(2p + 2) + 2p + 2 items. Notice that (C − 2) big sets with
two small sets does not fill the bin load capacity. When the MW algorithm is executed over this instance, the first
generated bin packs one small set, (C−2) big sets entirely and another big set partially. The remaining items of the
last packed big set becomes a small set with p items. Notice that the MW algorithm generates N(C − 2)/(C − 1)

6

bins by packing big sets and one small set that is a residual part of a big set. After that, there remain 2N small sets
that are packed in 2N/C additional bins. When N and C increase enough, the number of bins tends to N + N/C.
An optimal packing of this instance uses N bins. In this packing, each bin packs (C − 2) big sets and two small
sets.

Notice that the MW algorithm is based in a heuristic that tries to pack C different sets in each bin. But the way
the algorithm works, it tends to pack small and large sets in different bins. A good heuristic is to pack large and
small sets together, in such a way that each generated bin has a good use of its load capacity, while trying to pack C

different sets in each bin. For that, we propose a new algorithm that we call Modified-Moving-Window (MW′).
Modified-Moving-Window (MW′): This algorithm is similar to the MW algorithm in such a way that it also

keeps a window of size C over a vector R = (R[1], R[2], . . . , R[Q]) that is maintained ordered in non-decreasing
order of the values R[i]. The algorithm also moves a window of size C until the total size of the sets in the window
contains B or more items. In the MW′ algorithm, the vector R is a circular list. At first, the window consists of the
sets R[1], . . . , R[C]. If the total size of these sets is greater than or equal to B, then the algorithm packs the sets
R[1], . . . , R[j], where j ≤ C is the first index such that

∑j
i=1 R[i] ≥ B, with the last set R[j] probably partially

packed. If the total size of these sets is smaller than B then instead of doing a move to the right, as in the original
MW algorithm, the algorithm performs a move to the left and considers the sets R[Q], R[1], . . . , R[C − 1]. The
algorithm performs moves to the left until the total size of the C sets are greater than or equal to B. In this case it
packs the C sets and restarts. If the algorithm performs C moves to the left, and then considers the largest C sets,
and this sets have total size less than B, then the algorithm generates a packing like the original MW algorithm, by
packing entirely C sets in each bin.

It is not hard to prove similar results to Lemma 3.1 and Lemma 3.2 to the MW′ algorithm. Using the same
arguments of Theorem 3.3 we can prove the following result.

Theorem 3.5 The MW′ algorithm has an asymptotic approximation factor of (1+ 1
C) for the CCBP problem when

all items have unit size.

Notice that this bound is tight since the algorithm MW′ generates the same solution generated by the algorithm
MW for the instance presented in Proposition 3.4. The advantage of the MW′ algorithm is to try to pack small sets
with large ones trying to guarantee a good filling of the bins, since it tries to pack the maximum number of small
sets with large sets. To see this, consider for example an instance I that consists of 2n small sets, each one with one
item, n large sets with 5 items each and n medium sets with 2 items each. Suppose B = 7 and C = 3. The MW
algorithm first generates n bins by packing two medium sets and part of another large set. After that, it generates
2n/3 new bins to pack the small sets. The MW′ algorithm first generates n bins such that each one packs two small
sets and a large set. The remaining medium sets are packed in n/3 bins.

Shachnai and Tamir [23] proved that the FF algorithm when applied to this problem have an approximation
factor of 2. We can consider another simple approach to solve the problem using ideas similar to the ones used in
algorithms FFD and BFD (see Coffman et al. [2]), but as we will see this approach does not gives better results.
Algorithm BFFD: The algorithm first sorts the sets U1, . . . , UQ in non-increasing order of their size and then apply
the FF algorithm in the list obtained concatenating these sets.

Theorem 3.6 The BFFD algorithm has an asymptotic approximation factor equal to 2 for the CCBP problem
when all items have unit size.

7

Proof. Follows direct from the fact that FF is a 2 approximation [23].
Since this algorithm does not try to optimize the class usage in the packing, it can generate poor quality packings.

In fact, we show in the next proposition that the bound of Theorem 3.6 is tight.

Proposition 3.7 The bound of Theorem 3.6 is tight.

Proof. Let I = (L, s, c, C, Q, B) be an instance to the CCBP problem where all items have unit size. Let the size
of the bins be B = C2. Suppose the input list of items consists of one big set with C3 items and C2 small sets with
one item each. The BFFD algorithm first packs the big set in C3/C2 bins and the small sets in C2/C bins giving a
total of 2C bins. An optimal solution uses C bins packing in each bin C2 − (C − 1) items of the big set and C − 1
small sets. The remaining C(C − 1) items of the big set, and C small sets can be packed in 2 extra bins.

Now we consider the case where items in each set may have different sizes. This case is also interesting for
applications of the data-placement problem to video-on-demand servers. Suppose that users have different network
access speeds. In this case, requests for load resources may have different sizes. This case can be mapped to
the case in the CCBP problem where items have different sizes. Also notice that even if the items have different
sizes, in practical instances it is expected that the size of the item is not too large. So, suppose that the maximum
size of an item is an integer bounded by B/m for some m ≥ 1. Problems with this restriction are also called
parametric packing problems [16, 3]. Given an integer m, we denote this version of the problem as Parametric
Class Constrained Bin Packing (CCBPm) problem.

Let I be an instance of the CCBPm problem where each item has size bounded by B/m. Assume that the input
instance I consists of sets U1, . . . , UQ. We now present an algorithm to pack this instance. Although items may
have different sizes, suppose that each item with size s greater than 1 is broken into s unit size pieces. Now apply
the MW algorithm for this modified instance. Now consider this packing for the original items. For each full bin it
may happen that the last item packed is fractionally packed. For each bin where this happens, remove the item from
the bin. Notice that there are at most NF items removed from the generated packing. For these remaining items,
generate new bins packing at least min{m,C} items in each bin except perhaps in the last bin.

