A note on the approximability of cutting stock problems

Glauber Cintra
Faculdade de Computacdo e Informdtica
Universidade Presbiteriana Mackenzie
Rua da Consolagdo 896

01302-907 — Sdo Paulo-SP, Brazil

Flavio Keidi Miyazawa *
Instituto de Computacio
Universidade Estadual de Campinas
Caixa Postal 6176

13084-971 — Campinas-SP, Brazil

Yoshiko Wakabayashi
Instituto de Matematica e Estatistica
Universidade de Sao Paulo
Rua do Matdo, 1010

05508-090 — Sao Paulo-SP, Brazil.

Eduardo Candido Xavier
Instituto de Computacdo
Universidade Estadual de Campinas
Caixa Postal 6176

13084-971 — Campinas-SP, Brazil.

*Corresponding author: fkm@ic.unicamp.br Tel: (+55)(19) 3788-5882 — Fax: (+55)(19) 3788-5847



A note on the approximability of cutting stock problems

G. Cintra} F. K. Miyazawa™ Y. Wakabayashit E. C. Xavierf

August 29, 2005

Abstract

Cutting stock problems and bin packing problems are basically the same problems. They differ
essentially on the variability of the input items. In the first, we have a set of items, each item with
a given multiplicity; in the second, we have simply a list of items (each of which we may assume
to have multiplicity 1). Many approximation algorithms have been designed for packing problems;
a natural question is whether some of these algorithms can be extended to cutting stock problems.
We define the notion of “well-behaved” algorithms and show that well-behaved approximation algo-
rithms for one, two and higher dimensional bin packing problems can be translated to approximation
algorithms for cutting stock problems with the same approximation ratios.
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1 Introduction

Cutting stock problems are of great interest, both from a theoretical and a practical point-of-view. Their
applications go from packing of items into boxes or containers, to cutting of fabrics, hardboards, glasses,
foams, etc. The exact computational complexity status of these problems is unknown. It seems that the
decision versions of these problems may not be included in NP and that we can only assume that they lie
somewhere below EXPSPACE.

In this paper we show that some approximation algorithms for bin packing problems give rise to ap-
proximation algorithms for cutting stock problems. More precisely, according to the typology proposed
by Wischer, Haussner and Schumann [18], the problems we consider here are the Single Bin-Size Bin
Packing (which we abbreviate by SBSBP) and the Single Stock-Size Cutting Stock (which we abbrevi-
ate by SSSCS). In d-dimensional SBSBP problems, we are given a list L of n items, where each item
1 € L is a d-dimensional parallelepiped, and we are asked to pack the elements of L into a minimum
number of unit-capacity d-dimensional parallelepipeds. The items have to be packed orthogonally and
oriented in all dimensions. Furthermore, no two items can overlap in the packing. In d-dimensional
SSSCS problems, we are given additionally a (positive integer) demand d; (multiplicity) for each item
1 € L. Therefore, SBSBP problems can be considered particular cases of SSSCS problems, where all
demands are equal to 1. Note, however, that although an instance I for a SSSCS problem can be trivially
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translated to an instance I’ for the corresponding SBSBP problem, the size of I’ may be exponential in
the size of I. This means that such a trivial translation is not a good approach to tackle SSSCS problem:s.

We denote by 1SSSCS, 2SSSCS and 3SSSCS the one, two and three-dimensional SSSCS problems,
respectively; and by 1SBSBP, 2SBSBP and 3SBSBP the corresponding SBSBP problems. For the
latter, several approximation algorithms have appeared in the literature [12, 7, 3, 1, 13, 6, 4, 5]. Curiously,
despite the similarity of the problems, we did not find references to approximation algorithms for SSSCS
problems. Pioneering works on these problems were carried out by Gilmore and Gomory [9, 10, 11] in
the early sixties, and since them many contributions have appeared [14, 15, 16, 17]. We refer the reader
to Cheng et al. [2] for a survey.