Theorem 3.8 There exists an algorithm for the CCBPm problem, for some m ≥ 1, with asymptotic approximation
factor equal to (1 + 1/ min{m,C}+ 1/C).

Proof. From Theorem 3.3, the packing generated when items are fractionally packed, uses at most (1+1/C)OPT(I)+
1 bins. Notice that the number of items fractionally packed in this packing is bounded by NF , since the first NF

bins are the only ones that are full. These NF extra items can be packed in at most dNF / min{m,C}e extra bins.

4 The Online CCBP Problem

From now on, we assume that the size (load capacity) of the bin is B = 1, and each item e has size 0 < se ≤ 1.
In this section we consider the online class constrained bin packing problem. In this case each item in the list of
items L = (a1, . . . , an), is packed without knowledge of subsequent items in the list. In subsection 4.1 we present
lower bounds for any bounded space algorithm, in subsection 4.2 we present and analyze an algorithm based on the
First-Fit strategy and finally in subsection 4.3 we present another online algorithm with a better competitive ratio.

8

4.1 Lower bounds for bounded space algorithms

In this section we present inapproximability results for the bounded space online CCBP problem. In this case, the
basic strategy is to compare the result obtained by any algorithm with the optimum offline packing.

Theorem 4.1 Let l be a constant, then the l-bounded space online CCBP problem does not admit an algorithm
with constant competitive ratio. Moreover the competitive ratio of any online algorithm is Ω(

√
|L|), where |L| is

the number of items in an input instance.

Proof. Let A be an algorithm for the l-bounded space online CCBP problem. Consider an instance I , such that
|L| = n2l, Q = nl, and n is divisible by C. The list L have nl different classes and all items have size 1/Cn.
Consider that L = L1‖ . . . ‖Ln, where each Li = (a1, . . . , anl) is a sequence of nl items where each aj has class j.

Let ti be the time immediately after the algorithm has packed the list Li. At time t1 the algorithmA can have at
most l open bins. Since each item of the first sequence is of a different class, the algorithm uses at least nl/C bins
to pack L1, where at least nl/C − l of these bins are closed. When the packing of the list L2 starts, the algorithm
has at most l open bins that can pack at most lC items of the sequence L2. To pack this sequence, the algorithm
uses at least (ln− lC)/C new bins. This is also valid for the other sequences L3, . . . , Ln.

Therefore, to pack the list L, the algorithm A uses at least

n(nl/C)− (n− 1)l = n2l/C − (n− 1)l

bins.
Since all items have size 1/Cn, an optimal offline solution can use at most ln/C bins, by packing Cn items in

each bin. Therefore, the competitive ratio must be at least

lim
n→∞

n2l/C − (n− 1)l
nl/C

= n− C,

which is Ω(
√
|L|). Notice that this holds for any C.

In Theorem 4.1 items may have arbitrary small sizes. If all items have size at least ε, for some constant ε, we
may also obtain an inapproximability result using similar arguments. Notice that in this case, any simple algorithm
has a competitive ratio of 1/ε.

Theorem 4.2 Let l and ε < 1/C be constants, then any algorithm for the l-bounded space online CCBP problem
has competitive ratio Ω(1/(Cε)).

Proof. Suppose that 1/ε divides n and we have the same instance presented in Theorem 4.1, modified such that all
items have size equal to ε. In this case any algorithm uses at least n2l/C−(n−1)l bins. An optimal offline solution
packs items of a given class in nε bins. To pack L an optimal offline algorithm uses at most n2lε bins.

Therefore, the competitive ratio is at least

lim
n→∞

n2l/C

n2lε
− nl − l

n2lε
=

1
Cε

.

Given these negative results, for the remainder of this section we only consider the unbounded space online
CCBP problem.

9

4.2 The First-Fit Algorithm

Given an online algorithm A for the bin-packing problem, we can obtain an online algorithm A∗ for the online
CCBP problem in a straightforward manner. To pack the next item e, the algorithm A∗ works as follows: Let ce be
the class of the item e, B be the list of bins in the order they were opened. Let Be be the list of bins of B, in the same
order of B, where each bin has at least one item of class ce or has items of at most C − 1 different classes. The item
e is packed with algorithm A into the bins of Be.

One of the most famous algorithm for the bin-packing problem is the First-Fit (FF) algorithm. This algorithm
packs the next item into the first bin, in the order they were opened, that has sufficient space for the item.

In this section we show that the competitive ratio of the algorithm FF∗ is in [2.7, 3]. We note that the upper
bound was previously shown by Dawande et al. [4]. Notice that the algorithm FF∗ is online, since it only looks for
the item it is packing and it is unbounded since it keeps all bins opened. In fact it closes a bin only if the bin is full.
This algorithm is used in subsequent sections.

Now we show that the algorithm FF∗ cannot have a competitive ratio better than 2.7. We first give an intuitive
lower bound of 2.666 and then we present the lower bound of 2.7.

Theorem 4.3 There is an instance In with n items, n ≥ 1, for the online CCBP problem such that FF∗(In)/OPT(In)
→ 2.666 as n→∞.

Proof. Let I be an instance with an input list of items L = La‖Lb‖Lc‖Ld. Let C be the maximum number of classes
allowable in each bin. The list La = (a1, . . . , a(C−1)6N) is such that each item ai has class i, i = 1, . . . , (C−1)6N

and each item has size α, which is a very small value. This list is followed by a list Lb = (b1, . . . , b6N), where each
item bi has class r = 6N(C − 1) + 1, and size 1/7 + ε. In the list Lc = (c1, . . . , c6N) each item ci has size 1/3 + ε

and class r. Finally, in the list Ld = (d1, . . . , d6N) each item di has size 1/2 + ε and class r.
Notice that α must satisfy

α ≤ 1− 126ε

42(C − 1)
.