In this note we discuss how to extend some approximation algorithms for SBSBP problems to ap-
proximation algorithms for SSSCS problems through the notion of “well-behaved” algorithm. In Sec-
tion 3 we consider the 1SSSCS problem. We define the concept of well-behaved algorithm and show that
any well-behaved algorithm for the 1ISBSBP problem can be translated to an algorithm for the 1SSSCS
problem. In Section 4 we mention how to obtain similar results for higher dimensional SSSCS problem:s.
We assume that the reader is familiar with the algorithms for the 1SBSBP problem we mention here:
NF (Next Fit), FF (First Fit), BF (Best Fit), NFD (Next Fit Decreasing), FFD (First Fit Decreasing),
BFD (Best Fit Decreasing), and Hy; (Harmonic).

2 Notation

Aninstance I = (L, s,d) of the 1SSSCS problem consists of a list L of elements, in which each element
e € L has size s, € (0,1] and demand d, € Z™; thus s = (S¢)ecr, and d = (de)ecr. The number of
items in the instance I, which we denote by || 7|, is the sum }_ ; d.. That is, the number of items is at
least the number of elements of L. The demand d. of an element e indicates that there is a multiplicity
of d. items of the element of size s.. We say that an item ¢ corresponding to an element e € L is an item
of type e. That is, in the instance [ there are d, items of type e.

For any structure 7', we denote by (T') the size in bits of the representation of 7T'. Given k lists

Q1,--.,Qx, where Q; = (al,... ,aﬁLi), we denote by Q@ = Q1]| . .. ||Qx the concatenation of these lists,
defined as the list Q = (a%, e ,a}ll, .- ,a’f, cee aflk). The number of elements of a list or a set S is
denoted by |S].

If L = (a1, ...,ay) then expand (L, s, d) denotes the list L' = (s1,... ’3<111’ ceey 8Ty, 8G ), where

sé- = s(a;), for 1 < j < d;. Given an instance L' of the 1ISBSBP problem, we denote by condense(L")
the triple (L, s,d), where L' = ezpand (L, s,d) and |L| is minimum.

For a given instance I = (L, s,d), a one-dimensional bin B can be represented (or described) by a
pair (Lp,dp), where Lg C L,0 < dg(e) < d(e) for each e € Lp. We say that such a pair (Lp,dp) is
a bin type for I. Clearly, (B) is bounded by a polynomial in (I).

The eq-partition (equal partition) of a list Q is the list (Q1,. .., Qk), where k is minimum and (i)
Q= (Q1]---11Qk); (i) ' = €" fore’,e" € Q;, 1 < i < k. This definition also applies to lists whose
items are bins.

3 One-dimensional Single Stock-Size Cutting Stock Problem
The one-dimensional single stock-size cutting stock (1SSSCS) problem can be defined as follows:

Problem 1 (1SSSCS) Given an instance I = (L, s,d) as defined above, find a packing of the items in I
into the minimum number of unit-capacity bins.



A natural approach to obtain approximation algorithms for the 1SSSCS problem is to adapt known
algorithms for the 1SBSBP problem. As we mentioned before, the naive approach that transforms
a given instance I for the 1SSSCS problem into the list ezpand(I) and applies an algorithm for the
1SBSBP problem on this list is flawed as both ezpand (I) and the size of the packing that is produced
may be exponential in the size of I. Of course, expansions of I may be easily avoided, so the main
concern is whether we can adapt the algorithms so as to produce solutions with short descriptions (that
is, descriptions that are polynomial in the size of I). Putting in a more general setting, we would like to
address the following question: which properties should an algorithm for the 1ISBSBP problem satisty
in order to be transformable into an algorithm for the 1SSSCS problem that produces a packing with a
short description? In what follows, we define the notion of well-behaved algorithm, and give an answer
to this question.

Definition 3.1 An algorithm A’ that receives an input list L' for the 1SBSBP problem is well-behaved
if it satisfies the following two properties:

P1. STABLE ORDER PROPERTY. The algorithm packs consecutively the equal-sized items that are
consecutive in the input list L'. More precisely, if (LY, ..., L) is an eq-partition of L' then the
algorithm packs the items of each L', consecutively. Formally, we may consider that the algorithm
behaves as follows:

1.1. Take (L",s,d) := condense(L').
1.2. Take L := expand(L"™, s, d), where L' is a permutation of L".
1.3. Pack the items following the order given by L.

P2. GROUPING PROPERTY. 10 pack an item, the algorithm does the following.

2.0 Suppose (L1, ..., Ly) is an eq-partition of L, where L is the list mentioned in the previous
property. The algorithm A’ packs first the list L.

2.1 Before packing the first item of a list L;,
2.1.1. let B = (B1, Bo, ..., By) be the list of existing non-empty bins, in the order they were

generated.
2.1.2. Let (B,...,B,) be the eq-partition of B.
Each list B; = (B}, ... ,B;-Lj) is said to be a group.
2.1.3. Let By11 be a group with sufficiently many empty bins.
// New bins are obtained from this group.
2.2. To pack the first item e € L;,
2.2.1. the algorithm packs e into a bin B; € Bj, for some j, such that either j < q or
(j=q+1landt=1).
2.2.2. Now B;f becomes the current bin and Bj the current group.
2.3 While the list L; is non-empty, to pack the next item e € L;,

2.3.1. if possible, packs e into the current bin B;.

2.3.2. If A’ fails in the previous step and B;‘H € Bj then A’ packs e into B;-'H. Now, B;'H
becomes the current bin.

2.3.3. If A’ fails in the previous step, A' packs e into a bin B},, for some group Bji. Now,
B }, becomes the current bin and Bj: the current group.



It is not hard to check that NF, FF, BF, Hy;, NFD, FFD, and BFD are well-behaved algorithms.
Now using this fact, and the concept of a short description of a packing, defined below, we can derive
our first result.

Definition 3.2 Let I = (L, s,d) be an instance for the 1SSSCS problem and P a packing of 1. A
description of P is a list D of pairs (B,bg), where B = (Lp,dg) is a bin type for I and bg is the
multiplicity of the bin type B in the packing P; and if Be is the number of items of type e in the bin B,
then Z( Bpp)eL bpBe = d. for any e € L. We say that D is a short description if the bin types B are all
distinct and (D) is polynomially bounded in (I).

Theorem 3.3 Let I be an instance for the 1SSSCS problem and A’ an algorithm for the 1SBSBP prob-
lem. If A" is well-behaved, then there exists a polynomial time algorithm A that produces a packing that
is precisely the packing produced by A’ on the list expand(I), differing possibly only on the description
of the packing.

Proof. Let I = (L, s,d), and L' be the permutation of ezpand(I) that is obtained as a consequence of the
stable order property P1, after applying A’ to ezpand(I). Assume that (L1,..., Lg) is the eg-partition
of L.

Let (By, ..., B,) be an eq-partition of the bins generated by algorithm A’ for the items L1|| ... || L;
and let B, be a list of sufficiently many empty bins. Clearly, the algorithm .4 may use a short descrip-
tion of (By,...,B,). Now, consider the packing of the items of the list L; ;. To pack the first item of
L; 1, the algorithm chooses a bin B; of a group B; = (le-, RN B;Lj ), where j < g+ 1, and tries to pack

the items of L, in the bins (B;-, e ,B;Lj ), consecutively. If it fails to pack all items of L;1 in these
bins, it continues in the same fashion moving to the first bin of another group.

Suppose that B;,, ..., B;,, is the sequence of groups in the list B = (Bj,...,B;11) (of bins) in
which the algorithm A’ has packed the items of L; 1, in the order the packing has occurred. Since A’ is
a well-behaved algorithm, it packs the items in consecutive bins of each group. First suppose that m > 1.
In this case, after packing the items of L;; in the group B;,, the number of different bins increases by at
most 1 (note that the packing of the items may start in any of the bins of the group). After packing items
of L;y; in the groups B;,,...,B;, ,,the number of different bins does not increase. After packing the
remaining items of L;y; in the group B; _ , the number of bins increases by at most 2. Therefore, the
number of different bins after packing the whole list L; 1 increases by at most 3. When m = 1, the
number of different bins increases by at most 2.

Notice that with a simple calculation, the algorithm A can figure out how many items of L; 1 can be
packed in a bin of a group B; and how many bins of this group it uses to pack these items. After packing
all the lists L1, ..., L, we can conclude that the number of different bins is at most 3k. This shows that
(mimicking the behavior of algorithm A’) we may design a polynomial time algorithm A that produces
a packing that has a short description. |

Denote by NF, FF, BF, Hnes, NFDes, FFDg and BFD the algorithms NF, FF, BF, Hyy,
NFD, FFD and BFD, respectively, adapted for the 1SSSCS problem that generate packings with short
descriptions.