The FF∗ algorithm packs the list La in 6N(C−1)
C bins, the list Lb in N bins, the list Lc in 3N bins and the list

Ld in 6N bins.
An optimal (offline) solution uses at most 6N bins. This packing is obtained by packing one item of Ld, one

item of Lc, one item of Lb and C − 1 items of the list La in only one bin.
This gives a lower bound of

lim
N,C→∞

(C−1)6N
C + 10N

6N
= 2.666.

The previous lower bound can be improved using an intricate instance presented by Johnson et al. [11] that
provides a lower bound of 1.7 for the FF algorithm in the bin packing problem.

Theorem 4.4 The competitive ratio of the algorithm FF∗ is at least 2.7.

Proof. Let I be an instance such that each bin can pack at most C different classes. The input list L is the
concatenation of four lists: L = La‖Lb‖Lc‖Ld. In the list La = (a1, . . . , a5N(C−1)), each item ai has class i, for
i = 1, . . . , 5N(C − 1), and size α, which is a very small value. The list La is followed by an instance similar to

10

the one presented by Johnson et al. [11] that provides a lower bound of 1.7 for the FF algorithm in the bin packing
problem. In the list Lb = (b1, . . . , b5N) each item bi has size 1/7 + yi, where yi ∈ R, for i = 1, . . . , 5N . In the list
Lc = (c1, . . . , c5N) each item ci has size 1/3+wi, where wi ∈ R, for i = 1, . . . , 5N . In the list Ld = (d1, . . . , d5N)
each item di has size 1/2 + ε. All items in the lists Lb, Lc and Ld have class 5N(C − 1) + 1.

Notice that α must satisfy

α ≤ 1− 42(ymax + wmax + ε)
42(C − 1)

,

where ymax (resp. wmax) is the maximum value among all yi (resp. wi), i = 1, . . . , 5N .
The FF∗ algorithm packs the list La in 5N(C−1)

C bins, the list Lb in N bins, the list Lc in 2.5N bins and the list
Ld in 5N bins.

That is,

FF∗(I) ≥ 5N(C − 1)
C

+ N + 2.5N + 5N.

An optimal solution uses 5N + 2 bins (see [11]), by packing one item of each list Lb, Lc and Ld and C − 1
items of the list La.

Therefore, the competitive ratio of the algorithm FF∗ is at least

lim
N,C→∞

5N(C − 1)/C + 8.5N

5N + 2
= 2.7.

4.3 A 2.75-competitive algorithm

In this section we present an algorithm, denoted byAC (Figure 2), with competitive ratio in the interval (2.666, 2.75]

ALGORITHM AC(L, s, c, C, Q)
1. Let Pi ← ∅, for i = 1, 2, 3.
2. For each e ∈ L do
3. if s(e) ∈ (1

2 , 1] then k ← 1.

4. if s(e) ∈ (1
3 , 1

2] then k ← 2.

5. if s(e) ∈ (0, 1
3] then k ← 3.

6. Let P ′k be the sublist of bins in Pk having items of class c(e) or
with at most C − 1 classes, preserving the order of the bins in Pk.

7. If possible pack the item e into the bins P ′k using the algorithm FF∗.
Otherwise, pack e into a new empty bin in Pk.

8. Return P1‖P2‖P3.

Figure 2: Algorithm AC .

To prove the competitive ratio of the algorithm AC , we use the following lemma (The proof can be found
in [16]).

11

Lemma 4.5 Suppose X, Y, x, y are real numbers such that x > 0 and 0 < X < Y < 1. Then

x + y

max{x, X x + Y y}
≤ 1 +

1−X

Y
.

We also use the following result that is a straightforward extension of some results in [4].

Lemma 4.6 Let I be an instance of the online CCBP problem such that every item has size at most ε. Let P be the
set of bins generated by the algorithm FF∗, applied over the instance I , that are filled by less than 1− ε. Then: (i)
Each bin in P , which is not the last generated bin, is colored. (ii) There are no items of a same color in two different
bins of P .

Theorem 4.7 Algorithm AC has a competitive ratio of 2.75.

Proof. Let Li be the list of items packed in Pi, for i = 1, 2, 3.
Note that all bins of P1 have exactly one item with size greater than 1

2 . In fact we cannot pack more than one
item of L1 per bin. Therefore,

|P1| ≤ OPT(I) (1)
1
2
|P1| ≤ s(L1). (2)

The packing P2 has exactly two items per bin, except perhaps the last, each item with size at least 1
3 . Therefore,

(|P2| − 1)
2
3
≤ s(L2). (3)

Let P ′3 be the set of bins in P3 that are filled by at least 2
3 and P ′′3 the remaining bins (i.e., P ′′3 = P3 \ P ′3). The

following is valid

(|P ′3|)
2
3
≤ s(L′3). (4)

where L′3 is the set of items packed in P ′3. Let NA = |P1| and NB = |P2| + |P ′3| − 1. Since OPT(I) ≥ s(I) ≥
s(L1) + s(L2‖L′3) from inequalities (2)–(4) we have

OPT(I) ≥ s(I) ≥ s(L1) + s(L2‖L′3)

≥ 1
2
NA +

2
3
NB. (5)

From inequalities (1) and (5) we have

OPT(I) ≥ max{NA,
1
2
NA +

2
3
NB}. (6)

From Lemma 4.5 we have that

|P1|+ |P2|+ |P ′3| ≤
NA + NB

max{NA, 1
2NA + 2

3NB}
OPT(I) + 1 (7)

≤ 1.75 OPT(I) + 1. (8)

Now, consider the packing P ′′3 . From Lemma 4.6, we have

|P ′′3 | − 1 ≤ Q

C
≤ OPT(I). (9)

12

The proof can be completed summing the inequalities (8) and (9).