Corollary 3.4 The algorithm NFq (respectively NFcg, FFeg, BFes, Hreg, NFDes, FFD(g and BFD )
has asymptotic performance bound 2 (respectively 1.7, 1.7, 1.691 ..., 1.691..., 11/9 and 11/9). The
bound for Hypes holds when M — <.

Considering the same ideas of short descriptions presented for the well-behaved algorithms, we may
also convert the AFPTAS of Fernandez de la Vega and Lueker [7] into an AFPTAS for the 1SSSCS
problem. That is, the following result holds.

Theorem 3.5 There exists an AFPTAS for the 1SSSCS problem.



4 Two and Higher Dimensional Single Stock-Size Cutting Stock Problems

An instance I = (L, w, h,d) for the 2SSSCS problem consists of a list of elements L, each element
e € L with width we € (0, 1], height h, € (0,1] and demand d, € Z*. Most of the notation we used
in the context of the 1SSSCS problem can be extended easily to the context of 2SSSCS, as for example,
expand (L, w, h,d), condense(L), etc. For this problem we can also define the concept of well-behaved
algorithm. Although better definitions may be given, we present a simple definition of well-behaved
algorithm for the 2SSSCS problem, as this can be extended easily to higher dimensions.

Definition 4.1 An algorithm A that receives an input list L' for the problem 2SBSBP is well-behaved if
it satisfies the following properties:

Q1. STABLE ORDER PROPERTY. The behavior of the algorithm can be described as follows:

1.1. Take (L",w,h,d) := condense(L").
1.2. Take L := expand(L",s,d), where L' is a permutation of L".
1.3. Pack the items following the order given by L.

Q2. LEVEL ORIENTED PROPERTY. The strategy used by the algorithm to produce a packing is the
following:

2.1 The algorithm generates a list L of levels using a well-behaved algorithm for the 1SBSBP
problem.

2.2 The algorithm uses a well-behaved algorithm for the 1SBSBP problem to pack the levels of
L into unit-capacity two-dimensional bins.

Theorem 4.2 Let I be an instance for the 2SSSCS problem and A’ an algorithm for the 2SBSBP prob-
lem. If A' is a well-behaved algorithm, then there exists a polynomial time algorithm A that produces
a packing that is precisely the packing produced by the algorithm A’ on the list expand(I), differing
possibly only on the description of the packing.

One of the most famous algorithm for the 2SBSBP problem is the algorithm HFF (Hybrid First Fit),
presented by Chung, Garey and Johnson [3]. These authors proved that HFF has an asymptotic perfor-
mance bound of 2.125, and later Caprara [1] proved that this algorithm has an asymptotic performance
bound of 2.077. ... Frenk and Galambos [8] proved that the next fit variant of the algorithm HFF, which
we denote by HNF, has an asymptotic performance bound of 3.382.... The algorithm with the best
known asymptotic performance bound for 2SBSBP, which we denote by HC, is due to Caprara [1] and
has bound 1.691 . ... These three algorithms are hybrid and use algorithms for the 1ISBSBP problem to
pack items into levels and levels into two-dimensional bins. Moreover, all algorithms for the 1SBSBP
problem used as subroutines have a corresponding version for the 1SSSCS problem, given by Corollary
3.4 or by Theorem 3.5.

Corollary 4.3 There exists an algorithm HNFg (resp. HFF., HC.s) with asymptotic performance
bound 3.382. .. (resp. 2.077 ..., 1.691...) for the 2SSSCS problem.

Most of the ideas presented here can also be extended to higher dimensions. In particular, the 4.84-
approximation algorithms of Li and Cheng [13] and of Csirik and van Vliet [6] can be translated to
algorithms for the 3SSSCS problem, as they generate packings that consist of levels. We can prove that
these algorithms are well-behaved and that the following holds.

Corollary 4.4 There exist algorithms for the problem 3SSSCS with asymptotic performance bound 4.84.
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