AC(I) = |P1|+ |P2|+ |P ′3|+ |P ′′3 |

≤ 1.75 OPT(I) + OPT(I) + 2 = 2.75 OPT(I) + 2.

Notice that the same instance used to prove a lower bound for the algorithm FF∗ in Theorem 4.3 can be used to
prove a lower bound for the AC algorithm.

Theorem 4.8 There is an instance I for the online CCBP problem such that
AC(I)/OPT(I) ≥ 2.666.

5 An APTAS for Bounded Number of Classes

In this section we present an APTAS for the offline VCCBP problem. The input instance for this problem is a tuple
I = (L, s, c, w, C, Q, B) where w : {1, . . . , T} → R+ is a function of bins size. The problem is to find a packing of
all items minimizing the total size of used bins. In this section we assume that the maximum size of a bin is B = 1
and that the number of different classes Q in the input instance is bounded by a constant.

In subsection 5.1 we present the algorithm of Dawande, Kalagnanam and Sethuraman [5, 4] and show in what
points their algorithm failed to be an APTAS. In subsection 5.2 we present an APTAS for the VCCBP problem.
Given an ε, we will show an algorithm A that runs in polynomial time and produces a packing for a given instance
such that A(I) ≤ (1−O(ε))OPT + β, where β is a constant.

As was noticed by Dawande et al. [5, 4], we only use bins of size at least ε, since this condition does not affect
too much the cost of the solution, i.e, the algorithm remains an APTAS.

5.1 The Algorithm of Dawande, Kalagnanam and Sethuraman

In this section we give a brief description of the algorithm of Dawande et al. [5, 4] and present the points where
their algorithm fails. The algorithm uses a shifting technique presented by Fernandez de la Vega and Lueker [6].

Let I = (L, s, c, w, C, Q, 1) be an instance for the VCCBP problem and let Lb be the items in L with size at
least ε2 (big items) and let Ls be the remaining items in L (small items).

Let n = |Lb|. The algorithm sorts the list Lb in non-increasing order of size and partition this list into groups
(lists) L1, . . . , LM , each one with dnε2e items except perhaps the last list that can have less than dnε2e items. Call
the first item in each group as the group-leader. Let L′i be the list having |L′i| = |Li| items, where each item has size
equal to the size of the group-leader of Li. Let L′ = L′1‖ . . . ‖L′M .

For the list L′ it is possible to generate all configurations of bins in constant time since the number of different
items size is bounded by a constant M , the number of different item colors is also bounded by a constant Q and the
maximum number of items that can be packed in a bin is 1/ε2. Let t = MQ. Given an item size and an item color,
denote by di the number of items of this type i ∈ [t].

Let N be the total number of bin configurations. Let xj be a variable that represents the number of times a
configuration j ∈ [N] is used in a solution, aij be the coefficient that represents the number of times an item type
i ∈ [t] is used in configuration j and wj the size of the bin used in configuration j. The next step of the algorithm is
to solve the following linear program:

13

min
N∑

j=1

wjxj

N∑
j=1

aijxj ≥ di ∀ i ∈ [t] (1)

xj ≥ 0 ∀ j ∈ [N]. (2)

(LP)

The algorithm solves this linear program and generates an integer solution by rounding up the variables x. The
solution is a packing for the list L′ that is used to generate a packing for the list Lb.

The next step of the algorithm is to pack the small items in the solution provided by the linear program. To do
this, it uses the FF∗ algorithm.

Dawande et al. [5, 4] claimed that this algorithm is an APTAS for the VCCBP problem.
The list Lb was partitioned into lists L1‖ . . . ‖LM . Let L′′i be a list having |L′′i | = |Li| items, where each

item has size equal to the group-leader of the list Li+1, for i = 1, . . . ,M − 1, and L′′M be an empty list. Let
L′′ = L′′1‖ . . . ‖L′′M . Clearly OPT(L′′) ≤ OPT(Lb).

Dawande et al. claimed that the following relation is valid

OPT (L′) ≤ OPT (L′′) + dnε2e ≤ OPT (Lb) + dnε2e,

given the argument that L′ and L′′ differ only in their first and last groups. This way, given a packing for the list L′′

it is easy to construct a packing for the list L′2‖ . . . ‖L′M . Since |L′i| = |L′′i−1|, for i = 2, . . . ,M , and their items
size are the same, this seems to be true, but notice that the color of items of L′i and L′′i−1 may be different. Then, it
is not clear how to construct a packing for L′2‖ . . . ‖L′M given a packing for L′′.

Let B be the number of bins used by their algorithm. After packing the small items using the first-fit strategy,
they claimed that at least B − dQ

C e bins have residual size (load capacity) at most ε. This is also not true. Suppose
all small items have different colors from the big items. It is easy to construct examples where optimal packings for
the big items given by the linear program have all bins with C different colors and the residual space is larger than
a given ε. This way no small item will be packed in the bins given as a solution of the linear program, and then all
these bins will have residual size greater than ε.

5.2 An APTAS for the VCCBP Problem

In this section we present an APTAS for the VCCBP problem. In the next subsection we show how to pack big
items doing a linear rounding for each different color. The algorithm to pack the big items generates a polynomial
number of packings for them, and also provides information of how to pack small items. In the following subsection,
we present an algorithm to pack the small items that is based in the solution of a linear program. The algorithm
generates a polynomial number of packings such that at least one is very close to the optimal.

5.2.1 Packing Big Items with Linear Rounding

Let Lb be the items in L with size at least ε2 (big items) and let Ls be the remaining items in L (small items). In
this section we show how to do the linear rounding for the big items and generate a packing for them.

14

The algorithm that packs the list Lb, denoted by ALR, uses a shifting technique, presented by Fernandez de la
Vega and Lueker [6], and considers only items with size at least ε2. The algorithm ALR returns a pair (PB, P),
where PB is a packing for a list of very big items and P is a set of packings for the remaining items of Lb.

For the use of the linear rounding technique, we use the following notation: Given two lists of items X and Y ,
let X1, . . . , XQ and Y1, . . . , YQ be the partition of X and Y respectively in colors, where Xc and Yc have only items
of color c for each c ∈ [Q]. We write X � Y if there is an injection fc : Xc → Yc for each c ∈ [Q] such that
s(e) ≤ s(f(e)) for all e ∈ Xc.

For any instance X , denote by X the instance with precisely |X| items with size equal to the size of the smallest
item in X . Clearly, X � X .

The Algorithm also uses the variant of the First-Fit (FF∗) that we presented in section 4.2.
The algorithm ALR is presented in Figure 3. It proceeds as follows: Let L1, . . . , LQ be the partition of the

input list Lb into colors 1, . . . , Q and let nc = |Lc| for each color c. The algorithm ALR sorts each list Lc in non-
increasing order of items size and then partition the list Lc into at most M = d1/ε3e groups L1

c , L
2
c , . . . , L

M
c , where

Lc = L1
c‖ . . . ‖LM

c . Each group has bncε
3c items except perhaps the last list (with the smallest items) that can have

less than bncε
3c items.

Let LB = ∪Q
c=1L

1
c . The algorithm generates a packing PB of LB with cost at most O(ε)OPT(I) and a set P

with a polynomial number of packings for the items in Lb \LB . The packing PB is generated by the algorithm FF∗

with bins of size 1. The following is valid for the packing PB of the list LB .

Lemma 5.1 w(PB) ≤ QεOPT(I).

Proof. Notice that the algorithm FF∗ packs at least one item per bin and since |LB| ≤ Qnε3 and each item has size
at least ε2, we have |LB| ≤ QεOPT(I).

The algorithm generates a set of packings Q, of polynomial size, for the list (L1
1‖ . . . ‖LM−1

1 ‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q).
This can be done in polynomial time as the next lemma guarantees.

Lemma 5.2 Given an instance I = (Lb, s, c, w,C,Q, 1), where the number of distinct items sizes of each color is
at most a constant M , the number of different colors is bounded by a constant Q and each item e ∈ Lb has size
se ≥ ε2, then there exists a polynomial time algorithm that generates all possible packings of Lb. Moreover, each
bin of each generated packing has an indication of the possible colors that may be used by further small items.

Proof. The number of items in a bin is bounded by y = 1/ε2. The number of distinct type of items is bounded by
MQ. The number of different configurations of bins is bounded by r′ =

(
y+MQ+1

y

)
. If we want to indicate the

colors of small items that should be packed in each configuration, the number of different configurations will be
r = r′2Q, which is a constant. Notice that we only generate configurations that satisfy the color constraints.

For each given configuration, we pack it with the smallest bin that has enough space to pack the configuration.
The number of all feasible packings is bounded by

(
n+r

n

)
, which is bounded by (n+r)r, which in turn is polynomial

in n.
Since Li

c � Li+1
c , i = 1, . . . ,M − 1 for each color c, it is easy to construct a packing for the list

L2
1‖ . . . ‖LM

1 ‖ . . . ‖L2
Q‖ . . . ‖LM

Q , given a packing for the list (L1
1‖ . . . ‖LM−1

1 ‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q).

15

ALGORITHM ALR(Lb)
Input: List Lb with n items, each item e ∈ Lb with size se ≥ ε2.

Output: A pair (PB , P), where PB is a packing and P is a set of packings, where PB ∪P ′ is a packing of Lb

for each P ′ ∈ P.
1. Partition Lb into lists Lc for each color c = 1, . . . , Q and let nc = |Lc|.
2. Sort each list Lc in non-increasing order of items size.
3. Partition each list Lc into M ≤ d1/ε3e groups L1

c , L
2
c , . . . , L

M
c , such that

Li
c � Li+1

c , i = 1, . . . ,M − 1

where |Li
c| = qc = bncε

3c for all i = 1, . . . ,M − 1,

and |LM
c | ≤ qc.

4. Let LB = ∪Q
c=1L

1
c .

5. Let PB be a packing of LB obtained by the algorithm FF∗ with bins of size 1.
6. Let Q be the set of all possible packings over the list (L1

1‖ . . . ‖LM−1
1 ‖ . . . ‖L1

Q‖ . . . ‖LM−1
Q), ac-

cording to Lemma 5.2.

7. Let P be the set of packings for the items in (L2
1‖ . . . ‖LM

1 ‖ . . . ‖L2
Q‖ . . . ‖LM

Q), using the packings
Q ∈ Q.

8. Return (PB , P).

Figure 3: Algorithm to obtain packings for items with size at least ε2.

5.2.2 Packing the small items

Observe that algorithm ALR generates a packing for very big items that costs at most QεOPT(I), and a set P of
packings for the remaining big items. For a given packing P ∈ P, the algorithm marked colors of small items that
should be packed in each bin of P .

Let P = {B1, . . . , Bk} be a packing of the list of items Lb and suppose we have to pack a list Ls of small items,
with size at most ε2, into P . The packing of the small items is obtained from a solution of a linear program. Let
Ni ⊆ [Q] be the set of possible colors that may be used to pack the small items in the bin Bi of the packing P . For
each color c ∈ Ni, define a non-negative variable xi

c. The variable xi
c indicates the total size of small items of color

c to be packed in the bin Bi. Denote by s(Bi) the total size of items already packed in the bin Bi and by w(Bi) the
size of bin Bi. Consider the following linear program denoted by LPS:

max
k∑

i=1

∑
c∈Ni

xi
c

s(Bi) +
∑
c∈Ni

xi
c ≤ w(Bi) ∀ i ∈ [k] (1)

k∑
i=1

xi
c ≤ s(Sc) ∀ c ∈ [C], (2)

(LPS)

where Sc is the set of small items of color c in S.
The constraint (1) guarantees that the total size of items packed in each bin does not exceed the bins size and

constraint (2) guarantees that the sum of the values of variables xi
c is not greater than the total size of small items.

16

Given a packing P , and a list Ls of small items, the algorithm first solves the linear program LPS, and then
packs small items in the following way: For each variable xi

c it packs, while possible, the small items of color c into
the bin Bi, so that the total size of the packed small items is at most xi

c. The possible remaining small items are
packed using the algorithm FF∗ into new bins of size 1. The algorithm to pack small items has polynomial time,
since the linear program LPS can be solved in polynomial time.

The total size of small items that have to be packed in extra bins is at most

(s(Ls)−
k∑

i=1

∑
c∈Ni

xi
c) + |P|ε2Q

and then, these small items use at most⌈
(s(Ls)−

∑k
i=1

∑
c∈Ni

xi
c)

(1− ε2)
+
|P|ε2Q

(1− ε2)

⌉
+ dQ/Ce

new bins, since each bin is filled by at least (1− ε2) except perhaps by at most dQ/Ce bins.
The algorithm packs the small items in each packing P ∈ P. In the end, the algorithm generates another set

of packings P′ for all items. At least one of the generated packings has cost at most (1 + O(ε))OPT(I) + β, for a
constant β. The algorithm returns the packing with smallest cost.

Now we prove that the presented algorithm is an APTAS for the VCCBP.

Theorem 5.3 Let I = (L, s, c, w, C, Q, 1), be an instance for the VCCBP problem. The packing P returned by
the algorithm satisfies w(P) ≤ (1 + O(ε))OPT(I) + β, where β = dQ/Ce+ 1 is a constant.

Proof. Let O be an optimal packing for the instance I . Let O′ be the packing O without the small items and with the
big items rounded according to the linear rounding of algorithm ALR. Assume that each bin of O′ has an indication
of the colors of small items used in the corresponding bin of O. Clearly there exists a packing O′′ ∈ Q with the
same configurations of the bins of O′ except that it can use smaller bins than the ones used in O′.

When the algorithm generates a packing P for the list L2
1‖ . . . ‖LM

1 ‖ . . . ‖L2
Q‖ . . . ‖LM

Q using the packing O′′

with items (L1
1‖ . . . ‖LM−1

1 ‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q), it is true that w(P) = w(O′′) ≤ w(O).
Let P = {B1, . . . , Bk}. Notice that we must have

w(O) ≥ w(P) + (s(Ls)−
k∑

i=1

∑
c∈Ni

xi
c).

The total size of small items that are packed into new bins is at most

(s(Ls)−
k∑

i=1

∑
c∈Ni

xi
c) + |P|ε2Q.

The algorithm packs small items in bins of size 1 obtaining a new packing P ′. The total cost of the packing P ′

is

17

w(P ′) ≤ w(P) +

⌈
(s(Ls)−

∑k
i=1

∑
c∈Ni

xi
c)

(1− ε2)
+
|P|ε2Q

(1− ε2)

⌉
+ dQ/Ce (10)

≤ w(O)
(1− ε2)

+
|P|ε2Q

(1− ε2)
+ dQ/Ce+ 1 (11)

≤ w(O)
(1− ε2)

+
εQw(O)
(1− ε2)

+ dQ/Ce+ 1. (12)

The last inequality follows from the fact that |P| ≤ |O| and the smallest size of a bin is ε. Using this result, Lemma
5.1 and the fact that Q is bounded by a constant we conclude the proof.

6 Experimental Results of the Practical Algorithms

In this section we provide experimental results for the algorithms MW, MW′ and BFFD presented in Section 3.
As we mentioned, these algorithms were developed motivated by the data placement problem in video servers. This
problem is a special case of the CCBP problem. All these algorithms were implemented in C and we made a series
of practical tests with them.

The instance set is constructed in some way to represent the real problem. A movie in MPEG format uses about
2Gbytes of space, and requires a transference rate of 3Mbits/sec (384Kbytes/sec) [1]. Suppose that the server uses
disks of 100Gbytes of storage capacity with transference rate of 60Mbytes/sec. In this case, each disk have storage
capacity C = 50 and load capacity B = 160.

We call single-disk server, the systems that are constructed in such a way that a entire copy of a movie is done in
one disk. But most video servers uses striped-disks [1]. In this case, a video is broken into several pieces and each
one of these pieces is stored in a different disk. This is done to increase the number of requests that can be attended
by the system and to balance the load capacity of the disks. Suppose for example that each disk have transference
rate of 60Mbytes/sec and storage capacity of 100Gbytes. Theoretically a disk can support 160 users simultaneously.
If we strip the movie along 3 disks, and assume that users requests over the time are distributed uniformly among
the three parts of the movie, then the striped-disk can support 480 simultaneously users requests to this movie. For
our purposes, we can view each striped-disk as one disk with storage capacity equal to 300Gbytes and load capacity
equal to 480. In practice it is better to use striped-disks to balance requests. Consider for example, a single-disk
server where a copy of a movie A is in disk 1 and a copy of a movie B is in another disk 2, and there are 320
requests for the movie A and none to the movie B. The system becomes unable to attend 160 requests to the movie
A. In a striped-disk system, where the first half part of movie A is stored in disk 1 while the last half part is stored
in disk 2, it can attend more users if their requests are distributed along the movie in such a way that requests are
divided through the two disks.

We have generated classes of instances represented by a tuple (Q,N, T). The value Q corresponds to the number
of different movies (different classes) and we consider that Q ∈ {250, 500, 1000}. The value N is the number of
requests (number of items) and we assume that N ∈ {5000, 10000, 20000}. Finally the value T corresponds to
the system type, where T is equal to SC for single-disk system or ST for striped-disk system. In the single-disk
system, we have C = 50 and B = 160, and in the striped-disk system, we have C = 150 and B = 480.

The requests for movies are generated using the Zipf distribution [14]. This distribution was used previously
to generate data for video-on-demand systems [1]. This distribution have the property that the generated data have

18

locality properties. In movies servers it is expected that recent movies are the most requested ones. It is expected
that most of the requests goes to a small subset of the movies in the server. The Zipf distribution have this property.
Let δ be a small positive number. The probability that the n-th movie among Q movies will be requested is pn given
as

pn =
c

n(1+δ)

where
c =

1∑Q
i=1(1/i(1+δ))

.

As δ increases, the distribution becomes more localized and as δ decreases the distribution becomes more
uniformly. Considering Q = 1000, if δ = 0.0, then 80% of the requests are to approximately 20% of the movies.
If δ = 1.0, then 80% of the requests are to approximately 0.3% of the movies. When δ = −1.0 we get the uniform
distribution where each movie have the same probability 1/Q to be requested.

We present some experimental results in Tables 1 and 2. All results were obtained in a few seconds. In the
tests of these tables, we generate data using δ ∈ {0.0, 0.5, 1.0}, N ∈ {5000, 20000} and Q ∈ {250, 500, 1000}.
The lower bound is given by max{dQ/Ce, dN/Be}. In Table 1 we consider single-disk system, and in Table 2 we
consider the striped-disk system. We also performed tests with N = 10000 but we do not present the results here
since we get similar results to the tests with N = 5000 and N = 10000. We observed that the BFFD algorithm
generate good results and it becomes better for the striped-disk system. But in comparison with the MW and MW′

algorithms it performs worst, since these algorithms generated optimal solutions for all tests. The MW and MW′

shows to be very effective algorithms to be used in practical instances to construct video-on-demand servers.

Single-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests

Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

BFFD 32 BFFD 34 BFFD 42
δ = 0.0 MW 32 32 MW 32 32 MW 33 33

MW′ 32 MW′ 32 MW′ 33

BFFD 34 BFFD 39 BFFD 48
δ = 0.5 MW 32 32 MW 33 33 MW 36 36

MW′ 32 MW′ 33 MW′ 36

BFFD 35.8 BFFD 40.6 BFFD 50
δ = 1.0 MW 33 33 MW 34 34 MW 37.2 37.2

MW′ 33 MW′ 34 MW′ 37.2

Single-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests

Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

BFFD 125 BFFD 125 BFFD 127
δ = 0.0 MW 125 125 MW 125 125 MW 126 126

MW′ 125 MW′ 125 MW′ 126

BFFD 126 BFFD 129.4 BFFD 138
δ = 0.5 MW 126 126 MW 126 126 MW 128 128

MW′ 126 MW′ 126 MW′ 128

BFFD 128 BFFD 133 BFFD 143
δ = 1.0 MW 126 126 MW 128 128 MW 131 131

MW′ 126 MW′ 128 MW′ 131

Table 1: Performance of the algorithms for Single-Disk.

19

Striped-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests

Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

BFFD 11 BFFD 12 BFFD 14
δ = 0.0 MW 11 11 MW 11 11 MW 11 11

MW′ 11 MW′ 11 MW′ 11

BFFD 12 BFFD 13 BFFD 16
δ = 0.5 MW 11 11 MW 11 11 MW 12 12

MW′ 11 MW′ 11 MW′ 12

BFFD 12 BFFD 14 BFFD 17
δ = 1.0 MW 11 11 MW 12 12 MW 13 13

MW′ 11 MW′ 12 MW′ 13

Striped-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests

Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

BFFD 42 BFFD 42 BFFD 43
δ = 0.0 MW 42 42 MW 42 42 MW 42 42

MW′ 42 MW′ 42 MW′ 42

BFFD 42 BFFD 43 BFFD 46
δ = 0.5 MW 42 42 MW 42 42 MW 43 43

MW′ 42 MW′ 42 MW′ 43

BFFD 43 BFFD 45 BFFD 48
δ = 1.0 MW 42 42 MW 43 43 MW 44 44

MW′ 42 MW′ 43 MW′ 44

Table 2: Performance of the algorithms for Striped-Disk.

In Figures 4 to 8 we present graphics of the results of the algorithms varying the disk storage capacity. The
results are given in the y-axis and the storage capacity of the bin is given in the x-axis. In all these tests we assume
the load capacity B = 160, the number of different movies Q = 250 and the number of requests equal to 5000. In
Figure 4 (resp. 5, 6, 7, and 8) we use δ equal to 1.0 (resp. 0.5, 0.0,−0.5 and−1). In the graphics the MW′ algorithm
is denoted by MW2. The lower bound is given by max{dQ/Ce, dN/Be}. Notice that the problem becomes easier
as the distribution of requests becomes uniformly, i.e, the value of δ decreases. When δ = −1.0 all algorithms
generated solutions almost equal to the lower bound. Another point is that the problem is harder when the storage
capacity is small, as one could expect. When the storage capacity becomes equal to approximately 10 the algorithms
MW and MW′ produces optimal solutions. When was considered storage capacity greater than 100, the algorithm
BFFD generated optimal solutions (for δ equal to 1 and 0.5). The MW′ algorithm generated better solutions than
the MW algorithm in several instances for δ equal to 1.0, 0.5, 0.0 and −0.5. Generally the solutions generated by
the algorithm MW′ uses 2 or 1 fewer disks than MW. Most of these better solutions were obtained with capacities
between 2 and 8. It is also interesting to notice that the MW algorithm generated a better solution than the MW′

algorithm in one test, the one with δ = −1 and storage capacity equal to 8. In this case the solution found by the
MW′ algorithm uses 34 disks while the solution generated by the MW algorithm uses 33 disks.

20

Figure 4: Results with δ = 1.

Figure 5: Results with δ = 0.5.

7 Conclusions and Future Work

In this paper we present approximation algorithms for the online and offline class-constrained bin packing problem.
The problem is motivated by applications in the data-placement problem to video-on-demand servers and appli-
cations in the cutting and packing area. For the online problem we provide lower bounds for any bounded space
algorithm and we also present an algorithm for the unbounded version with approximation factor 2.75. For the
offline problem we present practical approximation algorithms for two special cases of the problem, with conditions
already considered in the literature: when all items have the same size and the parameterized version of the problem.
We also perform several tests with these practical algorithms. For the instances we considered representing practical
ones, the algorithms MW and MW′ obtained optimal solutions. Finally we present an APTAS for the special case
where the number of different classes of the input instance is bounded by a constant.

21

Figure 6: Results with δ = 0.

Figure 7: Results with δ = −0.5.

References

[1] A. Chervenak. Tertiary Storage: An Evaluation of New Applications. PhD thesis, University of California at
Berkeley, Computer Science Division, 1994.

[2] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: a survey. In
D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chapter 2, pages 46–93. PWS, 1997.

[3] J. Csirik. The parametric behavior of the first-fit decreasing bin packing algorithm. Journal of Algorithms,
15:1–28, 1993.

[4] M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color constraints. Technical
report, IBM, T.J. Watson Research Center, NY, 1998.

22

Figure 8: Results with δ = −1.

[5] M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color constraints. In Pro-
ceedings of the 1th Brazilian Symposium on Graph Algorithms and Combinatorics, volume 7 of Electronic
Notes in Dicrete Mathematics, 2001.

[6] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear time. Combina-
torica, 1(4):349–355, 1981.

[7] S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continous media servers. Par-
allel Computing Journal, 24(1):91–122, 1998.

[8] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms for data placement
on parallel disks. In Proceedings of SODA, pages 223–232, 2000.

[9] P. S. Yu, J. L. Wolf and H. Shachnai. Disk load balancing for video-on-demand-systems. Multimedia Systems,
5:358–370, 1997.

[10] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8:272–314, 1974.

[11] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for
simple one-dimensional packing algorithms. SIAM Journal on Computing, 3:299–325, 1974.

[12] J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S. Lee. The surplus inventory matching problem in
the process industry. Operations Research, 48(4):505–516, 2000.

[13] S. R. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel disks. Journal of
Algorithms, 60(2):144–167, 2006.

[14] D. E. Knuth. The Art of Computer Programming. Volume 3. Addison-Wesley, 1973.

[15] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. Association Comput. Mach., 32(3):562–
572, July 1985.

23

[16] F. K. Miyazawa and Y. Wakabayashi. Parametric on-line algorithms for packing rectangles and boxes. Euro-
pean Journal on Operational Research, 150:281–292, 2003.

[17] M. Peeters and Z. Degraeve. The co-printing problem: A packing problem with a color constraint. Operations
Research, 52(4):623–638, 2004.

[18] S. S. Seiden. On the online bin packing problem. Journal of ACM, 49(5):640–671, 2002.

[19] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack problem. Algorithmica,
29:442–467, 2001.

[20] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained packing problems.
Journal of Scheduling, 4(6):313–338, 2001.

[21] H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment and parallelism constraints.
Algorithmica, 32(4):651–678, 2002.

[22] H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector packing with ap-
plication to data placement. In Proceedings of 6th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, RANDOM-APPROX, volume 2764 of Lecture Notes in Computer Sci-
ence, pages 165–177, 2003.

[23] H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical Computer Science,
321(1):103–123, 2004.

[24] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton University,
1971.

[25] A. van Vliet. An improved lower bound for online bin packing algorithms. Inform. Process. Lett., 43:277–284,
1992.

[26] E. C. Xavier and F. K. Miyazawa. Approximation schemes for knapsack problems with shelf divisions. Theo-
retical Computer Sciense, 352(1-3):71–84, 2006.

[27] E. C. Xavier and F. K. Miyazawa. A one-dimensional bin packing problem with shelf divisions. Discrete
Applied Mathematics, DOI: 10.1016/j.dam.2007.05.053, To appear.

[28] A. C. Yao. New algorithms for bin packing. J. Association Comput. Mach., 27:207–227, 1980.

24

A Table of Notations

Symbol Meaning
I Instance of the problem.

L List of items.

se Size of an item e.

ce Class of an item e.

C Maximum number of classes that a bin can have / Storage capacity.

Q Number of different classes in the input instance.

B Size of the bin / Load capacity.

P Packing of the items in bins.

|P| Number of bins used in packing P .

w Function that gives the size of bins in the variable bins size problem.

OPT(I) Number of bins used by an optimal solution for an instance I .

[M] For a positive integer M , corresponds to the set {1, . . . ,M}.
La||Lb The concatenation of two lists La and Lb of items.

25

